xref: /linux/mm/rmap.c (revision bf74b964775009071cf12f9d59d4dd5e388fbe0b)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 
52 #include <asm/tlbflush.h>
53 
54 struct kmem_cache *anon_vma_cachep;
55 
56 /* This must be called under the mmap_sem. */
57 int anon_vma_prepare(struct vm_area_struct *vma)
58 {
59 	struct anon_vma *anon_vma = vma->anon_vma;
60 
61 	might_sleep();
62 	if (unlikely(!anon_vma)) {
63 		struct mm_struct *mm = vma->vm_mm;
64 		struct anon_vma *allocated, *locked;
65 
66 		anon_vma = find_mergeable_anon_vma(vma);
67 		if (anon_vma) {
68 			allocated = NULL;
69 			locked = anon_vma;
70 			spin_lock(&locked->lock);
71 		} else {
72 			anon_vma = anon_vma_alloc();
73 			if (unlikely(!anon_vma))
74 				return -ENOMEM;
75 			allocated = anon_vma;
76 			locked = NULL;
77 		}
78 
79 		/* page_table_lock to protect against threads */
80 		spin_lock(&mm->page_table_lock);
81 		if (likely(!vma->anon_vma)) {
82 			vma->anon_vma = anon_vma;
83 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
84 			allocated = NULL;
85 		}
86 		spin_unlock(&mm->page_table_lock);
87 
88 		if (locked)
89 			spin_unlock(&locked->lock);
90 		if (unlikely(allocated))
91 			anon_vma_free(allocated);
92 	}
93 	return 0;
94 }
95 
96 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
97 {
98 	BUG_ON(vma->anon_vma != next->anon_vma);
99 	list_del(&next->anon_vma_node);
100 }
101 
102 void __anon_vma_link(struct vm_area_struct *vma)
103 {
104 	struct anon_vma *anon_vma = vma->anon_vma;
105 
106 	if (anon_vma)
107 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
108 }
109 
110 void anon_vma_link(struct vm_area_struct *vma)
111 {
112 	struct anon_vma *anon_vma = vma->anon_vma;
113 
114 	if (anon_vma) {
115 		spin_lock(&anon_vma->lock);
116 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
117 		spin_unlock(&anon_vma->lock);
118 	}
119 }
120 
121 void anon_vma_unlink(struct vm_area_struct *vma)
122 {
123 	struct anon_vma *anon_vma = vma->anon_vma;
124 	int empty;
125 
126 	if (!anon_vma)
127 		return;
128 
129 	spin_lock(&anon_vma->lock);
130 	list_del(&vma->anon_vma_node);
131 
132 	/* We must garbage collect the anon_vma if it's empty */
133 	empty = list_empty(&anon_vma->head);
134 	spin_unlock(&anon_vma->lock);
135 
136 	if (empty)
137 		anon_vma_free(anon_vma);
138 }
139 
140 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
141 			  unsigned long flags)
142 {
143 	struct anon_vma *anon_vma = data;
144 
145 	spin_lock_init(&anon_vma->lock);
146 	INIT_LIST_HEAD(&anon_vma->head);
147 }
148 
149 void __init anon_vma_init(void)
150 {
151 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
153 }
154 
155 /*
156  * Getting a lock on a stable anon_vma from a page off the LRU is
157  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158  */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 	struct anon_vma *anon_vma;
162 	unsigned long anon_mapping;
163 
164 	rcu_read_lock();
165 	anon_mapping = (unsigned long) page->mapping;
166 	if (!(anon_mapping & PAGE_MAPPING_ANON))
167 		goto out;
168 	if (!page_mapped(page))
169 		goto out;
170 
171 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 	spin_lock(&anon_vma->lock);
173 	return anon_vma;
174 out:
175 	rcu_read_unlock();
176 	return NULL;
177 }
178 
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 	spin_unlock(&anon_vma->lock);
182 	rcu_read_unlock();
183 }
184 
185 /*
186  * At what user virtual address is page expected in vma?
187  */
188 static inline unsigned long
189 vma_address(struct page *page, struct vm_area_struct *vma)
190 {
191 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
192 	unsigned long address;
193 
194 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
195 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
196 		/* page should be within any vma from prio_tree_next */
197 		BUG_ON(!PageAnon(page));
198 		return -EFAULT;
199 	}
200 	return address;
201 }
202 
203 /*
204  * At what user virtual address is page expected in vma? checking that the
205  * page matches the vma: currently only used on anon pages, by unuse_vma;
206  */
207 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
208 {
209 	if (PageAnon(page)) {
210 		if ((void *)vma->anon_vma !=
211 		    (void *)page->mapping - PAGE_MAPPING_ANON)
212 			return -EFAULT;
213 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
214 		if (!vma->vm_file ||
215 		    vma->vm_file->f_mapping != page->mapping)
216 			return -EFAULT;
217 	} else
218 		return -EFAULT;
219 	return vma_address(page, vma);
220 }
221 
222 /*
223  * Check that @page is mapped at @address into @mm.
224  *
225  * On success returns with pte mapped and locked.
226  */
227 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
228 			  unsigned long address, spinlock_t **ptlp)
229 {
230 	pgd_t *pgd;
231 	pud_t *pud;
232 	pmd_t *pmd;
233 	pte_t *pte;
234 	spinlock_t *ptl;
235 
236 	pgd = pgd_offset(mm, address);
237 	if (!pgd_present(*pgd))
238 		return NULL;
239 
240 	pud = pud_offset(pgd, address);
241 	if (!pud_present(*pud))
242 		return NULL;
243 
244 	pmd = pmd_offset(pud, address);
245 	if (!pmd_present(*pmd))
246 		return NULL;
247 
248 	pte = pte_offset_map(pmd, address);
249 	/* Make a quick check before getting the lock */
250 	if (!pte_present(*pte)) {
251 		pte_unmap(pte);
252 		return NULL;
253 	}
254 
255 	ptl = pte_lockptr(mm, pmd);
256 	spin_lock(ptl);
257 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
258 		*ptlp = ptl;
259 		return pte;
260 	}
261 	pte_unmap_unlock(pte, ptl);
262 	return NULL;
263 }
264 
265 /*
266  * Subfunctions of page_referenced: page_referenced_one called
267  * repeatedly from either page_referenced_anon or page_referenced_file.
268  */
269 static int page_referenced_one(struct page *page,
270 	struct vm_area_struct *vma, unsigned int *mapcount)
271 {
272 	struct mm_struct *mm = vma->vm_mm;
273 	unsigned long address;
274 	pte_t *pte;
275 	spinlock_t *ptl;
276 	int referenced = 0;
277 
278 	address = vma_address(page, vma);
279 	if (address == -EFAULT)
280 		goto out;
281 
282 	pte = page_check_address(page, mm, address, &ptl);
283 	if (!pte)
284 		goto out;
285 
286 	if (ptep_clear_flush_young(vma, address, pte))
287 		referenced++;
288 
289 	/* Pretend the page is referenced if the task has the
290 	   swap token and is in the middle of a page fault. */
291 	if (mm != current->mm && has_swap_token(mm) &&
292 			rwsem_is_locked(&mm->mmap_sem))
293 		referenced++;
294 
295 	(*mapcount)--;
296 	pte_unmap_unlock(pte, ptl);
297 out:
298 	return referenced;
299 }
300 
301 static int page_referenced_anon(struct page *page)
302 {
303 	unsigned int mapcount;
304 	struct anon_vma *anon_vma;
305 	struct vm_area_struct *vma;
306 	int referenced = 0;
307 
308 	anon_vma = page_lock_anon_vma(page);
309 	if (!anon_vma)
310 		return referenced;
311 
312 	mapcount = page_mapcount(page);
313 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
314 		referenced += page_referenced_one(page, vma, &mapcount);
315 		if (!mapcount)
316 			break;
317 	}
318 
319 	page_unlock_anon_vma(anon_vma);
320 	return referenced;
321 }
322 
323 /**
324  * page_referenced_file - referenced check for object-based rmap
325  * @page: the page we're checking references on.
326  *
327  * For an object-based mapped page, find all the places it is mapped and
328  * check/clear the referenced flag.  This is done by following the page->mapping
329  * pointer, then walking the chain of vmas it holds.  It returns the number
330  * of references it found.
331  *
332  * This function is only called from page_referenced for object-based pages.
333  */
334 static int page_referenced_file(struct page *page)
335 {
336 	unsigned int mapcount;
337 	struct address_space *mapping = page->mapping;
338 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
339 	struct vm_area_struct *vma;
340 	struct prio_tree_iter iter;
341 	int referenced = 0;
342 
343 	/*
344 	 * The caller's checks on page->mapping and !PageAnon have made
345 	 * sure that this is a file page: the check for page->mapping
346 	 * excludes the case just before it gets set on an anon page.
347 	 */
348 	BUG_ON(PageAnon(page));
349 
350 	/*
351 	 * The page lock not only makes sure that page->mapping cannot
352 	 * suddenly be NULLified by truncation, it makes sure that the
353 	 * structure at mapping cannot be freed and reused yet,
354 	 * so we can safely take mapping->i_mmap_lock.
355 	 */
356 	BUG_ON(!PageLocked(page));
357 
358 	spin_lock(&mapping->i_mmap_lock);
359 
360 	/*
361 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
362 	 * is more likely to be accurate if we note it after spinning.
363 	 */
364 	mapcount = page_mapcount(page);
365 
366 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
367 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
368 				  == (VM_LOCKED|VM_MAYSHARE)) {
369 			referenced++;
370 			break;
371 		}
372 		referenced += page_referenced_one(page, vma, &mapcount);
373 		if (!mapcount)
374 			break;
375 	}
376 
377 	spin_unlock(&mapping->i_mmap_lock);
378 	return referenced;
379 }
380 
381 /**
382  * page_referenced - test if the page was referenced
383  * @page: the page to test
384  * @is_locked: caller holds lock on the page
385  *
386  * Quick test_and_clear_referenced for all mappings to a page,
387  * returns the number of ptes which referenced the page.
388  */
389 int page_referenced(struct page *page, int is_locked)
390 {
391 	int referenced = 0;
392 
393 	if (page_test_and_clear_young(page))
394 		referenced++;
395 
396 	if (TestClearPageReferenced(page))
397 		referenced++;
398 
399 	if (page_mapped(page) && page->mapping) {
400 		if (PageAnon(page))
401 			referenced += page_referenced_anon(page);
402 		else if (is_locked)
403 			referenced += page_referenced_file(page);
404 		else if (TestSetPageLocked(page))
405 			referenced++;
406 		else {
407 			if (page->mapping)
408 				referenced += page_referenced_file(page);
409 			unlock_page(page);
410 		}
411 	}
412 	return referenced;
413 }
414 
415 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
416 {
417 	struct mm_struct *mm = vma->vm_mm;
418 	unsigned long address;
419 	pte_t *pte;
420 	spinlock_t *ptl;
421 	int ret = 0;
422 
423 	address = vma_address(page, vma);
424 	if (address == -EFAULT)
425 		goto out;
426 
427 	pte = page_check_address(page, mm, address, &ptl);
428 	if (!pte)
429 		goto out;
430 
431 	if (pte_dirty(*pte) || pte_write(*pte)) {
432 		pte_t entry;
433 
434 		flush_cache_page(vma, address, pte_pfn(*pte));
435 		entry = ptep_clear_flush(vma, address, pte);
436 		entry = pte_wrprotect(entry);
437 		entry = pte_mkclean(entry);
438 		set_pte_at(mm, address, pte, entry);
439 		lazy_mmu_prot_update(entry);
440 		ret = 1;
441 	}
442 
443 	pte_unmap_unlock(pte, ptl);
444 out:
445 	return ret;
446 }
447 
448 static int page_mkclean_file(struct address_space *mapping, struct page *page)
449 {
450 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
451 	struct vm_area_struct *vma;
452 	struct prio_tree_iter iter;
453 	int ret = 0;
454 
455 	BUG_ON(PageAnon(page));
456 
457 	spin_lock(&mapping->i_mmap_lock);
458 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
459 		if (vma->vm_flags & VM_SHARED)
460 			ret += page_mkclean_one(page, vma);
461 	}
462 	spin_unlock(&mapping->i_mmap_lock);
463 	return ret;
464 }
465 
466 int page_mkclean(struct page *page)
467 {
468 	int ret = 0;
469 
470 	BUG_ON(!PageLocked(page));
471 
472 	if (page_mapped(page)) {
473 		struct address_space *mapping = page_mapping(page);
474 		if (mapping)
475 			ret = page_mkclean_file(mapping, page);
476 		if (page_test_dirty(page)) {
477 			page_clear_dirty(page);
478 			ret = 1;
479 		}
480 	}
481 
482 	return ret;
483 }
484 EXPORT_SYMBOL_GPL(page_mkclean);
485 
486 /**
487  * page_set_anon_rmap - setup new anonymous rmap
488  * @page:	the page to add the mapping to
489  * @vma:	the vm area in which the mapping is added
490  * @address:	the user virtual address mapped
491  */
492 static void __page_set_anon_rmap(struct page *page,
493 	struct vm_area_struct *vma, unsigned long address)
494 {
495 	struct anon_vma *anon_vma = vma->anon_vma;
496 
497 	BUG_ON(!anon_vma);
498 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
499 	page->mapping = (struct address_space *) anon_vma;
500 
501 	page->index = linear_page_index(vma, address);
502 
503 	/*
504 	 * nr_mapped state can be updated without turning off
505 	 * interrupts because it is not modified via interrupt.
506 	 */
507 	__inc_zone_page_state(page, NR_ANON_PAGES);
508 }
509 
510 /**
511  * page_set_anon_rmap - sanity check anonymous rmap addition
512  * @page:	the page to add the mapping to
513  * @vma:	the vm area in which the mapping is added
514  * @address:	the user virtual address mapped
515  */
516 static void __page_check_anon_rmap(struct page *page,
517 	struct vm_area_struct *vma, unsigned long address)
518 {
519 #ifdef CONFIG_DEBUG_VM
520 	/*
521 	 * The page's anon-rmap details (mapping and index) are guaranteed to
522 	 * be set up correctly at this point.
523 	 *
524 	 * We have exclusion against page_add_anon_rmap because the caller
525 	 * always holds the page locked, except if called from page_dup_rmap,
526 	 * in which case the page is already known to be setup.
527 	 *
528 	 * We have exclusion against page_add_new_anon_rmap because those pages
529 	 * are initially only visible via the pagetables, and the pte is locked
530 	 * over the call to page_add_new_anon_rmap.
531 	 */
532 	struct anon_vma *anon_vma = vma->anon_vma;
533 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
534 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
535 	BUG_ON(page->index != linear_page_index(vma, address));
536 #endif
537 }
538 
539 /**
540  * page_add_anon_rmap - add pte mapping to an anonymous page
541  * @page:	the page to add the mapping to
542  * @vma:	the vm area in which the mapping is added
543  * @address:	the user virtual address mapped
544  *
545  * The caller needs to hold the pte lock and the page must be locked.
546  */
547 void page_add_anon_rmap(struct page *page,
548 	struct vm_area_struct *vma, unsigned long address)
549 {
550 	VM_BUG_ON(!PageLocked(page));
551 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
552 	if (atomic_inc_and_test(&page->_mapcount))
553 		__page_set_anon_rmap(page, vma, address);
554 	else
555 		__page_check_anon_rmap(page, vma, address);
556 }
557 
558 /*
559  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
560  * @page:	the page to add the mapping to
561  * @vma:	the vm area in which the mapping is added
562  * @address:	the user virtual address mapped
563  *
564  * Same as page_add_anon_rmap but must only be called on *new* pages.
565  * This means the inc-and-test can be bypassed.
566  * Page does not have to be locked.
567  */
568 void page_add_new_anon_rmap(struct page *page,
569 	struct vm_area_struct *vma, unsigned long address)
570 {
571 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
572 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
573 	__page_set_anon_rmap(page, vma, address);
574 }
575 
576 /**
577  * page_add_file_rmap - add pte mapping to a file page
578  * @page: the page to add the mapping to
579  *
580  * The caller needs to hold the pte lock.
581  */
582 void page_add_file_rmap(struct page *page)
583 {
584 	if (atomic_inc_and_test(&page->_mapcount))
585 		__inc_zone_page_state(page, NR_FILE_MAPPED);
586 }
587 
588 #ifdef CONFIG_DEBUG_VM
589 /**
590  * page_dup_rmap - duplicate pte mapping to a page
591  * @page:	the page to add the mapping to
592  *
593  * For copy_page_range only: minimal extract from page_add_file_rmap /
594  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
595  * quicker.
596  *
597  * The caller needs to hold the pte lock.
598  */
599 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
600 {
601 	BUG_ON(page_mapcount(page) == 0);
602 	if (PageAnon(page))
603 		__page_check_anon_rmap(page, vma, address);
604 	atomic_inc(&page->_mapcount);
605 }
606 #endif
607 
608 /**
609  * page_remove_rmap - take down pte mapping from a page
610  * @page: page to remove mapping from
611  *
612  * The caller needs to hold the pte lock.
613  */
614 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
615 {
616 	if (atomic_add_negative(-1, &page->_mapcount)) {
617 		if (unlikely(page_mapcount(page) < 0)) {
618 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
619 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
620 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
621 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
622 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
623 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
624 			if (vma->vm_ops)
625 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
626 			if (vma->vm_file && vma->vm_file->f_op)
627 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
628 			BUG();
629 		}
630 
631 		/*
632 		 * It would be tidy to reset the PageAnon mapping here,
633 		 * but that might overwrite a racing page_add_anon_rmap
634 		 * which increments mapcount after us but sets mapping
635 		 * before us: so leave the reset to free_hot_cold_page,
636 		 * and remember that it's only reliable while mapped.
637 		 * Leaving it set also helps swapoff to reinstate ptes
638 		 * faster for those pages still in swapcache.
639 		 */
640 		if (page_test_dirty(page)) {
641 			page_clear_dirty(page);
642 			set_page_dirty(page);
643 		}
644 		__dec_zone_page_state(page,
645 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
646 	}
647 }
648 
649 /*
650  * Subfunctions of try_to_unmap: try_to_unmap_one called
651  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
652  */
653 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
654 				int migration)
655 {
656 	struct mm_struct *mm = vma->vm_mm;
657 	unsigned long address;
658 	pte_t *pte;
659 	pte_t pteval;
660 	spinlock_t *ptl;
661 	int ret = SWAP_AGAIN;
662 
663 	address = vma_address(page, vma);
664 	if (address == -EFAULT)
665 		goto out;
666 
667 	pte = page_check_address(page, mm, address, &ptl);
668 	if (!pte)
669 		goto out;
670 
671 	/*
672 	 * If the page is mlock()d, we cannot swap it out.
673 	 * If it's recently referenced (perhaps page_referenced
674 	 * skipped over this mm) then we should reactivate it.
675 	 */
676 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
677 			(ptep_clear_flush_young(vma, address, pte)))) {
678 		ret = SWAP_FAIL;
679 		goto out_unmap;
680 	}
681 
682 	/* Nuke the page table entry. */
683 	flush_cache_page(vma, address, page_to_pfn(page));
684 	pteval = ptep_clear_flush(vma, address, pte);
685 
686 	/* Move the dirty bit to the physical page now the pte is gone. */
687 	if (pte_dirty(pteval))
688 		set_page_dirty(page);
689 
690 	/* Update high watermark before we lower rss */
691 	update_hiwater_rss(mm);
692 
693 	if (PageAnon(page)) {
694 		swp_entry_t entry = { .val = page_private(page) };
695 
696 		if (PageSwapCache(page)) {
697 			/*
698 			 * Store the swap location in the pte.
699 			 * See handle_pte_fault() ...
700 			 */
701 			swap_duplicate(entry);
702 			if (list_empty(&mm->mmlist)) {
703 				spin_lock(&mmlist_lock);
704 				if (list_empty(&mm->mmlist))
705 					list_add(&mm->mmlist, &init_mm.mmlist);
706 				spin_unlock(&mmlist_lock);
707 			}
708 			dec_mm_counter(mm, anon_rss);
709 #ifdef CONFIG_MIGRATION
710 		} else {
711 			/*
712 			 * Store the pfn of the page in a special migration
713 			 * pte. do_swap_page() will wait until the migration
714 			 * pte is removed and then restart fault handling.
715 			 */
716 			BUG_ON(!migration);
717 			entry = make_migration_entry(page, pte_write(pteval));
718 #endif
719 		}
720 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
721 		BUG_ON(pte_file(*pte));
722 	} else
723 #ifdef CONFIG_MIGRATION
724 	if (migration) {
725 		/* Establish migration entry for a file page */
726 		swp_entry_t entry;
727 		entry = make_migration_entry(page, pte_write(pteval));
728 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
729 	} else
730 #endif
731 		dec_mm_counter(mm, file_rss);
732 
733 
734 	page_remove_rmap(page, vma);
735 	page_cache_release(page);
736 
737 out_unmap:
738 	pte_unmap_unlock(pte, ptl);
739 out:
740 	return ret;
741 }
742 
743 /*
744  * objrmap doesn't work for nonlinear VMAs because the assumption that
745  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
746  * Consequently, given a particular page and its ->index, we cannot locate the
747  * ptes which are mapping that page without an exhaustive linear search.
748  *
749  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
750  * maps the file to which the target page belongs.  The ->vm_private_data field
751  * holds the current cursor into that scan.  Successive searches will circulate
752  * around the vma's virtual address space.
753  *
754  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
755  * more scanning pressure is placed against them as well.   Eventually pages
756  * will become fully unmapped and are eligible for eviction.
757  *
758  * For very sparsely populated VMAs this is a little inefficient - chances are
759  * there there won't be many ptes located within the scan cluster.  In this case
760  * maybe we could scan further - to the end of the pte page, perhaps.
761  */
762 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
763 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
764 
765 static void try_to_unmap_cluster(unsigned long cursor,
766 	unsigned int *mapcount, struct vm_area_struct *vma)
767 {
768 	struct mm_struct *mm = vma->vm_mm;
769 	pgd_t *pgd;
770 	pud_t *pud;
771 	pmd_t *pmd;
772 	pte_t *pte;
773 	pte_t pteval;
774 	spinlock_t *ptl;
775 	struct page *page;
776 	unsigned long address;
777 	unsigned long end;
778 
779 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
780 	end = address + CLUSTER_SIZE;
781 	if (address < vma->vm_start)
782 		address = vma->vm_start;
783 	if (end > vma->vm_end)
784 		end = vma->vm_end;
785 
786 	pgd = pgd_offset(mm, address);
787 	if (!pgd_present(*pgd))
788 		return;
789 
790 	pud = pud_offset(pgd, address);
791 	if (!pud_present(*pud))
792 		return;
793 
794 	pmd = pmd_offset(pud, address);
795 	if (!pmd_present(*pmd))
796 		return;
797 
798 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
799 
800 	/* Update high watermark before we lower rss */
801 	update_hiwater_rss(mm);
802 
803 	for (; address < end; pte++, address += PAGE_SIZE) {
804 		if (!pte_present(*pte))
805 			continue;
806 		page = vm_normal_page(vma, address, *pte);
807 		BUG_ON(!page || PageAnon(page));
808 
809 		if (ptep_clear_flush_young(vma, address, pte))
810 			continue;
811 
812 		/* Nuke the page table entry. */
813 		flush_cache_page(vma, address, pte_pfn(*pte));
814 		pteval = ptep_clear_flush(vma, address, pte);
815 
816 		/* If nonlinear, store the file page offset in the pte. */
817 		if (page->index != linear_page_index(vma, address))
818 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
819 
820 		/* Move the dirty bit to the physical page now the pte is gone. */
821 		if (pte_dirty(pteval))
822 			set_page_dirty(page);
823 
824 		page_remove_rmap(page, vma);
825 		page_cache_release(page);
826 		dec_mm_counter(mm, file_rss);
827 		(*mapcount)--;
828 	}
829 	pte_unmap_unlock(pte - 1, ptl);
830 }
831 
832 static int try_to_unmap_anon(struct page *page, int migration)
833 {
834 	struct anon_vma *anon_vma;
835 	struct vm_area_struct *vma;
836 	int ret = SWAP_AGAIN;
837 
838 	anon_vma = page_lock_anon_vma(page);
839 	if (!anon_vma)
840 		return ret;
841 
842 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
843 		ret = try_to_unmap_one(page, vma, migration);
844 		if (ret == SWAP_FAIL || !page_mapped(page))
845 			break;
846 	}
847 
848 	page_unlock_anon_vma(anon_vma);
849 	return ret;
850 }
851 
852 /**
853  * try_to_unmap_file - unmap file page using the object-based rmap method
854  * @page: the page to unmap
855  *
856  * Find all the mappings of a page using the mapping pointer and the vma chains
857  * contained in the address_space struct it points to.
858  *
859  * This function is only called from try_to_unmap for object-based pages.
860  */
861 static int try_to_unmap_file(struct page *page, int migration)
862 {
863 	struct address_space *mapping = page->mapping;
864 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
865 	struct vm_area_struct *vma;
866 	struct prio_tree_iter iter;
867 	int ret = SWAP_AGAIN;
868 	unsigned long cursor;
869 	unsigned long max_nl_cursor = 0;
870 	unsigned long max_nl_size = 0;
871 	unsigned int mapcount;
872 
873 	spin_lock(&mapping->i_mmap_lock);
874 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
875 		ret = try_to_unmap_one(page, vma, migration);
876 		if (ret == SWAP_FAIL || !page_mapped(page))
877 			goto out;
878 	}
879 
880 	if (list_empty(&mapping->i_mmap_nonlinear))
881 		goto out;
882 
883 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
884 						shared.vm_set.list) {
885 		if ((vma->vm_flags & VM_LOCKED) && !migration)
886 			continue;
887 		cursor = (unsigned long) vma->vm_private_data;
888 		if (cursor > max_nl_cursor)
889 			max_nl_cursor = cursor;
890 		cursor = vma->vm_end - vma->vm_start;
891 		if (cursor > max_nl_size)
892 			max_nl_size = cursor;
893 	}
894 
895 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
896 		ret = SWAP_FAIL;
897 		goto out;
898 	}
899 
900 	/*
901 	 * We don't try to search for this page in the nonlinear vmas,
902 	 * and page_referenced wouldn't have found it anyway.  Instead
903 	 * just walk the nonlinear vmas trying to age and unmap some.
904 	 * The mapcount of the page we came in with is irrelevant,
905 	 * but even so use it as a guide to how hard we should try?
906 	 */
907 	mapcount = page_mapcount(page);
908 	if (!mapcount)
909 		goto out;
910 	cond_resched_lock(&mapping->i_mmap_lock);
911 
912 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
913 	if (max_nl_cursor == 0)
914 		max_nl_cursor = CLUSTER_SIZE;
915 
916 	do {
917 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
918 						shared.vm_set.list) {
919 			if ((vma->vm_flags & VM_LOCKED) && !migration)
920 				continue;
921 			cursor = (unsigned long) vma->vm_private_data;
922 			while ( cursor < max_nl_cursor &&
923 				cursor < vma->vm_end - vma->vm_start) {
924 				try_to_unmap_cluster(cursor, &mapcount, vma);
925 				cursor += CLUSTER_SIZE;
926 				vma->vm_private_data = (void *) cursor;
927 				if ((int)mapcount <= 0)
928 					goto out;
929 			}
930 			vma->vm_private_data = (void *) max_nl_cursor;
931 		}
932 		cond_resched_lock(&mapping->i_mmap_lock);
933 		max_nl_cursor += CLUSTER_SIZE;
934 	} while (max_nl_cursor <= max_nl_size);
935 
936 	/*
937 	 * Don't loop forever (perhaps all the remaining pages are
938 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
939 	 * vmas, now forgetting on which ones it had fallen behind.
940 	 */
941 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
942 		vma->vm_private_data = NULL;
943 out:
944 	spin_unlock(&mapping->i_mmap_lock);
945 	return ret;
946 }
947 
948 /**
949  * try_to_unmap - try to remove all page table mappings to a page
950  * @page: the page to get unmapped
951  *
952  * Tries to remove all the page table entries which are mapping this
953  * page, used in the pageout path.  Caller must hold the page lock.
954  * Return values are:
955  *
956  * SWAP_SUCCESS	- we succeeded in removing all mappings
957  * SWAP_AGAIN	- we missed a mapping, try again later
958  * SWAP_FAIL	- the page is unswappable
959  */
960 int try_to_unmap(struct page *page, int migration)
961 {
962 	int ret;
963 
964 	BUG_ON(!PageLocked(page));
965 
966 	if (PageAnon(page))
967 		ret = try_to_unmap_anon(page, migration);
968 	else
969 		ret = try_to_unmap_file(page, migration);
970 
971 	if (!page_mapped(page))
972 		ret = SWAP_SUCCESS;
973 	return ret;
974 }
975 
976