xref: /linux/mm/rmap.c (revision bc5378fcba974317f9657c4fdc78af227e1e1068)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	struct anon_vma *anon_vma;
70 
71 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 	if (anon_vma) {
73 		atomic_set(&anon_vma->refcount, 1);
74 		/*
75 		 * Initialise the anon_vma root to point to itself. If called
76 		 * from fork, the root will be reset to the parents anon_vma.
77 		 */
78 		anon_vma->root = anon_vma;
79 	}
80 
81 	return anon_vma;
82 }
83 
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87 
88 	/*
89 	 * Synchronize against page_lock_anon_vma() such that
90 	 * we can safely hold the lock without the anon_vma getting
91 	 * freed.
92 	 *
93 	 * Relies on the full mb implied by the atomic_dec_and_test() from
94 	 * put_anon_vma() against the acquire barrier implied by
95 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 	 *
97 	 * page_lock_anon_vma()		VS	put_anon_vma()
98 	 *   mutex_trylock()			  atomic_dec_and_test()
99 	 *   LOCK				  MB
100 	 *   atomic_read()			  mutex_is_locked()
101 	 *
102 	 * LOCK should suffice since the actual taking of the lock must
103 	 * happen _before_ what follows.
104 	 */
105 	if (mutex_is_locked(&anon_vma->root->mutex)) {
106 		anon_vma_lock(anon_vma);
107 		anon_vma_unlock(anon_vma);
108 	}
109 
110 	kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112 
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117 
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122 
123 static void anon_vma_chain_link(struct vm_area_struct *vma,
124 				struct anon_vma_chain *avc,
125 				struct anon_vma *anon_vma)
126 {
127 	avc->vma = vma;
128 	avc->anon_vma = anon_vma;
129 	list_add(&avc->same_vma, &vma->anon_vma_chain);
130 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
131 }
132 
133 /**
134  * anon_vma_prepare - attach an anon_vma to a memory region
135  * @vma: the memory region in question
136  *
137  * This makes sure the memory mapping described by 'vma' has
138  * an 'anon_vma' attached to it, so that we can associate the
139  * anonymous pages mapped into it with that anon_vma.
140  *
141  * The common case will be that we already have one, but if
142  * not we either need to find an adjacent mapping that we
143  * can re-use the anon_vma from (very common when the only
144  * reason for splitting a vma has been mprotect()), or we
145  * allocate a new one.
146  *
147  * Anon-vma allocations are very subtle, because we may have
148  * optimistically looked up an anon_vma in page_lock_anon_vma()
149  * and that may actually touch the spinlock even in the newly
150  * allocated vma (it depends on RCU to make sure that the
151  * anon_vma isn't actually destroyed).
152  *
153  * As a result, we need to do proper anon_vma locking even
154  * for the new allocation. At the same time, we do not want
155  * to do any locking for the common case of already having
156  * an anon_vma.
157  *
158  * This must be called with the mmap_sem held for reading.
159  */
160 int anon_vma_prepare(struct vm_area_struct *vma)
161 {
162 	struct anon_vma *anon_vma = vma->anon_vma;
163 	struct anon_vma_chain *avc;
164 
165 	might_sleep();
166 	if (unlikely(!anon_vma)) {
167 		struct mm_struct *mm = vma->vm_mm;
168 		struct anon_vma *allocated;
169 
170 		avc = anon_vma_chain_alloc(GFP_KERNEL);
171 		if (!avc)
172 			goto out_enomem;
173 
174 		anon_vma = find_mergeable_anon_vma(vma);
175 		allocated = NULL;
176 		if (!anon_vma) {
177 			anon_vma = anon_vma_alloc();
178 			if (unlikely(!anon_vma))
179 				goto out_enomem_free_avc;
180 			allocated = anon_vma;
181 		}
182 
183 		anon_vma_lock(anon_vma);
184 		/* page_table_lock to protect against threads */
185 		spin_lock(&mm->page_table_lock);
186 		if (likely(!vma->anon_vma)) {
187 			vma->anon_vma = anon_vma;
188 			anon_vma_chain_link(vma, avc, anon_vma);
189 			allocated = NULL;
190 			avc = NULL;
191 		}
192 		spin_unlock(&mm->page_table_lock);
193 		anon_vma_unlock(anon_vma);
194 
195 		if (unlikely(allocated))
196 			put_anon_vma(allocated);
197 		if (unlikely(avc))
198 			anon_vma_chain_free(avc);
199 	}
200 	return 0;
201 
202  out_enomem_free_avc:
203 	anon_vma_chain_free(avc);
204  out_enomem:
205 	return -ENOMEM;
206 }
207 
208 /*
209  * This is a useful helper function for locking the anon_vma root as
210  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
211  * have the same vma.
212  *
213  * Such anon_vma's should have the same root, so you'd expect to see
214  * just a single mutex_lock for the whole traversal.
215  */
216 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
217 {
218 	struct anon_vma *new_root = anon_vma->root;
219 	if (new_root != root) {
220 		if (WARN_ON_ONCE(root))
221 			mutex_unlock(&root->mutex);
222 		root = new_root;
223 		mutex_lock(&root->mutex);
224 	}
225 	return root;
226 }
227 
228 static inline void unlock_anon_vma_root(struct anon_vma *root)
229 {
230 	if (root)
231 		mutex_unlock(&root->mutex);
232 }
233 
234 /*
235  * Attach the anon_vmas from src to dst.
236  * Returns 0 on success, -ENOMEM on failure.
237  */
238 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
239 {
240 	struct anon_vma_chain *avc, *pavc;
241 	struct anon_vma *root = NULL;
242 
243 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
244 		struct anon_vma *anon_vma;
245 
246 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
247 		if (unlikely(!avc)) {
248 			unlock_anon_vma_root(root);
249 			root = NULL;
250 			avc = anon_vma_chain_alloc(GFP_KERNEL);
251 			if (!avc)
252 				goto enomem_failure;
253 		}
254 		anon_vma = pavc->anon_vma;
255 		root = lock_anon_vma_root(root, anon_vma);
256 		anon_vma_chain_link(dst, avc, anon_vma);
257 	}
258 	unlock_anon_vma_root(root);
259 	return 0;
260 
261  enomem_failure:
262 	unlink_anon_vmas(dst);
263 	return -ENOMEM;
264 }
265 
266 /*
267  * Attach vma to its own anon_vma, as well as to the anon_vmas that
268  * the corresponding VMA in the parent process is attached to.
269  * Returns 0 on success, non-zero on failure.
270  */
271 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
272 {
273 	struct anon_vma_chain *avc;
274 	struct anon_vma *anon_vma;
275 
276 	/* Don't bother if the parent process has no anon_vma here. */
277 	if (!pvma->anon_vma)
278 		return 0;
279 
280 	/*
281 	 * First, attach the new VMA to the parent VMA's anon_vmas,
282 	 * so rmap can find non-COWed pages in child processes.
283 	 */
284 	if (anon_vma_clone(vma, pvma))
285 		return -ENOMEM;
286 
287 	/* Then add our own anon_vma. */
288 	anon_vma = anon_vma_alloc();
289 	if (!anon_vma)
290 		goto out_error;
291 	avc = anon_vma_chain_alloc(GFP_KERNEL);
292 	if (!avc)
293 		goto out_error_free_anon_vma;
294 
295 	/*
296 	 * The root anon_vma's spinlock is the lock actually used when we
297 	 * lock any of the anon_vmas in this anon_vma tree.
298 	 */
299 	anon_vma->root = pvma->anon_vma->root;
300 	/*
301 	 * With refcounts, an anon_vma can stay around longer than the
302 	 * process it belongs to. The root anon_vma needs to be pinned until
303 	 * this anon_vma is freed, because the lock lives in the root.
304 	 */
305 	get_anon_vma(anon_vma->root);
306 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
307 	vma->anon_vma = anon_vma;
308 	anon_vma_lock(anon_vma);
309 	anon_vma_chain_link(vma, avc, anon_vma);
310 	anon_vma_unlock(anon_vma);
311 
312 	return 0;
313 
314  out_error_free_anon_vma:
315 	put_anon_vma(anon_vma);
316  out_error:
317 	unlink_anon_vmas(vma);
318 	return -ENOMEM;
319 }
320 
321 void unlink_anon_vmas(struct vm_area_struct *vma)
322 {
323 	struct anon_vma_chain *avc, *next;
324 	struct anon_vma *root = NULL;
325 
326 	/*
327 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
328 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
329 	 */
330 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
331 		struct anon_vma *anon_vma = avc->anon_vma;
332 
333 		root = lock_anon_vma_root(root, anon_vma);
334 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
335 
336 		/*
337 		 * Leave empty anon_vmas on the list - we'll need
338 		 * to free them outside the lock.
339 		 */
340 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
341 			continue;
342 
343 		list_del(&avc->same_vma);
344 		anon_vma_chain_free(avc);
345 	}
346 	unlock_anon_vma_root(root);
347 
348 	/*
349 	 * Iterate the list once more, it now only contains empty and unlinked
350 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
351 	 * needing to acquire the anon_vma->root->mutex.
352 	 */
353 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
354 		struct anon_vma *anon_vma = avc->anon_vma;
355 
356 		put_anon_vma(anon_vma);
357 
358 		list_del(&avc->same_vma);
359 		anon_vma_chain_free(avc);
360 	}
361 }
362 
363 static void anon_vma_ctor(void *data)
364 {
365 	struct anon_vma *anon_vma = data;
366 
367 	mutex_init(&anon_vma->mutex);
368 	atomic_set(&anon_vma->refcount, 0);
369 	anon_vma->rb_root = RB_ROOT;
370 }
371 
372 void __init anon_vma_init(void)
373 {
374 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
375 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
376 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
377 }
378 
379 /*
380  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
381  *
382  * Since there is no serialization what so ever against page_remove_rmap()
383  * the best this function can do is return a locked anon_vma that might
384  * have been relevant to this page.
385  *
386  * The page might have been remapped to a different anon_vma or the anon_vma
387  * returned may already be freed (and even reused).
388  *
389  * In case it was remapped to a different anon_vma, the new anon_vma will be a
390  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
391  * ensure that any anon_vma obtained from the page will still be valid for as
392  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
393  *
394  * All users of this function must be very careful when walking the anon_vma
395  * chain and verify that the page in question is indeed mapped in it
396  * [ something equivalent to page_mapped_in_vma() ].
397  *
398  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
399  * that the anon_vma pointer from page->mapping is valid if there is a
400  * mapcount, we can dereference the anon_vma after observing those.
401  */
402 struct anon_vma *page_get_anon_vma(struct page *page)
403 {
404 	struct anon_vma *anon_vma = NULL;
405 	unsigned long anon_mapping;
406 
407 	rcu_read_lock();
408 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
409 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
410 		goto out;
411 	if (!page_mapped(page))
412 		goto out;
413 
414 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
415 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
416 		anon_vma = NULL;
417 		goto out;
418 	}
419 
420 	/*
421 	 * If this page is still mapped, then its anon_vma cannot have been
422 	 * freed.  But if it has been unmapped, we have no security against the
423 	 * anon_vma structure being freed and reused (for another anon_vma:
424 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
425 	 * above cannot corrupt).
426 	 */
427 	if (!page_mapped(page)) {
428 		put_anon_vma(anon_vma);
429 		anon_vma = NULL;
430 	}
431 out:
432 	rcu_read_unlock();
433 
434 	return anon_vma;
435 }
436 
437 /*
438  * Similar to page_get_anon_vma() except it locks the anon_vma.
439  *
440  * Its a little more complex as it tries to keep the fast path to a single
441  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
442  * reference like with page_get_anon_vma() and then block on the mutex.
443  */
444 struct anon_vma *page_lock_anon_vma(struct page *page)
445 {
446 	struct anon_vma *anon_vma = NULL;
447 	struct anon_vma *root_anon_vma;
448 	unsigned long anon_mapping;
449 
450 	rcu_read_lock();
451 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
452 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
453 		goto out;
454 	if (!page_mapped(page))
455 		goto out;
456 
457 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
458 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
459 	if (mutex_trylock(&root_anon_vma->mutex)) {
460 		/*
461 		 * If the page is still mapped, then this anon_vma is still
462 		 * its anon_vma, and holding the mutex ensures that it will
463 		 * not go away, see anon_vma_free().
464 		 */
465 		if (!page_mapped(page)) {
466 			mutex_unlock(&root_anon_vma->mutex);
467 			anon_vma = NULL;
468 		}
469 		goto out;
470 	}
471 
472 	/* trylock failed, we got to sleep */
473 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 		anon_vma = NULL;
475 		goto out;
476 	}
477 
478 	if (!page_mapped(page)) {
479 		put_anon_vma(anon_vma);
480 		anon_vma = NULL;
481 		goto out;
482 	}
483 
484 	/* we pinned the anon_vma, its safe to sleep */
485 	rcu_read_unlock();
486 	anon_vma_lock(anon_vma);
487 
488 	if (atomic_dec_and_test(&anon_vma->refcount)) {
489 		/*
490 		 * Oops, we held the last refcount, release the lock
491 		 * and bail -- can't simply use put_anon_vma() because
492 		 * we'll deadlock on the anon_vma_lock() recursion.
493 		 */
494 		anon_vma_unlock(anon_vma);
495 		__put_anon_vma(anon_vma);
496 		anon_vma = NULL;
497 	}
498 
499 	return anon_vma;
500 
501 out:
502 	rcu_read_unlock();
503 	return anon_vma;
504 }
505 
506 void page_unlock_anon_vma(struct anon_vma *anon_vma)
507 {
508 	anon_vma_unlock(anon_vma);
509 }
510 
511 /*
512  * At what user virtual address is page expected in @vma?
513  */
514 static inline unsigned long
515 __vma_address(struct page *page, struct vm_area_struct *vma)
516 {
517 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
518 
519 	if (unlikely(is_vm_hugetlb_page(vma)))
520 		pgoff = page->index << huge_page_order(page_hstate(page));
521 
522 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
523 }
524 
525 inline unsigned long
526 vma_address(struct page *page, struct vm_area_struct *vma)
527 {
528 	unsigned long address = __vma_address(page, vma);
529 
530 	/* page should be within @vma mapping range */
531 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
532 
533 	return address;
534 }
535 
536 /*
537  * At what user virtual address is page expected in vma?
538  * Caller should check the page is actually part of the vma.
539  */
540 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
541 {
542 	unsigned long address;
543 	if (PageAnon(page)) {
544 		struct anon_vma *page__anon_vma = page_anon_vma(page);
545 		/*
546 		 * Note: swapoff's unuse_vma() is more efficient with this
547 		 * check, and needs it to match anon_vma when KSM is active.
548 		 */
549 		if (!vma->anon_vma || !page__anon_vma ||
550 		    vma->anon_vma->root != page__anon_vma->root)
551 			return -EFAULT;
552 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
553 		if (!vma->vm_file ||
554 		    vma->vm_file->f_mapping != page->mapping)
555 			return -EFAULT;
556 	} else
557 		return -EFAULT;
558 	address = __vma_address(page, vma);
559 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
560 		return -EFAULT;
561 	return address;
562 }
563 
564 /*
565  * Check that @page is mapped at @address into @mm.
566  *
567  * If @sync is false, page_check_address may perform a racy check to avoid
568  * the page table lock when the pte is not present (helpful when reclaiming
569  * highly shared pages).
570  *
571  * On success returns with pte mapped and locked.
572  */
573 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
574 			  unsigned long address, spinlock_t **ptlp, int sync)
575 {
576 	pgd_t *pgd;
577 	pud_t *pud;
578 	pmd_t *pmd;
579 	pte_t *pte;
580 	spinlock_t *ptl;
581 
582 	if (unlikely(PageHuge(page))) {
583 		pte = huge_pte_offset(mm, address);
584 		ptl = &mm->page_table_lock;
585 		goto check;
586 	}
587 
588 	pgd = pgd_offset(mm, address);
589 	if (!pgd_present(*pgd))
590 		return NULL;
591 
592 	pud = pud_offset(pgd, address);
593 	if (!pud_present(*pud))
594 		return NULL;
595 
596 	pmd = pmd_offset(pud, address);
597 	if (!pmd_present(*pmd))
598 		return NULL;
599 	if (pmd_trans_huge(*pmd))
600 		return NULL;
601 
602 	pte = pte_offset_map(pmd, address);
603 	/* Make a quick check before getting the lock */
604 	if (!sync && !pte_present(*pte)) {
605 		pte_unmap(pte);
606 		return NULL;
607 	}
608 
609 	ptl = pte_lockptr(mm, pmd);
610 check:
611 	spin_lock(ptl);
612 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
613 		*ptlp = ptl;
614 		return pte;
615 	}
616 	pte_unmap_unlock(pte, ptl);
617 	return NULL;
618 }
619 
620 /**
621  * page_mapped_in_vma - check whether a page is really mapped in a VMA
622  * @page: the page to test
623  * @vma: the VMA to test
624  *
625  * Returns 1 if the page is mapped into the page tables of the VMA, 0
626  * if the page is not mapped into the page tables of this VMA.  Only
627  * valid for normal file or anonymous VMAs.
628  */
629 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
630 {
631 	unsigned long address;
632 	pte_t *pte;
633 	spinlock_t *ptl;
634 
635 	address = __vma_address(page, vma);
636 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
637 		return 0;
638 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
639 	if (!pte)			/* the page is not in this mm */
640 		return 0;
641 	pte_unmap_unlock(pte, ptl);
642 
643 	return 1;
644 }
645 
646 /*
647  * Subfunctions of page_referenced: page_referenced_one called
648  * repeatedly from either page_referenced_anon or page_referenced_file.
649  */
650 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
651 			unsigned long address, unsigned int *mapcount,
652 			unsigned long *vm_flags)
653 {
654 	struct mm_struct *mm = vma->vm_mm;
655 	int referenced = 0;
656 
657 	if (unlikely(PageTransHuge(page))) {
658 		pmd_t *pmd;
659 
660 		spin_lock(&mm->page_table_lock);
661 		/*
662 		 * rmap might return false positives; we must filter
663 		 * these out using page_check_address_pmd().
664 		 */
665 		pmd = page_check_address_pmd(page, mm, address,
666 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
667 		if (!pmd) {
668 			spin_unlock(&mm->page_table_lock);
669 			goto out;
670 		}
671 
672 		if (vma->vm_flags & VM_LOCKED) {
673 			spin_unlock(&mm->page_table_lock);
674 			*mapcount = 0;	/* break early from loop */
675 			*vm_flags |= VM_LOCKED;
676 			goto out;
677 		}
678 
679 		/* go ahead even if the pmd is pmd_trans_splitting() */
680 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
681 			referenced++;
682 		spin_unlock(&mm->page_table_lock);
683 	} else {
684 		pte_t *pte;
685 		spinlock_t *ptl;
686 
687 		/*
688 		 * rmap might return false positives; we must filter
689 		 * these out using page_check_address().
690 		 */
691 		pte = page_check_address(page, mm, address, &ptl, 0);
692 		if (!pte)
693 			goto out;
694 
695 		if (vma->vm_flags & VM_LOCKED) {
696 			pte_unmap_unlock(pte, ptl);
697 			*mapcount = 0;	/* break early from loop */
698 			*vm_flags |= VM_LOCKED;
699 			goto out;
700 		}
701 
702 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
703 			/*
704 			 * Don't treat a reference through a sequentially read
705 			 * mapping as such.  If the page has been used in
706 			 * another mapping, we will catch it; if this other
707 			 * mapping is already gone, the unmap path will have
708 			 * set PG_referenced or activated the page.
709 			 */
710 			if (likely(!VM_SequentialReadHint(vma)))
711 				referenced++;
712 		}
713 		pte_unmap_unlock(pte, ptl);
714 	}
715 
716 	(*mapcount)--;
717 
718 	if (referenced)
719 		*vm_flags |= vma->vm_flags;
720 out:
721 	return referenced;
722 }
723 
724 static int page_referenced_anon(struct page *page,
725 				struct mem_cgroup *memcg,
726 				unsigned long *vm_flags)
727 {
728 	unsigned int mapcount;
729 	struct anon_vma *anon_vma;
730 	pgoff_t pgoff;
731 	struct anon_vma_chain *avc;
732 	int referenced = 0;
733 
734 	anon_vma = page_lock_anon_vma(page);
735 	if (!anon_vma)
736 		return referenced;
737 
738 	mapcount = page_mapcount(page);
739 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
740 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
741 		struct vm_area_struct *vma = avc->vma;
742 		unsigned long address = vma_address(page, vma);
743 		/*
744 		 * If we are reclaiming on behalf of a cgroup, skip
745 		 * counting on behalf of references from different
746 		 * cgroups
747 		 */
748 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
749 			continue;
750 		referenced += page_referenced_one(page, vma, address,
751 						  &mapcount, vm_flags);
752 		if (!mapcount)
753 			break;
754 	}
755 
756 	page_unlock_anon_vma(anon_vma);
757 	return referenced;
758 }
759 
760 /**
761  * page_referenced_file - referenced check for object-based rmap
762  * @page: the page we're checking references on.
763  * @memcg: target memory control group
764  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
765  *
766  * For an object-based mapped page, find all the places it is mapped and
767  * check/clear the referenced flag.  This is done by following the page->mapping
768  * pointer, then walking the chain of vmas it holds.  It returns the number
769  * of references it found.
770  *
771  * This function is only called from page_referenced for object-based pages.
772  */
773 static int page_referenced_file(struct page *page,
774 				struct mem_cgroup *memcg,
775 				unsigned long *vm_flags)
776 {
777 	unsigned int mapcount;
778 	struct address_space *mapping = page->mapping;
779 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
780 	struct vm_area_struct *vma;
781 	int referenced = 0;
782 
783 	/*
784 	 * The caller's checks on page->mapping and !PageAnon have made
785 	 * sure that this is a file page: the check for page->mapping
786 	 * excludes the case just before it gets set on an anon page.
787 	 */
788 	BUG_ON(PageAnon(page));
789 
790 	/*
791 	 * The page lock not only makes sure that page->mapping cannot
792 	 * suddenly be NULLified by truncation, it makes sure that the
793 	 * structure at mapping cannot be freed and reused yet,
794 	 * so we can safely take mapping->i_mmap_mutex.
795 	 */
796 	BUG_ON(!PageLocked(page));
797 
798 	mutex_lock(&mapping->i_mmap_mutex);
799 
800 	/*
801 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
802 	 * is more likely to be accurate if we note it after spinning.
803 	 */
804 	mapcount = page_mapcount(page);
805 
806 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
807 		unsigned long address = vma_address(page, vma);
808 		/*
809 		 * If we are reclaiming on behalf of a cgroup, skip
810 		 * counting on behalf of references from different
811 		 * cgroups
812 		 */
813 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
814 			continue;
815 		referenced += page_referenced_one(page, vma, address,
816 						  &mapcount, vm_flags);
817 		if (!mapcount)
818 			break;
819 	}
820 
821 	mutex_unlock(&mapping->i_mmap_mutex);
822 	return referenced;
823 }
824 
825 /**
826  * page_referenced - test if the page was referenced
827  * @page: the page to test
828  * @is_locked: caller holds lock on the page
829  * @memcg: target memory cgroup
830  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
831  *
832  * Quick test_and_clear_referenced for all mappings to a page,
833  * returns the number of ptes which referenced the page.
834  */
835 int page_referenced(struct page *page,
836 		    int is_locked,
837 		    struct mem_cgroup *memcg,
838 		    unsigned long *vm_flags)
839 {
840 	int referenced = 0;
841 	int we_locked = 0;
842 
843 	*vm_flags = 0;
844 	if (page_mapped(page) && page_rmapping(page)) {
845 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
846 			we_locked = trylock_page(page);
847 			if (!we_locked) {
848 				referenced++;
849 				goto out;
850 			}
851 		}
852 		if (unlikely(PageKsm(page)))
853 			referenced += page_referenced_ksm(page, memcg,
854 								vm_flags);
855 		else if (PageAnon(page))
856 			referenced += page_referenced_anon(page, memcg,
857 								vm_flags);
858 		else if (page->mapping)
859 			referenced += page_referenced_file(page, memcg,
860 								vm_flags);
861 		if (we_locked)
862 			unlock_page(page);
863 
864 		if (page_test_and_clear_young(page_to_pfn(page)))
865 			referenced++;
866 	}
867 out:
868 	return referenced;
869 }
870 
871 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
872 			    unsigned long address)
873 {
874 	struct mm_struct *mm = vma->vm_mm;
875 	pte_t *pte;
876 	spinlock_t *ptl;
877 	int ret = 0;
878 
879 	pte = page_check_address(page, mm, address, &ptl, 1);
880 	if (!pte)
881 		goto out;
882 
883 	if (pte_dirty(*pte) || pte_write(*pte)) {
884 		pte_t entry;
885 
886 		flush_cache_page(vma, address, pte_pfn(*pte));
887 		entry = ptep_clear_flush(vma, address, pte);
888 		entry = pte_wrprotect(entry);
889 		entry = pte_mkclean(entry);
890 		set_pte_at(mm, address, pte, entry);
891 		ret = 1;
892 	}
893 
894 	pte_unmap_unlock(pte, ptl);
895 
896 	if (ret)
897 		mmu_notifier_invalidate_page(mm, address);
898 out:
899 	return ret;
900 }
901 
902 static int page_mkclean_file(struct address_space *mapping, struct page *page)
903 {
904 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
905 	struct vm_area_struct *vma;
906 	int ret = 0;
907 
908 	BUG_ON(PageAnon(page));
909 
910 	mutex_lock(&mapping->i_mmap_mutex);
911 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
912 		if (vma->vm_flags & VM_SHARED) {
913 			unsigned long address = vma_address(page, vma);
914 			ret += page_mkclean_one(page, vma, address);
915 		}
916 	}
917 	mutex_unlock(&mapping->i_mmap_mutex);
918 	return ret;
919 }
920 
921 int page_mkclean(struct page *page)
922 {
923 	int ret = 0;
924 
925 	BUG_ON(!PageLocked(page));
926 
927 	if (page_mapped(page)) {
928 		struct address_space *mapping = page_mapping(page);
929 		if (mapping) {
930 			ret = page_mkclean_file(mapping, page);
931 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
932 				ret = 1;
933 		}
934 	}
935 
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(page_mkclean);
939 
940 /**
941  * page_move_anon_rmap - move a page to our anon_vma
942  * @page:	the page to move to our anon_vma
943  * @vma:	the vma the page belongs to
944  * @address:	the user virtual address mapped
945  *
946  * When a page belongs exclusively to one process after a COW event,
947  * that page can be moved into the anon_vma that belongs to just that
948  * process, so the rmap code will not search the parent or sibling
949  * processes.
950  */
951 void page_move_anon_rmap(struct page *page,
952 	struct vm_area_struct *vma, unsigned long address)
953 {
954 	struct anon_vma *anon_vma = vma->anon_vma;
955 
956 	VM_BUG_ON(!PageLocked(page));
957 	VM_BUG_ON(!anon_vma);
958 	VM_BUG_ON(page->index != linear_page_index(vma, address));
959 
960 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 	page->mapping = (struct address_space *) anon_vma;
962 }
963 
964 /**
965  * __page_set_anon_rmap - set up new anonymous rmap
966  * @page:	Page to add to rmap
967  * @vma:	VM area to add page to.
968  * @address:	User virtual address of the mapping
969  * @exclusive:	the page is exclusively owned by the current process
970  */
971 static void __page_set_anon_rmap(struct page *page,
972 	struct vm_area_struct *vma, unsigned long address, int exclusive)
973 {
974 	struct anon_vma *anon_vma = vma->anon_vma;
975 
976 	BUG_ON(!anon_vma);
977 
978 	if (PageAnon(page))
979 		return;
980 
981 	/*
982 	 * If the page isn't exclusively mapped into this vma,
983 	 * we must use the _oldest_ possible anon_vma for the
984 	 * page mapping!
985 	 */
986 	if (!exclusive)
987 		anon_vma = anon_vma->root;
988 
989 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
990 	page->mapping = (struct address_space *) anon_vma;
991 	page->index = linear_page_index(vma, address);
992 }
993 
994 /**
995  * __page_check_anon_rmap - sanity check anonymous rmap addition
996  * @page:	the page to add the mapping to
997  * @vma:	the vm area in which the mapping is added
998  * @address:	the user virtual address mapped
999  */
1000 static void __page_check_anon_rmap(struct page *page,
1001 	struct vm_area_struct *vma, unsigned long address)
1002 {
1003 #ifdef CONFIG_DEBUG_VM
1004 	/*
1005 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1006 	 * be set up correctly at this point.
1007 	 *
1008 	 * We have exclusion against page_add_anon_rmap because the caller
1009 	 * always holds the page locked, except if called from page_dup_rmap,
1010 	 * in which case the page is already known to be setup.
1011 	 *
1012 	 * We have exclusion against page_add_new_anon_rmap because those pages
1013 	 * are initially only visible via the pagetables, and the pte is locked
1014 	 * over the call to page_add_new_anon_rmap.
1015 	 */
1016 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1017 	BUG_ON(page->index != linear_page_index(vma, address));
1018 #endif
1019 }
1020 
1021 /**
1022  * page_add_anon_rmap - add pte mapping to an anonymous page
1023  * @page:	the page to add the mapping to
1024  * @vma:	the vm area in which the mapping is added
1025  * @address:	the user virtual address mapped
1026  *
1027  * The caller needs to hold the pte lock, and the page must be locked in
1028  * the anon_vma case: to serialize mapping,index checking after setting,
1029  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1030  * (but PageKsm is never downgraded to PageAnon).
1031  */
1032 void page_add_anon_rmap(struct page *page,
1033 	struct vm_area_struct *vma, unsigned long address)
1034 {
1035 	do_page_add_anon_rmap(page, vma, address, 0);
1036 }
1037 
1038 /*
1039  * Special version of the above for do_swap_page, which often runs
1040  * into pages that are exclusively owned by the current process.
1041  * Everybody else should continue to use page_add_anon_rmap above.
1042  */
1043 void do_page_add_anon_rmap(struct page *page,
1044 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1045 {
1046 	int first = atomic_inc_and_test(&page->_mapcount);
1047 	if (first) {
1048 		if (!PageTransHuge(page))
1049 			__inc_zone_page_state(page, NR_ANON_PAGES);
1050 		else
1051 			__inc_zone_page_state(page,
1052 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1053 	}
1054 	if (unlikely(PageKsm(page)))
1055 		return;
1056 
1057 	VM_BUG_ON(!PageLocked(page));
1058 	/* address might be in next vma when migration races vma_adjust */
1059 	if (first)
1060 		__page_set_anon_rmap(page, vma, address, exclusive);
1061 	else
1062 		__page_check_anon_rmap(page, vma, address);
1063 }
1064 
1065 /**
1066  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1067  * @page:	the page to add the mapping to
1068  * @vma:	the vm area in which the mapping is added
1069  * @address:	the user virtual address mapped
1070  *
1071  * Same as page_add_anon_rmap but must only be called on *new* pages.
1072  * This means the inc-and-test can be bypassed.
1073  * Page does not have to be locked.
1074  */
1075 void page_add_new_anon_rmap(struct page *page,
1076 	struct vm_area_struct *vma, unsigned long address)
1077 {
1078 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1079 	SetPageSwapBacked(page);
1080 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1081 	if (!PageTransHuge(page))
1082 		__inc_zone_page_state(page, NR_ANON_PAGES);
1083 	else
1084 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1085 	__page_set_anon_rmap(page, vma, address, 1);
1086 	if (!mlocked_vma_newpage(vma, page))
1087 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1088 	else
1089 		add_page_to_unevictable_list(page);
1090 }
1091 
1092 /**
1093  * page_add_file_rmap - add pte mapping to a file page
1094  * @page: the page to add the mapping to
1095  *
1096  * The caller needs to hold the pte lock.
1097  */
1098 void page_add_file_rmap(struct page *page)
1099 {
1100 	bool locked;
1101 	unsigned long flags;
1102 
1103 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1104 	if (atomic_inc_and_test(&page->_mapcount)) {
1105 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1106 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1107 	}
1108 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1109 }
1110 
1111 /**
1112  * page_remove_rmap - take down pte mapping from a page
1113  * @page: page to remove mapping from
1114  *
1115  * The caller needs to hold the pte lock.
1116  */
1117 void page_remove_rmap(struct page *page)
1118 {
1119 	bool anon = PageAnon(page);
1120 	bool locked;
1121 	unsigned long flags;
1122 
1123 	/*
1124 	 * The anon case has no mem_cgroup page_stat to update; but may
1125 	 * uncharge_page() below, where the lock ordering can deadlock if
1126 	 * we hold the lock against page_stat move: so avoid it on anon.
1127 	 */
1128 	if (!anon)
1129 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1130 
1131 	/* page still mapped by someone else? */
1132 	if (!atomic_add_negative(-1, &page->_mapcount))
1133 		goto out;
1134 
1135 	/*
1136 	 * Now that the last pte has gone, s390 must transfer dirty
1137 	 * flag from storage key to struct page.  We can usually skip
1138 	 * this if the page is anon, so about to be freed; but perhaps
1139 	 * not if it's in swapcache - there might be another pte slot
1140 	 * containing the swap entry, but page not yet written to swap.
1141 	 */
1142 	if ((!anon || PageSwapCache(page)) &&
1143 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1144 		set_page_dirty(page);
1145 	/*
1146 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1147 	 * and not charged by memcg for now.
1148 	 */
1149 	if (unlikely(PageHuge(page)))
1150 		goto out;
1151 	if (anon) {
1152 		mem_cgroup_uncharge_page(page);
1153 		if (!PageTransHuge(page))
1154 			__dec_zone_page_state(page, NR_ANON_PAGES);
1155 		else
1156 			__dec_zone_page_state(page,
1157 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1158 	} else {
1159 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1160 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1161 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1162 	}
1163 	if (unlikely(PageMlocked(page)))
1164 		clear_page_mlock(page);
1165 	/*
1166 	 * It would be tidy to reset the PageAnon mapping here,
1167 	 * but that might overwrite a racing page_add_anon_rmap
1168 	 * which increments mapcount after us but sets mapping
1169 	 * before us: so leave the reset to free_hot_cold_page,
1170 	 * and remember that it's only reliable while mapped.
1171 	 * Leaving it set also helps swapoff to reinstate ptes
1172 	 * faster for those pages still in swapcache.
1173 	 */
1174 	return;
1175 out:
1176 	if (!anon)
1177 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1178 }
1179 
1180 /*
1181  * Subfunctions of try_to_unmap: try_to_unmap_one called
1182  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1183  */
1184 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1185 		     unsigned long address, enum ttu_flags flags)
1186 {
1187 	struct mm_struct *mm = vma->vm_mm;
1188 	pte_t *pte;
1189 	pte_t pteval;
1190 	spinlock_t *ptl;
1191 	int ret = SWAP_AGAIN;
1192 
1193 	pte = page_check_address(page, mm, address, &ptl, 0);
1194 	if (!pte)
1195 		goto out;
1196 
1197 	/*
1198 	 * If the page is mlock()d, we cannot swap it out.
1199 	 * If it's recently referenced (perhaps page_referenced
1200 	 * skipped over this mm) then we should reactivate it.
1201 	 */
1202 	if (!(flags & TTU_IGNORE_MLOCK)) {
1203 		if (vma->vm_flags & VM_LOCKED)
1204 			goto out_mlock;
1205 
1206 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1207 			goto out_unmap;
1208 	}
1209 	if (!(flags & TTU_IGNORE_ACCESS)) {
1210 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1211 			ret = SWAP_FAIL;
1212 			goto out_unmap;
1213 		}
1214   	}
1215 
1216 	/* Nuke the page table entry. */
1217 	flush_cache_page(vma, address, page_to_pfn(page));
1218 	pteval = ptep_clear_flush(vma, address, pte);
1219 
1220 	/* Move the dirty bit to the physical page now the pte is gone. */
1221 	if (pte_dirty(pteval))
1222 		set_page_dirty(page);
1223 
1224 	/* Update high watermark before we lower rss */
1225 	update_hiwater_rss(mm);
1226 
1227 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1228 		if (PageAnon(page))
1229 			dec_mm_counter(mm, MM_ANONPAGES);
1230 		else
1231 			dec_mm_counter(mm, MM_FILEPAGES);
1232 		set_pte_at(mm, address, pte,
1233 				swp_entry_to_pte(make_hwpoison_entry(page)));
1234 	} else if (PageAnon(page)) {
1235 		swp_entry_t entry = { .val = page_private(page) };
1236 
1237 		if (PageSwapCache(page)) {
1238 			/*
1239 			 * Store the swap location in the pte.
1240 			 * See handle_pte_fault() ...
1241 			 */
1242 			if (swap_duplicate(entry) < 0) {
1243 				set_pte_at(mm, address, pte, pteval);
1244 				ret = SWAP_FAIL;
1245 				goto out_unmap;
1246 			}
1247 			if (list_empty(&mm->mmlist)) {
1248 				spin_lock(&mmlist_lock);
1249 				if (list_empty(&mm->mmlist))
1250 					list_add(&mm->mmlist, &init_mm.mmlist);
1251 				spin_unlock(&mmlist_lock);
1252 			}
1253 			dec_mm_counter(mm, MM_ANONPAGES);
1254 			inc_mm_counter(mm, MM_SWAPENTS);
1255 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1256 			/*
1257 			 * Store the pfn of the page in a special migration
1258 			 * pte. do_swap_page() will wait until the migration
1259 			 * pte is removed and then restart fault handling.
1260 			 */
1261 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1262 			entry = make_migration_entry(page, pte_write(pteval));
1263 		}
1264 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1265 		BUG_ON(pte_file(*pte));
1266 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1267 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1268 		/* Establish migration entry for a file page */
1269 		swp_entry_t entry;
1270 		entry = make_migration_entry(page, pte_write(pteval));
1271 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1272 	} else
1273 		dec_mm_counter(mm, MM_FILEPAGES);
1274 
1275 	page_remove_rmap(page);
1276 	page_cache_release(page);
1277 
1278 out_unmap:
1279 	pte_unmap_unlock(pte, ptl);
1280 	if (ret != SWAP_FAIL)
1281 		mmu_notifier_invalidate_page(mm, address);
1282 out:
1283 	return ret;
1284 
1285 out_mlock:
1286 	pte_unmap_unlock(pte, ptl);
1287 
1288 
1289 	/*
1290 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1291 	 * unstable result and race. Plus, We can't wait here because
1292 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1293 	 * if trylock failed, the page remain in evictable lru and later
1294 	 * vmscan could retry to move the page to unevictable lru if the
1295 	 * page is actually mlocked.
1296 	 */
1297 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1298 		if (vma->vm_flags & VM_LOCKED) {
1299 			mlock_vma_page(page);
1300 			ret = SWAP_MLOCK;
1301 		}
1302 		up_read(&vma->vm_mm->mmap_sem);
1303 	}
1304 	return ret;
1305 }
1306 
1307 /*
1308  * objrmap doesn't work for nonlinear VMAs because the assumption that
1309  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1310  * Consequently, given a particular page and its ->index, we cannot locate the
1311  * ptes which are mapping that page without an exhaustive linear search.
1312  *
1313  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1314  * maps the file to which the target page belongs.  The ->vm_private_data field
1315  * holds the current cursor into that scan.  Successive searches will circulate
1316  * around the vma's virtual address space.
1317  *
1318  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1319  * more scanning pressure is placed against them as well.   Eventually pages
1320  * will become fully unmapped and are eligible for eviction.
1321  *
1322  * For very sparsely populated VMAs this is a little inefficient - chances are
1323  * there there won't be many ptes located within the scan cluster.  In this case
1324  * maybe we could scan further - to the end of the pte page, perhaps.
1325  *
1326  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1327  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1328  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1329  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1330  */
1331 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1332 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1333 
1334 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1335 		struct vm_area_struct *vma, struct page *check_page)
1336 {
1337 	struct mm_struct *mm = vma->vm_mm;
1338 	pgd_t *pgd;
1339 	pud_t *pud;
1340 	pmd_t *pmd;
1341 	pte_t *pte;
1342 	pte_t pteval;
1343 	spinlock_t *ptl;
1344 	struct page *page;
1345 	unsigned long address;
1346 	unsigned long mmun_start;	/* For mmu_notifiers */
1347 	unsigned long mmun_end;		/* For mmu_notifiers */
1348 	unsigned long end;
1349 	int ret = SWAP_AGAIN;
1350 	int locked_vma = 0;
1351 
1352 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1353 	end = address + CLUSTER_SIZE;
1354 	if (address < vma->vm_start)
1355 		address = vma->vm_start;
1356 	if (end > vma->vm_end)
1357 		end = vma->vm_end;
1358 
1359 	pgd = pgd_offset(mm, address);
1360 	if (!pgd_present(*pgd))
1361 		return ret;
1362 
1363 	pud = pud_offset(pgd, address);
1364 	if (!pud_present(*pud))
1365 		return ret;
1366 
1367 	pmd = pmd_offset(pud, address);
1368 	if (!pmd_present(*pmd))
1369 		return ret;
1370 
1371 	mmun_start = address;
1372 	mmun_end   = end;
1373 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1374 
1375 	/*
1376 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1377 	 * keep the sem while scanning the cluster for mlocking pages.
1378 	 */
1379 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1380 		locked_vma = (vma->vm_flags & VM_LOCKED);
1381 		if (!locked_vma)
1382 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1383 	}
1384 
1385 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1386 
1387 	/* Update high watermark before we lower rss */
1388 	update_hiwater_rss(mm);
1389 
1390 	for (; address < end; pte++, address += PAGE_SIZE) {
1391 		if (!pte_present(*pte))
1392 			continue;
1393 		page = vm_normal_page(vma, address, *pte);
1394 		BUG_ON(!page || PageAnon(page));
1395 
1396 		if (locked_vma) {
1397 			mlock_vma_page(page);   /* no-op if already mlocked */
1398 			if (page == check_page)
1399 				ret = SWAP_MLOCK;
1400 			continue;	/* don't unmap */
1401 		}
1402 
1403 		if (ptep_clear_flush_young_notify(vma, address, pte))
1404 			continue;
1405 
1406 		/* Nuke the page table entry. */
1407 		flush_cache_page(vma, address, pte_pfn(*pte));
1408 		pteval = ptep_clear_flush(vma, address, pte);
1409 
1410 		/* If nonlinear, store the file page offset in the pte. */
1411 		if (page->index != linear_page_index(vma, address))
1412 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1413 
1414 		/* Move the dirty bit to the physical page now the pte is gone. */
1415 		if (pte_dirty(pteval))
1416 			set_page_dirty(page);
1417 
1418 		page_remove_rmap(page);
1419 		page_cache_release(page);
1420 		dec_mm_counter(mm, MM_FILEPAGES);
1421 		(*mapcount)--;
1422 	}
1423 	pte_unmap_unlock(pte - 1, ptl);
1424 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1425 	if (locked_vma)
1426 		up_read(&vma->vm_mm->mmap_sem);
1427 	return ret;
1428 }
1429 
1430 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1431 {
1432 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1433 
1434 	if (!maybe_stack)
1435 		return false;
1436 
1437 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1438 						VM_STACK_INCOMPLETE_SETUP)
1439 		return true;
1440 
1441 	return false;
1442 }
1443 
1444 /**
1445  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1446  * rmap method
1447  * @page: the page to unmap/unlock
1448  * @flags: action and flags
1449  *
1450  * Find all the mappings of a page using the mapping pointer and the vma chains
1451  * contained in the anon_vma struct it points to.
1452  *
1453  * This function is only called from try_to_unmap/try_to_munlock for
1454  * anonymous pages.
1455  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1456  * where the page was found will be held for write.  So, we won't recheck
1457  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1458  * 'LOCKED.
1459  */
1460 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1461 {
1462 	struct anon_vma *anon_vma;
1463 	pgoff_t pgoff;
1464 	struct anon_vma_chain *avc;
1465 	int ret = SWAP_AGAIN;
1466 
1467 	anon_vma = page_lock_anon_vma(page);
1468 	if (!anon_vma)
1469 		return ret;
1470 
1471 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1472 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1473 		struct vm_area_struct *vma = avc->vma;
1474 		unsigned long address;
1475 
1476 		/*
1477 		 * During exec, a temporary VMA is setup and later moved.
1478 		 * The VMA is moved under the anon_vma lock but not the
1479 		 * page tables leading to a race where migration cannot
1480 		 * find the migration ptes. Rather than increasing the
1481 		 * locking requirements of exec(), migration skips
1482 		 * temporary VMAs until after exec() completes.
1483 		 */
1484 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1485 				is_vma_temporary_stack(vma))
1486 			continue;
1487 
1488 		address = vma_address(page, vma);
1489 		ret = try_to_unmap_one(page, vma, address, flags);
1490 		if (ret != SWAP_AGAIN || !page_mapped(page))
1491 			break;
1492 	}
1493 
1494 	page_unlock_anon_vma(anon_vma);
1495 	return ret;
1496 }
1497 
1498 /**
1499  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1500  * @page: the page to unmap/unlock
1501  * @flags: action and flags
1502  *
1503  * Find all the mappings of a page using the mapping pointer and the vma chains
1504  * contained in the address_space struct it points to.
1505  *
1506  * This function is only called from try_to_unmap/try_to_munlock for
1507  * object-based pages.
1508  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1509  * where the page was found will be held for write.  So, we won't recheck
1510  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1511  * 'LOCKED.
1512  */
1513 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1514 {
1515 	struct address_space *mapping = page->mapping;
1516 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1517 	struct vm_area_struct *vma;
1518 	int ret = SWAP_AGAIN;
1519 	unsigned long cursor;
1520 	unsigned long max_nl_cursor = 0;
1521 	unsigned long max_nl_size = 0;
1522 	unsigned int mapcount;
1523 
1524 	mutex_lock(&mapping->i_mmap_mutex);
1525 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1526 		unsigned long address = vma_address(page, vma);
1527 		ret = try_to_unmap_one(page, vma, address, flags);
1528 		if (ret != SWAP_AGAIN || !page_mapped(page))
1529 			goto out;
1530 	}
1531 
1532 	if (list_empty(&mapping->i_mmap_nonlinear))
1533 		goto out;
1534 
1535 	/*
1536 	 * We don't bother to try to find the munlocked page in nonlinears.
1537 	 * It's costly. Instead, later, page reclaim logic may call
1538 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1539 	 */
1540 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1541 		goto out;
1542 
1543 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1544 							shared.nonlinear) {
1545 		cursor = (unsigned long) vma->vm_private_data;
1546 		if (cursor > max_nl_cursor)
1547 			max_nl_cursor = cursor;
1548 		cursor = vma->vm_end - vma->vm_start;
1549 		if (cursor > max_nl_size)
1550 			max_nl_size = cursor;
1551 	}
1552 
1553 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1554 		ret = SWAP_FAIL;
1555 		goto out;
1556 	}
1557 
1558 	/*
1559 	 * We don't try to search for this page in the nonlinear vmas,
1560 	 * and page_referenced wouldn't have found it anyway.  Instead
1561 	 * just walk the nonlinear vmas trying to age and unmap some.
1562 	 * The mapcount of the page we came in with is irrelevant,
1563 	 * but even so use it as a guide to how hard we should try?
1564 	 */
1565 	mapcount = page_mapcount(page);
1566 	if (!mapcount)
1567 		goto out;
1568 	cond_resched();
1569 
1570 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1571 	if (max_nl_cursor == 0)
1572 		max_nl_cursor = CLUSTER_SIZE;
1573 
1574 	do {
1575 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1576 							shared.nonlinear) {
1577 			cursor = (unsigned long) vma->vm_private_data;
1578 			while ( cursor < max_nl_cursor &&
1579 				cursor < vma->vm_end - vma->vm_start) {
1580 				if (try_to_unmap_cluster(cursor, &mapcount,
1581 						vma, page) == SWAP_MLOCK)
1582 					ret = SWAP_MLOCK;
1583 				cursor += CLUSTER_SIZE;
1584 				vma->vm_private_data = (void *) cursor;
1585 				if ((int)mapcount <= 0)
1586 					goto out;
1587 			}
1588 			vma->vm_private_data = (void *) max_nl_cursor;
1589 		}
1590 		cond_resched();
1591 		max_nl_cursor += CLUSTER_SIZE;
1592 	} while (max_nl_cursor <= max_nl_size);
1593 
1594 	/*
1595 	 * Don't loop forever (perhaps all the remaining pages are
1596 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1597 	 * vmas, now forgetting on which ones it had fallen behind.
1598 	 */
1599 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1600 		vma->vm_private_data = NULL;
1601 out:
1602 	mutex_unlock(&mapping->i_mmap_mutex);
1603 	return ret;
1604 }
1605 
1606 /**
1607  * try_to_unmap - try to remove all page table mappings to a page
1608  * @page: the page to get unmapped
1609  * @flags: action and flags
1610  *
1611  * Tries to remove all the page table entries which are mapping this
1612  * page, used in the pageout path.  Caller must hold the page lock.
1613  * Return values are:
1614  *
1615  * SWAP_SUCCESS	- we succeeded in removing all mappings
1616  * SWAP_AGAIN	- we missed a mapping, try again later
1617  * SWAP_FAIL	- the page is unswappable
1618  * SWAP_MLOCK	- page is mlocked.
1619  */
1620 int try_to_unmap(struct page *page, enum ttu_flags flags)
1621 {
1622 	int ret;
1623 
1624 	BUG_ON(!PageLocked(page));
1625 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1626 
1627 	if (unlikely(PageKsm(page)))
1628 		ret = try_to_unmap_ksm(page, flags);
1629 	else if (PageAnon(page))
1630 		ret = try_to_unmap_anon(page, flags);
1631 	else
1632 		ret = try_to_unmap_file(page, flags);
1633 	if (ret != SWAP_MLOCK && !page_mapped(page))
1634 		ret = SWAP_SUCCESS;
1635 	return ret;
1636 }
1637 
1638 /**
1639  * try_to_munlock - try to munlock a page
1640  * @page: the page to be munlocked
1641  *
1642  * Called from munlock code.  Checks all of the VMAs mapping the page
1643  * to make sure nobody else has this page mlocked. The page will be
1644  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1645  *
1646  * Return values are:
1647  *
1648  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1649  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1650  * SWAP_FAIL	- page cannot be located at present
1651  * SWAP_MLOCK	- page is now mlocked.
1652  */
1653 int try_to_munlock(struct page *page)
1654 {
1655 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1656 
1657 	if (unlikely(PageKsm(page)))
1658 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1659 	else if (PageAnon(page))
1660 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1661 	else
1662 		return try_to_unmap_file(page, TTU_MUNLOCK);
1663 }
1664 
1665 void __put_anon_vma(struct anon_vma *anon_vma)
1666 {
1667 	struct anon_vma *root = anon_vma->root;
1668 
1669 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1670 		anon_vma_free(root);
1671 
1672 	anon_vma_free(anon_vma);
1673 }
1674 
1675 #ifdef CONFIG_MIGRATION
1676 /*
1677  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1678  * Called by migrate.c to remove migration ptes, but might be used more later.
1679  */
1680 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1681 		struct vm_area_struct *, unsigned long, void *), void *arg)
1682 {
1683 	struct anon_vma *anon_vma;
1684 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1685 	struct anon_vma_chain *avc;
1686 	int ret = SWAP_AGAIN;
1687 
1688 	/*
1689 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1690 	 * because that depends on page_mapped(); but not all its usages
1691 	 * are holding mmap_sem. Users without mmap_sem are required to
1692 	 * take a reference count to prevent the anon_vma disappearing
1693 	 */
1694 	anon_vma = page_anon_vma(page);
1695 	if (!anon_vma)
1696 		return ret;
1697 	anon_vma_lock(anon_vma);
1698 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1699 		struct vm_area_struct *vma = avc->vma;
1700 		unsigned long address = vma_address(page, vma);
1701 		ret = rmap_one(page, vma, address, arg);
1702 		if (ret != SWAP_AGAIN)
1703 			break;
1704 	}
1705 	anon_vma_unlock(anon_vma);
1706 	return ret;
1707 }
1708 
1709 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1710 		struct vm_area_struct *, unsigned long, void *), void *arg)
1711 {
1712 	struct address_space *mapping = page->mapping;
1713 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1714 	struct vm_area_struct *vma;
1715 	int ret = SWAP_AGAIN;
1716 
1717 	if (!mapping)
1718 		return ret;
1719 	mutex_lock(&mapping->i_mmap_mutex);
1720 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1721 		unsigned long address = vma_address(page, vma);
1722 		ret = rmap_one(page, vma, address, arg);
1723 		if (ret != SWAP_AGAIN)
1724 			break;
1725 	}
1726 	/*
1727 	 * No nonlinear handling: being always shared, nonlinear vmas
1728 	 * never contain migration ptes.  Decide what to do about this
1729 	 * limitation to linear when we need rmap_walk() on nonlinear.
1730 	 */
1731 	mutex_unlock(&mapping->i_mmap_mutex);
1732 	return ret;
1733 }
1734 
1735 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1736 		struct vm_area_struct *, unsigned long, void *), void *arg)
1737 {
1738 	VM_BUG_ON(!PageLocked(page));
1739 
1740 	if (unlikely(PageKsm(page)))
1741 		return rmap_walk_ksm(page, rmap_one, arg);
1742 	else if (PageAnon(page))
1743 		return rmap_walk_anon(page, rmap_one, arg);
1744 	else
1745 		return rmap_walk_file(page, rmap_one, arg);
1746 }
1747 #endif /* CONFIG_MIGRATION */
1748 
1749 #ifdef CONFIG_HUGETLB_PAGE
1750 /*
1751  * The following three functions are for anonymous (private mapped) hugepages.
1752  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1753  * and no lru code, because we handle hugepages differently from common pages.
1754  */
1755 static void __hugepage_set_anon_rmap(struct page *page,
1756 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1757 {
1758 	struct anon_vma *anon_vma = vma->anon_vma;
1759 
1760 	BUG_ON(!anon_vma);
1761 
1762 	if (PageAnon(page))
1763 		return;
1764 	if (!exclusive)
1765 		anon_vma = anon_vma->root;
1766 
1767 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1768 	page->mapping = (struct address_space *) anon_vma;
1769 	page->index = linear_page_index(vma, address);
1770 }
1771 
1772 void hugepage_add_anon_rmap(struct page *page,
1773 			    struct vm_area_struct *vma, unsigned long address)
1774 {
1775 	struct anon_vma *anon_vma = vma->anon_vma;
1776 	int first;
1777 
1778 	BUG_ON(!PageLocked(page));
1779 	BUG_ON(!anon_vma);
1780 	/* address might be in next vma when migration races vma_adjust */
1781 	first = atomic_inc_and_test(&page->_mapcount);
1782 	if (first)
1783 		__hugepage_set_anon_rmap(page, vma, address, 0);
1784 }
1785 
1786 void hugepage_add_new_anon_rmap(struct page *page,
1787 			struct vm_area_struct *vma, unsigned long address)
1788 {
1789 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1790 	atomic_set(&page->_mapcount, 0);
1791 	__hugepage_set_anon_rmap(page, vma, address, 1);
1792 }
1793 #endif /* CONFIG_HUGETLB_PAGE */
1794