xref: /linux/mm/rmap.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
35  *                     i_pages lock (widely used)
36  *                       lruvec->lru_lock (in lock_page_lruvec_irq)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/tlb.h>
79 
80 #include "internal.h"
81 
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84 
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 	struct anon_vma *anon_vma;
88 
89 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 	if (anon_vma) {
91 		atomic_set(&anon_vma->refcount, 1);
92 		anon_vma->degree = 1;	/* Reference for first vma */
93 		anon_vma->parent = anon_vma;
94 		/*
95 		 * Initialise the anon_vma root to point to itself. If called
96 		 * from fork, the root will be reset to the parents anon_vma.
97 		 */
98 		anon_vma->root = anon_vma;
99 	}
100 
101 	return anon_vma;
102 }
103 
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
107 
108 	/*
109 	 * Synchronize against page_lock_anon_vma_read() such that
110 	 * we can safely hold the lock without the anon_vma getting
111 	 * freed.
112 	 *
113 	 * Relies on the full mb implied by the atomic_dec_and_test() from
114 	 * put_anon_vma() against the acquire barrier implied by
115 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 	 *
117 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
118 	 *   down_read_trylock()		  atomic_dec_and_test()
119 	 *   LOCK				  MB
120 	 *   atomic_read()			  rwsem_is_locked()
121 	 *
122 	 * LOCK should suffice since the actual taking of the lock must
123 	 * happen _before_ what follows.
124 	 */
125 	might_sleep();
126 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 		anon_vma_lock_write(anon_vma);
128 		anon_vma_unlock_write(anon_vma);
129 	}
130 
131 	kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133 
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138 
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143 
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 				struct anon_vma_chain *avc,
146 				struct anon_vma *anon_vma)
147 {
148 	avc->vma = vma;
149 	avc->anon_vma = anon_vma;
150 	list_add(&avc->same_vma, &vma->anon_vma_chain);
151 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153 
154 /**
155  * __anon_vma_prepare - attach an anon_vma to a memory region
156  * @vma: the memory region in question
157  *
158  * This makes sure the memory mapping described by 'vma' has
159  * an 'anon_vma' attached to it, so that we can associate the
160  * anonymous pages mapped into it with that anon_vma.
161  *
162  * The common case will be that we already have one, which
163  * is handled inline by anon_vma_prepare(). But if
164  * not we either need to find an adjacent mapping that we
165  * can re-use the anon_vma from (very common when the only
166  * reason for splitting a vma has been mprotect()), or we
167  * allocate a new one.
168  *
169  * Anon-vma allocations are very subtle, because we may have
170  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171  * and that may actually touch the spinlock even in the newly
172  * allocated vma (it depends on RCU to make sure that the
173  * anon_vma isn't actually destroyed).
174  *
175  * As a result, we need to do proper anon_vma locking even
176  * for the new allocation. At the same time, we do not want
177  * to do any locking for the common case of already having
178  * an anon_vma.
179  *
180  * This must be called with the mmap_lock held for reading.
181  */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 	struct mm_struct *mm = vma->vm_mm;
185 	struct anon_vma *anon_vma, *allocated;
186 	struct anon_vma_chain *avc;
187 
188 	might_sleep();
189 
190 	avc = anon_vma_chain_alloc(GFP_KERNEL);
191 	if (!avc)
192 		goto out_enomem;
193 
194 	anon_vma = find_mergeable_anon_vma(vma);
195 	allocated = NULL;
196 	if (!anon_vma) {
197 		anon_vma = anon_vma_alloc();
198 		if (unlikely(!anon_vma))
199 			goto out_enomem_free_avc;
200 		allocated = anon_vma;
201 	}
202 
203 	anon_vma_lock_write(anon_vma);
204 	/* page_table_lock to protect against threads */
205 	spin_lock(&mm->page_table_lock);
206 	if (likely(!vma->anon_vma)) {
207 		vma->anon_vma = anon_vma;
208 		anon_vma_chain_link(vma, avc, anon_vma);
209 		/* vma reference or self-parent link for new root */
210 		anon_vma->degree++;
211 		allocated = NULL;
212 		avc = NULL;
213 	}
214 	spin_unlock(&mm->page_table_lock);
215 	anon_vma_unlock_write(anon_vma);
216 
217 	if (unlikely(allocated))
218 		put_anon_vma(allocated);
219 	if (unlikely(avc))
220 		anon_vma_chain_free(avc);
221 
222 	return 0;
223 
224  out_enomem_free_avc:
225 	anon_vma_chain_free(avc);
226  out_enomem:
227 	return -ENOMEM;
228 }
229 
230 /*
231  * This is a useful helper function for locking the anon_vma root as
232  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233  * have the same vma.
234  *
235  * Such anon_vma's should have the same root, so you'd expect to see
236  * just a single mutex_lock for the whole traversal.
237  */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 	struct anon_vma *new_root = anon_vma->root;
241 	if (new_root != root) {
242 		if (WARN_ON_ONCE(root))
243 			up_write(&root->rwsem);
244 		root = new_root;
245 		down_write(&root->rwsem);
246 	}
247 	return root;
248 }
249 
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 	if (root)
253 		up_write(&root->rwsem);
254 }
255 
256 /*
257  * Attach the anon_vmas from src to dst.
258  * Returns 0 on success, -ENOMEM on failure.
259  *
260  * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
261  * anon_vma_fork(). The first three want an exact copy of src, while the last
262  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265  *
266  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268  * This prevents degradation of anon_vma hierarchy to endless linear chain in
269  * case of constantly forking task. On the other hand, an anon_vma with more
270  * than one child isn't reused even if there was no alive vma, thus rmap
271  * walker has a good chance of avoiding scanning the whole hierarchy when it
272  * searches where page is mapped.
273  */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 	struct anon_vma_chain *avc, *pavc;
277 	struct anon_vma *root = NULL;
278 
279 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 		struct anon_vma *anon_vma;
281 
282 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 		if (unlikely(!avc)) {
284 			unlock_anon_vma_root(root);
285 			root = NULL;
286 			avc = anon_vma_chain_alloc(GFP_KERNEL);
287 			if (!avc)
288 				goto enomem_failure;
289 		}
290 		anon_vma = pavc->anon_vma;
291 		root = lock_anon_vma_root(root, anon_vma);
292 		anon_vma_chain_link(dst, avc, anon_vma);
293 
294 		/*
295 		 * Reuse existing anon_vma if its degree lower than two,
296 		 * that means it has no vma and only one anon_vma child.
297 		 *
298 		 * Do not chose parent anon_vma, otherwise first child
299 		 * will always reuse it. Root anon_vma is never reused:
300 		 * it has self-parent reference and at least one child.
301 		 */
302 		if (!dst->anon_vma && src->anon_vma &&
303 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
304 			dst->anon_vma = anon_vma;
305 	}
306 	if (dst->anon_vma)
307 		dst->anon_vma->degree++;
308 	unlock_anon_vma_root(root);
309 	return 0;
310 
311  enomem_failure:
312 	/*
313 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 	 * decremented in unlink_anon_vmas().
315 	 * We can safely do this because callers of anon_vma_clone() don't care
316 	 * about dst->anon_vma if anon_vma_clone() failed.
317 	 */
318 	dst->anon_vma = NULL;
319 	unlink_anon_vmas(dst);
320 	return -ENOMEM;
321 }
322 
323 /*
324  * Attach vma to its own anon_vma, as well as to the anon_vmas that
325  * the corresponding VMA in the parent process is attached to.
326  * Returns 0 on success, non-zero on failure.
327  */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 	struct anon_vma_chain *avc;
331 	struct anon_vma *anon_vma;
332 	int error;
333 
334 	/* Don't bother if the parent process has no anon_vma here. */
335 	if (!pvma->anon_vma)
336 		return 0;
337 
338 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 	vma->anon_vma = NULL;
340 
341 	/*
342 	 * First, attach the new VMA to the parent VMA's anon_vmas,
343 	 * so rmap can find non-COWed pages in child processes.
344 	 */
345 	error = anon_vma_clone(vma, pvma);
346 	if (error)
347 		return error;
348 
349 	/* An existing anon_vma has been reused, all done then. */
350 	if (vma->anon_vma)
351 		return 0;
352 
353 	/* Then add our own anon_vma. */
354 	anon_vma = anon_vma_alloc();
355 	if (!anon_vma)
356 		goto out_error;
357 	avc = anon_vma_chain_alloc(GFP_KERNEL);
358 	if (!avc)
359 		goto out_error_free_anon_vma;
360 
361 	/*
362 	 * The root anon_vma's spinlock is the lock actually used when we
363 	 * lock any of the anon_vmas in this anon_vma tree.
364 	 */
365 	anon_vma->root = pvma->anon_vma->root;
366 	anon_vma->parent = pvma->anon_vma;
367 	/*
368 	 * With refcounts, an anon_vma can stay around longer than the
369 	 * process it belongs to. The root anon_vma needs to be pinned until
370 	 * this anon_vma is freed, because the lock lives in the root.
371 	 */
372 	get_anon_vma(anon_vma->root);
373 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
374 	vma->anon_vma = anon_vma;
375 	anon_vma_lock_write(anon_vma);
376 	anon_vma_chain_link(vma, avc, anon_vma);
377 	anon_vma->parent->degree++;
378 	anon_vma_unlock_write(anon_vma);
379 
380 	return 0;
381 
382  out_error_free_anon_vma:
383 	put_anon_vma(anon_vma);
384  out_error:
385 	unlink_anon_vmas(vma);
386 	return -ENOMEM;
387 }
388 
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 	struct anon_vma_chain *avc, *next;
392 	struct anon_vma *root = NULL;
393 
394 	/*
395 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
396 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 	 */
398 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 		struct anon_vma *anon_vma = avc->anon_vma;
400 
401 		root = lock_anon_vma_root(root, anon_vma);
402 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403 
404 		/*
405 		 * Leave empty anon_vmas on the list - we'll need
406 		 * to free them outside the lock.
407 		 */
408 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 			anon_vma->parent->degree--;
410 			continue;
411 		}
412 
413 		list_del(&avc->same_vma);
414 		anon_vma_chain_free(avc);
415 	}
416 	if (vma->anon_vma)
417 		vma->anon_vma->degree--;
418 	unlock_anon_vma_root(root);
419 
420 	/*
421 	 * Iterate the list once more, it now only contains empty and unlinked
422 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
423 	 * needing to write-acquire the anon_vma->root->rwsem.
424 	 */
425 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
426 		struct anon_vma *anon_vma = avc->anon_vma;
427 
428 		VM_WARN_ON(anon_vma->degree);
429 		put_anon_vma(anon_vma);
430 
431 		list_del(&avc->same_vma);
432 		anon_vma_chain_free(avc);
433 	}
434 }
435 
436 static void anon_vma_ctor(void *data)
437 {
438 	struct anon_vma *anon_vma = data;
439 
440 	init_rwsem(&anon_vma->rwsem);
441 	atomic_set(&anon_vma->refcount, 0);
442 	anon_vma->rb_root = RB_ROOT_CACHED;
443 }
444 
445 void __init anon_vma_init(void)
446 {
447 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
448 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
449 			anon_vma_ctor);
450 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
451 			SLAB_PANIC|SLAB_ACCOUNT);
452 }
453 
454 /*
455  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
456  *
457  * Since there is no serialization what so ever against page_remove_rmap()
458  * the best this function can do is return a locked anon_vma that might
459  * have been relevant to this page.
460  *
461  * The page might have been remapped to a different anon_vma or the anon_vma
462  * returned may already be freed (and even reused).
463  *
464  * In case it was remapped to a different anon_vma, the new anon_vma will be a
465  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
466  * ensure that any anon_vma obtained from the page will still be valid for as
467  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
468  *
469  * All users of this function must be very careful when walking the anon_vma
470  * chain and verify that the page in question is indeed mapped in it
471  * [ something equivalent to page_mapped_in_vma() ].
472  *
473  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
474  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
475  * if there is a mapcount, we can dereference the anon_vma after observing
476  * those.
477  */
478 struct anon_vma *page_get_anon_vma(struct page *page)
479 {
480 	struct anon_vma *anon_vma = NULL;
481 	unsigned long anon_mapping;
482 
483 	rcu_read_lock();
484 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
485 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
486 		goto out;
487 	if (!page_mapped(page))
488 		goto out;
489 
490 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
491 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
492 		anon_vma = NULL;
493 		goto out;
494 	}
495 
496 	/*
497 	 * If this page is still mapped, then its anon_vma cannot have been
498 	 * freed.  But if it has been unmapped, we have no security against the
499 	 * anon_vma structure being freed and reused (for another anon_vma:
500 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
501 	 * above cannot corrupt).
502 	 */
503 	if (!page_mapped(page)) {
504 		rcu_read_unlock();
505 		put_anon_vma(anon_vma);
506 		return NULL;
507 	}
508 out:
509 	rcu_read_unlock();
510 
511 	return anon_vma;
512 }
513 
514 /*
515  * Similar to page_get_anon_vma() except it locks the anon_vma.
516  *
517  * Its a little more complex as it tries to keep the fast path to a single
518  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
519  * reference like with page_get_anon_vma() and then block on the mutex.
520  */
521 struct anon_vma *page_lock_anon_vma_read(struct page *page)
522 {
523 	struct anon_vma *anon_vma = NULL;
524 	struct anon_vma *root_anon_vma;
525 	unsigned long anon_mapping;
526 
527 	rcu_read_lock();
528 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
529 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
530 		goto out;
531 	if (!page_mapped(page))
532 		goto out;
533 
534 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
535 	root_anon_vma = READ_ONCE(anon_vma->root);
536 	if (down_read_trylock(&root_anon_vma->rwsem)) {
537 		/*
538 		 * If the page is still mapped, then this anon_vma is still
539 		 * its anon_vma, and holding the mutex ensures that it will
540 		 * not go away, see anon_vma_free().
541 		 */
542 		if (!page_mapped(page)) {
543 			up_read(&root_anon_vma->rwsem);
544 			anon_vma = NULL;
545 		}
546 		goto out;
547 	}
548 
549 	/* trylock failed, we got to sleep */
550 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
551 		anon_vma = NULL;
552 		goto out;
553 	}
554 
555 	if (!page_mapped(page)) {
556 		rcu_read_unlock();
557 		put_anon_vma(anon_vma);
558 		return NULL;
559 	}
560 
561 	/* we pinned the anon_vma, its safe to sleep */
562 	rcu_read_unlock();
563 	anon_vma_lock_read(anon_vma);
564 
565 	if (atomic_dec_and_test(&anon_vma->refcount)) {
566 		/*
567 		 * Oops, we held the last refcount, release the lock
568 		 * and bail -- can't simply use put_anon_vma() because
569 		 * we'll deadlock on the anon_vma_lock_write() recursion.
570 		 */
571 		anon_vma_unlock_read(anon_vma);
572 		__put_anon_vma(anon_vma);
573 		anon_vma = NULL;
574 	}
575 
576 	return anon_vma;
577 
578 out:
579 	rcu_read_unlock();
580 	return anon_vma;
581 }
582 
583 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
584 {
585 	anon_vma_unlock_read(anon_vma);
586 }
587 
588 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589 /*
590  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
591  * important if a PTE was dirty when it was unmapped that it's flushed
592  * before any IO is initiated on the page to prevent lost writes. Similarly,
593  * it must be flushed before freeing to prevent data leakage.
594  */
595 void try_to_unmap_flush(void)
596 {
597 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598 
599 	if (!tlb_ubc->flush_required)
600 		return;
601 
602 	arch_tlbbatch_flush(&tlb_ubc->arch);
603 	tlb_ubc->flush_required = false;
604 	tlb_ubc->writable = false;
605 }
606 
607 /* Flush iff there are potentially writable TLB entries that can race with IO */
608 void try_to_unmap_flush_dirty(void)
609 {
610 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611 
612 	if (tlb_ubc->writable)
613 		try_to_unmap_flush();
614 }
615 
616 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
617 {
618 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619 
620 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
621 	tlb_ubc->flush_required = true;
622 
623 	/*
624 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
625 	 * before the PTE is cleared.
626 	 */
627 	barrier();
628 	mm->tlb_flush_batched = true;
629 
630 	/*
631 	 * If the PTE was dirty then it's best to assume it's writable. The
632 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
633 	 * before the page is queued for IO.
634 	 */
635 	if (writable)
636 		tlb_ubc->writable = true;
637 }
638 
639 /*
640  * Returns true if the TLB flush should be deferred to the end of a batch of
641  * unmap operations to reduce IPIs.
642  */
643 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
644 {
645 	bool should_defer = false;
646 
647 	if (!(flags & TTU_BATCH_FLUSH))
648 		return false;
649 
650 	/* If remote CPUs need to be flushed then defer batch the flush */
651 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
652 		should_defer = true;
653 	put_cpu();
654 
655 	return should_defer;
656 }
657 
658 /*
659  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
660  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
661  * operation such as mprotect or munmap to race between reclaim unmapping
662  * the page and flushing the page. If this race occurs, it potentially allows
663  * access to data via a stale TLB entry. Tracking all mm's that have TLB
664  * batching in flight would be expensive during reclaim so instead track
665  * whether TLB batching occurred in the past and if so then do a flush here
666  * if required. This will cost one additional flush per reclaim cycle paid
667  * by the first operation at risk such as mprotect and mumap.
668  *
669  * This must be called under the PTL so that an access to tlb_flush_batched
670  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
671  * via the PTL.
672  */
673 void flush_tlb_batched_pending(struct mm_struct *mm)
674 {
675 	if (data_race(mm->tlb_flush_batched)) {
676 		flush_tlb_mm(mm);
677 
678 		/*
679 		 * Do not allow the compiler to re-order the clearing of
680 		 * tlb_flush_batched before the tlb is flushed.
681 		 */
682 		barrier();
683 		mm->tlb_flush_batched = false;
684 	}
685 }
686 #else
687 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
688 {
689 }
690 
691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692 {
693 	return false;
694 }
695 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
696 
697 /*
698  * At what user virtual address is page expected in vma?
699  * Caller should check the page is actually part of the vma.
700  */
701 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
702 {
703 	unsigned long address;
704 	if (PageAnon(page)) {
705 		struct anon_vma *page__anon_vma = page_anon_vma(page);
706 		/*
707 		 * Note: swapoff's unuse_vma() is more efficient with this
708 		 * check, and needs it to match anon_vma when KSM is active.
709 		 */
710 		if (!vma->anon_vma || !page__anon_vma ||
711 		    vma->anon_vma->root != page__anon_vma->root)
712 			return -EFAULT;
713 	} else if (page->mapping) {
714 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
715 			return -EFAULT;
716 	} else
717 		return -EFAULT;
718 	address = __vma_address(page, vma);
719 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
720 		return -EFAULT;
721 	return address;
722 }
723 
724 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
725 {
726 	pgd_t *pgd;
727 	p4d_t *p4d;
728 	pud_t *pud;
729 	pmd_t *pmd = NULL;
730 	pmd_t pmde;
731 
732 	pgd = pgd_offset(mm, address);
733 	if (!pgd_present(*pgd))
734 		goto out;
735 
736 	p4d = p4d_offset(pgd, address);
737 	if (!p4d_present(*p4d))
738 		goto out;
739 
740 	pud = pud_offset(p4d, address);
741 	if (!pud_present(*pud))
742 		goto out;
743 
744 	pmd = pmd_offset(pud, address);
745 	/*
746 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
747 	 * without holding anon_vma lock for write.  So when looking for a
748 	 * genuine pmde (in which to find pte), test present and !THP together.
749 	 */
750 	pmde = *pmd;
751 	barrier();
752 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
753 		pmd = NULL;
754 out:
755 	return pmd;
756 }
757 
758 struct page_referenced_arg {
759 	int mapcount;
760 	int referenced;
761 	unsigned long vm_flags;
762 	struct mem_cgroup *memcg;
763 };
764 /*
765  * arg: page_referenced_arg will be passed
766  */
767 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
768 			unsigned long address, void *arg)
769 {
770 	struct page_referenced_arg *pra = arg;
771 	struct page_vma_mapped_walk pvmw = {
772 		.page = page,
773 		.vma = vma,
774 		.address = address,
775 	};
776 	int referenced = 0;
777 
778 	while (page_vma_mapped_walk(&pvmw)) {
779 		address = pvmw.address;
780 
781 		if (vma->vm_flags & VM_LOCKED) {
782 			page_vma_mapped_walk_done(&pvmw);
783 			pra->vm_flags |= VM_LOCKED;
784 			return false; /* To break the loop */
785 		}
786 
787 		if (pvmw.pte) {
788 			if (ptep_clear_flush_young_notify(vma, address,
789 						pvmw.pte)) {
790 				/*
791 				 * Don't treat a reference through
792 				 * a sequentially read mapping as such.
793 				 * If the page has been used in another mapping,
794 				 * we will catch it; if this other mapping is
795 				 * already gone, the unmap path will have set
796 				 * PG_referenced or activated the page.
797 				 */
798 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
799 					referenced++;
800 			}
801 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
802 			if (pmdp_clear_flush_young_notify(vma, address,
803 						pvmw.pmd))
804 				referenced++;
805 		} else {
806 			/* unexpected pmd-mapped page? */
807 			WARN_ON_ONCE(1);
808 		}
809 
810 		pra->mapcount--;
811 	}
812 
813 	if (referenced)
814 		clear_page_idle(page);
815 	if (test_and_clear_page_young(page))
816 		referenced++;
817 
818 	if (referenced) {
819 		pra->referenced++;
820 		pra->vm_flags |= vma->vm_flags;
821 	}
822 
823 	if (!pra->mapcount)
824 		return false; /* To break the loop */
825 
826 	return true;
827 }
828 
829 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
830 {
831 	struct page_referenced_arg *pra = arg;
832 	struct mem_cgroup *memcg = pra->memcg;
833 
834 	if (!mm_match_cgroup(vma->vm_mm, memcg))
835 		return true;
836 
837 	return false;
838 }
839 
840 /**
841  * page_referenced - test if the page was referenced
842  * @page: the page to test
843  * @is_locked: caller holds lock on the page
844  * @memcg: target memory cgroup
845  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
846  *
847  * Quick test_and_clear_referenced for all mappings to a page,
848  * returns the number of ptes which referenced the page.
849  */
850 int page_referenced(struct page *page,
851 		    int is_locked,
852 		    struct mem_cgroup *memcg,
853 		    unsigned long *vm_flags)
854 {
855 	int we_locked = 0;
856 	struct page_referenced_arg pra = {
857 		.mapcount = total_mapcount(page),
858 		.memcg = memcg,
859 	};
860 	struct rmap_walk_control rwc = {
861 		.rmap_one = page_referenced_one,
862 		.arg = (void *)&pra,
863 		.anon_lock = page_lock_anon_vma_read,
864 	};
865 
866 	*vm_flags = 0;
867 	if (!pra.mapcount)
868 		return 0;
869 
870 	if (!page_rmapping(page))
871 		return 0;
872 
873 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
874 		we_locked = trylock_page(page);
875 		if (!we_locked)
876 			return 1;
877 	}
878 
879 	/*
880 	 * If we are reclaiming on behalf of a cgroup, skip
881 	 * counting on behalf of references from different
882 	 * cgroups
883 	 */
884 	if (memcg) {
885 		rwc.invalid_vma = invalid_page_referenced_vma;
886 	}
887 
888 	rmap_walk(page, &rwc);
889 	*vm_flags = pra.vm_flags;
890 
891 	if (we_locked)
892 		unlock_page(page);
893 
894 	return pra.referenced;
895 }
896 
897 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
898 			    unsigned long address, void *arg)
899 {
900 	struct page_vma_mapped_walk pvmw = {
901 		.page = page,
902 		.vma = vma,
903 		.address = address,
904 		.flags = PVMW_SYNC,
905 	};
906 	struct mmu_notifier_range range;
907 	int *cleaned = arg;
908 
909 	/*
910 	 * We have to assume the worse case ie pmd for invalidation. Note that
911 	 * the page can not be free from this function.
912 	 */
913 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
914 				0, vma, vma->vm_mm, address,
915 				min(vma->vm_end, address + page_size(page)));
916 	mmu_notifier_invalidate_range_start(&range);
917 
918 	while (page_vma_mapped_walk(&pvmw)) {
919 		int ret = 0;
920 
921 		address = pvmw.address;
922 		if (pvmw.pte) {
923 			pte_t entry;
924 			pte_t *pte = pvmw.pte;
925 
926 			if (!pte_dirty(*pte) && !pte_write(*pte))
927 				continue;
928 
929 			flush_cache_page(vma, address, pte_pfn(*pte));
930 			entry = ptep_clear_flush(vma, address, pte);
931 			entry = pte_wrprotect(entry);
932 			entry = pte_mkclean(entry);
933 			set_pte_at(vma->vm_mm, address, pte, entry);
934 			ret = 1;
935 		} else {
936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
937 			pmd_t *pmd = pvmw.pmd;
938 			pmd_t entry;
939 
940 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
941 				continue;
942 
943 			flush_cache_page(vma, address, page_to_pfn(page));
944 			entry = pmdp_invalidate(vma, address, pmd);
945 			entry = pmd_wrprotect(entry);
946 			entry = pmd_mkclean(entry);
947 			set_pmd_at(vma->vm_mm, address, pmd, entry);
948 			ret = 1;
949 #else
950 			/* unexpected pmd-mapped page? */
951 			WARN_ON_ONCE(1);
952 #endif
953 		}
954 
955 		/*
956 		 * No need to call mmu_notifier_invalidate_range() as we are
957 		 * downgrading page table protection not changing it to point
958 		 * to a new page.
959 		 *
960 		 * See Documentation/vm/mmu_notifier.rst
961 		 */
962 		if (ret)
963 			(*cleaned)++;
964 	}
965 
966 	mmu_notifier_invalidate_range_end(&range);
967 
968 	return true;
969 }
970 
971 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
972 {
973 	if (vma->vm_flags & VM_SHARED)
974 		return false;
975 
976 	return true;
977 }
978 
979 int page_mkclean(struct page *page)
980 {
981 	int cleaned = 0;
982 	struct address_space *mapping;
983 	struct rmap_walk_control rwc = {
984 		.arg = (void *)&cleaned,
985 		.rmap_one = page_mkclean_one,
986 		.invalid_vma = invalid_mkclean_vma,
987 	};
988 
989 	BUG_ON(!PageLocked(page));
990 
991 	if (!page_mapped(page))
992 		return 0;
993 
994 	mapping = page_mapping(page);
995 	if (!mapping)
996 		return 0;
997 
998 	rmap_walk(page, &rwc);
999 
1000 	return cleaned;
1001 }
1002 EXPORT_SYMBOL_GPL(page_mkclean);
1003 
1004 /**
1005  * page_move_anon_rmap - move a page to our anon_vma
1006  * @page:	the page to move to our anon_vma
1007  * @vma:	the vma the page belongs to
1008  *
1009  * When a page belongs exclusively to one process after a COW event,
1010  * that page can be moved into the anon_vma that belongs to just that
1011  * process, so the rmap code will not search the parent or sibling
1012  * processes.
1013  */
1014 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1015 {
1016 	struct anon_vma *anon_vma = vma->anon_vma;
1017 
1018 	page = compound_head(page);
1019 
1020 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1021 	VM_BUG_ON_VMA(!anon_vma, vma);
1022 
1023 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1024 	/*
1025 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1026 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1027 	 * PageAnon()) will not see one without the other.
1028 	 */
1029 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1030 }
1031 
1032 /**
1033  * __page_set_anon_rmap - set up new anonymous rmap
1034  * @page:	Page or Hugepage to add to rmap
1035  * @vma:	VM area to add page to.
1036  * @address:	User virtual address of the mapping
1037  * @exclusive:	the page is exclusively owned by the current process
1038  */
1039 static void __page_set_anon_rmap(struct page *page,
1040 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1041 {
1042 	struct anon_vma *anon_vma = vma->anon_vma;
1043 
1044 	BUG_ON(!anon_vma);
1045 
1046 	if (PageAnon(page))
1047 		return;
1048 
1049 	/*
1050 	 * If the page isn't exclusively mapped into this vma,
1051 	 * we must use the _oldest_ possible anon_vma for the
1052 	 * page mapping!
1053 	 */
1054 	if (!exclusive)
1055 		anon_vma = anon_vma->root;
1056 
1057 	/*
1058 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1059 	 * Make sure the compiler doesn't split the stores of anon_vma and
1060 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1061 	 * could mistake the mapping for a struct address_space and crash.
1062 	 */
1063 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1064 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1065 	page->index = linear_page_index(vma, address);
1066 }
1067 
1068 /**
1069  * __page_check_anon_rmap - sanity check anonymous rmap addition
1070  * @page:	the page to add the mapping to
1071  * @vma:	the vm area in which the mapping is added
1072  * @address:	the user virtual address mapped
1073  */
1074 static void __page_check_anon_rmap(struct page *page,
1075 	struct vm_area_struct *vma, unsigned long address)
1076 {
1077 	/*
1078 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1079 	 * be set up correctly at this point.
1080 	 *
1081 	 * We have exclusion against page_add_anon_rmap because the caller
1082 	 * always holds the page locked, except if called from page_dup_rmap,
1083 	 * in which case the page is already known to be setup.
1084 	 *
1085 	 * We have exclusion against page_add_new_anon_rmap because those pages
1086 	 * are initially only visible via the pagetables, and the pte is locked
1087 	 * over the call to page_add_new_anon_rmap.
1088 	 */
1089 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1090 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1091 		       page);
1092 }
1093 
1094 /**
1095  * page_add_anon_rmap - add pte mapping to an anonymous page
1096  * @page:	the page to add the mapping to
1097  * @vma:	the vm area in which the mapping is added
1098  * @address:	the user virtual address mapped
1099  * @compound:	charge the page as compound or small page
1100  *
1101  * The caller needs to hold the pte lock, and the page must be locked in
1102  * the anon_vma case: to serialize mapping,index checking after setting,
1103  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1104  * (but PageKsm is never downgraded to PageAnon).
1105  */
1106 void page_add_anon_rmap(struct page *page,
1107 	struct vm_area_struct *vma, unsigned long address, bool compound)
1108 {
1109 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1110 }
1111 
1112 /*
1113  * Special version of the above for do_swap_page, which often runs
1114  * into pages that are exclusively owned by the current process.
1115  * Everybody else should continue to use page_add_anon_rmap above.
1116  */
1117 void do_page_add_anon_rmap(struct page *page,
1118 	struct vm_area_struct *vma, unsigned long address, int flags)
1119 {
1120 	bool compound = flags & RMAP_COMPOUND;
1121 	bool first;
1122 
1123 	if (unlikely(PageKsm(page)))
1124 		lock_page_memcg(page);
1125 	else
1126 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1127 
1128 	if (compound) {
1129 		atomic_t *mapcount;
1130 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1131 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1132 		mapcount = compound_mapcount_ptr(page);
1133 		first = atomic_inc_and_test(mapcount);
1134 	} else {
1135 		first = atomic_inc_and_test(&page->_mapcount);
1136 	}
1137 
1138 	if (first) {
1139 		int nr = compound ? thp_nr_pages(page) : 1;
1140 		/*
1141 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1142 		 * these counters are not modified in interrupt context, and
1143 		 * pte lock(a spinlock) is held, which implies preemption
1144 		 * disabled.
1145 		 */
1146 		if (compound)
1147 			__inc_lruvec_page_state(page, NR_ANON_THPS);
1148 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1149 	}
1150 
1151 	if (unlikely(PageKsm(page))) {
1152 		unlock_page_memcg(page);
1153 		return;
1154 	}
1155 
1156 	/* address might be in next vma when migration races vma_adjust */
1157 	if (first)
1158 		__page_set_anon_rmap(page, vma, address,
1159 				flags & RMAP_EXCLUSIVE);
1160 	else
1161 		__page_check_anon_rmap(page, vma, address);
1162 }
1163 
1164 /**
1165  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1166  * @page:	the page to add the mapping to
1167  * @vma:	the vm area in which the mapping is added
1168  * @address:	the user virtual address mapped
1169  * @compound:	charge the page as compound or small page
1170  *
1171  * Same as page_add_anon_rmap but must only be called on *new* pages.
1172  * This means the inc-and-test can be bypassed.
1173  * Page does not have to be locked.
1174  */
1175 void page_add_new_anon_rmap(struct page *page,
1176 	struct vm_area_struct *vma, unsigned long address, bool compound)
1177 {
1178 	int nr = compound ? thp_nr_pages(page) : 1;
1179 
1180 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1181 	__SetPageSwapBacked(page);
1182 	if (compound) {
1183 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1184 		/* increment count (starts at -1) */
1185 		atomic_set(compound_mapcount_ptr(page), 0);
1186 		if (hpage_pincount_available(page))
1187 			atomic_set(compound_pincount_ptr(page), 0);
1188 
1189 		__inc_lruvec_page_state(page, NR_ANON_THPS);
1190 	} else {
1191 		/* Anon THP always mapped first with PMD */
1192 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1193 		/* increment count (starts at -1) */
1194 		atomic_set(&page->_mapcount, 0);
1195 	}
1196 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1197 	__page_set_anon_rmap(page, vma, address, 1);
1198 }
1199 
1200 /**
1201  * page_add_file_rmap - add pte mapping to a file page
1202  * @page: the page to add the mapping to
1203  * @compound: charge the page as compound or small page
1204  *
1205  * The caller needs to hold the pte lock.
1206  */
1207 void page_add_file_rmap(struct page *page, bool compound)
1208 {
1209 	int i, nr = 1;
1210 
1211 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1212 	lock_page_memcg(page);
1213 	if (compound && PageTransHuge(page)) {
1214 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1215 			if (atomic_inc_and_test(&page[i]._mapcount))
1216 				nr++;
1217 		}
1218 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1219 			goto out;
1220 		if (PageSwapBacked(page))
1221 			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1222 		else
1223 			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1224 	} else {
1225 		if (PageTransCompound(page) && page_mapping(page)) {
1226 			VM_WARN_ON_ONCE(!PageLocked(page));
1227 
1228 			SetPageDoubleMap(compound_head(page));
1229 			if (PageMlocked(page))
1230 				clear_page_mlock(compound_head(page));
1231 		}
1232 		if (!atomic_inc_and_test(&page->_mapcount))
1233 			goto out;
1234 	}
1235 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1236 out:
1237 	unlock_page_memcg(page);
1238 }
1239 
1240 static void page_remove_file_rmap(struct page *page, bool compound)
1241 {
1242 	int i, nr = 1;
1243 
1244 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1245 
1246 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1247 	if (unlikely(PageHuge(page))) {
1248 		/* hugetlb pages are always mapped with pmds */
1249 		atomic_dec(compound_mapcount_ptr(page));
1250 		return;
1251 	}
1252 
1253 	/* page still mapped by someone else? */
1254 	if (compound && PageTransHuge(page)) {
1255 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1256 			if (atomic_add_negative(-1, &page[i]._mapcount))
1257 				nr++;
1258 		}
1259 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1260 			return;
1261 		if (PageSwapBacked(page))
1262 			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1263 		else
1264 			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1265 	} else {
1266 		if (!atomic_add_negative(-1, &page->_mapcount))
1267 			return;
1268 	}
1269 
1270 	/*
1271 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1272 	 * these counters are not modified in interrupt context, and
1273 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1274 	 */
1275 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1276 
1277 	if (unlikely(PageMlocked(page)))
1278 		clear_page_mlock(page);
1279 }
1280 
1281 static void page_remove_anon_compound_rmap(struct page *page)
1282 {
1283 	int i, nr;
1284 
1285 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1286 		return;
1287 
1288 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1289 	if (unlikely(PageHuge(page)))
1290 		return;
1291 
1292 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1293 		return;
1294 
1295 	__dec_lruvec_page_state(page, NR_ANON_THPS);
1296 
1297 	if (TestClearPageDoubleMap(page)) {
1298 		/*
1299 		 * Subpages can be mapped with PTEs too. Check how many of
1300 		 * them are still mapped.
1301 		 */
1302 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1303 			if (atomic_add_negative(-1, &page[i]._mapcount))
1304 				nr++;
1305 		}
1306 
1307 		/*
1308 		 * Queue the page for deferred split if at least one small
1309 		 * page of the compound page is unmapped, but at least one
1310 		 * small page is still mapped.
1311 		 */
1312 		if (nr && nr < thp_nr_pages(page))
1313 			deferred_split_huge_page(page);
1314 	} else {
1315 		nr = thp_nr_pages(page);
1316 	}
1317 
1318 	if (unlikely(PageMlocked(page)))
1319 		clear_page_mlock(page);
1320 
1321 	if (nr)
1322 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1323 }
1324 
1325 /**
1326  * page_remove_rmap - take down pte mapping from a page
1327  * @page:	page to remove mapping from
1328  * @compound:	uncharge the page as compound or small page
1329  *
1330  * The caller needs to hold the pte lock.
1331  */
1332 void page_remove_rmap(struct page *page, bool compound)
1333 {
1334 	lock_page_memcg(page);
1335 
1336 	if (!PageAnon(page)) {
1337 		page_remove_file_rmap(page, compound);
1338 		goto out;
1339 	}
1340 
1341 	if (compound) {
1342 		page_remove_anon_compound_rmap(page);
1343 		goto out;
1344 	}
1345 
1346 	/* page still mapped by someone else? */
1347 	if (!atomic_add_negative(-1, &page->_mapcount))
1348 		goto out;
1349 
1350 	/*
1351 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1352 	 * these counters are not modified in interrupt context, and
1353 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1354 	 */
1355 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1356 
1357 	if (unlikely(PageMlocked(page)))
1358 		clear_page_mlock(page);
1359 
1360 	if (PageTransCompound(page))
1361 		deferred_split_huge_page(compound_head(page));
1362 
1363 	/*
1364 	 * It would be tidy to reset the PageAnon mapping here,
1365 	 * but that might overwrite a racing page_add_anon_rmap
1366 	 * which increments mapcount after us but sets mapping
1367 	 * before us: so leave the reset to free_unref_page,
1368 	 * and remember that it's only reliable while mapped.
1369 	 * Leaving it set also helps swapoff to reinstate ptes
1370 	 * faster for those pages still in swapcache.
1371 	 */
1372 out:
1373 	unlock_page_memcg(page);
1374 }
1375 
1376 /*
1377  * @arg: enum ttu_flags will be passed to this argument
1378  */
1379 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1380 		     unsigned long address, void *arg)
1381 {
1382 	struct mm_struct *mm = vma->vm_mm;
1383 	struct page_vma_mapped_walk pvmw = {
1384 		.page = page,
1385 		.vma = vma,
1386 		.address = address,
1387 	};
1388 	pte_t pteval;
1389 	struct page *subpage;
1390 	bool ret = true;
1391 	struct mmu_notifier_range range;
1392 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1393 
1394 	/* munlock has nothing to gain from examining un-locked vmas */
1395 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1396 		return true;
1397 
1398 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1399 	    is_zone_device_page(page) && !is_device_private_page(page))
1400 		return true;
1401 
1402 	if (flags & TTU_SPLIT_HUGE_PMD) {
1403 		split_huge_pmd_address(vma, address,
1404 				flags & TTU_SPLIT_FREEZE, page);
1405 	}
1406 
1407 	/*
1408 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1409 	 * For hugetlb, it could be much worse if we need to do pud
1410 	 * invalidation in the case of pmd sharing.
1411 	 *
1412 	 * Note that the page can not be free in this function as call of
1413 	 * try_to_unmap() must hold a reference on the page.
1414 	 */
1415 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1416 				address,
1417 				min(vma->vm_end, address + page_size(page)));
1418 	if (PageHuge(page)) {
1419 		/*
1420 		 * If sharing is possible, start and end will be adjusted
1421 		 * accordingly.
1422 		 */
1423 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1424 						     &range.end);
1425 	}
1426 	mmu_notifier_invalidate_range_start(&range);
1427 
1428 	while (page_vma_mapped_walk(&pvmw)) {
1429 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1430 		/* PMD-mapped THP migration entry */
1431 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1432 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1433 
1434 			set_pmd_migration_entry(&pvmw, page);
1435 			continue;
1436 		}
1437 #endif
1438 
1439 		/*
1440 		 * If the page is mlock()d, we cannot swap it out.
1441 		 * If it's recently referenced (perhaps page_referenced
1442 		 * skipped over this mm) then we should reactivate it.
1443 		 */
1444 		if (!(flags & TTU_IGNORE_MLOCK)) {
1445 			if (vma->vm_flags & VM_LOCKED) {
1446 				/* PTE-mapped THP are never mlocked */
1447 				if (!PageTransCompound(page)) {
1448 					/*
1449 					 * Holding pte lock, we do *not* need
1450 					 * mmap_lock here
1451 					 */
1452 					mlock_vma_page(page);
1453 				}
1454 				ret = false;
1455 				page_vma_mapped_walk_done(&pvmw);
1456 				break;
1457 			}
1458 			if (flags & TTU_MUNLOCK)
1459 				continue;
1460 		}
1461 
1462 		/* Unexpected PMD-mapped THP? */
1463 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1464 
1465 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1466 		address = pvmw.address;
1467 
1468 		if (PageHuge(page) && !PageAnon(page)) {
1469 			/*
1470 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1471 			 * held in write mode.  Caller needs to explicitly
1472 			 * do this outside rmap routines.
1473 			 */
1474 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1475 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1476 				/*
1477 				 * huge_pmd_unshare unmapped an entire PMD
1478 				 * page.  There is no way of knowing exactly
1479 				 * which PMDs may be cached for this mm, so
1480 				 * we must flush them all.  start/end were
1481 				 * already adjusted above to cover this range.
1482 				 */
1483 				flush_cache_range(vma, range.start, range.end);
1484 				flush_tlb_range(vma, range.start, range.end);
1485 				mmu_notifier_invalidate_range(mm, range.start,
1486 							      range.end);
1487 
1488 				/*
1489 				 * The ref count of the PMD page was dropped
1490 				 * which is part of the way map counting
1491 				 * is done for shared PMDs.  Return 'true'
1492 				 * here.  When there is no other sharing,
1493 				 * huge_pmd_unshare returns false and we will
1494 				 * unmap the actual page and drop map count
1495 				 * to zero.
1496 				 */
1497 				page_vma_mapped_walk_done(&pvmw);
1498 				break;
1499 			}
1500 		}
1501 
1502 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1503 		    (flags & TTU_MIGRATION) &&
1504 		    is_zone_device_page(page)) {
1505 			swp_entry_t entry;
1506 			pte_t swp_pte;
1507 
1508 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1509 
1510 			/*
1511 			 * Store the pfn of the page in a special migration
1512 			 * pte. do_swap_page() will wait until the migration
1513 			 * pte is removed and then restart fault handling.
1514 			 */
1515 			entry = make_migration_entry(page, 0);
1516 			swp_pte = swp_entry_to_pte(entry);
1517 
1518 			/*
1519 			 * pteval maps a zone device page and is therefore
1520 			 * a swap pte.
1521 			 */
1522 			if (pte_swp_soft_dirty(pteval))
1523 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1524 			if (pte_swp_uffd_wp(pteval))
1525 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1526 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1527 			/*
1528 			 * No need to invalidate here it will synchronize on
1529 			 * against the special swap migration pte.
1530 			 *
1531 			 * The assignment to subpage above was computed from a
1532 			 * swap PTE which results in an invalid pointer.
1533 			 * Since only PAGE_SIZE pages can currently be
1534 			 * migrated, just set it to page. This will need to be
1535 			 * changed when hugepage migrations to device private
1536 			 * memory are supported.
1537 			 */
1538 			subpage = page;
1539 			goto discard;
1540 		}
1541 
1542 		/* Nuke the page table entry. */
1543 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1544 		if (should_defer_flush(mm, flags)) {
1545 			/*
1546 			 * We clear the PTE but do not flush so potentially
1547 			 * a remote CPU could still be writing to the page.
1548 			 * If the entry was previously clean then the
1549 			 * architecture must guarantee that a clear->dirty
1550 			 * transition on a cached TLB entry is written through
1551 			 * and traps if the PTE is unmapped.
1552 			 */
1553 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1554 
1555 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1556 		} else {
1557 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1558 		}
1559 
1560 		/* Move the dirty bit to the page. Now the pte is gone. */
1561 		if (pte_dirty(pteval))
1562 			set_page_dirty(page);
1563 
1564 		/* Update high watermark before we lower rss */
1565 		update_hiwater_rss(mm);
1566 
1567 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1568 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1569 			if (PageHuge(page)) {
1570 				hugetlb_count_sub(compound_nr(page), mm);
1571 				set_huge_swap_pte_at(mm, address,
1572 						     pvmw.pte, pteval,
1573 						     vma_mmu_pagesize(vma));
1574 			} else {
1575 				dec_mm_counter(mm, mm_counter(page));
1576 				set_pte_at(mm, address, pvmw.pte, pteval);
1577 			}
1578 
1579 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1580 			/*
1581 			 * The guest indicated that the page content is of no
1582 			 * interest anymore. Simply discard the pte, vmscan
1583 			 * will take care of the rest.
1584 			 * A future reference will then fault in a new zero
1585 			 * page. When userfaultfd is active, we must not drop
1586 			 * this page though, as its main user (postcopy
1587 			 * migration) will not expect userfaults on already
1588 			 * copied pages.
1589 			 */
1590 			dec_mm_counter(mm, mm_counter(page));
1591 			/* We have to invalidate as we cleared the pte */
1592 			mmu_notifier_invalidate_range(mm, address,
1593 						      address + PAGE_SIZE);
1594 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1595 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1596 			swp_entry_t entry;
1597 			pte_t swp_pte;
1598 
1599 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1600 				set_pte_at(mm, address, pvmw.pte, pteval);
1601 				ret = false;
1602 				page_vma_mapped_walk_done(&pvmw);
1603 				break;
1604 			}
1605 
1606 			/*
1607 			 * Store the pfn of the page in a special migration
1608 			 * pte. do_swap_page() will wait until the migration
1609 			 * pte is removed and then restart fault handling.
1610 			 */
1611 			entry = make_migration_entry(subpage,
1612 					pte_write(pteval));
1613 			swp_pte = swp_entry_to_pte(entry);
1614 			if (pte_soft_dirty(pteval))
1615 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1616 			if (pte_uffd_wp(pteval))
1617 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1618 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1619 			/*
1620 			 * No need to invalidate here it will synchronize on
1621 			 * against the special swap migration pte.
1622 			 */
1623 		} else if (PageAnon(page)) {
1624 			swp_entry_t entry = { .val = page_private(subpage) };
1625 			pte_t swp_pte;
1626 			/*
1627 			 * Store the swap location in the pte.
1628 			 * See handle_pte_fault() ...
1629 			 */
1630 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1631 				WARN_ON_ONCE(1);
1632 				ret = false;
1633 				/* We have to invalidate as we cleared the pte */
1634 				mmu_notifier_invalidate_range(mm, address,
1635 							address + PAGE_SIZE);
1636 				page_vma_mapped_walk_done(&pvmw);
1637 				break;
1638 			}
1639 
1640 			/* MADV_FREE page check */
1641 			if (!PageSwapBacked(page)) {
1642 				if (!PageDirty(page)) {
1643 					/* Invalidate as we cleared the pte */
1644 					mmu_notifier_invalidate_range(mm,
1645 						address, address + PAGE_SIZE);
1646 					dec_mm_counter(mm, MM_ANONPAGES);
1647 					goto discard;
1648 				}
1649 
1650 				/*
1651 				 * If the page was redirtied, it cannot be
1652 				 * discarded. Remap the page to page table.
1653 				 */
1654 				set_pte_at(mm, address, pvmw.pte, pteval);
1655 				SetPageSwapBacked(page);
1656 				ret = false;
1657 				page_vma_mapped_walk_done(&pvmw);
1658 				break;
1659 			}
1660 
1661 			if (swap_duplicate(entry) < 0) {
1662 				set_pte_at(mm, address, pvmw.pte, pteval);
1663 				ret = false;
1664 				page_vma_mapped_walk_done(&pvmw);
1665 				break;
1666 			}
1667 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1668 				set_pte_at(mm, address, pvmw.pte, pteval);
1669 				ret = false;
1670 				page_vma_mapped_walk_done(&pvmw);
1671 				break;
1672 			}
1673 			if (list_empty(&mm->mmlist)) {
1674 				spin_lock(&mmlist_lock);
1675 				if (list_empty(&mm->mmlist))
1676 					list_add(&mm->mmlist, &init_mm.mmlist);
1677 				spin_unlock(&mmlist_lock);
1678 			}
1679 			dec_mm_counter(mm, MM_ANONPAGES);
1680 			inc_mm_counter(mm, MM_SWAPENTS);
1681 			swp_pte = swp_entry_to_pte(entry);
1682 			if (pte_soft_dirty(pteval))
1683 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1684 			if (pte_uffd_wp(pteval))
1685 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1686 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1687 			/* Invalidate as we cleared the pte */
1688 			mmu_notifier_invalidate_range(mm, address,
1689 						      address + PAGE_SIZE);
1690 		} else {
1691 			/*
1692 			 * This is a locked file-backed page, thus it cannot
1693 			 * be removed from the page cache and replaced by a new
1694 			 * page before mmu_notifier_invalidate_range_end, so no
1695 			 * concurrent thread might update its page table to
1696 			 * point at new page while a device still is using this
1697 			 * page.
1698 			 *
1699 			 * See Documentation/vm/mmu_notifier.rst
1700 			 */
1701 			dec_mm_counter(mm, mm_counter_file(page));
1702 		}
1703 discard:
1704 		/*
1705 		 * No need to call mmu_notifier_invalidate_range() it has be
1706 		 * done above for all cases requiring it to happen under page
1707 		 * table lock before mmu_notifier_invalidate_range_end()
1708 		 *
1709 		 * See Documentation/vm/mmu_notifier.rst
1710 		 */
1711 		page_remove_rmap(subpage, PageHuge(page));
1712 		put_page(page);
1713 	}
1714 
1715 	mmu_notifier_invalidate_range_end(&range);
1716 
1717 	return ret;
1718 }
1719 
1720 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1721 {
1722 	return vma_is_temporary_stack(vma);
1723 }
1724 
1725 static int page_mapcount_is_zero(struct page *page)
1726 {
1727 	return !total_mapcount(page);
1728 }
1729 
1730 /**
1731  * try_to_unmap - try to remove all page table mappings to a page
1732  * @page: the page to get unmapped
1733  * @flags: action and flags
1734  *
1735  * Tries to remove all the page table entries which are mapping this
1736  * page, used in the pageout path.  Caller must hold the page lock.
1737  *
1738  * If unmap is successful, return true. Otherwise, false.
1739  */
1740 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1741 {
1742 	struct rmap_walk_control rwc = {
1743 		.rmap_one = try_to_unmap_one,
1744 		.arg = (void *)flags,
1745 		.done = page_mapcount_is_zero,
1746 		.anon_lock = page_lock_anon_vma_read,
1747 	};
1748 
1749 	/*
1750 	 * During exec, a temporary VMA is setup and later moved.
1751 	 * The VMA is moved under the anon_vma lock but not the
1752 	 * page tables leading to a race where migration cannot
1753 	 * find the migration ptes. Rather than increasing the
1754 	 * locking requirements of exec(), migration skips
1755 	 * temporary VMAs until after exec() completes.
1756 	 */
1757 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1758 	    && !PageKsm(page) && PageAnon(page))
1759 		rwc.invalid_vma = invalid_migration_vma;
1760 
1761 	if (flags & TTU_RMAP_LOCKED)
1762 		rmap_walk_locked(page, &rwc);
1763 	else
1764 		rmap_walk(page, &rwc);
1765 
1766 	return !page_mapcount(page) ? true : false;
1767 }
1768 
1769 static int page_not_mapped(struct page *page)
1770 {
1771 	return !page_mapped(page);
1772 };
1773 
1774 /**
1775  * try_to_munlock - try to munlock a page
1776  * @page: the page to be munlocked
1777  *
1778  * Called from munlock code.  Checks all of the VMAs mapping the page
1779  * to make sure nobody else has this page mlocked. The page will be
1780  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1781  */
1782 
1783 void try_to_munlock(struct page *page)
1784 {
1785 	struct rmap_walk_control rwc = {
1786 		.rmap_one = try_to_unmap_one,
1787 		.arg = (void *)TTU_MUNLOCK,
1788 		.done = page_not_mapped,
1789 		.anon_lock = page_lock_anon_vma_read,
1790 
1791 	};
1792 
1793 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1794 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1795 
1796 	rmap_walk(page, &rwc);
1797 }
1798 
1799 void __put_anon_vma(struct anon_vma *anon_vma)
1800 {
1801 	struct anon_vma *root = anon_vma->root;
1802 
1803 	anon_vma_free(anon_vma);
1804 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1805 		anon_vma_free(root);
1806 }
1807 
1808 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1809 					struct rmap_walk_control *rwc)
1810 {
1811 	struct anon_vma *anon_vma;
1812 
1813 	if (rwc->anon_lock)
1814 		return rwc->anon_lock(page);
1815 
1816 	/*
1817 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1818 	 * because that depends on page_mapped(); but not all its usages
1819 	 * are holding mmap_lock. Users without mmap_lock are required to
1820 	 * take a reference count to prevent the anon_vma disappearing
1821 	 */
1822 	anon_vma = page_anon_vma(page);
1823 	if (!anon_vma)
1824 		return NULL;
1825 
1826 	anon_vma_lock_read(anon_vma);
1827 	return anon_vma;
1828 }
1829 
1830 /*
1831  * rmap_walk_anon - do something to anonymous page using the object-based
1832  * rmap method
1833  * @page: the page to be handled
1834  * @rwc: control variable according to each walk type
1835  *
1836  * Find all the mappings of a page using the mapping pointer and the vma chains
1837  * contained in the anon_vma struct it points to.
1838  *
1839  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1840  * where the page was found will be held for write.  So, we won't recheck
1841  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1842  * LOCKED.
1843  */
1844 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1845 		bool locked)
1846 {
1847 	struct anon_vma *anon_vma;
1848 	pgoff_t pgoff_start, pgoff_end;
1849 	struct anon_vma_chain *avc;
1850 
1851 	if (locked) {
1852 		anon_vma = page_anon_vma(page);
1853 		/* anon_vma disappear under us? */
1854 		VM_BUG_ON_PAGE(!anon_vma, page);
1855 	} else {
1856 		anon_vma = rmap_walk_anon_lock(page, rwc);
1857 	}
1858 	if (!anon_vma)
1859 		return;
1860 
1861 	pgoff_start = page_to_pgoff(page);
1862 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1863 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1864 			pgoff_start, pgoff_end) {
1865 		struct vm_area_struct *vma = avc->vma;
1866 		unsigned long address = vma_address(page, vma);
1867 
1868 		cond_resched();
1869 
1870 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1871 			continue;
1872 
1873 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1874 			break;
1875 		if (rwc->done && rwc->done(page))
1876 			break;
1877 	}
1878 
1879 	if (!locked)
1880 		anon_vma_unlock_read(anon_vma);
1881 }
1882 
1883 /*
1884  * rmap_walk_file - do something to file page using the object-based rmap method
1885  * @page: the page to be handled
1886  * @rwc: control variable according to each walk type
1887  *
1888  * Find all the mappings of a page using the mapping pointer and the vma chains
1889  * contained in the address_space struct it points to.
1890  *
1891  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1892  * where the page was found will be held for write.  So, we won't recheck
1893  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1894  * LOCKED.
1895  */
1896 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1897 		bool locked)
1898 {
1899 	struct address_space *mapping = page_mapping(page);
1900 	pgoff_t pgoff_start, pgoff_end;
1901 	struct vm_area_struct *vma;
1902 
1903 	/*
1904 	 * The page lock not only makes sure that page->mapping cannot
1905 	 * suddenly be NULLified by truncation, it makes sure that the
1906 	 * structure at mapping cannot be freed and reused yet,
1907 	 * so we can safely take mapping->i_mmap_rwsem.
1908 	 */
1909 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1910 
1911 	if (!mapping)
1912 		return;
1913 
1914 	pgoff_start = page_to_pgoff(page);
1915 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1916 	if (!locked)
1917 		i_mmap_lock_read(mapping);
1918 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1919 			pgoff_start, pgoff_end) {
1920 		unsigned long address = vma_address(page, vma);
1921 
1922 		cond_resched();
1923 
1924 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1925 			continue;
1926 
1927 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1928 			goto done;
1929 		if (rwc->done && rwc->done(page))
1930 			goto done;
1931 	}
1932 
1933 done:
1934 	if (!locked)
1935 		i_mmap_unlock_read(mapping);
1936 }
1937 
1938 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1939 {
1940 	if (unlikely(PageKsm(page)))
1941 		rmap_walk_ksm(page, rwc);
1942 	else if (PageAnon(page))
1943 		rmap_walk_anon(page, rwc, false);
1944 	else
1945 		rmap_walk_file(page, rwc, false);
1946 }
1947 
1948 /* Like rmap_walk, but caller holds relevant rmap lock */
1949 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1950 {
1951 	/* no ksm support for now */
1952 	VM_BUG_ON_PAGE(PageKsm(page), page);
1953 	if (PageAnon(page))
1954 		rmap_walk_anon(page, rwc, true);
1955 	else
1956 		rmap_walk_file(page, rwc, true);
1957 }
1958 
1959 #ifdef CONFIG_HUGETLB_PAGE
1960 /*
1961  * The following two functions are for anonymous (private mapped) hugepages.
1962  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1963  * and no lru code, because we handle hugepages differently from common pages.
1964  */
1965 void hugepage_add_anon_rmap(struct page *page,
1966 			    struct vm_area_struct *vma, unsigned long address)
1967 {
1968 	struct anon_vma *anon_vma = vma->anon_vma;
1969 	int first;
1970 
1971 	BUG_ON(!PageLocked(page));
1972 	BUG_ON(!anon_vma);
1973 	/* address might be in next vma when migration races vma_adjust */
1974 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1975 	if (first)
1976 		__page_set_anon_rmap(page, vma, address, 0);
1977 }
1978 
1979 void hugepage_add_new_anon_rmap(struct page *page,
1980 			struct vm_area_struct *vma, unsigned long address)
1981 {
1982 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1983 	atomic_set(compound_mapcount_ptr(page), 0);
1984 	if (hpage_pincount_available(page))
1985 		atomic_set(compound_pincount_ptr(page), 0);
1986 
1987 	__page_set_anon_rmap(page, vma, address, 1);
1988 }
1989 #endif /* CONFIG_HUGETLB_PAGE */
1990