xref: /linux/mm/rmap.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 		anon_vma_lock_write(anon_vma);
108 		anon_vma_unlock(anon_vma);
109 	}
110 
111 	kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 				struct anon_vma_chain *avc,
126 				struct anon_vma *anon_vma)
127 {
128 	avc->vma = vma;
129 	avc->anon_vma = anon_vma;
130 	list_add(&avc->same_vma, &vma->anon_vma_chain);
131 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
134 /**
135  * anon_vma_prepare - attach an anon_vma to a memory region
136  * @vma: the memory region in question
137  *
138  * This makes sure the memory mapping described by 'vma' has
139  * an 'anon_vma' attached to it, so that we can associate the
140  * anonymous pages mapped into it with that anon_vma.
141  *
142  * The common case will be that we already have one, but if
143  * not we either need to find an adjacent mapping that we
144  * can re-use the anon_vma from (very common when the only
145  * reason for splitting a vma has been mprotect()), or we
146  * allocate a new one.
147  *
148  * Anon-vma allocations are very subtle, because we may have
149  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150  * and that may actually touch the spinlock even in the newly
151  * allocated vma (it depends on RCU to make sure that the
152  * anon_vma isn't actually destroyed).
153  *
154  * As a result, we need to do proper anon_vma locking even
155  * for the new allocation. At the same time, we do not want
156  * to do any locking for the common case of already having
157  * an anon_vma.
158  *
159  * This must be called with the mmap_sem held for reading.
160  */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 	struct anon_vma *anon_vma = vma->anon_vma;
164 	struct anon_vma_chain *avc;
165 
166 	might_sleep();
167 	if (unlikely(!anon_vma)) {
168 		struct mm_struct *mm = vma->vm_mm;
169 		struct anon_vma *allocated;
170 
171 		avc = anon_vma_chain_alloc(GFP_KERNEL);
172 		if (!avc)
173 			goto out_enomem;
174 
175 		anon_vma = find_mergeable_anon_vma(vma);
176 		allocated = NULL;
177 		if (!anon_vma) {
178 			anon_vma = anon_vma_alloc();
179 			if (unlikely(!anon_vma))
180 				goto out_enomem_free_avc;
181 			allocated = anon_vma;
182 		}
183 
184 		anon_vma_lock_write(anon_vma);
185 		/* page_table_lock to protect against threads */
186 		spin_lock(&mm->page_table_lock);
187 		if (likely(!vma->anon_vma)) {
188 			vma->anon_vma = anon_vma;
189 			anon_vma_chain_link(vma, avc, anon_vma);
190 			allocated = NULL;
191 			avc = NULL;
192 		}
193 		spin_unlock(&mm->page_table_lock);
194 		anon_vma_unlock(anon_vma);
195 
196 		if (unlikely(allocated))
197 			put_anon_vma(allocated);
198 		if (unlikely(avc))
199 			anon_vma_chain_free(avc);
200 	}
201 	return 0;
202 
203  out_enomem_free_avc:
204 	anon_vma_chain_free(avc);
205  out_enomem:
206 	return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 	struct anon_vma *new_root = anon_vma->root;
220 	if (new_root != root) {
221 		if (WARN_ON_ONCE(root))
222 			up_write(&root->rwsem);
223 		root = new_root;
224 		down_write(&root->rwsem);
225 	}
226 	return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 	if (root)
232 		up_write(&root->rwsem);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 	struct anon_vma_chain *avc, *pavc;
242 	struct anon_vma *root = NULL;
243 
244 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 		struct anon_vma *anon_vma;
246 
247 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 		if (unlikely(!avc)) {
249 			unlock_anon_vma_root(root);
250 			root = NULL;
251 			avc = anon_vma_chain_alloc(GFP_KERNEL);
252 			if (!avc)
253 				goto enomem_failure;
254 		}
255 		anon_vma = pavc->anon_vma;
256 		root = lock_anon_vma_root(root, anon_vma);
257 		anon_vma_chain_link(dst, avc, anon_vma);
258 	}
259 	unlock_anon_vma_root(root);
260 	return 0;
261 
262  enomem_failure:
263 	unlink_anon_vmas(dst);
264 	return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 	struct anon_vma_chain *avc;
275 	struct anon_vma *anon_vma;
276 
277 	/* Don't bother if the parent process has no anon_vma here. */
278 	if (!pvma->anon_vma)
279 		return 0;
280 
281 	/*
282 	 * First, attach the new VMA to the parent VMA's anon_vmas,
283 	 * so rmap can find non-COWed pages in child processes.
284 	 */
285 	if (anon_vma_clone(vma, pvma))
286 		return -ENOMEM;
287 
288 	/* Then add our own anon_vma. */
289 	anon_vma = anon_vma_alloc();
290 	if (!anon_vma)
291 		goto out_error;
292 	avc = anon_vma_chain_alloc(GFP_KERNEL);
293 	if (!avc)
294 		goto out_error_free_anon_vma;
295 
296 	/*
297 	 * The root anon_vma's spinlock is the lock actually used when we
298 	 * lock any of the anon_vmas in this anon_vma tree.
299 	 */
300 	anon_vma->root = pvma->anon_vma->root;
301 	/*
302 	 * With refcounts, an anon_vma can stay around longer than the
303 	 * process it belongs to. The root anon_vma needs to be pinned until
304 	 * this anon_vma is freed, because the lock lives in the root.
305 	 */
306 	get_anon_vma(anon_vma->root);
307 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308 	vma->anon_vma = anon_vma;
309 	anon_vma_lock_write(anon_vma);
310 	anon_vma_chain_link(vma, avc, anon_vma);
311 	anon_vma_unlock(anon_vma);
312 
313 	return 0;
314 
315  out_error_free_anon_vma:
316 	put_anon_vma(anon_vma);
317  out_error:
318 	unlink_anon_vmas(vma);
319 	return -ENOMEM;
320 }
321 
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 	struct anon_vma_chain *avc, *next;
325 	struct anon_vma *root = NULL;
326 
327 	/*
328 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 	 */
331 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 		struct anon_vma *anon_vma = avc->anon_vma;
333 
334 		root = lock_anon_vma_root(root, anon_vma);
335 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337 		/*
338 		 * Leave empty anon_vmas on the list - we'll need
339 		 * to free them outside the lock.
340 		 */
341 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 			continue;
343 
344 		list_del(&avc->same_vma);
345 		anon_vma_chain_free(avc);
346 	}
347 	unlock_anon_vma_root(root);
348 
349 	/*
350 	 * Iterate the list once more, it now only contains empty and unlinked
351 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 	 * needing to write-acquire the anon_vma->root->rwsem.
353 	 */
354 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 		struct anon_vma *anon_vma = avc->anon_vma;
356 
357 		put_anon_vma(anon_vma);
358 
359 		list_del(&avc->same_vma);
360 		anon_vma_chain_free(avc);
361 	}
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366 	struct anon_vma *anon_vma = data;
367 
368 	init_rwsem(&anon_vma->rwsem);
369 	atomic_set(&anon_vma->refcount, 0);
370 	anon_vma->rb_root = RB_ROOT;
371 }
372 
373 void __init anon_vma_init(void)
374 {
375 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 	struct anon_vma *anon_vma = NULL;
406 	unsigned long anon_mapping;
407 
408 	rcu_read_lock();
409 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 		goto out;
412 	if (!page_mapped(page))
413 		goto out;
414 
415 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 		anon_vma = NULL;
418 		goto out;
419 	}
420 
421 	/*
422 	 * If this page is still mapped, then its anon_vma cannot have been
423 	 * freed.  But if it has been unmapped, we have no security against the
424 	 * anon_vma structure being freed and reused (for another anon_vma:
425 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 	 * above cannot corrupt).
427 	 */
428 	if (!page_mapped(page)) {
429 		put_anon_vma(anon_vma);
430 		anon_vma = NULL;
431 	}
432 out:
433 	rcu_read_unlock();
434 
435 	return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
446 {
447 	struct anon_vma *anon_vma = NULL;
448 	struct anon_vma *root_anon_vma;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 	if (down_read_trylock(&root_anon_vma->rwsem)) {
461 		/*
462 		 * If the page is still mapped, then this anon_vma is still
463 		 * its anon_vma, and holding the mutex ensures that it will
464 		 * not go away, see anon_vma_free().
465 		 */
466 		if (!page_mapped(page)) {
467 			up_read(&root_anon_vma->rwsem);
468 			anon_vma = NULL;
469 		}
470 		goto out;
471 	}
472 
473 	/* trylock failed, we got to sleep */
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	if (!page_mapped(page)) {
480 		put_anon_vma(anon_vma);
481 		anon_vma = NULL;
482 		goto out;
483 	}
484 
485 	/* we pinned the anon_vma, its safe to sleep */
486 	rcu_read_unlock();
487 	anon_vma_lock_read(anon_vma);
488 
489 	if (atomic_dec_and_test(&anon_vma->refcount)) {
490 		/*
491 		 * Oops, we held the last refcount, release the lock
492 		 * and bail -- can't simply use put_anon_vma() because
493 		 * we'll deadlock on the anon_vma_lock_write() recursion.
494 		 */
495 		anon_vma_unlock_read(anon_vma);
496 		__put_anon_vma(anon_vma);
497 		anon_vma = NULL;
498 	}
499 
500 	return anon_vma;
501 
502 out:
503 	rcu_read_unlock();
504 	return anon_vma;
505 }
506 
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508 {
509 	anon_vma_unlock_read(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		pgoff = page->index << huge_page_order(page_hstate(page));
522 
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 	pgd_t *pgd;
568 	pud_t *pud;
569 	pmd_t *pmd = NULL;
570 
571 	pgd = pgd_offset(mm, address);
572 	if (!pgd_present(*pgd))
573 		goto out;
574 
575 	pud = pud_offset(pgd, address);
576 	if (!pud_present(*pud))
577 		goto out;
578 
579 	pmd = pmd_offset(pud, address);
580 	if (!pmd_present(*pmd))
581 		pmd = NULL;
582 out:
583 	return pmd;
584 }
585 
586 /*
587  * Check that @page is mapped at @address into @mm.
588  *
589  * If @sync is false, page_check_address may perform a racy check to avoid
590  * the page table lock when the pte is not present (helpful when reclaiming
591  * highly shared pages).
592  *
593  * On success returns with pte mapped and locked.
594  */
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 			  unsigned long address, spinlock_t **ptlp, int sync)
597 {
598 	pmd_t *pmd;
599 	pte_t *pte;
600 	spinlock_t *ptl;
601 
602 	if (unlikely(PageHuge(page))) {
603 		pte = huge_pte_offset(mm, address);
604 		ptl = &mm->page_table_lock;
605 		goto check;
606 	}
607 
608 	pmd = mm_find_pmd(mm, address);
609 	if (!pmd)
610 		return NULL;
611 
612 	if (pmd_trans_huge(*pmd))
613 		return NULL;
614 
615 	pte = pte_offset_map(pmd, address);
616 	/* Make a quick check before getting the lock */
617 	if (!sync && !pte_present(*pte)) {
618 		pte_unmap(pte);
619 		return NULL;
620 	}
621 
622 	ptl = pte_lockptr(mm, pmd);
623 check:
624 	spin_lock(ptl);
625 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
626 		*ptlp = ptl;
627 		return pte;
628 	}
629 	pte_unmap_unlock(pte, ptl);
630 	return NULL;
631 }
632 
633 /**
634  * page_mapped_in_vma - check whether a page is really mapped in a VMA
635  * @page: the page to test
636  * @vma: the VMA to test
637  *
638  * Returns 1 if the page is mapped into the page tables of the VMA, 0
639  * if the page is not mapped into the page tables of this VMA.  Only
640  * valid for normal file or anonymous VMAs.
641  */
642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
643 {
644 	unsigned long address;
645 	pte_t *pte;
646 	spinlock_t *ptl;
647 
648 	address = __vma_address(page, vma);
649 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
650 		return 0;
651 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
652 	if (!pte)			/* the page is not in this mm */
653 		return 0;
654 	pte_unmap_unlock(pte, ptl);
655 
656 	return 1;
657 }
658 
659 /*
660  * Subfunctions of page_referenced: page_referenced_one called
661  * repeatedly from either page_referenced_anon or page_referenced_file.
662  */
663 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
664 			unsigned long address, unsigned int *mapcount,
665 			unsigned long *vm_flags)
666 {
667 	struct mm_struct *mm = vma->vm_mm;
668 	int referenced = 0;
669 
670 	if (unlikely(PageTransHuge(page))) {
671 		pmd_t *pmd;
672 
673 		spin_lock(&mm->page_table_lock);
674 		/*
675 		 * rmap might return false positives; we must filter
676 		 * these out using page_check_address_pmd().
677 		 */
678 		pmd = page_check_address_pmd(page, mm, address,
679 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
680 		if (!pmd) {
681 			spin_unlock(&mm->page_table_lock);
682 			goto out;
683 		}
684 
685 		if (vma->vm_flags & VM_LOCKED) {
686 			spin_unlock(&mm->page_table_lock);
687 			*mapcount = 0;	/* break early from loop */
688 			*vm_flags |= VM_LOCKED;
689 			goto out;
690 		}
691 
692 		/* go ahead even if the pmd is pmd_trans_splitting() */
693 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
694 			referenced++;
695 		spin_unlock(&mm->page_table_lock);
696 	} else {
697 		pte_t *pte;
698 		spinlock_t *ptl;
699 
700 		/*
701 		 * rmap might return false positives; we must filter
702 		 * these out using page_check_address().
703 		 */
704 		pte = page_check_address(page, mm, address, &ptl, 0);
705 		if (!pte)
706 			goto out;
707 
708 		if (vma->vm_flags & VM_LOCKED) {
709 			pte_unmap_unlock(pte, ptl);
710 			*mapcount = 0;	/* break early from loop */
711 			*vm_flags |= VM_LOCKED;
712 			goto out;
713 		}
714 
715 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
716 			/*
717 			 * Don't treat a reference through a sequentially read
718 			 * mapping as such.  If the page has been used in
719 			 * another mapping, we will catch it; if this other
720 			 * mapping is already gone, the unmap path will have
721 			 * set PG_referenced or activated the page.
722 			 */
723 			if (likely(!VM_SequentialReadHint(vma)))
724 				referenced++;
725 		}
726 		pte_unmap_unlock(pte, ptl);
727 	}
728 
729 	(*mapcount)--;
730 
731 	if (referenced)
732 		*vm_flags |= vma->vm_flags;
733 out:
734 	return referenced;
735 }
736 
737 static int page_referenced_anon(struct page *page,
738 				struct mem_cgroup *memcg,
739 				unsigned long *vm_flags)
740 {
741 	unsigned int mapcount;
742 	struct anon_vma *anon_vma;
743 	pgoff_t pgoff;
744 	struct anon_vma_chain *avc;
745 	int referenced = 0;
746 
747 	anon_vma = page_lock_anon_vma_read(page);
748 	if (!anon_vma)
749 		return referenced;
750 
751 	mapcount = page_mapcount(page);
752 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
753 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
754 		struct vm_area_struct *vma = avc->vma;
755 		unsigned long address = vma_address(page, vma);
756 		/*
757 		 * If we are reclaiming on behalf of a cgroup, skip
758 		 * counting on behalf of references from different
759 		 * cgroups
760 		 */
761 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
762 			continue;
763 		referenced += page_referenced_one(page, vma, address,
764 						  &mapcount, vm_flags);
765 		if (!mapcount)
766 			break;
767 	}
768 
769 	page_unlock_anon_vma_read(anon_vma);
770 	return referenced;
771 }
772 
773 /**
774  * page_referenced_file - referenced check for object-based rmap
775  * @page: the page we're checking references on.
776  * @memcg: target memory control group
777  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
778  *
779  * For an object-based mapped page, find all the places it is mapped and
780  * check/clear the referenced flag.  This is done by following the page->mapping
781  * pointer, then walking the chain of vmas it holds.  It returns the number
782  * of references it found.
783  *
784  * This function is only called from page_referenced for object-based pages.
785  */
786 static int page_referenced_file(struct page *page,
787 				struct mem_cgroup *memcg,
788 				unsigned long *vm_flags)
789 {
790 	unsigned int mapcount;
791 	struct address_space *mapping = page->mapping;
792 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
793 	struct vm_area_struct *vma;
794 	int referenced = 0;
795 
796 	/*
797 	 * The caller's checks on page->mapping and !PageAnon have made
798 	 * sure that this is a file page: the check for page->mapping
799 	 * excludes the case just before it gets set on an anon page.
800 	 */
801 	BUG_ON(PageAnon(page));
802 
803 	/*
804 	 * The page lock not only makes sure that page->mapping cannot
805 	 * suddenly be NULLified by truncation, it makes sure that the
806 	 * structure at mapping cannot be freed and reused yet,
807 	 * so we can safely take mapping->i_mmap_mutex.
808 	 */
809 	BUG_ON(!PageLocked(page));
810 
811 	mutex_lock(&mapping->i_mmap_mutex);
812 
813 	/*
814 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
815 	 * is more likely to be accurate if we note it after spinning.
816 	 */
817 	mapcount = page_mapcount(page);
818 
819 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
820 		unsigned long address = vma_address(page, vma);
821 		/*
822 		 * If we are reclaiming on behalf of a cgroup, skip
823 		 * counting on behalf of references from different
824 		 * cgroups
825 		 */
826 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
827 			continue;
828 		referenced += page_referenced_one(page, vma, address,
829 						  &mapcount, vm_flags);
830 		if (!mapcount)
831 			break;
832 	}
833 
834 	mutex_unlock(&mapping->i_mmap_mutex);
835 	return referenced;
836 }
837 
838 /**
839  * page_referenced - test if the page was referenced
840  * @page: the page to test
841  * @is_locked: caller holds lock on the page
842  * @memcg: target memory cgroup
843  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
844  *
845  * Quick test_and_clear_referenced for all mappings to a page,
846  * returns the number of ptes which referenced the page.
847  */
848 int page_referenced(struct page *page,
849 		    int is_locked,
850 		    struct mem_cgroup *memcg,
851 		    unsigned long *vm_flags)
852 {
853 	int referenced = 0;
854 	int we_locked = 0;
855 
856 	*vm_flags = 0;
857 	if (page_mapped(page) && page_rmapping(page)) {
858 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859 			we_locked = trylock_page(page);
860 			if (!we_locked) {
861 				referenced++;
862 				goto out;
863 			}
864 		}
865 		if (unlikely(PageKsm(page)))
866 			referenced += page_referenced_ksm(page, memcg,
867 								vm_flags);
868 		else if (PageAnon(page))
869 			referenced += page_referenced_anon(page, memcg,
870 								vm_flags);
871 		else if (page->mapping)
872 			referenced += page_referenced_file(page, memcg,
873 								vm_flags);
874 		if (we_locked)
875 			unlock_page(page);
876 
877 		if (page_test_and_clear_young(page_to_pfn(page)))
878 			referenced++;
879 	}
880 out:
881 	return referenced;
882 }
883 
884 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
885 			    unsigned long address)
886 {
887 	struct mm_struct *mm = vma->vm_mm;
888 	pte_t *pte;
889 	spinlock_t *ptl;
890 	int ret = 0;
891 
892 	pte = page_check_address(page, mm, address, &ptl, 1);
893 	if (!pte)
894 		goto out;
895 
896 	if (pte_dirty(*pte) || pte_write(*pte)) {
897 		pte_t entry;
898 
899 		flush_cache_page(vma, address, pte_pfn(*pte));
900 		entry = ptep_clear_flush(vma, address, pte);
901 		entry = pte_wrprotect(entry);
902 		entry = pte_mkclean(entry);
903 		set_pte_at(mm, address, pte, entry);
904 		ret = 1;
905 	}
906 
907 	pte_unmap_unlock(pte, ptl);
908 
909 	if (ret)
910 		mmu_notifier_invalidate_page(mm, address);
911 out:
912 	return ret;
913 }
914 
915 static int page_mkclean_file(struct address_space *mapping, struct page *page)
916 {
917 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
918 	struct vm_area_struct *vma;
919 	int ret = 0;
920 
921 	BUG_ON(PageAnon(page));
922 
923 	mutex_lock(&mapping->i_mmap_mutex);
924 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
925 		if (vma->vm_flags & VM_SHARED) {
926 			unsigned long address = vma_address(page, vma);
927 			ret += page_mkclean_one(page, vma, address);
928 		}
929 	}
930 	mutex_unlock(&mapping->i_mmap_mutex);
931 	return ret;
932 }
933 
934 int page_mkclean(struct page *page)
935 {
936 	int ret = 0;
937 
938 	BUG_ON(!PageLocked(page));
939 
940 	if (page_mapped(page)) {
941 		struct address_space *mapping = page_mapping(page);
942 		if (mapping)
943 			ret = page_mkclean_file(mapping, page);
944 	}
945 
946 	return ret;
947 }
948 EXPORT_SYMBOL_GPL(page_mkclean);
949 
950 /**
951  * page_move_anon_rmap - move a page to our anon_vma
952  * @page:	the page to move to our anon_vma
953  * @vma:	the vma the page belongs to
954  * @address:	the user virtual address mapped
955  *
956  * When a page belongs exclusively to one process after a COW event,
957  * that page can be moved into the anon_vma that belongs to just that
958  * process, so the rmap code will not search the parent or sibling
959  * processes.
960  */
961 void page_move_anon_rmap(struct page *page,
962 	struct vm_area_struct *vma, unsigned long address)
963 {
964 	struct anon_vma *anon_vma = vma->anon_vma;
965 
966 	VM_BUG_ON(!PageLocked(page));
967 	VM_BUG_ON(!anon_vma);
968 	VM_BUG_ON(page->index != linear_page_index(vma, address));
969 
970 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
971 	page->mapping = (struct address_space *) anon_vma;
972 }
973 
974 /**
975  * __page_set_anon_rmap - set up new anonymous rmap
976  * @page:	Page to add to rmap
977  * @vma:	VM area to add page to.
978  * @address:	User virtual address of the mapping
979  * @exclusive:	the page is exclusively owned by the current process
980  */
981 static void __page_set_anon_rmap(struct page *page,
982 	struct vm_area_struct *vma, unsigned long address, int exclusive)
983 {
984 	struct anon_vma *anon_vma = vma->anon_vma;
985 
986 	BUG_ON(!anon_vma);
987 
988 	if (PageAnon(page))
989 		return;
990 
991 	/*
992 	 * If the page isn't exclusively mapped into this vma,
993 	 * we must use the _oldest_ possible anon_vma for the
994 	 * page mapping!
995 	 */
996 	if (!exclusive)
997 		anon_vma = anon_vma->root;
998 
999 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000 	page->mapping = (struct address_space *) anon_vma;
1001 	page->index = linear_page_index(vma, address);
1002 }
1003 
1004 /**
1005  * __page_check_anon_rmap - sanity check anonymous rmap addition
1006  * @page:	the page to add the mapping to
1007  * @vma:	the vm area in which the mapping is added
1008  * @address:	the user virtual address mapped
1009  */
1010 static void __page_check_anon_rmap(struct page *page,
1011 	struct vm_area_struct *vma, unsigned long address)
1012 {
1013 #ifdef CONFIG_DEBUG_VM
1014 	/*
1015 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1016 	 * be set up correctly at this point.
1017 	 *
1018 	 * We have exclusion against page_add_anon_rmap because the caller
1019 	 * always holds the page locked, except if called from page_dup_rmap,
1020 	 * in which case the page is already known to be setup.
1021 	 *
1022 	 * We have exclusion against page_add_new_anon_rmap because those pages
1023 	 * are initially only visible via the pagetables, and the pte is locked
1024 	 * over the call to page_add_new_anon_rmap.
1025 	 */
1026 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027 	BUG_ON(page->index != linear_page_index(vma, address));
1028 #endif
1029 }
1030 
1031 /**
1032  * page_add_anon_rmap - add pte mapping to an anonymous page
1033  * @page:	the page to add the mapping to
1034  * @vma:	the vm area in which the mapping is added
1035  * @address:	the user virtual address mapped
1036  *
1037  * The caller needs to hold the pte lock, and the page must be locked in
1038  * the anon_vma case: to serialize mapping,index checking after setting,
1039  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1040  * (but PageKsm is never downgraded to PageAnon).
1041  */
1042 void page_add_anon_rmap(struct page *page,
1043 	struct vm_area_struct *vma, unsigned long address)
1044 {
1045 	do_page_add_anon_rmap(page, vma, address, 0);
1046 }
1047 
1048 /*
1049  * Special version of the above for do_swap_page, which often runs
1050  * into pages that are exclusively owned by the current process.
1051  * Everybody else should continue to use page_add_anon_rmap above.
1052  */
1053 void do_page_add_anon_rmap(struct page *page,
1054 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1055 {
1056 	int first = atomic_inc_and_test(&page->_mapcount);
1057 	if (first) {
1058 		if (!PageTransHuge(page))
1059 			__inc_zone_page_state(page, NR_ANON_PAGES);
1060 		else
1061 			__inc_zone_page_state(page,
1062 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1063 	}
1064 	if (unlikely(PageKsm(page)))
1065 		return;
1066 
1067 	VM_BUG_ON(!PageLocked(page));
1068 	/* address might be in next vma when migration races vma_adjust */
1069 	if (first)
1070 		__page_set_anon_rmap(page, vma, address, exclusive);
1071 	else
1072 		__page_check_anon_rmap(page, vma, address);
1073 }
1074 
1075 /**
1076  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1077  * @page:	the page to add the mapping to
1078  * @vma:	the vm area in which the mapping is added
1079  * @address:	the user virtual address mapped
1080  *
1081  * Same as page_add_anon_rmap but must only be called on *new* pages.
1082  * This means the inc-and-test can be bypassed.
1083  * Page does not have to be locked.
1084  */
1085 void page_add_new_anon_rmap(struct page *page,
1086 	struct vm_area_struct *vma, unsigned long address)
1087 {
1088 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1089 	SetPageSwapBacked(page);
1090 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1091 	if (!PageTransHuge(page))
1092 		__inc_zone_page_state(page, NR_ANON_PAGES);
1093 	else
1094 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1095 	__page_set_anon_rmap(page, vma, address, 1);
1096 	if (!mlocked_vma_newpage(vma, page))
1097 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1098 	else
1099 		add_page_to_unevictable_list(page);
1100 }
1101 
1102 /**
1103  * page_add_file_rmap - add pte mapping to a file page
1104  * @page: the page to add the mapping to
1105  *
1106  * The caller needs to hold the pte lock.
1107  */
1108 void page_add_file_rmap(struct page *page)
1109 {
1110 	bool locked;
1111 	unsigned long flags;
1112 
1113 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1114 	if (atomic_inc_and_test(&page->_mapcount)) {
1115 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1116 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1117 	}
1118 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1119 }
1120 
1121 /**
1122  * page_remove_rmap - take down pte mapping from a page
1123  * @page: page to remove mapping from
1124  *
1125  * The caller needs to hold the pte lock.
1126  */
1127 void page_remove_rmap(struct page *page)
1128 {
1129 	struct address_space *mapping = page_mapping(page);
1130 	bool anon = PageAnon(page);
1131 	bool locked;
1132 	unsigned long flags;
1133 
1134 	/*
1135 	 * The anon case has no mem_cgroup page_stat to update; but may
1136 	 * uncharge_page() below, where the lock ordering can deadlock if
1137 	 * we hold the lock against page_stat move: so avoid it on anon.
1138 	 */
1139 	if (!anon)
1140 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1141 
1142 	/* page still mapped by someone else? */
1143 	if (!atomic_add_negative(-1, &page->_mapcount))
1144 		goto out;
1145 
1146 	/*
1147 	 * Now that the last pte has gone, s390 must transfer dirty
1148 	 * flag from storage key to struct page.  We can usually skip
1149 	 * this if the page is anon, so about to be freed; but perhaps
1150 	 * not if it's in swapcache - there might be another pte slot
1151 	 * containing the swap entry, but page not yet written to swap.
1152 	 *
1153 	 * And we can skip it on file pages, so long as the filesystem
1154 	 * participates in dirty tracking (note that this is not only an
1155 	 * optimization but also solves problems caused by dirty flag in
1156 	 * storage key getting set by a write from inside kernel); but need to
1157 	 * catch shm and tmpfs and ramfs pages which have been modified since
1158 	 * creation by read fault.
1159 	 *
1160 	 * Note that mapping must be decided above, before decrementing
1161 	 * mapcount (which luckily provides a barrier): once page is unmapped,
1162 	 * it could be truncated and page->mapping reset to NULL at any moment.
1163 	 * Note also that we are relying on page_mapping(page) to set mapping
1164 	 * to &swapper_space when PageSwapCache(page).
1165 	 */
1166 	if (mapping && !mapping_cap_account_dirty(mapping) &&
1167 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1168 		set_page_dirty(page);
1169 	/*
1170 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1171 	 * and not charged by memcg for now.
1172 	 */
1173 	if (unlikely(PageHuge(page)))
1174 		goto out;
1175 	if (anon) {
1176 		mem_cgroup_uncharge_page(page);
1177 		if (!PageTransHuge(page))
1178 			__dec_zone_page_state(page, NR_ANON_PAGES);
1179 		else
1180 			__dec_zone_page_state(page,
1181 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1182 	} else {
1183 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1184 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1185 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1186 	}
1187 	if (unlikely(PageMlocked(page)))
1188 		clear_page_mlock(page);
1189 	/*
1190 	 * It would be tidy to reset the PageAnon mapping here,
1191 	 * but that might overwrite a racing page_add_anon_rmap
1192 	 * which increments mapcount after us but sets mapping
1193 	 * before us: so leave the reset to free_hot_cold_page,
1194 	 * and remember that it's only reliable while mapped.
1195 	 * Leaving it set also helps swapoff to reinstate ptes
1196 	 * faster for those pages still in swapcache.
1197 	 */
1198 	return;
1199 out:
1200 	if (!anon)
1201 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1202 }
1203 
1204 /*
1205  * Subfunctions of try_to_unmap: try_to_unmap_one called
1206  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1207  */
1208 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1209 		     unsigned long address, enum ttu_flags flags)
1210 {
1211 	struct mm_struct *mm = vma->vm_mm;
1212 	pte_t *pte;
1213 	pte_t pteval;
1214 	spinlock_t *ptl;
1215 	int ret = SWAP_AGAIN;
1216 
1217 	pte = page_check_address(page, mm, address, &ptl, 0);
1218 	if (!pte)
1219 		goto out;
1220 
1221 	/*
1222 	 * If the page is mlock()d, we cannot swap it out.
1223 	 * If it's recently referenced (perhaps page_referenced
1224 	 * skipped over this mm) then we should reactivate it.
1225 	 */
1226 	if (!(flags & TTU_IGNORE_MLOCK)) {
1227 		if (vma->vm_flags & VM_LOCKED)
1228 			goto out_mlock;
1229 
1230 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1231 			goto out_unmap;
1232 	}
1233 	if (!(flags & TTU_IGNORE_ACCESS)) {
1234 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1235 			ret = SWAP_FAIL;
1236 			goto out_unmap;
1237 		}
1238   	}
1239 
1240 	/* Nuke the page table entry. */
1241 	flush_cache_page(vma, address, page_to_pfn(page));
1242 	pteval = ptep_clear_flush(vma, address, pte);
1243 
1244 	/* Move the dirty bit to the physical page now the pte is gone. */
1245 	if (pte_dirty(pteval))
1246 		set_page_dirty(page);
1247 
1248 	/* Update high watermark before we lower rss */
1249 	update_hiwater_rss(mm);
1250 
1251 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1252 		if (!PageHuge(page)) {
1253 			if (PageAnon(page))
1254 				dec_mm_counter(mm, MM_ANONPAGES);
1255 			else
1256 				dec_mm_counter(mm, MM_FILEPAGES);
1257 		}
1258 		set_pte_at(mm, address, pte,
1259 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1260 	} else if (PageAnon(page)) {
1261 		swp_entry_t entry = { .val = page_private(page) };
1262 
1263 		if (PageSwapCache(page)) {
1264 			/*
1265 			 * Store the swap location in the pte.
1266 			 * See handle_pte_fault() ...
1267 			 */
1268 			if (swap_duplicate(entry) < 0) {
1269 				set_pte_at(mm, address, pte, pteval);
1270 				ret = SWAP_FAIL;
1271 				goto out_unmap;
1272 			}
1273 			if (list_empty(&mm->mmlist)) {
1274 				spin_lock(&mmlist_lock);
1275 				if (list_empty(&mm->mmlist))
1276 					list_add(&mm->mmlist, &init_mm.mmlist);
1277 				spin_unlock(&mmlist_lock);
1278 			}
1279 			dec_mm_counter(mm, MM_ANONPAGES);
1280 			inc_mm_counter(mm, MM_SWAPENTS);
1281 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1282 			/*
1283 			 * Store the pfn of the page in a special migration
1284 			 * pte. do_swap_page() will wait until the migration
1285 			 * pte is removed and then restart fault handling.
1286 			 */
1287 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1288 			entry = make_migration_entry(page, pte_write(pteval));
1289 		}
1290 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1291 		BUG_ON(pte_file(*pte));
1292 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1293 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1294 		/* Establish migration entry for a file page */
1295 		swp_entry_t entry;
1296 		entry = make_migration_entry(page, pte_write(pteval));
1297 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1298 	} else
1299 		dec_mm_counter(mm, MM_FILEPAGES);
1300 
1301 	page_remove_rmap(page);
1302 	page_cache_release(page);
1303 
1304 out_unmap:
1305 	pte_unmap_unlock(pte, ptl);
1306 	if (ret != SWAP_FAIL)
1307 		mmu_notifier_invalidate_page(mm, address);
1308 out:
1309 	return ret;
1310 
1311 out_mlock:
1312 	pte_unmap_unlock(pte, ptl);
1313 
1314 
1315 	/*
1316 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1317 	 * unstable result and race. Plus, We can't wait here because
1318 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1319 	 * if trylock failed, the page remain in evictable lru and later
1320 	 * vmscan could retry to move the page to unevictable lru if the
1321 	 * page is actually mlocked.
1322 	 */
1323 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1324 		if (vma->vm_flags & VM_LOCKED) {
1325 			mlock_vma_page(page);
1326 			ret = SWAP_MLOCK;
1327 		}
1328 		up_read(&vma->vm_mm->mmap_sem);
1329 	}
1330 	return ret;
1331 }
1332 
1333 /*
1334  * objrmap doesn't work for nonlinear VMAs because the assumption that
1335  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1336  * Consequently, given a particular page and its ->index, we cannot locate the
1337  * ptes which are mapping that page without an exhaustive linear search.
1338  *
1339  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1340  * maps the file to which the target page belongs.  The ->vm_private_data field
1341  * holds the current cursor into that scan.  Successive searches will circulate
1342  * around the vma's virtual address space.
1343  *
1344  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1345  * more scanning pressure is placed against them as well.   Eventually pages
1346  * will become fully unmapped and are eligible for eviction.
1347  *
1348  * For very sparsely populated VMAs this is a little inefficient - chances are
1349  * there there won't be many ptes located within the scan cluster.  In this case
1350  * maybe we could scan further - to the end of the pte page, perhaps.
1351  *
1352  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1353  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1354  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1355  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1356  */
1357 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1358 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1359 
1360 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1361 		struct vm_area_struct *vma, struct page *check_page)
1362 {
1363 	struct mm_struct *mm = vma->vm_mm;
1364 	pmd_t *pmd;
1365 	pte_t *pte;
1366 	pte_t pteval;
1367 	spinlock_t *ptl;
1368 	struct page *page;
1369 	unsigned long address;
1370 	unsigned long mmun_start;	/* For mmu_notifiers */
1371 	unsigned long mmun_end;		/* For mmu_notifiers */
1372 	unsigned long end;
1373 	int ret = SWAP_AGAIN;
1374 	int locked_vma = 0;
1375 
1376 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1377 	end = address + CLUSTER_SIZE;
1378 	if (address < vma->vm_start)
1379 		address = vma->vm_start;
1380 	if (end > vma->vm_end)
1381 		end = vma->vm_end;
1382 
1383 	pmd = mm_find_pmd(mm, address);
1384 	if (!pmd)
1385 		return ret;
1386 
1387 	mmun_start = address;
1388 	mmun_end   = end;
1389 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1390 
1391 	/*
1392 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1393 	 * keep the sem while scanning the cluster for mlocking pages.
1394 	 */
1395 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1396 		locked_vma = (vma->vm_flags & VM_LOCKED);
1397 		if (!locked_vma)
1398 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1399 	}
1400 
1401 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1402 
1403 	/* Update high watermark before we lower rss */
1404 	update_hiwater_rss(mm);
1405 
1406 	for (; address < end; pte++, address += PAGE_SIZE) {
1407 		if (!pte_present(*pte))
1408 			continue;
1409 		page = vm_normal_page(vma, address, *pte);
1410 		BUG_ON(!page || PageAnon(page));
1411 
1412 		if (locked_vma) {
1413 			mlock_vma_page(page);   /* no-op if already mlocked */
1414 			if (page == check_page)
1415 				ret = SWAP_MLOCK;
1416 			continue;	/* don't unmap */
1417 		}
1418 
1419 		if (ptep_clear_flush_young_notify(vma, address, pte))
1420 			continue;
1421 
1422 		/* Nuke the page table entry. */
1423 		flush_cache_page(vma, address, pte_pfn(*pte));
1424 		pteval = ptep_clear_flush(vma, address, pte);
1425 
1426 		/* If nonlinear, store the file page offset in the pte. */
1427 		if (page->index != linear_page_index(vma, address))
1428 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1429 
1430 		/* Move the dirty bit to the physical page now the pte is gone. */
1431 		if (pte_dirty(pteval))
1432 			set_page_dirty(page);
1433 
1434 		page_remove_rmap(page);
1435 		page_cache_release(page);
1436 		dec_mm_counter(mm, MM_FILEPAGES);
1437 		(*mapcount)--;
1438 	}
1439 	pte_unmap_unlock(pte - 1, ptl);
1440 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1441 	if (locked_vma)
1442 		up_read(&vma->vm_mm->mmap_sem);
1443 	return ret;
1444 }
1445 
1446 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1447 {
1448 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1449 
1450 	if (!maybe_stack)
1451 		return false;
1452 
1453 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1454 						VM_STACK_INCOMPLETE_SETUP)
1455 		return true;
1456 
1457 	return false;
1458 }
1459 
1460 /**
1461  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1462  * rmap method
1463  * @page: the page to unmap/unlock
1464  * @flags: action and flags
1465  *
1466  * Find all the mappings of a page using the mapping pointer and the vma chains
1467  * contained in the anon_vma struct it points to.
1468  *
1469  * This function is only called from try_to_unmap/try_to_munlock for
1470  * anonymous pages.
1471  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1472  * where the page was found will be held for write.  So, we won't recheck
1473  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1474  * 'LOCKED.
1475  */
1476 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1477 {
1478 	struct anon_vma *anon_vma;
1479 	pgoff_t pgoff;
1480 	struct anon_vma_chain *avc;
1481 	int ret = SWAP_AGAIN;
1482 
1483 	anon_vma = page_lock_anon_vma_read(page);
1484 	if (!anon_vma)
1485 		return ret;
1486 
1487 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1488 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1489 		struct vm_area_struct *vma = avc->vma;
1490 		unsigned long address;
1491 
1492 		/*
1493 		 * During exec, a temporary VMA is setup and later moved.
1494 		 * The VMA is moved under the anon_vma lock but not the
1495 		 * page tables leading to a race where migration cannot
1496 		 * find the migration ptes. Rather than increasing the
1497 		 * locking requirements of exec(), migration skips
1498 		 * temporary VMAs until after exec() completes.
1499 		 */
1500 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1501 				is_vma_temporary_stack(vma))
1502 			continue;
1503 
1504 		address = vma_address(page, vma);
1505 		ret = try_to_unmap_one(page, vma, address, flags);
1506 		if (ret != SWAP_AGAIN || !page_mapped(page))
1507 			break;
1508 	}
1509 
1510 	page_unlock_anon_vma_read(anon_vma);
1511 	return ret;
1512 }
1513 
1514 /**
1515  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1516  * @page: the page to unmap/unlock
1517  * @flags: action and flags
1518  *
1519  * Find all the mappings of a page using the mapping pointer and the vma chains
1520  * contained in the address_space struct it points to.
1521  *
1522  * This function is only called from try_to_unmap/try_to_munlock for
1523  * object-based pages.
1524  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1525  * where the page was found will be held for write.  So, we won't recheck
1526  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1527  * 'LOCKED.
1528  */
1529 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1530 {
1531 	struct address_space *mapping = page->mapping;
1532 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1533 	struct vm_area_struct *vma;
1534 	int ret = SWAP_AGAIN;
1535 	unsigned long cursor;
1536 	unsigned long max_nl_cursor = 0;
1537 	unsigned long max_nl_size = 0;
1538 	unsigned int mapcount;
1539 
1540 	mutex_lock(&mapping->i_mmap_mutex);
1541 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1542 		unsigned long address = vma_address(page, vma);
1543 		ret = try_to_unmap_one(page, vma, address, flags);
1544 		if (ret != SWAP_AGAIN || !page_mapped(page))
1545 			goto out;
1546 	}
1547 
1548 	if (list_empty(&mapping->i_mmap_nonlinear))
1549 		goto out;
1550 
1551 	/*
1552 	 * We don't bother to try to find the munlocked page in nonlinears.
1553 	 * It's costly. Instead, later, page reclaim logic may call
1554 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1555 	 */
1556 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1557 		goto out;
1558 
1559 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1560 							shared.nonlinear) {
1561 		cursor = (unsigned long) vma->vm_private_data;
1562 		if (cursor > max_nl_cursor)
1563 			max_nl_cursor = cursor;
1564 		cursor = vma->vm_end - vma->vm_start;
1565 		if (cursor > max_nl_size)
1566 			max_nl_size = cursor;
1567 	}
1568 
1569 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1570 		ret = SWAP_FAIL;
1571 		goto out;
1572 	}
1573 
1574 	/*
1575 	 * We don't try to search for this page in the nonlinear vmas,
1576 	 * and page_referenced wouldn't have found it anyway.  Instead
1577 	 * just walk the nonlinear vmas trying to age and unmap some.
1578 	 * The mapcount of the page we came in with is irrelevant,
1579 	 * but even so use it as a guide to how hard we should try?
1580 	 */
1581 	mapcount = page_mapcount(page);
1582 	if (!mapcount)
1583 		goto out;
1584 	cond_resched();
1585 
1586 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1587 	if (max_nl_cursor == 0)
1588 		max_nl_cursor = CLUSTER_SIZE;
1589 
1590 	do {
1591 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1592 							shared.nonlinear) {
1593 			cursor = (unsigned long) vma->vm_private_data;
1594 			while ( cursor < max_nl_cursor &&
1595 				cursor < vma->vm_end - vma->vm_start) {
1596 				if (try_to_unmap_cluster(cursor, &mapcount,
1597 						vma, page) == SWAP_MLOCK)
1598 					ret = SWAP_MLOCK;
1599 				cursor += CLUSTER_SIZE;
1600 				vma->vm_private_data = (void *) cursor;
1601 				if ((int)mapcount <= 0)
1602 					goto out;
1603 			}
1604 			vma->vm_private_data = (void *) max_nl_cursor;
1605 		}
1606 		cond_resched();
1607 		max_nl_cursor += CLUSTER_SIZE;
1608 	} while (max_nl_cursor <= max_nl_size);
1609 
1610 	/*
1611 	 * Don't loop forever (perhaps all the remaining pages are
1612 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1613 	 * vmas, now forgetting on which ones it had fallen behind.
1614 	 */
1615 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1616 		vma->vm_private_data = NULL;
1617 out:
1618 	mutex_unlock(&mapping->i_mmap_mutex);
1619 	return ret;
1620 }
1621 
1622 /**
1623  * try_to_unmap - try to remove all page table mappings to a page
1624  * @page: the page to get unmapped
1625  * @flags: action and flags
1626  *
1627  * Tries to remove all the page table entries which are mapping this
1628  * page, used in the pageout path.  Caller must hold the page lock.
1629  * Return values are:
1630  *
1631  * SWAP_SUCCESS	- we succeeded in removing all mappings
1632  * SWAP_AGAIN	- we missed a mapping, try again later
1633  * SWAP_FAIL	- the page is unswappable
1634  * SWAP_MLOCK	- page is mlocked.
1635  */
1636 int try_to_unmap(struct page *page, enum ttu_flags flags)
1637 {
1638 	int ret;
1639 
1640 	BUG_ON(!PageLocked(page));
1641 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1642 
1643 	if (unlikely(PageKsm(page)))
1644 		ret = try_to_unmap_ksm(page, flags);
1645 	else if (PageAnon(page))
1646 		ret = try_to_unmap_anon(page, flags);
1647 	else
1648 		ret = try_to_unmap_file(page, flags);
1649 	if (ret != SWAP_MLOCK && !page_mapped(page))
1650 		ret = SWAP_SUCCESS;
1651 	return ret;
1652 }
1653 
1654 /**
1655  * try_to_munlock - try to munlock a page
1656  * @page: the page to be munlocked
1657  *
1658  * Called from munlock code.  Checks all of the VMAs mapping the page
1659  * to make sure nobody else has this page mlocked. The page will be
1660  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1661  *
1662  * Return values are:
1663  *
1664  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1665  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1666  * SWAP_FAIL	- page cannot be located at present
1667  * SWAP_MLOCK	- page is now mlocked.
1668  */
1669 int try_to_munlock(struct page *page)
1670 {
1671 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1672 
1673 	if (unlikely(PageKsm(page)))
1674 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1675 	else if (PageAnon(page))
1676 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1677 	else
1678 		return try_to_unmap_file(page, TTU_MUNLOCK);
1679 }
1680 
1681 void __put_anon_vma(struct anon_vma *anon_vma)
1682 {
1683 	struct anon_vma *root = anon_vma->root;
1684 
1685 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1686 		anon_vma_free(root);
1687 
1688 	anon_vma_free(anon_vma);
1689 }
1690 
1691 #ifdef CONFIG_MIGRATION
1692 /*
1693  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1694  * Called by migrate.c to remove migration ptes, but might be used more later.
1695  */
1696 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1697 		struct vm_area_struct *, unsigned long, void *), void *arg)
1698 {
1699 	struct anon_vma *anon_vma;
1700 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1701 	struct anon_vma_chain *avc;
1702 	int ret = SWAP_AGAIN;
1703 
1704 	/*
1705 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1706 	 * because that depends on page_mapped(); but not all its usages
1707 	 * are holding mmap_sem. Users without mmap_sem are required to
1708 	 * take a reference count to prevent the anon_vma disappearing
1709 	 */
1710 	anon_vma = page_anon_vma(page);
1711 	if (!anon_vma)
1712 		return ret;
1713 	anon_vma_lock_read(anon_vma);
1714 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1715 		struct vm_area_struct *vma = avc->vma;
1716 		unsigned long address = vma_address(page, vma);
1717 		ret = rmap_one(page, vma, address, arg);
1718 		if (ret != SWAP_AGAIN)
1719 			break;
1720 	}
1721 	anon_vma_unlock_read(anon_vma);
1722 	return ret;
1723 }
1724 
1725 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1726 		struct vm_area_struct *, unsigned long, void *), void *arg)
1727 {
1728 	struct address_space *mapping = page->mapping;
1729 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1730 	struct vm_area_struct *vma;
1731 	int ret = SWAP_AGAIN;
1732 
1733 	if (!mapping)
1734 		return ret;
1735 	mutex_lock(&mapping->i_mmap_mutex);
1736 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1737 		unsigned long address = vma_address(page, vma);
1738 		ret = rmap_one(page, vma, address, arg);
1739 		if (ret != SWAP_AGAIN)
1740 			break;
1741 	}
1742 	/*
1743 	 * No nonlinear handling: being always shared, nonlinear vmas
1744 	 * never contain migration ptes.  Decide what to do about this
1745 	 * limitation to linear when we need rmap_walk() on nonlinear.
1746 	 */
1747 	mutex_unlock(&mapping->i_mmap_mutex);
1748 	return ret;
1749 }
1750 
1751 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1752 		struct vm_area_struct *, unsigned long, void *), void *arg)
1753 {
1754 	VM_BUG_ON(!PageLocked(page));
1755 
1756 	if (unlikely(PageKsm(page)))
1757 		return rmap_walk_ksm(page, rmap_one, arg);
1758 	else if (PageAnon(page))
1759 		return rmap_walk_anon(page, rmap_one, arg);
1760 	else
1761 		return rmap_walk_file(page, rmap_one, arg);
1762 }
1763 #endif /* CONFIG_MIGRATION */
1764 
1765 #ifdef CONFIG_HUGETLB_PAGE
1766 /*
1767  * The following three functions are for anonymous (private mapped) hugepages.
1768  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1769  * and no lru code, because we handle hugepages differently from common pages.
1770  */
1771 static void __hugepage_set_anon_rmap(struct page *page,
1772 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1773 {
1774 	struct anon_vma *anon_vma = vma->anon_vma;
1775 
1776 	BUG_ON(!anon_vma);
1777 
1778 	if (PageAnon(page))
1779 		return;
1780 	if (!exclusive)
1781 		anon_vma = anon_vma->root;
1782 
1783 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1784 	page->mapping = (struct address_space *) anon_vma;
1785 	page->index = linear_page_index(vma, address);
1786 }
1787 
1788 void hugepage_add_anon_rmap(struct page *page,
1789 			    struct vm_area_struct *vma, unsigned long address)
1790 {
1791 	struct anon_vma *anon_vma = vma->anon_vma;
1792 	int first;
1793 
1794 	BUG_ON(!PageLocked(page));
1795 	BUG_ON(!anon_vma);
1796 	/* address might be in next vma when migration races vma_adjust */
1797 	first = atomic_inc_and_test(&page->_mapcount);
1798 	if (first)
1799 		__hugepage_set_anon_rmap(page, vma, address, 0);
1800 }
1801 
1802 void hugepage_add_new_anon_rmap(struct page *page,
1803 			struct vm_area_struct *vma, unsigned long address)
1804 {
1805 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1806 	atomic_set(&page->_mapcount, 0);
1807 	__hugepage_set_anon_rmap(page, vma, address, 1);
1808 }
1809 #endif /* CONFIG_HUGETLB_PAGE */
1810