xref: /linux/mm/rmap.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
35  *                     i_pages lock (widely used)
36  *                       lruvec->lru_lock (in lock_page_lruvec_irq)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/tlb.h>
79 
80 #include "internal.h"
81 
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84 
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 	struct anon_vma *anon_vma;
88 
89 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 	if (anon_vma) {
91 		atomic_set(&anon_vma->refcount, 1);
92 		anon_vma->degree = 1;	/* Reference for first vma */
93 		anon_vma->parent = anon_vma;
94 		/*
95 		 * Initialise the anon_vma root to point to itself. If called
96 		 * from fork, the root will be reset to the parents anon_vma.
97 		 */
98 		anon_vma->root = anon_vma;
99 	}
100 
101 	return anon_vma;
102 }
103 
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
107 
108 	/*
109 	 * Synchronize against page_lock_anon_vma_read() such that
110 	 * we can safely hold the lock without the anon_vma getting
111 	 * freed.
112 	 *
113 	 * Relies on the full mb implied by the atomic_dec_and_test() from
114 	 * put_anon_vma() against the acquire barrier implied by
115 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 	 *
117 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
118 	 *   down_read_trylock()		  atomic_dec_and_test()
119 	 *   LOCK				  MB
120 	 *   atomic_read()			  rwsem_is_locked()
121 	 *
122 	 * LOCK should suffice since the actual taking of the lock must
123 	 * happen _before_ what follows.
124 	 */
125 	might_sleep();
126 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 		anon_vma_lock_write(anon_vma);
128 		anon_vma_unlock_write(anon_vma);
129 	}
130 
131 	kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133 
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138 
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143 
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 				struct anon_vma_chain *avc,
146 				struct anon_vma *anon_vma)
147 {
148 	avc->vma = vma;
149 	avc->anon_vma = anon_vma;
150 	list_add(&avc->same_vma, &vma->anon_vma_chain);
151 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153 
154 /**
155  * __anon_vma_prepare - attach an anon_vma to a memory region
156  * @vma: the memory region in question
157  *
158  * This makes sure the memory mapping described by 'vma' has
159  * an 'anon_vma' attached to it, so that we can associate the
160  * anonymous pages mapped into it with that anon_vma.
161  *
162  * The common case will be that we already have one, which
163  * is handled inline by anon_vma_prepare(). But if
164  * not we either need to find an adjacent mapping that we
165  * can re-use the anon_vma from (very common when the only
166  * reason for splitting a vma has been mprotect()), or we
167  * allocate a new one.
168  *
169  * Anon-vma allocations are very subtle, because we may have
170  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171  * and that may actually touch the rwsem even in the newly
172  * allocated vma (it depends on RCU to make sure that the
173  * anon_vma isn't actually destroyed).
174  *
175  * As a result, we need to do proper anon_vma locking even
176  * for the new allocation. At the same time, we do not want
177  * to do any locking for the common case of already having
178  * an anon_vma.
179  *
180  * This must be called with the mmap_lock held for reading.
181  */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 	struct mm_struct *mm = vma->vm_mm;
185 	struct anon_vma *anon_vma, *allocated;
186 	struct anon_vma_chain *avc;
187 
188 	might_sleep();
189 
190 	avc = anon_vma_chain_alloc(GFP_KERNEL);
191 	if (!avc)
192 		goto out_enomem;
193 
194 	anon_vma = find_mergeable_anon_vma(vma);
195 	allocated = NULL;
196 	if (!anon_vma) {
197 		anon_vma = anon_vma_alloc();
198 		if (unlikely(!anon_vma))
199 			goto out_enomem_free_avc;
200 		allocated = anon_vma;
201 	}
202 
203 	anon_vma_lock_write(anon_vma);
204 	/* page_table_lock to protect against threads */
205 	spin_lock(&mm->page_table_lock);
206 	if (likely(!vma->anon_vma)) {
207 		vma->anon_vma = anon_vma;
208 		anon_vma_chain_link(vma, avc, anon_vma);
209 		/* vma reference or self-parent link for new root */
210 		anon_vma->degree++;
211 		allocated = NULL;
212 		avc = NULL;
213 	}
214 	spin_unlock(&mm->page_table_lock);
215 	anon_vma_unlock_write(anon_vma);
216 
217 	if (unlikely(allocated))
218 		put_anon_vma(allocated);
219 	if (unlikely(avc))
220 		anon_vma_chain_free(avc);
221 
222 	return 0;
223 
224  out_enomem_free_avc:
225 	anon_vma_chain_free(avc);
226  out_enomem:
227 	return -ENOMEM;
228 }
229 
230 /*
231  * This is a useful helper function for locking the anon_vma root as
232  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233  * have the same vma.
234  *
235  * Such anon_vma's should have the same root, so you'd expect to see
236  * just a single mutex_lock for the whole traversal.
237  */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 	struct anon_vma *new_root = anon_vma->root;
241 	if (new_root != root) {
242 		if (WARN_ON_ONCE(root))
243 			up_write(&root->rwsem);
244 		root = new_root;
245 		down_write(&root->rwsem);
246 	}
247 	return root;
248 }
249 
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 	if (root)
253 		up_write(&root->rwsem);
254 }
255 
256 /*
257  * Attach the anon_vmas from src to dst.
258  * Returns 0 on success, -ENOMEM on failure.
259  *
260  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
261  * anon_vma_fork(). The first three want an exact copy of src, while the last
262  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265  *
266  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268  * This prevents degradation of anon_vma hierarchy to endless linear chain in
269  * case of constantly forking task. On the other hand, an anon_vma with more
270  * than one child isn't reused even if there was no alive vma, thus rmap
271  * walker has a good chance of avoiding scanning the whole hierarchy when it
272  * searches where page is mapped.
273  */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 	struct anon_vma_chain *avc, *pavc;
277 	struct anon_vma *root = NULL;
278 
279 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 		struct anon_vma *anon_vma;
281 
282 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 		if (unlikely(!avc)) {
284 			unlock_anon_vma_root(root);
285 			root = NULL;
286 			avc = anon_vma_chain_alloc(GFP_KERNEL);
287 			if (!avc)
288 				goto enomem_failure;
289 		}
290 		anon_vma = pavc->anon_vma;
291 		root = lock_anon_vma_root(root, anon_vma);
292 		anon_vma_chain_link(dst, avc, anon_vma);
293 
294 		/*
295 		 * Reuse existing anon_vma if its degree lower than two,
296 		 * that means it has no vma and only one anon_vma child.
297 		 *
298 		 * Do not chose parent anon_vma, otherwise first child
299 		 * will always reuse it. Root anon_vma is never reused:
300 		 * it has self-parent reference and at least one child.
301 		 */
302 		if (!dst->anon_vma && src->anon_vma &&
303 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
304 			dst->anon_vma = anon_vma;
305 	}
306 	if (dst->anon_vma)
307 		dst->anon_vma->degree++;
308 	unlock_anon_vma_root(root);
309 	return 0;
310 
311  enomem_failure:
312 	/*
313 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 	 * decremented in unlink_anon_vmas().
315 	 * We can safely do this because callers of anon_vma_clone() don't care
316 	 * about dst->anon_vma if anon_vma_clone() failed.
317 	 */
318 	dst->anon_vma = NULL;
319 	unlink_anon_vmas(dst);
320 	return -ENOMEM;
321 }
322 
323 /*
324  * Attach vma to its own anon_vma, as well as to the anon_vmas that
325  * the corresponding VMA in the parent process is attached to.
326  * Returns 0 on success, non-zero on failure.
327  */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 	struct anon_vma_chain *avc;
331 	struct anon_vma *anon_vma;
332 	int error;
333 
334 	/* Don't bother if the parent process has no anon_vma here. */
335 	if (!pvma->anon_vma)
336 		return 0;
337 
338 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 	vma->anon_vma = NULL;
340 
341 	/*
342 	 * First, attach the new VMA to the parent VMA's anon_vmas,
343 	 * so rmap can find non-COWed pages in child processes.
344 	 */
345 	error = anon_vma_clone(vma, pvma);
346 	if (error)
347 		return error;
348 
349 	/* An existing anon_vma has been reused, all done then. */
350 	if (vma->anon_vma)
351 		return 0;
352 
353 	/* Then add our own anon_vma. */
354 	anon_vma = anon_vma_alloc();
355 	if (!anon_vma)
356 		goto out_error;
357 	avc = anon_vma_chain_alloc(GFP_KERNEL);
358 	if (!avc)
359 		goto out_error_free_anon_vma;
360 
361 	/*
362 	 * The root anon_vma's rwsem is the lock actually used when we
363 	 * lock any of the anon_vmas in this anon_vma tree.
364 	 */
365 	anon_vma->root = pvma->anon_vma->root;
366 	anon_vma->parent = pvma->anon_vma;
367 	/*
368 	 * With refcounts, an anon_vma can stay around longer than the
369 	 * process it belongs to. The root anon_vma needs to be pinned until
370 	 * this anon_vma is freed, because the lock lives in the root.
371 	 */
372 	get_anon_vma(anon_vma->root);
373 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
374 	vma->anon_vma = anon_vma;
375 	anon_vma_lock_write(anon_vma);
376 	anon_vma_chain_link(vma, avc, anon_vma);
377 	anon_vma->parent->degree++;
378 	anon_vma_unlock_write(anon_vma);
379 
380 	return 0;
381 
382  out_error_free_anon_vma:
383 	put_anon_vma(anon_vma);
384  out_error:
385 	unlink_anon_vmas(vma);
386 	return -ENOMEM;
387 }
388 
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 	struct anon_vma_chain *avc, *next;
392 	struct anon_vma *root = NULL;
393 
394 	/*
395 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
396 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 	 */
398 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 		struct anon_vma *anon_vma = avc->anon_vma;
400 
401 		root = lock_anon_vma_root(root, anon_vma);
402 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403 
404 		/*
405 		 * Leave empty anon_vmas on the list - we'll need
406 		 * to free them outside the lock.
407 		 */
408 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 			anon_vma->parent->degree--;
410 			continue;
411 		}
412 
413 		list_del(&avc->same_vma);
414 		anon_vma_chain_free(avc);
415 	}
416 	if (vma->anon_vma) {
417 		vma->anon_vma->degree--;
418 
419 		/*
420 		 * vma would still be needed after unlink, and anon_vma will be prepared
421 		 * when handle fault.
422 		 */
423 		vma->anon_vma = NULL;
424 	}
425 	unlock_anon_vma_root(root);
426 
427 	/*
428 	 * Iterate the list once more, it now only contains empty and unlinked
429 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 	 * needing to write-acquire the anon_vma->root->rwsem.
431 	 */
432 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 		struct anon_vma *anon_vma = avc->anon_vma;
434 
435 		VM_WARN_ON(anon_vma->degree);
436 		put_anon_vma(anon_vma);
437 
438 		list_del(&avc->same_vma);
439 		anon_vma_chain_free(avc);
440 	}
441 }
442 
443 static void anon_vma_ctor(void *data)
444 {
445 	struct anon_vma *anon_vma = data;
446 
447 	init_rwsem(&anon_vma->rwsem);
448 	atomic_set(&anon_vma->refcount, 0);
449 	anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451 
452 void __init anon_vma_init(void)
453 {
454 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 			anon_vma_ctor);
457 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 			SLAB_PANIC|SLAB_ACCOUNT);
459 }
460 
461 /*
462  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463  *
464  * Since there is no serialization what so ever against page_remove_rmap()
465  * the best this function can do is return a refcount increased anon_vma
466  * that might have been relevant to this page.
467  *
468  * The page might have been remapped to a different anon_vma or the anon_vma
469  * returned may already be freed (and even reused).
470  *
471  * In case it was remapped to a different anon_vma, the new anon_vma will be a
472  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473  * ensure that any anon_vma obtained from the page will still be valid for as
474  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475  *
476  * All users of this function must be very careful when walking the anon_vma
477  * chain and verify that the page in question is indeed mapped in it
478  * [ something equivalent to page_mapped_in_vma() ].
479  *
480  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482  * if there is a mapcount, we can dereference the anon_vma after observing
483  * those.
484  */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 	struct anon_vma *anon_vma = NULL;
488 	unsigned long anon_mapping;
489 
490 	rcu_read_lock();
491 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 		goto out;
494 	if (!page_mapped(page))
495 		goto out;
496 
497 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 		anon_vma = NULL;
500 		goto out;
501 	}
502 
503 	/*
504 	 * If this page is still mapped, then its anon_vma cannot have been
505 	 * freed.  But if it has been unmapped, we have no security against the
506 	 * anon_vma structure being freed and reused (for another anon_vma:
507 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 	 * above cannot corrupt).
509 	 */
510 	if (!page_mapped(page)) {
511 		rcu_read_unlock();
512 		put_anon_vma(anon_vma);
513 		return NULL;
514 	}
515 out:
516 	rcu_read_unlock();
517 
518 	return anon_vma;
519 }
520 
521 /*
522  * Similar to page_get_anon_vma() except it locks the anon_vma.
523  *
524  * Its a little more complex as it tries to keep the fast path to a single
525  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526  * reference like with page_get_anon_vma() and then block on the mutex.
527  */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 	struct anon_vma *anon_vma = NULL;
531 	struct anon_vma *root_anon_vma;
532 	unsigned long anon_mapping;
533 
534 	rcu_read_lock();
535 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 		goto out;
538 	if (!page_mapped(page))
539 		goto out;
540 
541 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 	root_anon_vma = READ_ONCE(anon_vma->root);
543 	if (down_read_trylock(&root_anon_vma->rwsem)) {
544 		/*
545 		 * If the page is still mapped, then this anon_vma is still
546 		 * its anon_vma, and holding the mutex ensures that it will
547 		 * not go away, see anon_vma_free().
548 		 */
549 		if (!page_mapped(page)) {
550 			up_read(&root_anon_vma->rwsem);
551 			anon_vma = NULL;
552 		}
553 		goto out;
554 	}
555 
556 	/* trylock failed, we got to sleep */
557 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 		anon_vma = NULL;
559 		goto out;
560 	}
561 
562 	if (!page_mapped(page)) {
563 		rcu_read_unlock();
564 		put_anon_vma(anon_vma);
565 		return NULL;
566 	}
567 
568 	/* we pinned the anon_vma, its safe to sleep */
569 	rcu_read_unlock();
570 	anon_vma_lock_read(anon_vma);
571 
572 	if (atomic_dec_and_test(&anon_vma->refcount)) {
573 		/*
574 		 * Oops, we held the last refcount, release the lock
575 		 * and bail -- can't simply use put_anon_vma() because
576 		 * we'll deadlock on the anon_vma_lock_write() recursion.
577 		 */
578 		anon_vma_unlock_read(anon_vma);
579 		__put_anon_vma(anon_vma);
580 		anon_vma = NULL;
581 	}
582 
583 	return anon_vma;
584 
585 out:
586 	rcu_read_unlock();
587 	return anon_vma;
588 }
589 
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 	anon_vma_unlock_read(anon_vma);
593 }
594 
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598  * important if a PTE was dirty when it was unmapped that it's flushed
599  * before any IO is initiated on the page to prevent lost writes. Similarly,
600  * it must be flushed before freeing to prevent data leakage.
601  */
602 void try_to_unmap_flush(void)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	if (!tlb_ubc->flush_required)
607 		return;
608 
609 	arch_tlbbatch_flush(&tlb_ubc->arch);
610 	tlb_ubc->flush_required = false;
611 	tlb_ubc->writable = false;
612 }
613 
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618 
619 	if (tlb_ubc->writable)
620 		try_to_unmap_flush();
621 }
622 
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626 
627 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 	tlb_ubc->flush_required = true;
629 
630 	/*
631 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 	 * before the PTE is cleared.
633 	 */
634 	barrier();
635 	mm->tlb_flush_batched = true;
636 
637 	/*
638 	 * If the PTE was dirty then it's best to assume it's writable. The
639 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 	 * before the page is queued for IO.
641 	 */
642 	if (writable)
643 		tlb_ubc->writable = true;
644 }
645 
646 /*
647  * Returns true if the TLB flush should be deferred to the end of a batch of
648  * unmap operations to reduce IPIs.
649  */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 	bool should_defer = false;
653 
654 	if (!(flags & TTU_BATCH_FLUSH))
655 		return false;
656 
657 	/* If remote CPUs need to be flushed then defer batch the flush */
658 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 		should_defer = true;
660 	put_cpu();
661 
662 	return should_defer;
663 }
664 
665 /*
666  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668  * operation such as mprotect or munmap to race between reclaim unmapping
669  * the page and flushing the page. If this race occurs, it potentially allows
670  * access to data via a stale TLB entry. Tracking all mm's that have TLB
671  * batching in flight would be expensive during reclaim so instead track
672  * whether TLB batching occurred in the past and if so then do a flush here
673  * if required. This will cost one additional flush per reclaim cycle paid
674  * by the first operation at risk such as mprotect and mumap.
675  *
676  * This must be called under the PTL so that an access to tlb_flush_batched
677  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678  * via the PTL.
679  */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 	if (data_race(mm->tlb_flush_batched)) {
683 		flush_tlb_mm(mm);
684 
685 		/*
686 		 * Do not allow the compiler to re-order the clearing of
687 		 * tlb_flush_batched before the tlb is flushed.
688 		 */
689 		barrier();
690 		mm->tlb_flush_batched = false;
691 	}
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697 
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 	return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703 
704 /*
705  * At what user virtual address is page expected in vma?
706  * Caller should check the page is actually part of the vma.
707  */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 	if (PageAnon(page)) {
711 		struct anon_vma *page__anon_vma = page_anon_vma(page);
712 		/*
713 		 * Note: swapoff's unuse_vma() is more efficient with this
714 		 * check, and needs it to match anon_vma when KSM is active.
715 		 */
716 		if (!vma->anon_vma || !page__anon_vma ||
717 		    vma->anon_vma->root != page__anon_vma->root)
718 			return -EFAULT;
719 	} else if (!vma->vm_file) {
720 		return -EFAULT;
721 	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
722 		return -EFAULT;
723 	}
724 
725 	return vma_address(page, vma);
726 }
727 
728 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
729 {
730 	pgd_t *pgd;
731 	p4d_t *p4d;
732 	pud_t *pud;
733 	pmd_t *pmd = NULL;
734 	pmd_t pmde;
735 
736 	pgd = pgd_offset(mm, address);
737 	if (!pgd_present(*pgd))
738 		goto out;
739 
740 	p4d = p4d_offset(pgd, address);
741 	if (!p4d_present(*p4d))
742 		goto out;
743 
744 	pud = pud_offset(p4d, address);
745 	if (!pud_present(*pud))
746 		goto out;
747 
748 	pmd = pmd_offset(pud, address);
749 	/*
750 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
751 	 * without holding anon_vma lock for write.  So when looking for a
752 	 * genuine pmde (in which to find pte), test present and !THP together.
753 	 */
754 	pmde = *pmd;
755 	barrier();
756 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
757 		pmd = NULL;
758 out:
759 	return pmd;
760 }
761 
762 struct page_referenced_arg {
763 	int mapcount;
764 	int referenced;
765 	unsigned long vm_flags;
766 	struct mem_cgroup *memcg;
767 };
768 /*
769  * arg: page_referenced_arg will be passed
770  */
771 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
772 			unsigned long address, void *arg)
773 {
774 	struct page_referenced_arg *pra = arg;
775 	struct page_vma_mapped_walk pvmw = {
776 		.page = page,
777 		.vma = vma,
778 		.address = address,
779 	};
780 	int referenced = 0;
781 
782 	while (page_vma_mapped_walk(&pvmw)) {
783 		address = pvmw.address;
784 
785 		if (vma->vm_flags & VM_LOCKED) {
786 			page_vma_mapped_walk_done(&pvmw);
787 			pra->vm_flags |= VM_LOCKED;
788 			return false; /* To break the loop */
789 		}
790 
791 		if (pvmw.pte) {
792 			if (ptep_clear_flush_young_notify(vma, address,
793 						pvmw.pte)) {
794 				/*
795 				 * Don't treat a reference through
796 				 * a sequentially read mapping as such.
797 				 * If the page has been used in another mapping,
798 				 * we will catch it; if this other mapping is
799 				 * already gone, the unmap path will have set
800 				 * PG_referenced or activated the page.
801 				 */
802 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
803 					referenced++;
804 			}
805 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
806 			if (pmdp_clear_flush_young_notify(vma, address,
807 						pvmw.pmd))
808 				referenced++;
809 		} else {
810 			/* unexpected pmd-mapped page? */
811 			WARN_ON_ONCE(1);
812 		}
813 
814 		pra->mapcount--;
815 	}
816 
817 	if (referenced)
818 		clear_page_idle(page);
819 	if (test_and_clear_page_young(page))
820 		referenced++;
821 
822 	if (referenced) {
823 		pra->referenced++;
824 		pra->vm_flags |= vma->vm_flags;
825 	}
826 
827 	if (!pra->mapcount)
828 		return false; /* To break the loop */
829 
830 	return true;
831 }
832 
833 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
834 {
835 	struct page_referenced_arg *pra = arg;
836 	struct mem_cgroup *memcg = pra->memcg;
837 
838 	if (!mm_match_cgroup(vma->vm_mm, memcg))
839 		return true;
840 
841 	return false;
842 }
843 
844 /**
845  * page_referenced - test if the page was referenced
846  * @page: the page to test
847  * @is_locked: caller holds lock on the page
848  * @memcg: target memory cgroup
849  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
850  *
851  * Quick test_and_clear_referenced for all mappings to a page,
852  * returns the number of ptes which referenced the page.
853  */
854 int page_referenced(struct page *page,
855 		    int is_locked,
856 		    struct mem_cgroup *memcg,
857 		    unsigned long *vm_flags)
858 {
859 	int we_locked = 0;
860 	struct page_referenced_arg pra = {
861 		.mapcount = total_mapcount(page),
862 		.memcg = memcg,
863 	};
864 	struct rmap_walk_control rwc = {
865 		.rmap_one = page_referenced_one,
866 		.arg = (void *)&pra,
867 		.anon_lock = page_lock_anon_vma_read,
868 	};
869 
870 	*vm_flags = 0;
871 	if (!pra.mapcount)
872 		return 0;
873 
874 	if (!page_rmapping(page))
875 		return 0;
876 
877 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
878 		we_locked = trylock_page(page);
879 		if (!we_locked)
880 			return 1;
881 	}
882 
883 	/*
884 	 * If we are reclaiming on behalf of a cgroup, skip
885 	 * counting on behalf of references from different
886 	 * cgroups
887 	 */
888 	if (memcg) {
889 		rwc.invalid_vma = invalid_page_referenced_vma;
890 	}
891 
892 	rmap_walk(page, &rwc);
893 	*vm_flags = pra.vm_flags;
894 
895 	if (we_locked)
896 		unlock_page(page);
897 
898 	return pra.referenced;
899 }
900 
901 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
902 			    unsigned long address, void *arg)
903 {
904 	struct page_vma_mapped_walk pvmw = {
905 		.page = page,
906 		.vma = vma,
907 		.address = address,
908 		.flags = PVMW_SYNC,
909 	};
910 	struct mmu_notifier_range range;
911 	int *cleaned = arg;
912 
913 	/*
914 	 * We have to assume the worse case ie pmd for invalidation. Note that
915 	 * the page can not be free from this function.
916 	 */
917 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
918 				0, vma, vma->vm_mm, address,
919 				vma_address_end(page, vma));
920 	mmu_notifier_invalidate_range_start(&range);
921 
922 	while (page_vma_mapped_walk(&pvmw)) {
923 		int ret = 0;
924 
925 		address = pvmw.address;
926 		if (pvmw.pte) {
927 			pte_t entry;
928 			pte_t *pte = pvmw.pte;
929 
930 			if (!pte_dirty(*pte) && !pte_write(*pte))
931 				continue;
932 
933 			flush_cache_page(vma, address, pte_pfn(*pte));
934 			entry = ptep_clear_flush(vma, address, pte);
935 			entry = pte_wrprotect(entry);
936 			entry = pte_mkclean(entry);
937 			set_pte_at(vma->vm_mm, address, pte, entry);
938 			ret = 1;
939 		} else {
940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
941 			pmd_t *pmd = pvmw.pmd;
942 			pmd_t entry;
943 
944 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
945 				continue;
946 
947 			flush_cache_page(vma, address, page_to_pfn(page));
948 			entry = pmdp_invalidate(vma, address, pmd);
949 			entry = pmd_wrprotect(entry);
950 			entry = pmd_mkclean(entry);
951 			set_pmd_at(vma->vm_mm, address, pmd, entry);
952 			ret = 1;
953 #else
954 			/* unexpected pmd-mapped page? */
955 			WARN_ON_ONCE(1);
956 #endif
957 		}
958 
959 		/*
960 		 * No need to call mmu_notifier_invalidate_range() as we are
961 		 * downgrading page table protection not changing it to point
962 		 * to a new page.
963 		 *
964 		 * See Documentation/vm/mmu_notifier.rst
965 		 */
966 		if (ret)
967 			(*cleaned)++;
968 	}
969 
970 	mmu_notifier_invalidate_range_end(&range);
971 
972 	return true;
973 }
974 
975 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
976 {
977 	if (vma->vm_flags & VM_SHARED)
978 		return false;
979 
980 	return true;
981 }
982 
983 int page_mkclean(struct page *page)
984 {
985 	int cleaned = 0;
986 	struct address_space *mapping;
987 	struct rmap_walk_control rwc = {
988 		.arg = (void *)&cleaned,
989 		.rmap_one = page_mkclean_one,
990 		.invalid_vma = invalid_mkclean_vma,
991 	};
992 
993 	BUG_ON(!PageLocked(page));
994 
995 	if (!page_mapped(page))
996 		return 0;
997 
998 	mapping = page_mapping(page);
999 	if (!mapping)
1000 		return 0;
1001 
1002 	rmap_walk(page, &rwc);
1003 
1004 	return cleaned;
1005 }
1006 EXPORT_SYMBOL_GPL(page_mkclean);
1007 
1008 /**
1009  * page_move_anon_rmap - move a page to our anon_vma
1010  * @page:	the page to move to our anon_vma
1011  * @vma:	the vma the page belongs to
1012  *
1013  * When a page belongs exclusively to one process after a COW event,
1014  * that page can be moved into the anon_vma that belongs to just that
1015  * process, so the rmap code will not search the parent or sibling
1016  * processes.
1017  */
1018 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1019 {
1020 	struct anon_vma *anon_vma = vma->anon_vma;
1021 
1022 	page = compound_head(page);
1023 
1024 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1025 	VM_BUG_ON_VMA(!anon_vma, vma);
1026 
1027 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1028 	/*
1029 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1030 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1031 	 * PageAnon()) will not see one without the other.
1032 	 */
1033 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1034 }
1035 
1036 /**
1037  * __page_set_anon_rmap - set up new anonymous rmap
1038  * @page:	Page or Hugepage to add to rmap
1039  * @vma:	VM area to add page to.
1040  * @address:	User virtual address of the mapping
1041  * @exclusive:	the page is exclusively owned by the current process
1042  */
1043 static void __page_set_anon_rmap(struct page *page,
1044 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1045 {
1046 	struct anon_vma *anon_vma = vma->anon_vma;
1047 
1048 	BUG_ON(!anon_vma);
1049 
1050 	if (PageAnon(page))
1051 		return;
1052 
1053 	/*
1054 	 * If the page isn't exclusively mapped into this vma,
1055 	 * we must use the _oldest_ possible anon_vma for the
1056 	 * page mapping!
1057 	 */
1058 	if (!exclusive)
1059 		anon_vma = anon_vma->root;
1060 
1061 	/*
1062 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1063 	 * Make sure the compiler doesn't split the stores of anon_vma and
1064 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1065 	 * could mistake the mapping for a struct address_space and crash.
1066 	 */
1067 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1068 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1069 	page->index = linear_page_index(vma, address);
1070 }
1071 
1072 /**
1073  * __page_check_anon_rmap - sanity check anonymous rmap addition
1074  * @page:	the page to add the mapping to
1075  * @vma:	the vm area in which the mapping is added
1076  * @address:	the user virtual address mapped
1077  */
1078 static void __page_check_anon_rmap(struct page *page,
1079 	struct vm_area_struct *vma, unsigned long address)
1080 {
1081 	/*
1082 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1083 	 * be set up correctly at this point.
1084 	 *
1085 	 * We have exclusion against page_add_anon_rmap because the caller
1086 	 * always holds the page locked.
1087 	 *
1088 	 * We have exclusion against page_add_new_anon_rmap because those pages
1089 	 * are initially only visible via the pagetables, and the pte is locked
1090 	 * over the call to page_add_new_anon_rmap.
1091 	 */
1092 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1093 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1094 		       page);
1095 }
1096 
1097 /**
1098  * page_add_anon_rmap - add pte mapping to an anonymous page
1099  * @page:	the page to add the mapping to
1100  * @vma:	the vm area in which the mapping is added
1101  * @address:	the user virtual address mapped
1102  * @compound:	charge the page as compound or small page
1103  *
1104  * The caller needs to hold the pte lock, and the page must be locked in
1105  * the anon_vma case: to serialize mapping,index checking after setting,
1106  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1107  * (but PageKsm is never downgraded to PageAnon).
1108  */
1109 void page_add_anon_rmap(struct page *page,
1110 	struct vm_area_struct *vma, unsigned long address, bool compound)
1111 {
1112 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1113 }
1114 
1115 /*
1116  * Special version of the above for do_swap_page, which often runs
1117  * into pages that are exclusively owned by the current process.
1118  * Everybody else should continue to use page_add_anon_rmap above.
1119  */
1120 void do_page_add_anon_rmap(struct page *page,
1121 	struct vm_area_struct *vma, unsigned long address, int flags)
1122 {
1123 	bool compound = flags & RMAP_COMPOUND;
1124 	bool first;
1125 
1126 	if (unlikely(PageKsm(page)))
1127 		lock_page_memcg(page);
1128 	else
1129 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1130 
1131 	if (compound) {
1132 		atomic_t *mapcount;
1133 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1134 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1135 		mapcount = compound_mapcount_ptr(page);
1136 		first = atomic_inc_and_test(mapcount);
1137 	} else {
1138 		first = atomic_inc_and_test(&page->_mapcount);
1139 	}
1140 
1141 	if (first) {
1142 		int nr = compound ? thp_nr_pages(page) : 1;
1143 		/*
1144 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1145 		 * these counters are not modified in interrupt context, and
1146 		 * pte lock(a spinlock) is held, which implies preemption
1147 		 * disabled.
1148 		 */
1149 		if (compound)
1150 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1151 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1152 	}
1153 
1154 	if (unlikely(PageKsm(page))) {
1155 		unlock_page_memcg(page);
1156 		return;
1157 	}
1158 
1159 	/* address might be in next vma when migration races vma_adjust */
1160 	if (first)
1161 		__page_set_anon_rmap(page, vma, address,
1162 				flags & RMAP_EXCLUSIVE);
1163 	else
1164 		__page_check_anon_rmap(page, vma, address);
1165 }
1166 
1167 /**
1168  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169  * @page:	the page to add the mapping to
1170  * @vma:	the vm area in which the mapping is added
1171  * @address:	the user virtual address mapped
1172  * @compound:	charge the page as compound or small page
1173  *
1174  * Same as page_add_anon_rmap but must only be called on *new* pages.
1175  * This means the inc-and-test can be bypassed.
1176  * Page does not have to be locked.
1177  */
1178 void page_add_new_anon_rmap(struct page *page,
1179 	struct vm_area_struct *vma, unsigned long address, bool compound)
1180 {
1181 	int nr = compound ? thp_nr_pages(page) : 1;
1182 
1183 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1184 	__SetPageSwapBacked(page);
1185 	if (compound) {
1186 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1187 		/* increment count (starts at -1) */
1188 		atomic_set(compound_mapcount_ptr(page), 0);
1189 		if (hpage_pincount_available(page))
1190 			atomic_set(compound_pincount_ptr(page), 0);
1191 
1192 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1193 	} else {
1194 		/* Anon THP always mapped first with PMD */
1195 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1196 		/* increment count (starts at -1) */
1197 		atomic_set(&page->_mapcount, 0);
1198 	}
1199 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1200 	__page_set_anon_rmap(page, vma, address, 1);
1201 }
1202 
1203 /**
1204  * page_add_file_rmap - add pte mapping to a file page
1205  * @page: the page to add the mapping to
1206  * @compound: charge the page as compound or small page
1207  *
1208  * The caller needs to hold the pte lock.
1209  */
1210 void page_add_file_rmap(struct page *page, bool compound)
1211 {
1212 	int i, nr = 1;
1213 
1214 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1215 	lock_page_memcg(page);
1216 	if (compound && PageTransHuge(page)) {
1217 		int nr_pages = thp_nr_pages(page);
1218 
1219 		for (i = 0, nr = 0; i < nr_pages; i++) {
1220 			if (atomic_inc_and_test(&page[i]._mapcount))
1221 				nr++;
1222 		}
1223 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1224 			goto out;
1225 		if (PageSwapBacked(page))
1226 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1227 						nr_pages);
1228 		else
1229 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1230 						nr_pages);
1231 	} else {
1232 		if (PageTransCompound(page) && page_mapping(page)) {
1233 			VM_WARN_ON_ONCE(!PageLocked(page));
1234 
1235 			SetPageDoubleMap(compound_head(page));
1236 			if (PageMlocked(page))
1237 				clear_page_mlock(compound_head(page));
1238 		}
1239 		if (!atomic_inc_and_test(&page->_mapcount))
1240 			goto out;
1241 	}
1242 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1243 out:
1244 	unlock_page_memcg(page);
1245 }
1246 
1247 static void page_remove_file_rmap(struct page *page, bool compound)
1248 {
1249 	int i, nr = 1;
1250 
1251 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1252 
1253 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1254 	if (unlikely(PageHuge(page))) {
1255 		/* hugetlb pages are always mapped with pmds */
1256 		atomic_dec(compound_mapcount_ptr(page));
1257 		return;
1258 	}
1259 
1260 	/* page still mapped by someone else? */
1261 	if (compound && PageTransHuge(page)) {
1262 		int nr_pages = thp_nr_pages(page);
1263 
1264 		for (i = 0, nr = 0; i < nr_pages; i++) {
1265 			if (atomic_add_negative(-1, &page[i]._mapcount))
1266 				nr++;
1267 		}
1268 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1269 			return;
1270 		if (PageSwapBacked(page))
1271 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1272 						-nr_pages);
1273 		else
1274 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1275 						-nr_pages);
1276 	} else {
1277 		if (!atomic_add_negative(-1, &page->_mapcount))
1278 			return;
1279 	}
1280 
1281 	/*
1282 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1283 	 * these counters are not modified in interrupt context, and
1284 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1285 	 */
1286 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1287 
1288 	if (unlikely(PageMlocked(page)))
1289 		clear_page_mlock(page);
1290 }
1291 
1292 static void page_remove_anon_compound_rmap(struct page *page)
1293 {
1294 	int i, nr;
1295 
1296 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1297 		return;
1298 
1299 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1300 	if (unlikely(PageHuge(page)))
1301 		return;
1302 
1303 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1304 		return;
1305 
1306 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1307 
1308 	if (TestClearPageDoubleMap(page)) {
1309 		/*
1310 		 * Subpages can be mapped with PTEs too. Check how many of
1311 		 * them are still mapped.
1312 		 */
1313 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1314 			if (atomic_add_negative(-1, &page[i]._mapcount))
1315 				nr++;
1316 		}
1317 
1318 		/*
1319 		 * Queue the page for deferred split if at least one small
1320 		 * page of the compound page is unmapped, but at least one
1321 		 * small page is still mapped.
1322 		 */
1323 		if (nr && nr < thp_nr_pages(page))
1324 			deferred_split_huge_page(page);
1325 	} else {
1326 		nr = thp_nr_pages(page);
1327 	}
1328 
1329 	if (unlikely(PageMlocked(page)))
1330 		clear_page_mlock(page);
1331 
1332 	if (nr)
1333 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1334 }
1335 
1336 /**
1337  * page_remove_rmap - take down pte mapping from a page
1338  * @page:	page to remove mapping from
1339  * @compound:	uncharge the page as compound or small page
1340  *
1341  * The caller needs to hold the pte lock.
1342  */
1343 void page_remove_rmap(struct page *page, bool compound)
1344 {
1345 	lock_page_memcg(page);
1346 
1347 	if (!PageAnon(page)) {
1348 		page_remove_file_rmap(page, compound);
1349 		goto out;
1350 	}
1351 
1352 	if (compound) {
1353 		page_remove_anon_compound_rmap(page);
1354 		goto out;
1355 	}
1356 
1357 	/* page still mapped by someone else? */
1358 	if (!atomic_add_negative(-1, &page->_mapcount))
1359 		goto out;
1360 
1361 	/*
1362 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1363 	 * these counters are not modified in interrupt context, and
1364 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1365 	 */
1366 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1367 
1368 	if (unlikely(PageMlocked(page)))
1369 		clear_page_mlock(page);
1370 
1371 	if (PageTransCompound(page))
1372 		deferred_split_huge_page(compound_head(page));
1373 
1374 	/*
1375 	 * It would be tidy to reset the PageAnon mapping here,
1376 	 * but that might overwrite a racing page_add_anon_rmap
1377 	 * which increments mapcount after us but sets mapping
1378 	 * before us: so leave the reset to free_unref_page,
1379 	 * and remember that it's only reliable while mapped.
1380 	 * Leaving it set also helps swapoff to reinstate ptes
1381 	 * faster for those pages still in swapcache.
1382 	 */
1383 out:
1384 	unlock_page_memcg(page);
1385 }
1386 
1387 /*
1388  * @arg: enum ttu_flags will be passed to this argument
1389  */
1390 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1391 		     unsigned long address, void *arg)
1392 {
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	struct page_vma_mapped_walk pvmw = {
1395 		.page = page,
1396 		.vma = vma,
1397 		.address = address,
1398 	};
1399 	pte_t pteval;
1400 	struct page *subpage;
1401 	bool ret = true;
1402 	struct mmu_notifier_range range;
1403 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1404 
1405 	/*
1406 	 * When racing against e.g. zap_pte_range() on another cpu,
1407 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1408 	 * try_to_unmap() may return before page_mapped() has become false,
1409 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1410 	 */
1411 	if (flags & TTU_SYNC)
1412 		pvmw.flags = PVMW_SYNC;
1413 
1414 	if (flags & TTU_SPLIT_HUGE_PMD)
1415 		split_huge_pmd_address(vma, address, false, page);
1416 
1417 	/*
1418 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1419 	 * For hugetlb, it could be much worse if we need to do pud
1420 	 * invalidation in the case of pmd sharing.
1421 	 *
1422 	 * Note that the page can not be free in this function as call of
1423 	 * try_to_unmap() must hold a reference on the page.
1424 	 */
1425 	range.end = PageKsm(page) ?
1426 			address + PAGE_SIZE : vma_address_end(page, vma);
1427 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1428 				address, range.end);
1429 	if (PageHuge(page)) {
1430 		/*
1431 		 * If sharing is possible, start and end will be adjusted
1432 		 * accordingly.
1433 		 */
1434 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1435 						     &range.end);
1436 	}
1437 	mmu_notifier_invalidate_range_start(&range);
1438 
1439 	while (page_vma_mapped_walk(&pvmw)) {
1440 		/*
1441 		 * If the page is mlock()d, we cannot swap it out.
1442 		 */
1443 		if (!(flags & TTU_IGNORE_MLOCK) &&
1444 		    (vma->vm_flags & VM_LOCKED)) {
1445 			/*
1446 			 * PTE-mapped THP are never marked as mlocked: so do
1447 			 * not set it on a DoubleMap THP, nor on an Anon THP
1448 			 * (which may still be PTE-mapped after DoubleMap was
1449 			 * cleared).  But stop unmapping even in those cases.
1450 			 */
1451 			if (!PageTransCompound(page) || (PageHead(page) &&
1452 			     !PageDoubleMap(page) && !PageAnon(page)))
1453 				mlock_vma_page(page);
1454 			page_vma_mapped_walk_done(&pvmw);
1455 			ret = false;
1456 			break;
1457 		}
1458 
1459 		/* Unexpected PMD-mapped THP? */
1460 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1461 
1462 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1463 		address = pvmw.address;
1464 
1465 		if (PageHuge(page) && !PageAnon(page)) {
1466 			/*
1467 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1468 			 * held in write mode.  Caller needs to explicitly
1469 			 * do this outside rmap routines.
1470 			 */
1471 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1472 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1473 				/*
1474 				 * huge_pmd_unshare unmapped an entire PMD
1475 				 * page.  There is no way of knowing exactly
1476 				 * which PMDs may be cached for this mm, so
1477 				 * we must flush them all.  start/end were
1478 				 * already adjusted above to cover this range.
1479 				 */
1480 				flush_cache_range(vma, range.start, range.end);
1481 				flush_tlb_range(vma, range.start, range.end);
1482 				mmu_notifier_invalidate_range(mm, range.start,
1483 							      range.end);
1484 
1485 				/*
1486 				 * The ref count of the PMD page was dropped
1487 				 * which is part of the way map counting
1488 				 * is done for shared PMDs.  Return 'true'
1489 				 * here.  When there is no other sharing,
1490 				 * huge_pmd_unshare returns false and we will
1491 				 * unmap the actual page and drop map count
1492 				 * to zero.
1493 				 */
1494 				page_vma_mapped_walk_done(&pvmw);
1495 				break;
1496 			}
1497 		}
1498 
1499 		/* Nuke the page table entry. */
1500 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1501 		if (should_defer_flush(mm, flags)) {
1502 			/*
1503 			 * We clear the PTE but do not flush so potentially
1504 			 * a remote CPU could still be writing to the page.
1505 			 * If the entry was previously clean then the
1506 			 * architecture must guarantee that a clear->dirty
1507 			 * transition on a cached TLB entry is written through
1508 			 * and traps if the PTE is unmapped.
1509 			 */
1510 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1511 
1512 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1513 		} else {
1514 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1515 		}
1516 
1517 		/* Move the dirty bit to the page. Now the pte is gone. */
1518 		if (pte_dirty(pteval))
1519 			set_page_dirty(page);
1520 
1521 		/* Update high watermark before we lower rss */
1522 		update_hiwater_rss(mm);
1523 
1524 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1525 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1526 			if (PageHuge(page)) {
1527 				hugetlb_count_sub(compound_nr(page), mm);
1528 				set_huge_swap_pte_at(mm, address,
1529 						     pvmw.pte, pteval,
1530 						     vma_mmu_pagesize(vma));
1531 			} else {
1532 				dec_mm_counter(mm, mm_counter(page));
1533 				set_pte_at(mm, address, pvmw.pte, pteval);
1534 			}
1535 
1536 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1537 			/*
1538 			 * The guest indicated that the page content is of no
1539 			 * interest anymore. Simply discard the pte, vmscan
1540 			 * will take care of the rest.
1541 			 * A future reference will then fault in a new zero
1542 			 * page. When userfaultfd is active, we must not drop
1543 			 * this page though, as its main user (postcopy
1544 			 * migration) will not expect userfaults on already
1545 			 * copied pages.
1546 			 */
1547 			dec_mm_counter(mm, mm_counter(page));
1548 			/* We have to invalidate as we cleared the pte */
1549 			mmu_notifier_invalidate_range(mm, address,
1550 						      address + PAGE_SIZE);
1551 		} else if (PageAnon(page)) {
1552 			swp_entry_t entry = { .val = page_private(subpage) };
1553 			pte_t swp_pte;
1554 			/*
1555 			 * Store the swap location in the pte.
1556 			 * See handle_pte_fault() ...
1557 			 */
1558 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1559 				WARN_ON_ONCE(1);
1560 				ret = false;
1561 				/* We have to invalidate as we cleared the pte */
1562 				mmu_notifier_invalidate_range(mm, address,
1563 							address + PAGE_SIZE);
1564 				page_vma_mapped_walk_done(&pvmw);
1565 				break;
1566 			}
1567 
1568 			/* MADV_FREE page check */
1569 			if (!PageSwapBacked(page)) {
1570 				if (!PageDirty(page)) {
1571 					/* Invalidate as we cleared the pte */
1572 					mmu_notifier_invalidate_range(mm,
1573 						address, address + PAGE_SIZE);
1574 					dec_mm_counter(mm, MM_ANONPAGES);
1575 					goto discard;
1576 				}
1577 
1578 				/*
1579 				 * If the page was redirtied, it cannot be
1580 				 * discarded. Remap the page to page table.
1581 				 */
1582 				set_pte_at(mm, address, pvmw.pte, pteval);
1583 				SetPageSwapBacked(page);
1584 				ret = false;
1585 				page_vma_mapped_walk_done(&pvmw);
1586 				break;
1587 			}
1588 
1589 			if (swap_duplicate(entry) < 0) {
1590 				set_pte_at(mm, address, pvmw.pte, pteval);
1591 				ret = false;
1592 				page_vma_mapped_walk_done(&pvmw);
1593 				break;
1594 			}
1595 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1596 				set_pte_at(mm, address, pvmw.pte, pteval);
1597 				ret = false;
1598 				page_vma_mapped_walk_done(&pvmw);
1599 				break;
1600 			}
1601 			if (list_empty(&mm->mmlist)) {
1602 				spin_lock(&mmlist_lock);
1603 				if (list_empty(&mm->mmlist))
1604 					list_add(&mm->mmlist, &init_mm.mmlist);
1605 				spin_unlock(&mmlist_lock);
1606 			}
1607 			dec_mm_counter(mm, MM_ANONPAGES);
1608 			inc_mm_counter(mm, MM_SWAPENTS);
1609 			swp_pte = swp_entry_to_pte(entry);
1610 			if (pte_soft_dirty(pteval))
1611 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1612 			if (pte_uffd_wp(pteval))
1613 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1614 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1615 			/* Invalidate as we cleared the pte */
1616 			mmu_notifier_invalidate_range(mm, address,
1617 						      address + PAGE_SIZE);
1618 		} else {
1619 			/*
1620 			 * This is a locked file-backed page, thus it cannot
1621 			 * be removed from the page cache and replaced by a new
1622 			 * page before mmu_notifier_invalidate_range_end, so no
1623 			 * concurrent thread might update its page table to
1624 			 * point at new page while a device still is using this
1625 			 * page.
1626 			 *
1627 			 * See Documentation/vm/mmu_notifier.rst
1628 			 */
1629 			dec_mm_counter(mm, mm_counter_file(page));
1630 		}
1631 discard:
1632 		/*
1633 		 * No need to call mmu_notifier_invalidate_range() it has be
1634 		 * done above for all cases requiring it to happen under page
1635 		 * table lock before mmu_notifier_invalidate_range_end()
1636 		 *
1637 		 * See Documentation/vm/mmu_notifier.rst
1638 		 */
1639 		page_remove_rmap(subpage, PageHuge(page));
1640 		put_page(page);
1641 	}
1642 
1643 	mmu_notifier_invalidate_range_end(&range);
1644 
1645 	return ret;
1646 }
1647 
1648 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1649 {
1650 	return vma_is_temporary_stack(vma);
1651 }
1652 
1653 static int page_not_mapped(struct page *page)
1654 {
1655 	return !page_mapped(page);
1656 }
1657 
1658 /**
1659  * try_to_unmap - try to remove all page table mappings to a page
1660  * @page: the page to get unmapped
1661  * @flags: action and flags
1662  *
1663  * Tries to remove all the page table entries which are mapping this
1664  * page, used in the pageout path.  Caller must hold the page lock.
1665  *
1666  * It is the caller's responsibility to check if the page is still
1667  * mapped when needed (use TTU_SYNC to prevent accounting races).
1668  */
1669 void try_to_unmap(struct page *page, enum ttu_flags flags)
1670 {
1671 	struct rmap_walk_control rwc = {
1672 		.rmap_one = try_to_unmap_one,
1673 		.arg = (void *)flags,
1674 		.done = page_not_mapped,
1675 		.anon_lock = page_lock_anon_vma_read,
1676 	};
1677 
1678 	if (flags & TTU_RMAP_LOCKED)
1679 		rmap_walk_locked(page, &rwc);
1680 	else
1681 		rmap_walk(page, &rwc);
1682 }
1683 
1684 /*
1685  * @arg: enum ttu_flags will be passed to this argument.
1686  *
1687  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1688  * containing migration entries.
1689  */
1690 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1691 		     unsigned long address, void *arg)
1692 {
1693 	struct mm_struct *mm = vma->vm_mm;
1694 	struct page_vma_mapped_walk pvmw = {
1695 		.page = page,
1696 		.vma = vma,
1697 		.address = address,
1698 	};
1699 	pte_t pteval;
1700 	struct page *subpage;
1701 	bool ret = true;
1702 	struct mmu_notifier_range range;
1703 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1704 
1705 	/*
1706 	 * When racing against e.g. zap_pte_range() on another cpu,
1707 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1708 	 * try_to_migrate() may return before page_mapped() has become false,
1709 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1710 	 */
1711 	if (flags & TTU_SYNC)
1712 		pvmw.flags = PVMW_SYNC;
1713 
1714 	/*
1715 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1716 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1717 	 */
1718 	if (flags & TTU_SPLIT_HUGE_PMD)
1719 		split_huge_pmd_address(vma, address, true, page);
1720 
1721 	/*
1722 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1723 	 * For hugetlb, it could be much worse if we need to do pud
1724 	 * invalidation in the case of pmd sharing.
1725 	 *
1726 	 * Note that the page can not be free in this function as call of
1727 	 * try_to_unmap() must hold a reference on the page.
1728 	 */
1729 	range.end = PageKsm(page) ?
1730 			address + PAGE_SIZE : vma_address_end(page, vma);
1731 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1732 				address, range.end);
1733 	if (PageHuge(page)) {
1734 		/*
1735 		 * If sharing is possible, start and end will be adjusted
1736 		 * accordingly.
1737 		 */
1738 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1739 						     &range.end);
1740 	}
1741 	mmu_notifier_invalidate_range_start(&range);
1742 
1743 	while (page_vma_mapped_walk(&pvmw)) {
1744 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1745 		/* PMD-mapped THP migration entry */
1746 		if (!pvmw.pte) {
1747 			VM_BUG_ON_PAGE(PageHuge(page) ||
1748 				       !PageTransCompound(page), page);
1749 
1750 			set_pmd_migration_entry(&pvmw, page);
1751 			continue;
1752 		}
1753 #endif
1754 
1755 		/* Unexpected PMD-mapped THP? */
1756 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1757 
1758 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1759 		address = pvmw.address;
1760 
1761 		if (PageHuge(page) && !PageAnon(page)) {
1762 			/*
1763 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1764 			 * held in write mode.  Caller needs to explicitly
1765 			 * do this outside rmap routines.
1766 			 */
1767 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1768 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1769 				/*
1770 				 * huge_pmd_unshare unmapped an entire PMD
1771 				 * page.  There is no way of knowing exactly
1772 				 * which PMDs may be cached for this mm, so
1773 				 * we must flush them all.  start/end were
1774 				 * already adjusted above to cover this range.
1775 				 */
1776 				flush_cache_range(vma, range.start, range.end);
1777 				flush_tlb_range(vma, range.start, range.end);
1778 				mmu_notifier_invalidate_range(mm, range.start,
1779 							      range.end);
1780 
1781 				/*
1782 				 * The ref count of the PMD page was dropped
1783 				 * which is part of the way map counting
1784 				 * is done for shared PMDs.  Return 'true'
1785 				 * here.  When there is no other sharing,
1786 				 * huge_pmd_unshare returns false and we will
1787 				 * unmap the actual page and drop map count
1788 				 * to zero.
1789 				 */
1790 				page_vma_mapped_walk_done(&pvmw);
1791 				break;
1792 			}
1793 		}
1794 
1795 		/* Nuke the page table entry. */
1796 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1797 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
1798 
1799 		/* Move the dirty bit to the page. Now the pte is gone. */
1800 		if (pte_dirty(pteval))
1801 			set_page_dirty(page);
1802 
1803 		/* Update high watermark before we lower rss */
1804 		update_hiwater_rss(mm);
1805 
1806 		if (is_zone_device_page(page)) {
1807 			swp_entry_t entry;
1808 			pte_t swp_pte;
1809 
1810 			/*
1811 			 * Store the pfn of the page in a special migration
1812 			 * pte. do_swap_page() will wait until the migration
1813 			 * pte is removed and then restart fault handling.
1814 			 */
1815 			entry = make_readable_migration_entry(
1816 							page_to_pfn(page));
1817 			swp_pte = swp_entry_to_pte(entry);
1818 
1819 			/*
1820 			 * pteval maps a zone device page and is therefore
1821 			 * a swap pte.
1822 			 */
1823 			if (pte_swp_soft_dirty(pteval))
1824 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1825 			if (pte_swp_uffd_wp(pteval))
1826 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1827 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1828 			/*
1829 			 * No need to invalidate here it will synchronize on
1830 			 * against the special swap migration pte.
1831 			 *
1832 			 * The assignment to subpage above was computed from a
1833 			 * swap PTE which results in an invalid pointer.
1834 			 * Since only PAGE_SIZE pages can currently be
1835 			 * migrated, just set it to page. This will need to be
1836 			 * changed when hugepage migrations to device private
1837 			 * memory are supported.
1838 			 */
1839 			subpage = page;
1840 		} else if (PageHWPoison(page)) {
1841 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1842 			if (PageHuge(page)) {
1843 				hugetlb_count_sub(compound_nr(page), mm);
1844 				set_huge_swap_pte_at(mm, address,
1845 						     pvmw.pte, pteval,
1846 						     vma_mmu_pagesize(vma));
1847 			} else {
1848 				dec_mm_counter(mm, mm_counter(page));
1849 				set_pte_at(mm, address, pvmw.pte, pteval);
1850 			}
1851 
1852 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1853 			/*
1854 			 * The guest indicated that the page content is of no
1855 			 * interest anymore. Simply discard the pte, vmscan
1856 			 * will take care of the rest.
1857 			 * A future reference will then fault in a new zero
1858 			 * page. When userfaultfd is active, we must not drop
1859 			 * this page though, as its main user (postcopy
1860 			 * migration) will not expect userfaults on already
1861 			 * copied pages.
1862 			 */
1863 			dec_mm_counter(mm, mm_counter(page));
1864 			/* We have to invalidate as we cleared the pte */
1865 			mmu_notifier_invalidate_range(mm, address,
1866 						      address + PAGE_SIZE);
1867 		} else {
1868 			swp_entry_t entry;
1869 			pte_t swp_pte;
1870 
1871 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1872 				set_pte_at(mm, address, pvmw.pte, pteval);
1873 				ret = false;
1874 				page_vma_mapped_walk_done(&pvmw);
1875 				break;
1876 			}
1877 
1878 			/*
1879 			 * Store the pfn of the page in a special migration
1880 			 * pte. do_swap_page() will wait until the migration
1881 			 * pte is removed and then restart fault handling.
1882 			 */
1883 			if (pte_write(pteval))
1884 				entry = make_writable_migration_entry(
1885 							page_to_pfn(subpage));
1886 			else
1887 				entry = make_readable_migration_entry(
1888 							page_to_pfn(subpage));
1889 
1890 			swp_pte = swp_entry_to_pte(entry);
1891 			if (pte_soft_dirty(pteval))
1892 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1893 			if (pte_uffd_wp(pteval))
1894 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1895 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1896 			/*
1897 			 * No need to invalidate here it will synchronize on
1898 			 * against the special swap migration pte.
1899 			 */
1900 		}
1901 
1902 		/*
1903 		 * No need to call mmu_notifier_invalidate_range() it has be
1904 		 * done above for all cases requiring it to happen under page
1905 		 * table lock before mmu_notifier_invalidate_range_end()
1906 		 *
1907 		 * See Documentation/vm/mmu_notifier.rst
1908 		 */
1909 		page_remove_rmap(subpage, PageHuge(page));
1910 		put_page(page);
1911 	}
1912 
1913 	mmu_notifier_invalidate_range_end(&range);
1914 
1915 	return ret;
1916 }
1917 
1918 /**
1919  * try_to_migrate - try to replace all page table mappings with swap entries
1920  * @page: the page to replace page table entries for
1921  * @flags: action and flags
1922  *
1923  * Tries to remove all the page table entries which are mapping this page and
1924  * replace them with special swap entries. Caller must hold the page lock.
1925  */
1926 void try_to_migrate(struct page *page, enum ttu_flags flags)
1927 {
1928 	struct rmap_walk_control rwc = {
1929 		.rmap_one = try_to_migrate_one,
1930 		.arg = (void *)flags,
1931 		.done = page_not_mapped,
1932 		.anon_lock = page_lock_anon_vma_read,
1933 	};
1934 
1935 	/*
1936 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1937 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1938 	 */
1939 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1940 					TTU_SYNC)))
1941 		return;
1942 
1943 	if (is_zone_device_page(page) && !is_device_private_page(page))
1944 		return;
1945 
1946 	/*
1947 	 * During exec, a temporary VMA is setup and later moved.
1948 	 * The VMA is moved under the anon_vma lock but not the
1949 	 * page tables leading to a race where migration cannot
1950 	 * find the migration ptes. Rather than increasing the
1951 	 * locking requirements of exec(), migration skips
1952 	 * temporary VMAs until after exec() completes.
1953 	 */
1954 	if (!PageKsm(page) && PageAnon(page))
1955 		rwc.invalid_vma = invalid_migration_vma;
1956 
1957 	if (flags & TTU_RMAP_LOCKED)
1958 		rmap_walk_locked(page, &rwc);
1959 	else
1960 		rmap_walk(page, &rwc);
1961 }
1962 
1963 /*
1964  * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1965  * found. Once one is found the page is locked and the scan can be terminated.
1966  */
1967 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1968 				 unsigned long address, void *unused)
1969 {
1970 	struct page_vma_mapped_walk pvmw = {
1971 		.page = page,
1972 		.vma = vma,
1973 		.address = address,
1974 	};
1975 
1976 	/* An un-locked vma doesn't have any pages to lock, continue the scan */
1977 	if (!(vma->vm_flags & VM_LOCKED))
1978 		return true;
1979 
1980 	while (page_vma_mapped_walk(&pvmw)) {
1981 		/*
1982 		 * Need to recheck under the ptl to serialise with
1983 		 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1984 		 * munlock_vma_pages_range().
1985 		 */
1986 		if (vma->vm_flags & VM_LOCKED) {
1987 			/*
1988 			 * PTE-mapped THP are never marked as mlocked; but
1989 			 * this function is never called on a DoubleMap THP,
1990 			 * nor on an Anon THP (which may still be PTE-mapped
1991 			 * after DoubleMap was cleared).
1992 			 */
1993 			mlock_vma_page(page);
1994 			/*
1995 			 * No need to scan further once the page is marked
1996 			 * as mlocked.
1997 			 */
1998 			page_vma_mapped_walk_done(&pvmw);
1999 			return false;
2000 		}
2001 	}
2002 
2003 	return true;
2004 }
2005 
2006 /**
2007  * page_mlock - try to mlock a page
2008  * @page: the page to be mlocked
2009  *
2010  * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2011  * the page if any are found. The page will be returned with PG_mlocked cleared
2012  * if it is not mapped by any locked vmas.
2013  */
2014 void page_mlock(struct page *page)
2015 {
2016 	struct rmap_walk_control rwc = {
2017 		.rmap_one = page_mlock_one,
2018 		.done = page_not_mapped,
2019 		.anon_lock = page_lock_anon_vma_read,
2020 
2021 	};
2022 
2023 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2024 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2025 
2026 	/* Anon THP are only marked as mlocked when singly mapped */
2027 	if (PageTransCompound(page) && PageAnon(page))
2028 		return;
2029 
2030 	rmap_walk(page, &rwc);
2031 }
2032 
2033 #ifdef CONFIG_DEVICE_PRIVATE
2034 struct make_exclusive_args {
2035 	struct mm_struct *mm;
2036 	unsigned long address;
2037 	void *owner;
2038 	bool valid;
2039 };
2040 
2041 static bool page_make_device_exclusive_one(struct page *page,
2042 		struct vm_area_struct *vma, unsigned long address, void *priv)
2043 {
2044 	struct mm_struct *mm = vma->vm_mm;
2045 	struct page_vma_mapped_walk pvmw = {
2046 		.page = page,
2047 		.vma = vma,
2048 		.address = address,
2049 	};
2050 	struct make_exclusive_args *args = priv;
2051 	pte_t pteval;
2052 	struct page *subpage;
2053 	bool ret = true;
2054 	struct mmu_notifier_range range;
2055 	swp_entry_t entry;
2056 	pte_t swp_pte;
2057 
2058 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2059 				      vma->vm_mm, address, min(vma->vm_end,
2060 				      address + page_size(page)), args->owner);
2061 	mmu_notifier_invalidate_range_start(&range);
2062 
2063 	while (page_vma_mapped_walk(&pvmw)) {
2064 		/* Unexpected PMD-mapped THP? */
2065 		VM_BUG_ON_PAGE(!pvmw.pte, page);
2066 
2067 		if (!pte_present(*pvmw.pte)) {
2068 			ret = false;
2069 			page_vma_mapped_walk_done(&pvmw);
2070 			break;
2071 		}
2072 
2073 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2074 		address = pvmw.address;
2075 
2076 		/* Nuke the page table entry. */
2077 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2078 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2079 
2080 		/* Move the dirty bit to the page. Now the pte is gone. */
2081 		if (pte_dirty(pteval))
2082 			set_page_dirty(page);
2083 
2084 		/*
2085 		 * Check that our target page is still mapped at the expected
2086 		 * address.
2087 		 */
2088 		if (args->mm == mm && args->address == address &&
2089 		    pte_write(pteval))
2090 			args->valid = true;
2091 
2092 		/*
2093 		 * Store the pfn of the page in a special migration
2094 		 * pte. do_swap_page() will wait until the migration
2095 		 * pte is removed and then restart fault handling.
2096 		 */
2097 		if (pte_write(pteval))
2098 			entry = make_writable_device_exclusive_entry(
2099 							page_to_pfn(subpage));
2100 		else
2101 			entry = make_readable_device_exclusive_entry(
2102 							page_to_pfn(subpage));
2103 		swp_pte = swp_entry_to_pte(entry);
2104 		if (pte_soft_dirty(pteval))
2105 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2106 		if (pte_uffd_wp(pteval))
2107 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2108 
2109 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2110 
2111 		/*
2112 		 * There is a reference on the page for the swap entry which has
2113 		 * been removed, so shouldn't take another.
2114 		 */
2115 		page_remove_rmap(subpage, false);
2116 	}
2117 
2118 	mmu_notifier_invalidate_range_end(&range);
2119 
2120 	return ret;
2121 }
2122 
2123 /**
2124  * page_make_device_exclusive - mark the page exclusively owned by a device
2125  * @page: the page to replace page table entries for
2126  * @mm: the mm_struct where the page is expected to be mapped
2127  * @address: address where the page is expected to be mapped
2128  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2129  *
2130  * Tries to remove all the page table entries which are mapping this page and
2131  * replace them with special device exclusive swap entries to grant a device
2132  * exclusive access to the page. Caller must hold the page lock.
2133  *
2134  * Returns false if the page is still mapped, or if it could not be unmapped
2135  * from the expected address. Otherwise returns true (success).
2136  */
2137 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2138 				unsigned long address, void *owner)
2139 {
2140 	struct make_exclusive_args args = {
2141 		.mm = mm,
2142 		.address = address,
2143 		.owner = owner,
2144 		.valid = false,
2145 	};
2146 	struct rmap_walk_control rwc = {
2147 		.rmap_one = page_make_device_exclusive_one,
2148 		.done = page_not_mapped,
2149 		.anon_lock = page_lock_anon_vma_read,
2150 		.arg = &args,
2151 	};
2152 
2153 	/*
2154 	 * Restrict to anonymous pages for now to avoid potential writeback
2155 	 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2156 	 * those.
2157 	 */
2158 	if (!PageAnon(page) || PageTail(page))
2159 		return false;
2160 
2161 	rmap_walk(page, &rwc);
2162 
2163 	return args.valid && !page_mapcount(page);
2164 }
2165 
2166 /**
2167  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2168  * @mm: mm_struct of assoicated target process
2169  * @start: start of the region to mark for exclusive device access
2170  * @end: end address of region
2171  * @pages: returns the pages which were successfully marked for exclusive access
2172  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2173  *
2174  * Returns: number of pages found in the range by GUP. A page is marked for
2175  * exclusive access only if the page pointer is non-NULL.
2176  *
2177  * This function finds ptes mapping page(s) to the given address range, locks
2178  * them and replaces mappings with special swap entries preventing userspace CPU
2179  * access. On fault these entries are replaced with the original mapping after
2180  * calling MMU notifiers.
2181  *
2182  * A driver using this to program access from a device must use a mmu notifier
2183  * critical section to hold a device specific lock during programming. Once
2184  * programming is complete it should drop the page lock and reference after
2185  * which point CPU access to the page will revoke the exclusive access.
2186  */
2187 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2188 				unsigned long end, struct page **pages,
2189 				void *owner)
2190 {
2191 	long npages = (end - start) >> PAGE_SHIFT;
2192 	long i;
2193 
2194 	npages = get_user_pages_remote(mm, start, npages,
2195 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2196 				       pages, NULL, NULL);
2197 	if (npages < 0)
2198 		return npages;
2199 
2200 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2201 		if (!trylock_page(pages[i])) {
2202 			put_page(pages[i]);
2203 			pages[i] = NULL;
2204 			continue;
2205 		}
2206 
2207 		if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2208 			unlock_page(pages[i]);
2209 			put_page(pages[i]);
2210 			pages[i] = NULL;
2211 		}
2212 	}
2213 
2214 	return npages;
2215 }
2216 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2217 #endif
2218 
2219 void __put_anon_vma(struct anon_vma *anon_vma)
2220 {
2221 	struct anon_vma *root = anon_vma->root;
2222 
2223 	anon_vma_free(anon_vma);
2224 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2225 		anon_vma_free(root);
2226 }
2227 
2228 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2229 					struct rmap_walk_control *rwc)
2230 {
2231 	struct anon_vma *anon_vma;
2232 
2233 	if (rwc->anon_lock)
2234 		return rwc->anon_lock(page);
2235 
2236 	/*
2237 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2238 	 * because that depends on page_mapped(); but not all its usages
2239 	 * are holding mmap_lock. Users without mmap_lock are required to
2240 	 * take a reference count to prevent the anon_vma disappearing
2241 	 */
2242 	anon_vma = page_anon_vma(page);
2243 	if (!anon_vma)
2244 		return NULL;
2245 
2246 	anon_vma_lock_read(anon_vma);
2247 	return anon_vma;
2248 }
2249 
2250 /*
2251  * rmap_walk_anon - do something to anonymous page using the object-based
2252  * rmap method
2253  * @page: the page to be handled
2254  * @rwc: control variable according to each walk type
2255  *
2256  * Find all the mappings of a page using the mapping pointer and the vma chains
2257  * contained in the anon_vma struct it points to.
2258  *
2259  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2260  * where the page was found will be held for write.  So, we won't recheck
2261  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2262  * LOCKED.
2263  */
2264 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2265 		bool locked)
2266 {
2267 	struct anon_vma *anon_vma;
2268 	pgoff_t pgoff_start, pgoff_end;
2269 	struct anon_vma_chain *avc;
2270 
2271 	if (locked) {
2272 		anon_vma = page_anon_vma(page);
2273 		/* anon_vma disappear under us? */
2274 		VM_BUG_ON_PAGE(!anon_vma, page);
2275 	} else {
2276 		anon_vma = rmap_walk_anon_lock(page, rwc);
2277 	}
2278 	if (!anon_vma)
2279 		return;
2280 
2281 	pgoff_start = page_to_pgoff(page);
2282 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2283 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2284 			pgoff_start, pgoff_end) {
2285 		struct vm_area_struct *vma = avc->vma;
2286 		unsigned long address = vma_address(page, vma);
2287 
2288 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2289 		cond_resched();
2290 
2291 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2292 			continue;
2293 
2294 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2295 			break;
2296 		if (rwc->done && rwc->done(page))
2297 			break;
2298 	}
2299 
2300 	if (!locked)
2301 		anon_vma_unlock_read(anon_vma);
2302 }
2303 
2304 /*
2305  * rmap_walk_file - do something to file page using the object-based rmap method
2306  * @page: the page to be handled
2307  * @rwc: control variable according to each walk type
2308  *
2309  * Find all the mappings of a page using the mapping pointer and the vma chains
2310  * contained in the address_space struct it points to.
2311  *
2312  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2313  * where the page was found will be held for write.  So, we won't recheck
2314  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2315  * LOCKED.
2316  */
2317 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2318 		bool locked)
2319 {
2320 	struct address_space *mapping = page_mapping(page);
2321 	pgoff_t pgoff_start, pgoff_end;
2322 	struct vm_area_struct *vma;
2323 
2324 	/*
2325 	 * The page lock not only makes sure that page->mapping cannot
2326 	 * suddenly be NULLified by truncation, it makes sure that the
2327 	 * structure at mapping cannot be freed and reused yet,
2328 	 * so we can safely take mapping->i_mmap_rwsem.
2329 	 */
2330 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2331 
2332 	if (!mapping)
2333 		return;
2334 
2335 	pgoff_start = page_to_pgoff(page);
2336 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2337 	if (!locked)
2338 		i_mmap_lock_read(mapping);
2339 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2340 			pgoff_start, pgoff_end) {
2341 		unsigned long address = vma_address(page, vma);
2342 
2343 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2344 		cond_resched();
2345 
2346 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2347 			continue;
2348 
2349 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2350 			goto done;
2351 		if (rwc->done && rwc->done(page))
2352 			goto done;
2353 	}
2354 
2355 done:
2356 	if (!locked)
2357 		i_mmap_unlock_read(mapping);
2358 }
2359 
2360 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2361 {
2362 	if (unlikely(PageKsm(page)))
2363 		rmap_walk_ksm(page, rwc);
2364 	else if (PageAnon(page))
2365 		rmap_walk_anon(page, rwc, false);
2366 	else
2367 		rmap_walk_file(page, rwc, false);
2368 }
2369 
2370 /* Like rmap_walk, but caller holds relevant rmap lock */
2371 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2372 {
2373 	/* no ksm support for now */
2374 	VM_BUG_ON_PAGE(PageKsm(page), page);
2375 	if (PageAnon(page))
2376 		rmap_walk_anon(page, rwc, true);
2377 	else
2378 		rmap_walk_file(page, rwc, true);
2379 }
2380 
2381 #ifdef CONFIG_HUGETLB_PAGE
2382 /*
2383  * The following two functions are for anonymous (private mapped) hugepages.
2384  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2385  * and no lru code, because we handle hugepages differently from common pages.
2386  */
2387 void hugepage_add_anon_rmap(struct page *page,
2388 			    struct vm_area_struct *vma, unsigned long address)
2389 {
2390 	struct anon_vma *anon_vma = vma->anon_vma;
2391 	int first;
2392 
2393 	BUG_ON(!PageLocked(page));
2394 	BUG_ON(!anon_vma);
2395 	/* address might be in next vma when migration races vma_adjust */
2396 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2397 	if (first)
2398 		__page_set_anon_rmap(page, vma, address, 0);
2399 }
2400 
2401 void hugepage_add_new_anon_rmap(struct page *page,
2402 			struct vm_area_struct *vma, unsigned long address)
2403 {
2404 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2405 	atomic_set(compound_mapcount_ptr(page), 0);
2406 	if (hpage_pincount_available(page))
2407 		atomic_set(compound_pincount_ptr(page), 0);
2408 
2409 	__page_set_anon_rmap(page, vma, address, 1);
2410 }
2411 #endif /* CONFIG_HUGETLB_PAGE */
2412