1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->mutex 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 60 #include <asm/tlbflush.h> 61 62 #include "internal.h" 63 64 static struct kmem_cache *anon_vma_cachep; 65 static struct kmem_cache *anon_vma_chain_cachep; 66 67 static inline struct anon_vma *anon_vma_alloc(void) 68 { 69 struct anon_vma *anon_vma; 70 71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 72 if (anon_vma) { 73 atomic_set(&anon_vma->refcount, 1); 74 /* 75 * Initialise the anon_vma root to point to itself. If called 76 * from fork, the root will be reset to the parents anon_vma. 77 */ 78 anon_vma->root = anon_vma; 79 } 80 81 return anon_vma; 82 } 83 84 static inline void anon_vma_free(struct anon_vma *anon_vma) 85 { 86 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 87 88 /* 89 * Synchronize against page_lock_anon_vma() such that 90 * we can safely hold the lock without the anon_vma getting 91 * freed. 92 * 93 * Relies on the full mb implied by the atomic_dec_and_test() from 94 * put_anon_vma() against the acquire barrier implied by 95 * mutex_trylock() from page_lock_anon_vma(). This orders: 96 * 97 * page_lock_anon_vma() VS put_anon_vma() 98 * mutex_trylock() atomic_dec_and_test() 99 * LOCK MB 100 * atomic_read() mutex_is_locked() 101 * 102 * LOCK should suffice since the actual taking of the lock must 103 * happen _before_ what follows. 104 */ 105 if (mutex_is_locked(&anon_vma->root->mutex)) { 106 anon_vma_lock(anon_vma); 107 anon_vma_unlock(anon_vma); 108 } 109 110 kmem_cache_free(anon_vma_cachep, anon_vma); 111 } 112 113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 114 { 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 116 } 117 118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 119 { 120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 121 } 122 123 static void anon_vma_chain_link(struct vm_area_struct *vma, 124 struct anon_vma_chain *avc, 125 struct anon_vma *anon_vma) 126 { 127 avc->vma = vma; 128 avc->anon_vma = anon_vma; 129 list_add(&avc->same_vma, &vma->anon_vma_chain); 130 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 131 } 132 133 /** 134 * anon_vma_prepare - attach an anon_vma to a memory region 135 * @vma: the memory region in question 136 * 137 * This makes sure the memory mapping described by 'vma' has 138 * an 'anon_vma' attached to it, so that we can associate the 139 * anonymous pages mapped into it with that anon_vma. 140 * 141 * The common case will be that we already have one, but if 142 * not we either need to find an adjacent mapping that we 143 * can re-use the anon_vma from (very common when the only 144 * reason for splitting a vma has been mprotect()), or we 145 * allocate a new one. 146 * 147 * Anon-vma allocations are very subtle, because we may have 148 * optimistically looked up an anon_vma in page_lock_anon_vma() 149 * and that may actually touch the spinlock even in the newly 150 * allocated vma (it depends on RCU to make sure that the 151 * anon_vma isn't actually destroyed). 152 * 153 * As a result, we need to do proper anon_vma locking even 154 * for the new allocation. At the same time, we do not want 155 * to do any locking for the common case of already having 156 * an anon_vma. 157 * 158 * This must be called with the mmap_sem held for reading. 159 */ 160 int anon_vma_prepare(struct vm_area_struct *vma) 161 { 162 struct anon_vma *anon_vma = vma->anon_vma; 163 struct anon_vma_chain *avc; 164 165 might_sleep(); 166 if (unlikely(!anon_vma)) { 167 struct mm_struct *mm = vma->vm_mm; 168 struct anon_vma *allocated; 169 170 avc = anon_vma_chain_alloc(GFP_KERNEL); 171 if (!avc) 172 goto out_enomem; 173 174 anon_vma = find_mergeable_anon_vma(vma); 175 allocated = NULL; 176 if (!anon_vma) { 177 anon_vma = anon_vma_alloc(); 178 if (unlikely(!anon_vma)) 179 goto out_enomem_free_avc; 180 allocated = anon_vma; 181 } 182 183 anon_vma_lock(anon_vma); 184 /* page_table_lock to protect against threads */ 185 spin_lock(&mm->page_table_lock); 186 if (likely(!vma->anon_vma)) { 187 vma->anon_vma = anon_vma; 188 anon_vma_chain_link(vma, avc, anon_vma); 189 allocated = NULL; 190 avc = NULL; 191 } 192 spin_unlock(&mm->page_table_lock); 193 anon_vma_unlock(anon_vma); 194 195 if (unlikely(allocated)) 196 put_anon_vma(allocated); 197 if (unlikely(avc)) 198 anon_vma_chain_free(avc); 199 } 200 return 0; 201 202 out_enomem_free_avc: 203 anon_vma_chain_free(avc); 204 out_enomem: 205 return -ENOMEM; 206 } 207 208 /* 209 * This is a useful helper function for locking the anon_vma root as 210 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 211 * have the same vma. 212 * 213 * Such anon_vma's should have the same root, so you'd expect to see 214 * just a single mutex_lock for the whole traversal. 215 */ 216 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 217 { 218 struct anon_vma *new_root = anon_vma->root; 219 if (new_root != root) { 220 if (WARN_ON_ONCE(root)) 221 mutex_unlock(&root->mutex); 222 root = new_root; 223 mutex_lock(&root->mutex); 224 } 225 return root; 226 } 227 228 static inline void unlock_anon_vma_root(struct anon_vma *root) 229 { 230 if (root) 231 mutex_unlock(&root->mutex); 232 } 233 234 /* 235 * Attach the anon_vmas from src to dst. 236 * Returns 0 on success, -ENOMEM on failure. 237 */ 238 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 239 { 240 struct anon_vma_chain *avc, *pavc; 241 struct anon_vma *root = NULL; 242 243 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 244 struct anon_vma *anon_vma; 245 246 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 247 if (unlikely(!avc)) { 248 unlock_anon_vma_root(root); 249 root = NULL; 250 avc = anon_vma_chain_alloc(GFP_KERNEL); 251 if (!avc) 252 goto enomem_failure; 253 } 254 anon_vma = pavc->anon_vma; 255 root = lock_anon_vma_root(root, anon_vma); 256 anon_vma_chain_link(dst, avc, anon_vma); 257 } 258 unlock_anon_vma_root(root); 259 return 0; 260 261 enomem_failure: 262 unlink_anon_vmas(dst); 263 return -ENOMEM; 264 } 265 266 /* 267 * Attach vma to its own anon_vma, as well as to the anon_vmas that 268 * the corresponding VMA in the parent process is attached to. 269 * Returns 0 on success, non-zero on failure. 270 */ 271 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 272 { 273 struct anon_vma_chain *avc; 274 struct anon_vma *anon_vma; 275 276 /* Don't bother if the parent process has no anon_vma here. */ 277 if (!pvma->anon_vma) 278 return 0; 279 280 /* 281 * First, attach the new VMA to the parent VMA's anon_vmas, 282 * so rmap can find non-COWed pages in child processes. 283 */ 284 if (anon_vma_clone(vma, pvma)) 285 return -ENOMEM; 286 287 /* Then add our own anon_vma. */ 288 anon_vma = anon_vma_alloc(); 289 if (!anon_vma) 290 goto out_error; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto out_error_free_anon_vma; 294 295 /* 296 * The root anon_vma's spinlock is the lock actually used when we 297 * lock any of the anon_vmas in this anon_vma tree. 298 */ 299 anon_vma->root = pvma->anon_vma->root; 300 /* 301 * With refcounts, an anon_vma can stay around longer than the 302 * process it belongs to. The root anon_vma needs to be pinned until 303 * this anon_vma is freed, because the lock lives in the root. 304 */ 305 get_anon_vma(anon_vma->root); 306 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 307 vma->anon_vma = anon_vma; 308 anon_vma_lock(anon_vma); 309 anon_vma_chain_link(vma, avc, anon_vma); 310 anon_vma_unlock(anon_vma); 311 312 return 0; 313 314 out_error_free_anon_vma: 315 put_anon_vma(anon_vma); 316 out_error: 317 unlink_anon_vmas(vma); 318 return -ENOMEM; 319 } 320 321 void unlink_anon_vmas(struct vm_area_struct *vma) 322 { 323 struct anon_vma_chain *avc, *next; 324 struct anon_vma *root = NULL; 325 326 /* 327 * Unlink each anon_vma chained to the VMA. This list is ordered 328 * from newest to oldest, ensuring the root anon_vma gets freed last. 329 */ 330 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 331 struct anon_vma *anon_vma = avc->anon_vma; 332 333 root = lock_anon_vma_root(root, anon_vma); 334 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 335 336 /* 337 * Leave empty anon_vmas on the list - we'll need 338 * to free them outside the lock. 339 */ 340 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 341 continue; 342 343 list_del(&avc->same_vma); 344 anon_vma_chain_free(avc); 345 } 346 unlock_anon_vma_root(root); 347 348 /* 349 * Iterate the list once more, it now only contains empty and unlinked 350 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 351 * needing to acquire the anon_vma->root->mutex. 352 */ 353 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 354 struct anon_vma *anon_vma = avc->anon_vma; 355 356 put_anon_vma(anon_vma); 357 358 list_del(&avc->same_vma); 359 anon_vma_chain_free(avc); 360 } 361 } 362 363 static void anon_vma_ctor(void *data) 364 { 365 struct anon_vma *anon_vma = data; 366 367 mutex_init(&anon_vma->mutex); 368 atomic_set(&anon_vma->refcount, 0); 369 anon_vma->rb_root = RB_ROOT; 370 } 371 372 void __init anon_vma_init(void) 373 { 374 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 375 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 376 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 377 } 378 379 /* 380 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 381 * 382 * Since there is no serialization what so ever against page_remove_rmap() 383 * the best this function can do is return a locked anon_vma that might 384 * have been relevant to this page. 385 * 386 * The page might have been remapped to a different anon_vma or the anon_vma 387 * returned may already be freed (and even reused). 388 * 389 * In case it was remapped to a different anon_vma, the new anon_vma will be a 390 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 391 * ensure that any anon_vma obtained from the page will still be valid for as 392 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 393 * 394 * All users of this function must be very careful when walking the anon_vma 395 * chain and verify that the page in question is indeed mapped in it 396 * [ something equivalent to page_mapped_in_vma() ]. 397 * 398 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 399 * that the anon_vma pointer from page->mapping is valid if there is a 400 * mapcount, we can dereference the anon_vma after observing those. 401 */ 402 struct anon_vma *page_get_anon_vma(struct page *page) 403 { 404 struct anon_vma *anon_vma = NULL; 405 unsigned long anon_mapping; 406 407 rcu_read_lock(); 408 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 409 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 410 goto out; 411 if (!page_mapped(page)) 412 goto out; 413 414 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 415 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 416 anon_vma = NULL; 417 goto out; 418 } 419 420 /* 421 * If this page is still mapped, then its anon_vma cannot have been 422 * freed. But if it has been unmapped, we have no security against the 423 * anon_vma structure being freed and reused (for another anon_vma: 424 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 425 * above cannot corrupt). 426 */ 427 if (!page_mapped(page)) { 428 put_anon_vma(anon_vma); 429 anon_vma = NULL; 430 } 431 out: 432 rcu_read_unlock(); 433 434 return anon_vma; 435 } 436 437 /* 438 * Similar to page_get_anon_vma() except it locks the anon_vma. 439 * 440 * Its a little more complex as it tries to keep the fast path to a single 441 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 442 * reference like with page_get_anon_vma() and then block on the mutex. 443 */ 444 struct anon_vma *page_lock_anon_vma(struct page *page) 445 { 446 struct anon_vma *anon_vma = NULL; 447 struct anon_vma *root_anon_vma; 448 unsigned long anon_mapping; 449 450 rcu_read_lock(); 451 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 452 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 453 goto out; 454 if (!page_mapped(page)) 455 goto out; 456 457 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 458 root_anon_vma = ACCESS_ONCE(anon_vma->root); 459 if (mutex_trylock(&root_anon_vma->mutex)) { 460 /* 461 * If the page is still mapped, then this anon_vma is still 462 * its anon_vma, and holding the mutex ensures that it will 463 * not go away, see anon_vma_free(). 464 */ 465 if (!page_mapped(page)) { 466 mutex_unlock(&root_anon_vma->mutex); 467 anon_vma = NULL; 468 } 469 goto out; 470 } 471 472 /* trylock failed, we got to sleep */ 473 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 474 anon_vma = NULL; 475 goto out; 476 } 477 478 if (!page_mapped(page)) { 479 put_anon_vma(anon_vma); 480 anon_vma = NULL; 481 goto out; 482 } 483 484 /* we pinned the anon_vma, its safe to sleep */ 485 rcu_read_unlock(); 486 anon_vma_lock(anon_vma); 487 488 if (atomic_dec_and_test(&anon_vma->refcount)) { 489 /* 490 * Oops, we held the last refcount, release the lock 491 * and bail -- can't simply use put_anon_vma() because 492 * we'll deadlock on the anon_vma_lock() recursion. 493 */ 494 anon_vma_unlock(anon_vma); 495 __put_anon_vma(anon_vma); 496 anon_vma = NULL; 497 } 498 499 return anon_vma; 500 501 out: 502 rcu_read_unlock(); 503 return anon_vma; 504 } 505 506 void page_unlock_anon_vma(struct anon_vma *anon_vma) 507 { 508 anon_vma_unlock(anon_vma); 509 } 510 511 /* 512 * At what user virtual address is page expected in @vma? 513 */ 514 static inline unsigned long 515 __vma_address(struct page *page, struct vm_area_struct *vma) 516 { 517 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 518 519 if (unlikely(is_vm_hugetlb_page(vma))) 520 pgoff = page->index << huge_page_order(page_hstate(page)); 521 522 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 523 } 524 525 inline unsigned long 526 vma_address(struct page *page, struct vm_area_struct *vma) 527 { 528 unsigned long address = __vma_address(page, vma); 529 530 /* page should be within @vma mapping range */ 531 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 532 533 return address; 534 } 535 536 /* 537 * At what user virtual address is page expected in vma? 538 * Caller should check the page is actually part of the vma. 539 */ 540 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 541 { 542 unsigned long address; 543 if (PageAnon(page)) { 544 struct anon_vma *page__anon_vma = page_anon_vma(page); 545 /* 546 * Note: swapoff's unuse_vma() is more efficient with this 547 * check, and needs it to match anon_vma when KSM is active. 548 */ 549 if (!vma->anon_vma || !page__anon_vma || 550 vma->anon_vma->root != page__anon_vma->root) 551 return -EFAULT; 552 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 553 if (!vma->vm_file || 554 vma->vm_file->f_mapping != page->mapping) 555 return -EFAULT; 556 } else 557 return -EFAULT; 558 address = __vma_address(page, vma); 559 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 560 return -EFAULT; 561 return address; 562 } 563 564 /* 565 * Check that @page is mapped at @address into @mm. 566 * 567 * If @sync is false, page_check_address may perform a racy check to avoid 568 * the page table lock when the pte is not present (helpful when reclaiming 569 * highly shared pages). 570 * 571 * On success returns with pte mapped and locked. 572 */ 573 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 574 unsigned long address, spinlock_t **ptlp, int sync) 575 { 576 pgd_t *pgd; 577 pud_t *pud; 578 pmd_t *pmd; 579 pte_t *pte; 580 spinlock_t *ptl; 581 582 if (unlikely(PageHuge(page))) { 583 pte = huge_pte_offset(mm, address); 584 ptl = &mm->page_table_lock; 585 goto check; 586 } 587 588 pgd = pgd_offset(mm, address); 589 if (!pgd_present(*pgd)) 590 return NULL; 591 592 pud = pud_offset(pgd, address); 593 if (!pud_present(*pud)) 594 return NULL; 595 596 pmd = pmd_offset(pud, address); 597 if (!pmd_present(*pmd)) 598 return NULL; 599 if (pmd_trans_huge(*pmd)) 600 return NULL; 601 602 pte = pte_offset_map(pmd, address); 603 /* Make a quick check before getting the lock */ 604 if (!sync && !pte_present(*pte)) { 605 pte_unmap(pte); 606 return NULL; 607 } 608 609 ptl = pte_lockptr(mm, pmd); 610 check: 611 spin_lock(ptl); 612 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 613 *ptlp = ptl; 614 return pte; 615 } 616 pte_unmap_unlock(pte, ptl); 617 return NULL; 618 } 619 620 /** 621 * page_mapped_in_vma - check whether a page is really mapped in a VMA 622 * @page: the page to test 623 * @vma: the VMA to test 624 * 625 * Returns 1 if the page is mapped into the page tables of the VMA, 0 626 * if the page is not mapped into the page tables of this VMA. Only 627 * valid for normal file or anonymous VMAs. 628 */ 629 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 630 { 631 unsigned long address; 632 pte_t *pte; 633 spinlock_t *ptl; 634 635 address = __vma_address(page, vma); 636 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 637 return 0; 638 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 639 if (!pte) /* the page is not in this mm */ 640 return 0; 641 pte_unmap_unlock(pte, ptl); 642 643 return 1; 644 } 645 646 /* 647 * Subfunctions of page_referenced: page_referenced_one called 648 * repeatedly from either page_referenced_anon or page_referenced_file. 649 */ 650 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 651 unsigned long address, unsigned int *mapcount, 652 unsigned long *vm_flags) 653 { 654 struct mm_struct *mm = vma->vm_mm; 655 int referenced = 0; 656 657 if (unlikely(PageTransHuge(page))) { 658 pmd_t *pmd; 659 660 spin_lock(&mm->page_table_lock); 661 /* 662 * rmap might return false positives; we must filter 663 * these out using page_check_address_pmd(). 664 */ 665 pmd = page_check_address_pmd(page, mm, address, 666 PAGE_CHECK_ADDRESS_PMD_FLAG); 667 if (!pmd) { 668 spin_unlock(&mm->page_table_lock); 669 goto out; 670 } 671 672 if (vma->vm_flags & VM_LOCKED) { 673 spin_unlock(&mm->page_table_lock); 674 *mapcount = 0; /* break early from loop */ 675 *vm_flags |= VM_LOCKED; 676 goto out; 677 } 678 679 /* go ahead even if the pmd is pmd_trans_splitting() */ 680 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 681 referenced++; 682 spin_unlock(&mm->page_table_lock); 683 } else { 684 pte_t *pte; 685 spinlock_t *ptl; 686 687 /* 688 * rmap might return false positives; we must filter 689 * these out using page_check_address(). 690 */ 691 pte = page_check_address(page, mm, address, &ptl, 0); 692 if (!pte) 693 goto out; 694 695 if (vma->vm_flags & VM_LOCKED) { 696 pte_unmap_unlock(pte, ptl); 697 *mapcount = 0; /* break early from loop */ 698 *vm_flags |= VM_LOCKED; 699 goto out; 700 } 701 702 if (ptep_clear_flush_young_notify(vma, address, pte)) { 703 /* 704 * Don't treat a reference through a sequentially read 705 * mapping as such. If the page has been used in 706 * another mapping, we will catch it; if this other 707 * mapping is already gone, the unmap path will have 708 * set PG_referenced or activated the page. 709 */ 710 if (likely(!VM_SequentialReadHint(vma))) 711 referenced++; 712 } 713 pte_unmap_unlock(pte, ptl); 714 } 715 716 (*mapcount)--; 717 718 if (referenced) 719 *vm_flags |= vma->vm_flags; 720 out: 721 return referenced; 722 } 723 724 static int page_referenced_anon(struct page *page, 725 struct mem_cgroup *memcg, 726 unsigned long *vm_flags) 727 { 728 unsigned int mapcount; 729 struct anon_vma *anon_vma; 730 pgoff_t pgoff; 731 struct anon_vma_chain *avc; 732 int referenced = 0; 733 734 anon_vma = page_lock_anon_vma(page); 735 if (!anon_vma) 736 return referenced; 737 738 mapcount = page_mapcount(page); 739 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 740 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 741 struct vm_area_struct *vma = avc->vma; 742 unsigned long address = vma_address(page, vma); 743 /* 744 * If we are reclaiming on behalf of a cgroup, skip 745 * counting on behalf of references from different 746 * cgroups 747 */ 748 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 749 continue; 750 referenced += page_referenced_one(page, vma, address, 751 &mapcount, vm_flags); 752 if (!mapcount) 753 break; 754 } 755 756 page_unlock_anon_vma(anon_vma); 757 return referenced; 758 } 759 760 /** 761 * page_referenced_file - referenced check for object-based rmap 762 * @page: the page we're checking references on. 763 * @memcg: target memory control group 764 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 765 * 766 * For an object-based mapped page, find all the places it is mapped and 767 * check/clear the referenced flag. This is done by following the page->mapping 768 * pointer, then walking the chain of vmas it holds. It returns the number 769 * of references it found. 770 * 771 * This function is only called from page_referenced for object-based pages. 772 */ 773 static int page_referenced_file(struct page *page, 774 struct mem_cgroup *memcg, 775 unsigned long *vm_flags) 776 { 777 unsigned int mapcount; 778 struct address_space *mapping = page->mapping; 779 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 780 struct vm_area_struct *vma; 781 int referenced = 0; 782 783 /* 784 * The caller's checks on page->mapping and !PageAnon have made 785 * sure that this is a file page: the check for page->mapping 786 * excludes the case just before it gets set on an anon page. 787 */ 788 BUG_ON(PageAnon(page)); 789 790 /* 791 * The page lock not only makes sure that page->mapping cannot 792 * suddenly be NULLified by truncation, it makes sure that the 793 * structure at mapping cannot be freed and reused yet, 794 * so we can safely take mapping->i_mmap_mutex. 795 */ 796 BUG_ON(!PageLocked(page)); 797 798 mutex_lock(&mapping->i_mmap_mutex); 799 800 /* 801 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 802 * is more likely to be accurate if we note it after spinning. 803 */ 804 mapcount = page_mapcount(page); 805 806 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 807 unsigned long address = vma_address(page, vma); 808 /* 809 * If we are reclaiming on behalf of a cgroup, skip 810 * counting on behalf of references from different 811 * cgroups 812 */ 813 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 814 continue; 815 referenced += page_referenced_one(page, vma, address, 816 &mapcount, vm_flags); 817 if (!mapcount) 818 break; 819 } 820 821 mutex_unlock(&mapping->i_mmap_mutex); 822 return referenced; 823 } 824 825 /** 826 * page_referenced - test if the page was referenced 827 * @page: the page to test 828 * @is_locked: caller holds lock on the page 829 * @memcg: target memory cgroup 830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 831 * 832 * Quick test_and_clear_referenced for all mappings to a page, 833 * returns the number of ptes which referenced the page. 834 */ 835 int page_referenced(struct page *page, 836 int is_locked, 837 struct mem_cgroup *memcg, 838 unsigned long *vm_flags) 839 { 840 int referenced = 0; 841 int we_locked = 0; 842 843 *vm_flags = 0; 844 if (page_mapped(page) && page_rmapping(page)) { 845 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 846 we_locked = trylock_page(page); 847 if (!we_locked) { 848 referenced++; 849 goto out; 850 } 851 } 852 if (unlikely(PageKsm(page))) 853 referenced += page_referenced_ksm(page, memcg, 854 vm_flags); 855 else if (PageAnon(page)) 856 referenced += page_referenced_anon(page, memcg, 857 vm_flags); 858 else if (page->mapping) 859 referenced += page_referenced_file(page, memcg, 860 vm_flags); 861 if (we_locked) 862 unlock_page(page); 863 864 if (page_test_and_clear_young(page_to_pfn(page))) 865 referenced++; 866 } 867 out: 868 return referenced; 869 } 870 871 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 872 unsigned long address) 873 { 874 struct mm_struct *mm = vma->vm_mm; 875 pte_t *pte; 876 spinlock_t *ptl; 877 int ret = 0; 878 879 pte = page_check_address(page, mm, address, &ptl, 1); 880 if (!pte) 881 goto out; 882 883 if (pte_dirty(*pte) || pte_write(*pte)) { 884 pte_t entry; 885 886 flush_cache_page(vma, address, pte_pfn(*pte)); 887 entry = ptep_clear_flush(vma, address, pte); 888 entry = pte_wrprotect(entry); 889 entry = pte_mkclean(entry); 890 set_pte_at(mm, address, pte, entry); 891 ret = 1; 892 } 893 894 pte_unmap_unlock(pte, ptl); 895 896 if (ret) 897 mmu_notifier_invalidate_page(mm, address); 898 out: 899 return ret; 900 } 901 902 static int page_mkclean_file(struct address_space *mapping, struct page *page) 903 { 904 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 905 struct vm_area_struct *vma; 906 int ret = 0; 907 908 BUG_ON(PageAnon(page)); 909 910 mutex_lock(&mapping->i_mmap_mutex); 911 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 912 if (vma->vm_flags & VM_SHARED) { 913 unsigned long address = vma_address(page, vma); 914 ret += page_mkclean_one(page, vma, address); 915 } 916 } 917 mutex_unlock(&mapping->i_mmap_mutex); 918 return ret; 919 } 920 921 int page_mkclean(struct page *page) 922 { 923 int ret = 0; 924 925 BUG_ON(!PageLocked(page)); 926 927 if (page_mapped(page)) { 928 struct address_space *mapping = page_mapping(page); 929 if (mapping) { 930 ret = page_mkclean_file(mapping, page); 931 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 932 ret = 1; 933 } 934 } 935 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(page_mkclean); 939 940 /** 941 * page_move_anon_rmap - move a page to our anon_vma 942 * @page: the page to move to our anon_vma 943 * @vma: the vma the page belongs to 944 * @address: the user virtual address mapped 945 * 946 * When a page belongs exclusively to one process after a COW event, 947 * that page can be moved into the anon_vma that belongs to just that 948 * process, so the rmap code will not search the parent or sibling 949 * processes. 950 */ 951 void page_move_anon_rmap(struct page *page, 952 struct vm_area_struct *vma, unsigned long address) 953 { 954 struct anon_vma *anon_vma = vma->anon_vma; 955 956 VM_BUG_ON(!PageLocked(page)); 957 VM_BUG_ON(!anon_vma); 958 VM_BUG_ON(page->index != linear_page_index(vma, address)); 959 960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 961 page->mapping = (struct address_space *) anon_vma; 962 } 963 964 /** 965 * __page_set_anon_rmap - set up new anonymous rmap 966 * @page: Page to add to rmap 967 * @vma: VM area to add page to. 968 * @address: User virtual address of the mapping 969 * @exclusive: the page is exclusively owned by the current process 970 */ 971 static void __page_set_anon_rmap(struct page *page, 972 struct vm_area_struct *vma, unsigned long address, int exclusive) 973 { 974 struct anon_vma *anon_vma = vma->anon_vma; 975 976 BUG_ON(!anon_vma); 977 978 if (PageAnon(page)) 979 return; 980 981 /* 982 * If the page isn't exclusively mapped into this vma, 983 * we must use the _oldest_ possible anon_vma for the 984 * page mapping! 985 */ 986 if (!exclusive) 987 anon_vma = anon_vma->root; 988 989 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 990 page->mapping = (struct address_space *) anon_vma; 991 page->index = linear_page_index(vma, address); 992 } 993 994 /** 995 * __page_check_anon_rmap - sanity check anonymous rmap addition 996 * @page: the page to add the mapping to 997 * @vma: the vm area in which the mapping is added 998 * @address: the user virtual address mapped 999 */ 1000 static void __page_check_anon_rmap(struct page *page, 1001 struct vm_area_struct *vma, unsigned long address) 1002 { 1003 #ifdef CONFIG_DEBUG_VM 1004 /* 1005 * The page's anon-rmap details (mapping and index) are guaranteed to 1006 * be set up correctly at this point. 1007 * 1008 * We have exclusion against page_add_anon_rmap because the caller 1009 * always holds the page locked, except if called from page_dup_rmap, 1010 * in which case the page is already known to be setup. 1011 * 1012 * We have exclusion against page_add_new_anon_rmap because those pages 1013 * are initially only visible via the pagetables, and the pte is locked 1014 * over the call to page_add_new_anon_rmap. 1015 */ 1016 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1017 BUG_ON(page->index != linear_page_index(vma, address)); 1018 #endif 1019 } 1020 1021 /** 1022 * page_add_anon_rmap - add pte mapping to an anonymous page 1023 * @page: the page to add the mapping to 1024 * @vma: the vm area in which the mapping is added 1025 * @address: the user virtual address mapped 1026 * 1027 * The caller needs to hold the pte lock, and the page must be locked in 1028 * the anon_vma case: to serialize mapping,index checking after setting, 1029 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1030 * (but PageKsm is never downgraded to PageAnon). 1031 */ 1032 void page_add_anon_rmap(struct page *page, 1033 struct vm_area_struct *vma, unsigned long address) 1034 { 1035 do_page_add_anon_rmap(page, vma, address, 0); 1036 } 1037 1038 /* 1039 * Special version of the above for do_swap_page, which often runs 1040 * into pages that are exclusively owned by the current process. 1041 * Everybody else should continue to use page_add_anon_rmap above. 1042 */ 1043 void do_page_add_anon_rmap(struct page *page, 1044 struct vm_area_struct *vma, unsigned long address, int exclusive) 1045 { 1046 int first = atomic_inc_and_test(&page->_mapcount); 1047 if (first) { 1048 if (!PageTransHuge(page)) 1049 __inc_zone_page_state(page, NR_ANON_PAGES); 1050 else 1051 __inc_zone_page_state(page, 1052 NR_ANON_TRANSPARENT_HUGEPAGES); 1053 } 1054 if (unlikely(PageKsm(page))) 1055 return; 1056 1057 VM_BUG_ON(!PageLocked(page)); 1058 /* address might be in next vma when migration races vma_adjust */ 1059 if (first) 1060 __page_set_anon_rmap(page, vma, address, exclusive); 1061 else 1062 __page_check_anon_rmap(page, vma, address); 1063 } 1064 1065 /** 1066 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1067 * @page: the page to add the mapping to 1068 * @vma: the vm area in which the mapping is added 1069 * @address: the user virtual address mapped 1070 * 1071 * Same as page_add_anon_rmap but must only be called on *new* pages. 1072 * This means the inc-and-test can be bypassed. 1073 * Page does not have to be locked. 1074 */ 1075 void page_add_new_anon_rmap(struct page *page, 1076 struct vm_area_struct *vma, unsigned long address) 1077 { 1078 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1079 SetPageSwapBacked(page); 1080 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1081 if (!PageTransHuge(page)) 1082 __inc_zone_page_state(page, NR_ANON_PAGES); 1083 else 1084 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1085 __page_set_anon_rmap(page, vma, address, 1); 1086 if (!mlocked_vma_newpage(vma, page)) 1087 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1088 else 1089 add_page_to_unevictable_list(page); 1090 } 1091 1092 /** 1093 * page_add_file_rmap - add pte mapping to a file page 1094 * @page: the page to add the mapping to 1095 * 1096 * The caller needs to hold the pte lock. 1097 */ 1098 void page_add_file_rmap(struct page *page) 1099 { 1100 bool locked; 1101 unsigned long flags; 1102 1103 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1104 if (atomic_inc_and_test(&page->_mapcount)) { 1105 __inc_zone_page_state(page, NR_FILE_MAPPED); 1106 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1107 } 1108 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1109 } 1110 1111 /** 1112 * page_remove_rmap - take down pte mapping from a page 1113 * @page: page to remove mapping from 1114 * 1115 * The caller needs to hold the pte lock. 1116 */ 1117 void page_remove_rmap(struct page *page) 1118 { 1119 bool anon = PageAnon(page); 1120 bool locked; 1121 unsigned long flags; 1122 1123 /* 1124 * The anon case has no mem_cgroup page_stat to update; but may 1125 * uncharge_page() below, where the lock ordering can deadlock if 1126 * we hold the lock against page_stat move: so avoid it on anon. 1127 */ 1128 if (!anon) 1129 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1130 1131 /* page still mapped by someone else? */ 1132 if (!atomic_add_negative(-1, &page->_mapcount)) 1133 goto out; 1134 1135 /* 1136 * Now that the last pte has gone, s390 must transfer dirty 1137 * flag from storage key to struct page. We can usually skip 1138 * this if the page is anon, so about to be freed; but perhaps 1139 * not if it's in swapcache - there might be another pte slot 1140 * containing the swap entry, but page not yet written to swap. 1141 */ 1142 if ((!anon || PageSwapCache(page)) && 1143 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1144 set_page_dirty(page); 1145 /* 1146 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1147 * and not charged by memcg for now. 1148 */ 1149 if (unlikely(PageHuge(page))) 1150 goto out; 1151 if (anon) { 1152 mem_cgroup_uncharge_page(page); 1153 if (!PageTransHuge(page)) 1154 __dec_zone_page_state(page, NR_ANON_PAGES); 1155 else 1156 __dec_zone_page_state(page, 1157 NR_ANON_TRANSPARENT_HUGEPAGES); 1158 } else { 1159 __dec_zone_page_state(page, NR_FILE_MAPPED); 1160 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1161 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1162 } 1163 if (unlikely(PageMlocked(page))) 1164 clear_page_mlock(page); 1165 /* 1166 * It would be tidy to reset the PageAnon mapping here, 1167 * but that might overwrite a racing page_add_anon_rmap 1168 * which increments mapcount after us but sets mapping 1169 * before us: so leave the reset to free_hot_cold_page, 1170 * and remember that it's only reliable while mapped. 1171 * Leaving it set also helps swapoff to reinstate ptes 1172 * faster for those pages still in swapcache. 1173 */ 1174 return; 1175 out: 1176 if (!anon) 1177 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1178 } 1179 1180 /* 1181 * Subfunctions of try_to_unmap: try_to_unmap_one called 1182 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1183 */ 1184 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1185 unsigned long address, enum ttu_flags flags) 1186 { 1187 struct mm_struct *mm = vma->vm_mm; 1188 pte_t *pte; 1189 pte_t pteval; 1190 spinlock_t *ptl; 1191 int ret = SWAP_AGAIN; 1192 1193 pte = page_check_address(page, mm, address, &ptl, 0); 1194 if (!pte) 1195 goto out; 1196 1197 /* 1198 * If the page is mlock()d, we cannot swap it out. 1199 * If it's recently referenced (perhaps page_referenced 1200 * skipped over this mm) then we should reactivate it. 1201 */ 1202 if (!(flags & TTU_IGNORE_MLOCK)) { 1203 if (vma->vm_flags & VM_LOCKED) 1204 goto out_mlock; 1205 1206 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1207 goto out_unmap; 1208 } 1209 if (!(flags & TTU_IGNORE_ACCESS)) { 1210 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1211 ret = SWAP_FAIL; 1212 goto out_unmap; 1213 } 1214 } 1215 1216 /* Nuke the page table entry. */ 1217 flush_cache_page(vma, address, page_to_pfn(page)); 1218 pteval = ptep_clear_flush(vma, address, pte); 1219 1220 /* Move the dirty bit to the physical page now the pte is gone. */ 1221 if (pte_dirty(pteval)) 1222 set_page_dirty(page); 1223 1224 /* Update high watermark before we lower rss */ 1225 update_hiwater_rss(mm); 1226 1227 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1228 if (PageAnon(page)) 1229 dec_mm_counter(mm, MM_ANONPAGES); 1230 else 1231 dec_mm_counter(mm, MM_FILEPAGES); 1232 set_pte_at(mm, address, pte, 1233 swp_entry_to_pte(make_hwpoison_entry(page))); 1234 } else if (PageAnon(page)) { 1235 swp_entry_t entry = { .val = page_private(page) }; 1236 1237 if (PageSwapCache(page)) { 1238 /* 1239 * Store the swap location in the pte. 1240 * See handle_pte_fault() ... 1241 */ 1242 if (swap_duplicate(entry) < 0) { 1243 set_pte_at(mm, address, pte, pteval); 1244 ret = SWAP_FAIL; 1245 goto out_unmap; 1246 } 1247 if (list_empty(&mm->mmlist)) { 1248 spin_lock(&mmlist_lock); 1249 if (list_empty(&mm->mmlist)) 1250 list_add(&mm->mmlist, &init_mm.mmlist); 1251 spin_unlock(&mmlist_lock); 1252 } 1253 dec_mm_counter(mm, MM_ANONPAGES); 1254 inc_mm_counter(mm, MM_SWAPENTS); 1255 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1256 /* 1257 * Store the pfn of the page in a special migration 1258 * pte. do_swap_page() will wait until the migration 1259 * pte is removed and then restart fault handling. 1260 */ 1261 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1262 entry = make_migration_entry(page, pte_write(pteval)); 1263 } 1264 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1265 BUG_ON(pte_file(*pte)); 1266 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1267 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1268 /* Establish migration entry for a file page */ 1269 swp_entry_t entry; 1270 entry = make_migration_entry(page, pte_write(pteval)); 1271 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1272 } else 1273 dec_mm_counter(mm, MM_FILEPAGES); 1274 1275 page_remove_rmap(page); 1276 page_cache_release(page); 1277 1278 out_unmap: 1279 pte_unmap_unlock(pte, ptl); 1280 if (ret != SWAP_FAIL) 1281 mmu_notifier_invalidate_page(mm, address); 1282 out: 1283 return ret; 1284 1285 out_mlock: 1286 pte_unmap_unlock(pte, ptl); 1287 1288 1289 /* 1290 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1291 * unstable result and race. Plus, We can't wait here because 1292 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1293 * if trylock failed, the page remain in evictable lru and later 1294 * vmscan could retry to move the page to unevictable lru if the 1295 * page is actually mlocked. 1296 */ 1297 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1298 if (vma->vm_flags & VM_LOCKED) { 1299 mlock_vma_page(page); 1300 ret = SWAP_MLOCK; 1301 } 1302 up_read(&vma->vm_mm->mmap_sem); 1303 } 1304 return ret; 1305 } 1306 1307 /* 1308 * objrmap doesn't work for nonlinear VMAs because the assumption that 1309 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1310 * Consequently, given a particular page and its ->index, we cannot locate the 1311 * ptes which are mapping that page without an exhaustive linear search. 1312 * 1313 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1314 * maps the file to which the target page belongs. The ->vm_private_data field 1315 * holds the current cursor into that scan. Successive searches will circulate 1316 * around the vma's virtual address space. 1317 * 1318 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1319 * more scanning pressure is placed against them as well. Eventually pages 1320 * will become fully unmapped and are eligible for eviction. 1321 * 1322 * For very sparsely populated VMAs this is a little inefficient - chances are 1323 * there there won't be many ptes located within the scan cluster. In this case 1324 * maybe we could scan further - to the end of the pte page, perhaps. 1325 * 1326 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1327 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1328 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1329 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1330 */ 1331 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1332 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1333 1334 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1335 struct vm_area_struct *vma, struct page *check_page) 1336 { 1337 struct mm_struct *mm = vma->vm_mm; 1338 pgd_t *pgd; 1339 pud_t *pud; 1340 pmd_t *pmd; 1341 pte_t *pte; 1342 pte_t pteval; 1343 spinlock_t *ptl; 1344 struct page *page; 1345 unsigned long address; 1346 unsigned long mmun_start; /* For mmu_notifiers */ 1347 unsigned long mmun_end; /* For mmu_notifiers */ 1348 unsigned long end; 1349 int ret = SWAP_AGAIN; 1350 int locked_vma = 0; 1351 1352 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1353 end = address + CLUSTER_SIZE; 1354 if (address < vma->vm_start) 1355 address = vma->vm_start; 1356 if (end > vma->vm_end) 1357 end = vma->vm_end; 1358 1359 pgd = pgd_offset(mm, address); 1360 if (!pgd_present(*pgd)) 1361 return ret; 1362 1363 pud = pud_offset(pgd, address); 1364 if (!pud_present(*pud)) 1365 return ret; 1366 1367 pmd = pmd_offset(pud, address); 1368 if (!pmd_present(*pmd)) 1369 return ret; 1370 1371 mmun_start = address; 1372 mmun_end = end; 1373 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1374 1375 /* 1376 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1377 * keep the sem while scanning the cluster for mlocking pages. 1378 */ 1379 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1380 locked_vma = (vma->vm_flags & VM_LOCKED); 1381 if (!locked_vma) 1382 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1383 } 1384 1385 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1386 1387 /* Update high watermark before we lower rss */ 1388 update_hiwater_rss(mm); 1389 1390 for (; address < end; pte++, address += PAGE_SIZE) { 1391 if (!pte_present(*pte)) 1392 continue; 1393 page = vm_normal_page(vma, address, *pte); 1394 BUG_ON(!page || PageAnon(page)); 1395 1396 if (locked_vma) { 1397 mlock_vma_page(page); /* no-op if already mlocked */ 1398 if (page == check_page) 1399 ret = SWAP_MLOCK; 1400 continue; /* don't unmap */ 1401 } 1402 1403 if (ptep_clear_flush_young_notify(vma, address, pte)) 1404 continue; 1405 1406 /* Nuke the page table entry. */ 1407 flush_cache_page(vma, address, pte_pfn(*pte)); 1408 pteval = ptep_clear_flush(vma, address, pte); 1409 1410 /* If nonlinear, store the file page offset in the pte. */ 1411 if (page->index != linear_page_index(vma, address)) 1412 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1413 1414 /* Move the dirty bit to the physical page now the pte is gone. */ 1415 if (pte_dirty(pteval)) 1416 set_page_dirty(page); 1417 1418 page_remove_rmap(page); 1419 page_cache_release(page); 1420 dec_mm_counter(mm, MM_FILEPAGES); 1421 (*mapcount)--; 1422 } 1423 pte_unmap_unlock(pte - 1, ptl); 1424 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1425 if (locked_vma) 1426 up_read(&vma->vm_mm->mmap_sem); 1427 return ret; 1428 } 1429 1430 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1431 { 1432 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1433 1434 if (!maybe_stack) 1435 return false; 1436 1437 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1438 VM_STACK_INCOMPLETE_SETUP) 1439 return true; 1440 1441 return false; 1442 } 1443 1444 /** 1445 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1446 * rmap method 1447 * @page: the page to unmap/unlock 1448 * @flags: action and flags 1449 * 1450 * Find all the mappings of a page using the mapping pointer and the vma chains 1451 * contained in the anon_vma struct it points to. 1452 * 1453 * This function is only called from try_to_unmap/try_to_munlock for 1454 * anonymous pages. 1455 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1456 * where the page was found will be held for write. So, we won't recheck 1457 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1458 * 'LOCKED. 1459 */ 1460 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1461 { 1462 struct anon_vma *anon_vma; 1463 pgoff_t pgoff; 1464 struct anon_vma_chain *avc; 1465 int ret = SWAP_AGAIN; 1466 1467 anon_vma = page_lock_anon_vma(page); 1468 if (!anon_vma) 1469 return ret; 1470 1471 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1472 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1473 struct vm_area_struct *vma = avc->vma; 1474 unsigned long address; 1475 1476 /* 1477 * During exec, a temporary VMA is setup and later moved. 1478 * The VMA is moved under the anon_vma lock but not the 1479 * page tables leading to a race where migration cannot 1480 * find the migration ptes. Rather than increasing the 1481 * locking requirements of exec(), migration skips 1482 * temporary VMAs until after exec() completes. 1483 */ 1484 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1485 is_vma_temporary_stack(vma)) 1486 continue; 1487 1488 address = vma_address(page, vma); 1489 ret = try_to_unmap_one(page, vma, address, flags); 1490 if (ret != SWAP_AGAIN || !page_mapped(page)) 1491 break; 1492 } 1493 1494 page_unlock_anon_vma(anon_vma); 1495 return ret; 1496 } 1497 1498 /** 1499 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1500 * @page: the page to unmap/unlock 1501 * @flags: action and flags 1502 * 1503 * Find all the mappings of a page using the mapping pointer and the vma chains 1504 * contained in the address_space struct it points to. 1505 * 1506 * This function is only called from try_to_unmap/try_to_munlock for 1507 * object-based pages. 1508 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1509 * where the page was found will be held for write. So, we won't recheck 1510 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1511 * 'LOCKED. 1512 */ 1513 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1514 { 1515 struct address_space *mapping = page->mapping; 1516 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1517 struct vm_area_struct *vma; 1518 int ret = SWAP_AGAIN; 1519 unsigned long cursor; 1520 unsigned long max_nl_cursor = 0; 1521 unsigned long max_nl_size = 0; 1522 unsigned int mapcount; 1523 1524 mutex_lock(&mapping->i_mmap_mutex); 1525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1526 unsigned long address = vma_address(page, vma); 1527 ret = try_to_unmap_one(page, vma, address, flags); 1528 if (ret != SWAP_AGAIN || !page_mapped(page)) 1529 goto out; 1530 } 1531 1532 if (list_empty(&mapping->i_mmap_nonlinear)) 1533 goto out; 1534 1535 /* 1536 * We don't bother to try to find the munlocked page in nonlinears. 1537 * It's costly. Instead, later, page reclaim logic may call 1538 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1539 */ 1540 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1541 goto out; 1542 1543 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1544 shared.nonlinear) { 1545 cursor = (unsigned long) vma->vm_private_data; 1546 if (cursor > max_nl_cursor) 1547 max_nl_cursor = cursor; 1548 cursor = vma->vm_end - vma->vm_start; 1549 if (cursor > max_nl_size) 1550 max_nl_size = cursor; 1551 } 1552 1553 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1554 ret = SWAP_FAIL; 1555 goto out; 1556 } 1557 1558 /* 1559 * We don't try to search for this page in the nonlinear vmas, 1560 * and page_referenced wouldn't have found it anyway. Instead 1561 * just walk the nonlinear vmas trying to age and unmap some. 1562 * The mapcount of the page we came in with is irrelevant, 1563 * but even so use it as a guide to how hard we should try? 1564 */ 1565 mapcount = page_mapcount(page); 1566 if (!mapcount) 1567 goto out; 1568 cond_resched(); 1569 1570 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1571 if (max_nl_cursor == 0) 1572 max_nl_cursor = CLUSTER_SIZE; 1573 1574 do { 1575 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1576 shared.nonlinear) { 1577 cursor = (unsigned long) vma->vm_private_data; 1578 while ( cursor < max_nl_cursor && 1579 cursor < vma->vm_end - vma->vm_start) { 1580 if (try_to_unmap_cluster(cursor, &mapcount, 1581 vma, page) == SWAP_MLOCK) 1582 ret = SWAP_MLOCK; 1583 cursor += CLUSTER_SIZE; 1584 vma->vm_private_data = (void *) cursor; 1585 if ((int)mapcount <= 0) 1586 goto out; 1587 } 1588 vma->vm_private_data = (void *) max_nl_cursor; 1589 } 1590 cond_resched(); 1591 max_nl_cursor += CLUSTER_SIZE; 1592 } while (max_nl_cursor <= max_nl_size); 1593 1594 /* 1595 * Don't loop forever (perhaps all the remaining pages are 1596 * in locked vmas). Reset cursor on all unreserved nonlinear 1597 * vmas, now forgetting on which ones it had fallen behind. 1598 */ 1599 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1600 vma->vm_private_data = NULL; 1601 out: 1602 mutex_unlock(&mapping->i_mmap_mutex); 1603 return ret; 1604 } 1605 1606 /** 1607 * try_to_unmap - try to remove all page table mappings to a page 1608 * @page: the page to get unmapped 1609 * @flags: action and flags 1610 * 1611 * Tries to remove all the page table entries which are mapping this 1612 * page, used in the pageout path. Caller must hold the page lock. 1613 * Return values are: 1614 * 1615 * SWAP_SUCCESS - we succeeded in removing all mappings 1616 * SWAP_AGAIN - we missed a mapping, try again later 1617 * SWAP_FAIL - the page is unswappable 1618 * SWAP_MLOCK - page is mlocked. 1619 */ 1620 int try_to_unmap(struct page *page, enum ttu_flags flags) 1621 { 1622 int ret; 1623 1624 BUG_ON(!PageLocked(page)); 1625 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1626 1627 if (unlikely(PageKsm(page))) 1628 ret = try_to_unmap_ksm(page, flags); 1629 else if (PageAnon(page)) 1630 ret = try_to_unmap_anon(page, flags); 1631 else 1632 ret = try_to_unmap_file(page, flags); 1633 if (ret != SWAP_MLOCK && !page_mapped(page)) 1634 ret = SWAP_SUCCESS; 1635 return ret; 1636 } 1637 1638 /** 1639 * try_to_munlock - try to munlock a page 1640 * @page: the page to be munlocked 1641 * 1642 * Called from munlock code. Checks all of the VMAs mapping the page 1643 * to make sure nobody else has this page mlocked. The page will be 1644 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1645 * 1646 * Return values are: 1647 * 1648 * SWAP_AGAIN - no vma is holding page mlocked, or, 1649 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1650 * SWAP_FAIL - page cannot be located at present 1651 * SWAP_MLOCK - page is now mlocked. 1652 */ 1653 int try_to_munlock(struct page *page) 1654 { 1655 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1656 1657 if (unlikely(PageKsm(page))) 1658 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1659 else if (PageAnon(page)) 1660 return try_to_unmap_anon(page, TTU_MUNLOCK); 1661 else 1662 return try_to_unmap_file(page, TTU_MUNLOCK); 1663 } 1664 1665 void __put_anon_vma(struct anon_vma *anon_vma) 1666 { 1667 struct anon_vma *root = anon_vma->root; 1668 1669 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1670 anon_vma_free(root); 1671 1672 anon_vma_free(anon_vma); 1673 } 1674 1675 #ifdef CONFIG_MIGRATION 1676 /* 1677 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1678 * Called by migrate.c to remove migration ptes, but might be used more later. 1679 */ 1680 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1681 struct vm_area_struct *, unsigned long, void *), void *arg) 1682 { 1683 struct anon_vma *anon_vma; 1684 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1685 struct anon_vma_chain *avc; 1686 int ret = SWAP_AGAIN; 1687 1688 /* 1689 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1690 * because that depends on page_mapped(); but not all its usages 1691 * are holding mmap_sem. Users without mmap_sem are required to 1692 * take a reference count to prevent the anon_vma disappearing 1693 */ 1694 anon_vma = page_anon_vma(page); 1695 if (!anon_vma) 1696 return ret; 1697 anon_vma_lock(anon_vma); 1698 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1699 struct vm_area_struct *vma = avc->vma; 1700 unsigned long address = vma_address(page, vma); 1701 ret = rmap_one(page, vma, address, arg); 1702 if (ret != SWAP_AGAIN) 1703 break; 1704 } 1705 anon_vma_unlock(anon_vma); 1706 return ret; 1707 } 1708 1709 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1710 struct vm_area_struct *, unsigned long, void *), void *arg) 1711 { 1712 struct address_space *mapping = page->mapping; 1713 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1714 struct vm_area_struct *vma; 1715 int ret = SWAP_AGAIN; 1716 1717 if (!mapping) 1718 return ret; 1719 mutex_lock(&mapping->i_mmap_mutex); 1720 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1721 unsigned long address = vma_address(page, vma); 1722 ret = rmap_one(page, vma, address, arg); 1723 if (ret != SWAP_AGAIN) 1724 break; 1725 } 1726 /* 1727 * No nonlinear handling: being always shared, nonlinear vmas 1728 * never contain migration ptes. Decide what to do about this 1729 * limitation to linear when we need rmap_walk() on nonlinear. 1730 */ 1731 mutex_unlock(&mapping->i_mmap_mutex); 1732 return ret; 1733 } 1734 1735 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1736 struct vm_area_struct *, unsigned long, void *), void *arg) 1737 { 1738 VM_BUG_ON(!PageLocked(page)); 1739 1740 if (unlikely(PageKsm(page))) 1741 return rmap_walk_ksm(page, rmap_one, arg); 1742 else if (PageAnon(page)) 1743 return rmap_walk_anon(page, rmap_one, arg); 1744 else 1745 return rmap_walk_file(page, rmap_one, arg); 1746 } 1747 #endif /* CONFIG_MIGRATION */ 1748 1749 #ifdef CONFIG_HUGETLB_PAGE 1750 /* 1751 * The following three functions are for anonymous (private mapped) hugepages. 1752 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1753 * and no lru code, because we handle hugepages differently from common pages. 1754 */ 1755 static void __hugepage_set_anon_rmap(struct page *page, 1756 struct vm_area_struct *vma, unsigned long address, int exclusive) 1757 { 1758 struct anon_vma *anon_vma = vma->anon_vma; 1759 1760 BUG_ON(!anon_vma); 1761 1762 if (PageAnon(page)) 1763 return; 1764 if (!exclusive) 1765 anon_vma = anon_vma->root; 1766 1767 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1768 page->mapping = (struct address_space *) anon_vma; 1769 page->index = linear_page_index(vma, address); 1770 } 1771 1772 void hugepage_add_anon_rmap(struct page *page, 1773 struct vm_area_struct *vma, unsigned long address) 1774 { 1775 struct anon_vma *anon_vma = vma->anon_vma; 1776 int first; 1777 1778 BUG_ON(!PageLocked(page)); 1779 BUG_ON(!anon_vma); 1780 /* address might be in next vma when migration races vma_adjust */ 1781 first = atomic_inc_and_test(&page->_mapcount); 1782 if (first) 1783 __hugepage_set_anon_rmap(page, vma, address, 0); 1784 } 1785 1786 void hugepage_add_new_anon_rmap(struct page *page, 1787 struct vm_area_struct *vma, unsigned long address) 1788 { 1789 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1790 atomic_set(&page->_mapcount, 0); 1791 __hugepage_set_anon_rmap(page, vma, address, 1); 1792 } 1793 #endif /* CONFIG_HUGETLB_PAGE */ 1794