1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/leafops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 mmap_assert_locked(mm); 192 might_sleep(); 193 194 avc = anon_vma_chain_alloc(GFP_KERNEL); 195 if (!avc) 196 goto out_enomem; 197 198 anon_vma = find_mergeable_anon_vma(vma); 199 allocated = NULL; 200 if (!anon_vma) { 201 anon_vma = anon_vma_alloc(); 202 if (unlikely(!anon_vma)) 203 goto out_enomem_free_avc; 204 anon_vma->num_children++; /* self-parent link for new root */ 205 allocated = anon_vma; 206 } 207 208 anon_vma_lock_write(anon_vma); 209 /* page_table_lock to protect against threads */ 210 spin_lock(&mm->page_table_lock); 211 if (likely(!vma->anon_vma)) { 212 vma->anon_vma = anon_vma; 213 anon_vma_chain_link(vma, avc, anon_vma); 214 anon_vma->num_active_vmas++; 215 allocated = NULL; 216 avc = NULL; 217 } 218 spin_unlock(&mm->page_table_lock); 219 anon_vma_unlock_write(anon_vma); 220 221 if (unlikely(allocated)) 222 put_anon_vma(allocated); 223 if (unlikely(avc)) 224 anon_vma_chain_free(avc); 225 226 return 0; 227 228 out_enomem_free_avc: 229 anon_vma_chain_free(avc); 230 out_enomem: 231 return -ENOMEM; 232 } 233 234 /* 235 * This is a useful helper function for locking the anon_vma root as 236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 237 * have the same vma. 238 * 239 * Such anon_vma's should have the same root, so you'd expect to see 240 * just a single mutex_lock for the whole traversal. 241 */ 242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 243 { 244 struct anon_vma *new_root = anon_vma->root; 245 if (new_root != root) { 246 if (WARN_ON_ONCE(root)) 247 up_write(&root->rwsem); 248 root = new_root; 249 down_write(&root->rwsem); 250 } 251 return root; 252 } 253 254 static inline void unlock_anon_vma_root(struct anon_vma *root) 255 { 256 if (root) 257 up_write(&root->rwsem); 258 } 259 260 /* 261 * Attach the anon_vmas from src to dst. 262 * Returns 0 on success, -ENOMEM on failure. 263 * 264 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 265 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 266 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 267 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 268 * call, we can identify this case by checking (!dst->anon_vma && 269 * src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 319 * be incorrectly decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against folio_remove_rmap_*() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 * 492 * NOTE: the caller should hold folio lock when calling this. 493 */ 494 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 500 501 rcu_read_lock(); 502 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 503 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 504 goto out; 505 if (!folio_mapped(folio)) 506 goto out; 507 508 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 509 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 510 anon_vma = NULL; 511 goto out; 512 } 513 514 /* 515 * If this folio is still mapped, then its anon_vma cannot have been 516 * freed. But if it has been unmapped, we have no security against the 517 * anon_vma structure being freed and reused (for another anon_vma: 518 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 519 * above cannot corrupt). 520 */ 521 if (!folio_mapped(folio)) { 522 rcu_read_unlock(); 523 put_anon_vma(anon_vma); 524 return NULL; 525 } 526 out: 527 rcu_read_unlock(); 528 529 return anon_vma; 530 } 531 532 /* 533 * Similar to folio_get_anon_vma() except it locks the anon_vma. 534 * 535 * Its a little more complex as it tries to keep the fast path to a single 536 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 537 * reference like with folio_get_anon_vma() and then block on the mutex 538 * on !rwc->try_lock case. 539 */ 540 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 541 struct rmap_walk_control *rwc) 542 { 543 struct anon_vma *anon_vma = NULL; 544 struct anon_vma *root_anon_vma; 545 unsigned long anon_mapping; 546 547 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 548 549 rcu_read_lock(); 550 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 551 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 552 goto out; 553 if (!folio_mapped(folio)) 554 goto out; 555 556 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 557 root_anon_vma = READ_ONCE(anon_vma->root); 558 if (down_read_trylock(&root_anon_vma->rwsem)) { 559 /* 560 * If the folio is still mapped, then this anon_vma is still 561 * its anon_vma, and holding the mutex ensures that it will 562 * not go away, see anon_vma_free(). 563 */ 564 if (!folio_mapped(folio)) { 565 up_read(&root_anon_vma->rwsem); 566 anon_vma = NULL; 567 } 568 goto out; 569 } 570 571 if (rwc && rwc->try_lock) { 572 anon_vma = NULL; 573 rwc->contended = true; 574 goto out; 575 } 576 577 /* trylock failed, we got to sleep */ 578 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 579 anon_vma = NULL; 580 goto out; 581 } 582 583 if (!folio_mapped(folio)) { 584 rcu_read_unlock(); 585 put_anon_vma(anon_vma); 586 return NULL; 587 } 588 589 /* we pinned the anon_vma, its safe to sleep */ 590 rcu_read_unlock(); 591 anon_vma_lock_read(anon_vma); 592 593 if (atomic_dec_and_test(&anon_vma->refcount)) { 594 /* 595 * Oops, we held the last refcount, release the lock 596 * and bail -- can't simply use put_anon_vma() because 597 * we'll deadlock on the anon_vma_lock_write() recursion. 598 */ 599 anon_vma_unlock_read(anon_vma); 600 __put_anon_vma(anon_vma); 601 anon_vma = NULL; 602 } 603 604 return anon_vma; 605 606 out: 607 rcu_read_unlock(); 608 return anon_vma; 609 } 610 611 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 612 /* 613 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 614 * important if a PTE was dirty when it was unmapped that it's flushed 615 * before any IO is initiated on the page to prevent lost writes. Similarly, 616 * it must be flushed before freeing to prevent data leakage. 617 */ 618 void try_to_unmap_flush(void) 619 { 620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 621 622 if (!tlb_ubc->flush_required) 623 return; 624 625 arch_tlbbatch_flush(&tlb_ubc->arch); 626 tlb_ubc->flush_required = false; 627 tlb_ubc->writable = false; 628 } 629 630 /* Flush iff there are potentially writable TLB entries that can race with IO */ 631 void try_to_unmap_flush_dirty(void) 632 { 633 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 634 635 if (tlb_ubc->writable) 636 try_to_unmap_flush(); 637 } 638 639 /* 640 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 641 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 642 */ 643 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 644 #define TLB_FLUSH_BATCH_PENDING_MASK \ 645 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 646 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 647 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 648 649 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 650 unsigned long start, unsigned long end) 651 { 652 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 653 int batch; 654 bool writable = pte_dirty(pteval); 655 656 if (!pte_accessible(mm, pteval)) 657 return; 658 659 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 660 tlb_ubc->flush_required = true; 661 662 /* 663 * Ensure compiler does not re-order the setting of tlb_flush_batched 664 * before the PTE is cleared. 665 */ 666 barrier(); 667 batch = atomic_read(&mm->tlb_flush_batched); 668 retry: 669 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 670 /* 671 * Prevent `pending' from catching up with `flushed' because of 672 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 673 * `pending' becomes large. 674 */ 675 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 676 goto retry; 677 } else { 678 atomic_inc(&mm->tlb_flush_batched); 679 } 680 681 /* 682 * If the PTE was dirty then it's best to assume it's writable. The 683 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 684 * before the page is queued for IO. 685 */ 686 if (writable) 687 tlb_ubc->writable = true; 688 } 689 690 /* 691 * Returns true if the TLB flush should be deferred to the end of a batch of 692 * unmap operations to reduce IPIs. 693 */ 694 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 695 { 696 if (!(flags & TTU_BATCH_FLUSH)) 697 return false; 698 699 return arch_tlbbatch_should_defer(mm); 700 } 701 702 /* 703 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 704 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 705 * operation such as mprotect or munmap to race between reclaim unmapping 706 * the page and flushing the page. If this race occurs, it potentially allows 707 * access to data via a stale TLB entry. Tracking all mm's that have TLB 708 * batching in flight would be expensive during reclaim so instead track 709 * whether TLB batching occurred in the past and if so then do a flush here 710 * if required. This will cost one additional flush per reclaim cycle paid 711 * by the first operation at risk such as mprotect and mumap. 712 * 713 * This must be called under the PTL so that an access to tlb_flush_batched 714 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 715 * via the PTL. 716 */ 717 void flush_tlb_batched_pending(struct mm_struct *mm) 718 { 719 int batch = atomic_read(&mm->tlb_flush_batched); 720 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 721 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 722 723 if (pending != flushed) { 724 flush_tlb_mm(mm); 725 /* 726 * If the new TLB flushing is pending during flushing, leave 727 * mm->tlb_flush_batched as is, to avoid losing flushing. 728 */ 729 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 730 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 731 } 732 } 733 #else 734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 735 unsigned long start, unsigned long end) 736 { 737 } 738 739 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 740 { 741 return false; 742 } 743 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 744 745 /** 746 * page_address_in_vma - The virtual address of a page in this VMA. 747 * @folio: The folio containing the page. 748 * @page: The page within the folio. 749 * @vma: The VMA we need to know the address in. 750 * 751 * Calculates the user virtual address of this page in the specified VMA. 752 * It is the caller's responsibility to check the page is actually 753 * within the VMA. There may not currently be a PTE pointing at this 754 * page, but if a page fault occurs at this address, this is the page 755 * which will be accessed. 756 * 757 * Context: Caller should hold a reference to the folio. Caller should 758 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 759 * VMA from being altered. 760 * 761 * Return: The virtual address corresponding to this page in the VMA. 762 */ 763 unsigned long page_address_in_vma(const struct folio *folio, 764 const struct page *page, const struct vm_area_struct *vma) 765 { 766 if (folio_test_anon(folio)) { 767 struct anon_vma *anon_vma = folio_anon_vma(folio); 768 /* 769 * Note: swapoff's unuse_vma() is more efficient with this 770 * check, and needs it to match anon_vma when KSM is active. 771 */ 772 if (!vma->anon_vma || !anon_vma || 773 vma->anon_vma->root != anon_vma->root) 774 return -EFAULT; 775 } else if (!vma->vm_file) { 776 return -EFAULT; 777 } else if (vma->vm_file->f_mapping != folio->mapping) { 778 return -EFAULT; 779 } 780 781 /* KSM folios don't reach here because of the !anon_vma check */ 782 return vma_address(vma, page_pgoff(folio, page), 1); 783 } 784 785 /* 786 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 787 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 788 * represents. 789 */ 790 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 791 { 792 pgd_t *pgd; 793 p4d_t *p4d; 794 pud_t *pud; 795 pmd_t *pmd = NULL; 796 797 pgd = pgd_offset(mm, address); 798 if (!pgd_present(*pgd)) 799 goto out; 800 801 p4d = p4d_offset(pgd, address); 802 if (!p4d_present(*p4d)) 803 goto out; 804 805 pud = pud_offset(p4d, address); 806 if (!pud_present(*pud)) 807 goto out; 808 809 pmd = pmd_offset(pud, address); 810 out: 811 return pmd; 812 } 813 814 struct folio_referenced_arg { 815 int mapcount; 816 int referenced; 817 vm_flags_t vm_flags; 818 struct mem_cgroup *memcg; 819 }; 820 821 /* 822 * arg: folio_referenced_arg will be passed 823 */ 824 static bool folio_referenced_one(struct folio *folio, 825 struct vm_area_struct *vma, unsigned long address, void *arg) 826 { 827 struct folio_referenced_arg *pra = arg; 828 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 829 int ptes = 0, referenced = 0; 830 831 while (page_vma_mapped_walk(&pvmw)) { 832 address = pvmw.address; 833 834 if (vma->vm_flags & VM_LOCKED) { 835 ptes++; 836 pra->mapcount--; 837 838 /* Only mlock fully mapped pages */ 839 if (pvmw.pte && ptes != pvmw.nr_pages) 840 continue; 841 842 /* 843 * All PTEs must be protected by page table lock in 844 * order to mlock the page. 845 * 846 * If page table boundary has been cross, current ptl 847 * only protect part of ptes. 848 */ 849 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 850 continue; 851 852 /* Restore the mlock which got missed */ 853 mlock_vma_folio(folio, vma); 854 page_vma_mapped_walk_done(&pvmw); 855 pra->vm_flags |= VM_LOCKED; 856 return false; /* To break the loop */ 857 } 858 859 /* 860 * Skip the non-shared swapbacked folio mapped solely by 861 * the exiting or OOM-reaped process. This avoids redundant 862 * swap-out followed by an immediate unmap. 863 */ 864 if ((!atomic_read(&vma->vm_mm->mm_users) || 865 check_stable_address_space(vma->vm_mm)) && 866 folio_test_anon(folio) && folio_test_swapbacked(folio) && 867 !folio_maybe_mapped_shared(folio)) { 868 pra->referenced = -1; 869 page_vma_mapped_walk_done(&pvmw); 870 return false; 871 } 872 873 if (lru_gen_enabled() && pvmw.pte) { 874 if (lru_gen_look_around(&pvmw)) 875 referenced++; 876 } else if (pvmw.pte) { 877 if (ptep_clear_flush_young_notify(vma, address, 878 pvmw.pte)) 879 referenced++; 880 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 881 if (pmdp_clear_flush_young_notify(vma, address, 882 pvmw.pmd)) 883 referenced++; 884 } else { 885 /* unexpected pmd-mapped folio? */ 886 WARN_ON_ONCE(1); 887 } 888 889 pra->mapcount--; 890 } 891 892 if (referenced) 893 folio_clear_idle(folio); 894 if (folio_test_clear_young(folio)) 895 referenced++; 896 897 if (referenced) { 898 pra->referenced++; 899 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 900 } 901 902 if (!pra->mapcount) 903 return false; /* To break the loop */ 904 905 return true; 906 } 907 908 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 909 { 910 struct folio_referenced_arg *pra = arg; 911 struct mem_cgroup *memcg = pra->memcg; 912 913 /* 914 * Ignore references from this mapping if it has no recency. If the 915 * folio has been used in another mapping, we will catch it; if this 916 * other mapping is already gone, the unmap path will have set the 917 * referenced flag or activated the folio in zap_pte_range(). 918 */ 919 if (!vma_has_recency(vma)) 920 return true; 921 922 /* 923 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 924 * of references from different cgroups. 925 */ 926 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 927 return true; 928 929 return false; 930 } 931 932 /** 933 * folio_referenced() - Test if the folio was referenced. 934 * @folio: The folio to test. 935 * @is_locked: Caller holds lock on the folio. 936 * @memcg: target memory cgroup 937 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 938 * 939 * Quick test_and_clear_referenced for all mappings of a folio, 940 * 941 * Return: The number of mappings which referenced the folio. Return -1 if 942 * the function bailed out due to rmap lock contention. 943 */ 944 int folio_referenced(struct folio *folio, int is_locked, 945 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 946 { 947 bool we_locked = false; 948 struct folio_referenced_arg pra = { 949 .mapcount = folio_mapcount(folio), 950 .memcg = memcg, 951 }; 952 struct rmap_walk_control rwc = { 953 .rmap_one = folio_referenced_one, 954 .arg = (void *)&pra, 955 .anon_lock = folio_lock_anon_vma_read, 956 .try_lock = true, 957 .invalid_vma = invalid_folio_referenced_vma, 958 }; 959 960 *vm_flags = 0; 961 if (!pra.mapcount) 962 return 0; 963 964 if (!folio_raw_mapping(folio)) 965 return 0; 966 967 if (!is_locked) { 968 we_locked = folio_trylock(folio); 969 if (!we_locked) 970 return 1; 971 } 972 973 rmap_walk(folio, &rwc); 974 *vm_flags = pra.vm_flags; 975 976 if (we_locked) 977 folio_unlock(folio); 978 979 return rwc.contended ? -1 : pra.referenced; 980 } 981 982 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 983 { 984 int cleaned = 0; 985 struct vm_area_struct *vma = pvmw->vma; 986 struct mmu_notifier_range range; 987 unsigned long address = pvmw->address; 988 989 /* 990 * We have to assume the worse case ie pmd for invalidation. Note that 991 * the folio can not be freed from this function. 992 */ 993 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 994 vma->vm_mm, address, vma_address_end(pvmw)); 995 mmu_notifier_invalidate_range_start(&range); 996 997 while (page_vma_mapped_walk(pvmw)) { 998 int ret = 0; 999 1000 address = pvmw->address; 1001 if (pvmw->pte) { 1002 pte_t *pte = pvmw->pte; 1003 pte_t entry = ptep_get(pte); 1004 1005 /* 1006 * PFN swap PTEs, such as device-exclusive ones, that 1007 * actually map pages are clean and not writable from a 1008 * CPU perspective. The MMU notifier takes care of any 1009 * device aspects. 1010 */ 1011 if (!pte_present(entry)) 1012 continue; 1013 if (!pte_dirty(entry) && !pte_write(entry)) 1014 continue; 1015 1016 flush_cache_page(vma, address, pte_pfn(entry)); 1017 entry = ptep_clear_flush(vma, address, pte); 1018 entry = pte_wrprotect(entry); 1019 entry = pte_mkclean(entry); 1020 set_pte_at(vma->vm_mm, address, pte, entry); 1021 ret = 1; 1022 } else { 1023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1024 pmd_t *pmd = pvmw->pmd; 1025 pmd_t entry = pmdp_get(pmd); 1026 1027 /* 1028 * Please see the comment above (!pte_present). 1029 * A non present PMD is not writable from a CPU 1030 * perspective. 1031 */ 1032 if (!pmd_present(entry)) 1033 continue; 1034 if (!pmd_dirty(entry) && !pmd_write(entry)) 1035 continue; 1036 1037 flush_cache_range(vma, address, 1038 address + HPAGE_PMD_SIZE); 1039 entry = pmdp_invalidate(vma, address, pmd); 1040 entry = pmd_wrprotect(entry); 1041 entry = pmd_mkclean(entry); 1042 set_pmd_at(vma->vm_mm, address, pmd, entry); 1043 ret = 1; 1044 #else 1045 /* unexpected pmd-mapped folio? */ 1046 WARN_ON_ONCE(1); 1047 #endif 1048 } 1049 1050 if (ret) 1051 cleaned++; 1052 } 1053 1054 mmu_notifier_invalidate_range_end(&range); 1055 1056 return cleaned; 1057 } 1058 1059 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1060 unsigned long address, void *arg) 1061 { 1062 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1063 int *cleaned = arg; 1064 1065 *cleaned += page_vma_mkclean_one(&pvmw); 1066 1067 return true; 1068 } 1069 1070 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1071 { 1072 if (vma->vm_flags & VM_SHARED) 1073 return false; 1074 1075 return true; 1076 } 1077 1078 int folio_mkclean(struct folio *folio) 1079 { 1080 int cleaned = 0; 1081 struct address_space *mapping; 1082 struct rmap_walk_control rwc = { 1083 .arg = (void *)&cleaned, 1084 .rmap_one = page_mkclean_one, 1085 .invalid_vma = invalid_mkclean_vma, 1086 }; 1087 1088 BUG_ON(!folio_test_locked(folio)); 1089 1090 if (!folio_mapped(folio)) 1091 return 0; 1092 1093 mapping = folio_mapping(folio); 1094 if (!mapping) 1095 return 0; 1096 1097 rmap_walk(folio, &rwc); 1098 1099 return cleaned; 1100 } 1101 EXPORT_SYMBOL_GPL(folio_mkclean); 1102 1103 struct wrprotect_file_state { 1104 int cleaned; 1105 pgoff_t pgoff; 1106 unsigned long pfn; 1107 unsigned long nr_pages; 1108 }; 1109 1110 static bool mapping_wrprotect_range_one(struct folio *folio, 1111 struct vm_area_struct *vma, unsigned long address, void *arg) 1112 { 1113 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1114 struct page_vma_mapped_walk pvmw = { 1115 .pfn = state->pfn, 1116 .nr_pages = state->nr_pages, 1117 .pgoff = state->pgoff, 1118 .vma = vma, 1119 .address = address, 1120 .flags = PVMW_SYNC, 1121 }; 1122 1123 state->cleaned += page_vma_mkclean_one(&pvmw); 1124 1125 return true; 1126 } 1127 1128 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1129 pgoff_t pgoff_start, unsigned long nr_pages, 1130 struct rmap_walk_control *rwc, bool locked); 1131 1132 /** 1133 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1134 * 1135 * @mapping: The mapping whose reverse mapping should be traversed. 1136 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1137 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1138 * @nr_pages: The number of physically contiguous base pages spanned. 1139 * 1140 * Traverses the reverse mapping, finding all VMAs which contain a shared 1141 * mapping of the pages in the specified range in @mapping, and write-protects 1142 * them (that is, updates the page tables to mark the mappings read-only such 1143 * that a write protection fault arises when the mappings are written to). 1144 * 1145 * The @pfn value need not refer to a folio, but rather can reference a kernel 1146 * allocation which is mapped into userland. We therefore do not require that 1147 * the page maps to a folio with a valid mapping or index field, rather the 1148 * caller specifies these in @mapping and @pgoff. 1149 * 1150 * Return: the number of write-protected PTEs, or an error. 1151 */ 1152 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1153 unsigned long pfn, unsigned long nr_pages) 1154 { 1155 struct wrprotect_file_state state = { 1156 .cleaned = 0, 1157 .pgoff = pgoff, 1158 .pfn = pfn, 1159 .nr_pages = nr_pages, 1160 }; 1161 struct rmap_walk_control rwc = { 1162 .arg = (void *)&state, 1163 .rmap_one = mapping_wrprotect_range_one, 1164 .invalid_vma = invalid_mkclean_vma, 1165 }; 1166 1167 if (!mapping) 1168 return 0; 1169 1170 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1171 /* locked = */false); 1172 1173 return state.cleaned; 1174 } 1175 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1176 1177 /** 1178 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1179 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1180 * within the @vma of shared mappings. And since clean PTEs 1181 * should also be readonly, write protects them too. 1182 * @pfn: start pfn. 1183 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1184 * @pgoff: page offset that the @pfn mapped with. 1185 * @vma: vma that @pfn mapped within. 1186 * 1187 * Returns the number of cleaned PTEs (including PMDs). 1188 */ 1189 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1190 struct vm_area_struct *vma) 1191 { 1192 struct page_vma_mapped_walk pvmw = { 1193 .pfn = pfn, 1194 .nr_pages = nr_pages, 1195 .pgoff = pgoff, 1196 .vma = vma, 1197 .flags = PVMW_SYNC, 1198 }; 1199 1200 if (invalid_mkclean_vma(vma, NULL)) 1201 return 0; 1202 1203 pvmw.address = vma_address(vma, pgoff, nr_pages); 1204 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1205 1206 return page_vma_mkclean_one(&pvmw); 1207 } 1208 1209 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1210 { 1211 int idx; 1212 1213 if (nr) { 1214 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1215 lruvec_stat_mod_folio(folio, idx, nr); 1216 } 1217 if (nr_pmdmapped) { 1218 if (folio_test_anon(folio)) { 1219 idx = NR_ANON_THPS; 1220 lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1221 } else { 1222 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1223 idx = folio_test_swapbacked(folio) ? 1224 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1225 __mod_node_page_state(folio_pgdat(folio), idx, 1226 nr_pmdmapped); 1227 } 1228 } 1229 } 1230 1231 static __always_inline void __folio_add_rmap(struct folio *folio, 1232 struct page *page, int nr_pages, struct vm_area_struct *vma, 1233 enum pgtable_level level) 1234 { 1235 atomic_t *mapped = &folio->_nr_pages_mapped; 1236 const int orig_nr_pages = nr_pages; 1237 int first = 0, nr = 0, nr_pmdmapped = 0; 1238 1239 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1240 1241 switch (level) { 1242 case PGTABLE_LEVEL_PTE: 1243 if (!folio_test_large(folio)) { 1244 nr = atomic_inc_and_test(&folio->_mapcount); 1245 break; 1246 } 1247 1248 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1249 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1250 if (nr == orig_nr_pages) 1251 /* Was completely unmapped. */ 1252 nr = folio_large_nr_pages(folio); 1253 else 1254 nr = 0; 1255 break; 1256 } 1257 1258 do { 1259 first += atomic_inc_and_test(&page->_mapcount); 1260 } while (page++, --nr_pages > 0); 1261 1262 if (first && 1263 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1264 nr = first; 1265 1266 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1267 break; 1268 case PGTABLE_LEVEL_PMD: 1269 case PGTABLE_LEVEL_PUD: 1270 first = atomic_inc_and_test(&folio->_entire_mapcount); 1271 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1272 if (level == PGTABLE_LEVEL_PMD && first) 1273 nr_pmdmapped = folio_large_nr_pages(folio); 1274 nr = folio_inc_return_large_mapcount(folio, vma); 1275 if (nr == 1) 1276 /* Was completely unmapped. */ 1277 nr = folio_large_nr_pages(folio); 1278 else 1279 nr = 0; 1280 break; 1281 } 1282 1283 if (first) { 1284 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1285 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1286 nr_pages = folio_large_nr_pages(folio); 1287 /* 1288 * We only track PMD mappings of PMD-sized 1289 * folios separately. 1290 */ 1291 if (level == PGTABLE_LEVEL_PMD) 1292 nr_pmdmapped = nr_pages; 1293 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1294 /* Raced ahead of a remove and another add? */ 1295 if (unlikely(nr < 0)) 1296 nr = 0; 1297 } else { 1298 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1299 nr = 0; 1300 } 1301 } 1302 folio_inc_large_mapcount(folio, vma); 1303 break; 1304 default: 1305 BUILD_BUG(); 1306 } 1307 __folio_mod_stat(folio, nr, nr_pmdmapped); 1308 } 1309 1310 /** 1311 * folio_move_anon_rmap - move a folio to our anon_vma 1312 * @folio: The folio to move to our anon_vma 1313 * @vma: The vma the folio belongs to 1314 * 1315 * When a folio belongs exclusively to one process after a COW event, 1316 * that folio can be moved into the anon_vma that belongs to just that 1317 * process, so the rmap code will not search the parent or sibling processes. 1318 */ 1319 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1320 { 1321 void *anon_vma = vma->anon_vma; 1322 1323 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1324 VM_BUG_ON_VMA(!anon_vma, vma); 1325 1326 anon_vma += FOLIO_MAPPING_ANON; 1327 /* 1328 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1329 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1330 * folio_test_anon()) will not see one without the other. 1331 */ 1332 WRITE_ONCE(folio->mapping, anon_vma); 1333 } 1334 1335 /** 1336 * __folio_set_anon - set up a new anonymous rmap for a folio 1337 * @folio: The folio to set up the new anonymous rmap for. 1338 * @vma: VM area to add the folio to. 1339 * @address: User virtual address of the mapping 1340 * @exclusive: Whether the folio is exclusive to the process. 1341 */ 1342 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1343 unsigned long address, bool exclusive) 1344 { 1345 struct anon_vma *anon_vma = vma->anon_vma; 1346 1347 BUG_ON(!anon_vma); 1348 1349 /* 1350 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1351 * possible anon_vma for the folio mapping! 1352 */ 1353 if (!exclusive) 1354 anon_vma = anon_vma->root; 1355 1356 /* 1357 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1358 * Make sure the compiler doesn't split the stores of anon_vma and 1359 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1360 * could mistake the mapping for a struct address_space and crash. 1361 */ 1362 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1363 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1364 folio->index = linear_page_index(vma, address); 1365 } 1366 1367 /** 1368 * __page_check_anon_rmap - sanity check anonymous rmap addition 1369 * @folio: The folio containing @page. 1370 * @page: the page to check the mapping of 1371 * @vma: the vm area in which the mapping is added 1372 * @address: the user virtual address mapped 1373 */ 1374 static void __page_check_anon_rmap(const struct folio *folio, 1375 const struct page *page, struct vm_area_struct *vma, 1376 unsigned long address) 1377 { 1378 /* 1379 * The page's anon-rmap details (mapping and index) are guaranteed to 1380 * be set up correctly at this point. 1381 * 1382 * We have exclusion against folio_add_anon_rmap_*() because the caller 1383 * always holds the page locked. 1384 * 1385 * We have exclusion against folio_add_new_anon_rmap because those pages 1386 * are initially only visible via the pagetables, and the pte is locked 1387 * over the call to folio_add_new_anon_rmap. 1388 */ 1389 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1390 folio); 1391 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1392 page); 1393 } 1394 1395 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1396 struct page *page, int nr_pages, struct vm_area_struct *vma, 1397 unsigned long address, rmap_t flags, enum pgtable_level level) 1398 { 1399 int i; 1400 1401 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1402 1403 __folio_add_rmap(folio, page, nr_pages, vma, level); 1404 1405 if (likely(!folio_test_ksm(folio))) 1406 __page_check_anon_rmap(folio, page, vma, address); 1407 1408 if (flags & RMAP_EXCLUSIVE) { 1409 switch (level) { 1410 case PGTABLE_LEVEL_PTE: 1411 for (i = 0; i < nr_pages; i++) 1412 SetPageAnonExclusive(page + i); 1413 break; 1414 case PGTABLE_LEVEL_PMD: 1415 SetPageAnonExclusive(page); 1416 break; 1417 case PGTABLE_LEVEL_PUD: 1418 /* 1419 * Keep the compiler happy, we don't support anonymous 1420 * PUD mappings. 1421 */ 1422 WARN_ON_ONCE(1); 1423 break; 1424 default: 1425 BUILD_BUG(); 1426 } 1427 } 1428 1429 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1430 atomic_read(&folio->_mapcount) > 0, folio); 1431 for (i = 0; i < nr_pages; i++) { 1432 struct page *cur_page = page + i; 1433 1434 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1435 folio_entire_mapcount(folio) > 1 && 1436 PageAnonExclusive(cur_page), folio); 1437 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1438 continue; 1439 1440 /* 1441 * While PTE-mapping a THP we have a PMD and a PTE 1442 * mapping. 1443 */ 1444 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1445 PageAnonExclusive(cur_page), folio); 1446 } 1447 1448 /* 1449 * Only mlock it if the folio is fully mapped to the VMA. 1450 * 1451 * Partially mapped folios can be split on reclaim and part outside 1452 * of mlocked VMA can be evicted or freed. 1453 */ 1454 if (folio_nr_pages(folio) == nr_pages) 1455 mlock_vma_folio(folio, vma); 1456 } 1457 1458 /** 1459 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1460 * @folio: The folio to add the mappings to 1461 * @page: The first page to add 1462 * @nr_pages: The number of pages which will be mapped 1463 * @vma: The vm area in which the mappings are added 1464 * @address: The user virtual address of the first page to map 1465 * @flags: The rmap flags 1466 * 1467 * The page range of folio is defined by [first_page, first_page + nr_pages) 1468 * 1469 * The caller needs to hold the page table lock, and the page must be locked in 1470 * the anon_vma case: to serialize mapping,index checking after setting, 1471 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1472 * (but KSM folios are never downgraded). 1473 */ 1474 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1475 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1476 rmap_t flags) 1477 { 1478 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1479 PGTABLE_LEVEL_PTE); 1480 } 1481 1482 /** 1483 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1484 * @folio: The folio to add the mapping to 1485 * @page: The first page to add 1486 * @vma: The vm area in which the mapping is added 1487 * @address: The user virtual address of the first page to map 1488 * @flags: The rmap flags 1489 * 1490 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1491 * 1492 * The caller needs to hold the page table lock, and the page must be locked in 1493 * the anon_vma case: to serialize mapping,index checking after setting. 1494 */ 1495 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1496 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1497 { 1498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1499 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1500 PGTABLE_LEVEL_PMD); 1501 #else 1502 WARN_ON_ONCE(true); 1503 #endif 1504 } 1505 1506 /** 1507 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1508 * @folio: The folio to add the mapping to. 1509 * @vma: the vm area in which the mapping is added 1510 * @address: the user virtual address mapped 1511 * @flags: The rmap flags 1512 * 1513 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1514 * This means the inc-and-test can be bypassed. 1515 * The folio doesn't necessarily need to be locked while it's exclusive 1516 * unless two threads map it concurrently. However, the folio must be 1517 * locked if it's shared. 1518 * 1519 * If the folio is pmd-mappable, it is accounted as a THP. 1520 */ 1521 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1522 unsigned long address, rmap_t flags) 1523 { 1524 const bool exclusive = flags & RMAP_EXCLUSIVE; 1525 int nr = 1, nr_pmdmapped = 0; 1526 1527 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1528 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1529 1530 /* 1531 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1532 * under memory pressure. 1533 */ 1534 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1535 __folio_set_swapbacked(folio); 1536 __folio_set_anon(folio, vma, address, exclusive); 1537 1538 if (likely(!folio_test_large(folio))) { 1539 /* increment count (starts at -1) */ 1540 atomic_set(&folio->_mapcount, 0); 1541 if (exclusive) 1542 SetPageAnonExclusive(&folio->page); 1543 } else if (!folio_test_pmd_mappable(folio)) { 1544 int i; 1545 1546 nr = folio_large_nr_pages(folio); 1547 for (i = 0; i < nr; i++) { 1548 struct page *page = folio_page(folio, i); 1549 1550 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1551 /* increment count (starts at -1) */ 1552 atomic_set(&page->_mapcount, 0); 1553 if (exclusive) 1554 SetPageAnonExclusive(page); 1555 } 1556 1557 folio_set_large_mapcount(folio, nr, vma); 1558 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1559 atomic_set(&folio->_nr_pages_mapped, nr); 1560 } else { 1561 nr = folio_large_nr_pages(folio); 1562 /* increment count (starts at -1) */ 1563 atomic_set(&folio->_entire_mapcount, 0); 1564 folio_set_large_mapcount(folio, 1, vma); 1565 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1566 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1567 if (exclusive) 1568 SetPageAnonExclusive(&folio->page); 1569 nr_pmdmapped = nr; 1570 } 1571 1572 VM_WARN_ON_ONCE(address < vma->vm_start || 1573 address + (nr << PAGE_SHIFT) > vma->vm_end); 1574 1575 __folio_mod_stat(folio, nr, nr_pmdmapped); 1576 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1577 } 1578 1579 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1580 struct page *page, int nr_pages, struct vm_area_struct *vma, 1581 enum pgtable_level level) 1582 { 1583 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1584 1585 __folio_add_rmap(folio, page, nr_pages, vma, level); 1586 1587 /* 1588 * Only mlock it if the folio is fully mapped to the VMA. 1589 * 1590 * Partially mapped folios can be split on reclaim and part outside 1591 * of mlocked VMA can be evicted or freed. 1592 */ 1593 if (folio_nr_pages(folio) == nr_pages) 1594 mlock_vma_folio(folio, vma); 1595 } 1596 1597 /** 1598 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1599 * @folio: The folio to add the mappings to 1600 * @page: The first page to add 1601 * @nr_pages: The number of pages that will be mapped using PTEs 1602 * @vma: The vm area in which the mappings are added 1603 * 1604 * The page range of the folio is defined by [page, page + nr_pages) 1605 * 1606 * The caller needs to hold the page table lock. 1607 */ 1608 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1609 int nr_pages, struct vm_area_struct *vma) 1610 { 1611 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1612 } 1613 1614 /** 1615 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1616 * @folio: The folio to add the mapping to 1617 * @page: The first page to add 1618 * @vma: The vm area in which the mapping is added 1619 * 1620 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1621 * 1622 * The caller needs to hold the page table lock. 1623 */ 1624 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1625 struct vm_area_struct *vma) 1626 { 1627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1628 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1629 #else 1630 WARN_ON_ONCE(true); 1631 #endif 1632 } 1633 1634 /** 1635 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1636 * @folio: The folio to add the mapping to 1637 * @page: The first page to add 1638 * @vma: The vm area in which the mapping is added 1639 * 1640 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1641 * 1642 * The caller needs to hold the page table lock. 1643 */ 1644 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1645 struct vm_area_struct *vma) 1646 { 1647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1648 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1649 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1650 #else 1651 WARN_ON_ONCE(true); 1652 #endif 1653 } 1654 1655 static __always_inline void __folio_remove_rmap(struct folio *folio, 1656 struct page *page, int nr_pages, struct vm_area_struct *vma, 1657 enum pgtable_level level) 1658 { 1659 atomic_t *mapped = &folio->_nr_pages_mapped; 1660 int last = 0, nr = 0, nr_pmdmapped = 0; 1661 bool partially_mapped = false; 1662 1663 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1664 1665 switch (level) { 1666 case PGTABLE_LEVEL_PTE: 1667 if (!folio_test_large(folio)) { 1668 nr = atomic_add_negative(-1, &folio->_mapcount); 1669 break; 1670 } 1671 1672 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1673 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1674 if (!nr) { 1675 /* Now completely unmapped. */ 1676 nr = folio_large_nr_pages(folio); 1677 } else { 1678 partially_mapped = nr < folio_large_nr_pages(folio) && 1679 !folio_entire_mapcount(folio); 1680 nr = 0; 1681 } 1682 break; 1683 } 1684 1685 folio_sub_large_mapcount(folio, nr_pages, vma); 1686 do { 1687 last += atomic_add_negative(-1, &page->_mapcount); 1688 } while (page++, --nr_pages > 0); 1689 1690 if (last && 1691 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1692 nr = last; 1693 1694 partially_mapped = nr && atomic_read(mapped); 1695 break; 1696 case PGTABLE_LEVEL_PMD: 1697 case PGTABLE_LEVEL_PUD: 1698 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1699 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1700 if (level == PGTABLE_LEVEL_PMD && last) 1701 nr_pmdmapped = folio_large_nr_pages(folio); 1702 nr = folio_dec_return_large_mapcount(folio, vma); 1703 if (!nr) { 1704 /* Now completely unmapped. */ 1705 nr = folio_large_nr_pages(folio); 1706 } else { 1707 partially_mapped = last && 1708 nr < folio_large_nr_pages(folio); 1709 nr = 0; 1710 } 1711 break; 1712 } 1713 1714 folio_dec_large_mapcount(folio, vma); 1715 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1716 if (last) { 1717 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1718 if (likely(nr < ENTIRELY_MAPPED)) { 1719 nr_pages = folio_large_nr_pages(folio); 1720 if (level == PGTABLE_LEVEL_PMD) 1721 nr_pmdmapped = nr_pages; 1722 nr = nr_pages - nr; 1723 /* Raced ahead of another remove and an add? */ 1724 if (unlikely(nr < 0)) 1725 nr = 0; 1726 } else { 1727 /* An add of ENTIRELY_MAPPED raced ahead */ 1728 nr = 0; 1729 } 1730 } 1731 1732 partially_mapped = nr && nr < nr_pmdmapped; 1733 break; 1734 default: 1735 BUILD_BUG(); 1736 } 1737 1738 /* 1739 * Queue anon large folio for deferred split if at least one page of 1740 * the folio is unmapped and at least one page is still mapped. 1741 * 1742 * Check partially_mapped first to ensure it is a large folio. 1743 * 1744 * Device private folios do not support deferred splitting and 1745 * shrinker based scanning of the folios to free. 1746 */ 1747 if (partially_mapped && folio_test_anon(folio) && 1748 !folio_test_partially_mapped(folio) && 1749 !folio_is_device_private(folio)) 1750 deferred_split_folio(folio, true); 1751 1752 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1753 1754 /* 1755 * It would be tidy to reset folio_test_anon mapping when fully 1756 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1757 * which increments mapcount after us but sets mapping before us: 1758 * so leave the reset to free_pages_prepare, and remember that 1759 * it's only reliable while mapped. 1760 */ 1761 1762 munlock_vma_folio(folio, vma); 1763 } 1764 1765 /** 1766 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1767 * @folio: The folio to remove the mappings from 1768 * @page: The first page to remove 1769 * @nr_pages: The number of pages that will be removed from the mapping 1770 * @vma: The vm area from which the mappings are removed 1771 * 1772 * The page range of the folio is defined by [page, page + nr_pages) 1773 * 1774 * The caller needs to hold the page table lock. 1775 */ 1776 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1777 int nr_pages, struct vm_area_struct *vma) 1778 { 1779 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1780 } 1781 1782 /** 1783 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1784 * @folio: The folio to remove the mapping from 1785 * @page: The first page to remove 1786 * @vma: The vm area from which the mapping is removed 1787 * 1788 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1789 * 1790 * The caller needs to hold the page table lock. 1791 */ 1792 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1793 struct vm_area_struct *vma) 1794 { 1795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1796 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1797 #else 1798 WARN_ON_ONCE(true); 1799 #endif 1800 } 1801 1802 /** 1803 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1804 * @folio: The folio to remove the mapping from 1805 * @page: The first page to remove 1806 * @vma: The vm area from which the mapping is removed 1807 * 1808 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1809 * 1810 * The caller needs to hold the page table lock. 1811 */ 1812 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1813 struct vm_area_struct *vma) 1814 { 1815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1816 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1817 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1818 #else 1819 WARN_ON_ONCE(true); 1820 #endif 1821 } 1822 1823 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1824 struct page_vma_mapped_walk *pvmw, 1825 enum ttu_flags flags, pte_t pte) 1826 { 1827 unsigned long end_addr, addr = pvmw->address; 1828 struct vm_area_struct *vma = pvmw->vma; 1829 unsigned int max_nr; 1830 1831 if (flags & TTU_HWPOISON) 1832 return 1; 1833 if (!folio_test_large(folio)) 1834 return 1; 1835 1836 /* We may only batch within a single VMA and a single page table. */ 1837 end_addr = pmd_addr_end(addr, vma->vm_end); 1838 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1839 1840 /* We only support lazyfree batching for now ... */ 1841 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1842 return 1; 1843 if (pte_unused(pte)) 1844 return 1; 1845 1846 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1847 } 1848 1849 /* 1850 * @arg: enum ttu_flags will be passed to this argument 1851 */ 1852 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1853 unsigned long address, void *arg) 1854 { 1855 struct mm_struct *mm = vma->vm_mm; 1856 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1857 bool anon_exclusive, ret = true; 1858 pte_t pteval; 1859 struct page *subpage; 1860 struct mmu_notifier_range range; 1861 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1862 unsigned long nr_pages = 1, end_addr; 1863 unsigned long pfn; 1864 unsigned long hsz = 0; 1865 int ptes = 0; 1866 1867 /* 1868 * When racing against e.g. zap_pte_range() on another cpu, 1869 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1870 * try_to_unmap() may return before page_mapped() has become false, 1871 * if page table locking is skipped: use TTU_SYNC to wait for that. 1872 */ 1873 if (flags & TTU_SYNC) 1874 pvmw.flags = PVMW_SYNC; 1875 1876 /* 1877 * For THP, we have to assume the worse case ie pmd for invalidation. 1878 * For hugetlb, it could be much worse if we need to do pud 1879 * invalidation in the case of pmd sharing. 1880 * 1881 * Note that the folio can not be freed in this function as call of 1882 * try_to_unmap() must hold a reference on the folio. 1883 */ 1884 range.end = vma_address_end(&pvmw); 1885 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1886 address, range.end); 1887 if (folio_test_hugetlb(folio)) { 1888 /* 1889 * If sharing is possible, start and end will be adjusted 1890 * accordingly. 1891 */ 1892 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1893 &range.end); 1894 1895 /* We need the huge page size for set_huge_pte_at() */ 1896 hsz = huge_page_size(hstate_vma(vma)); 1897 } 1898 mmu_notifier_invalidate_range_start(&range); 1899 1900 while (page_vma_mapped_walk(&pvmw)) { 1901 /* 1902 * If the folio is in an mlock()d vma, we must not swap it out. 1903 */ 1904 if (!(flags & TTU_IGNORE_MLOCK) && 1905 (vma->vm_flags & VM_LOCKED)) { 1906 ptes++; 1907 1908 /* 1909 * Set 'ret' to indicate the page cannot be unmapped. 1910 * 1911 * Do not jump to walk_abort immediately as additional 1912 * iteration might be required to detect fully mapped 1913 * folio an mlock it. 1914 */ 1915 ret = false; 1916 1917 /* Only mlock fully mapped pages */ 1918 if (pvmw.pte && ptes != pvmw.nr_pages) 1919 continue; 1920 1921 /* 1922 * All PTEs must be protected by page table lock in 1923 * order to mlock the page. 1924 * 1925 * If page table boundary has been cross, current ptl 1926 * only protect part of ptes. 1927 */ 1928 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 1929 goto walk_done; 1930 1931 /* Restore the mlock which got missed */ 1932 mlock_vma_folio(folio, vma); 1933 goto walk_done; 1934 } 1935 1936 if (!pvmw.pte) { 1937 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1938 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1939 goto walk_done; 1940 /* 1941 * unmap_huge_pmd_locked has either already marked 1942 * the folio as swap-backed or decided to retain it 1943 * due to GUP or speculative references. 1944 */ 1945 goto walk_abort; 1946 } 1947 1948 if (flags & TTU_SPLIT_HUGE_PMD) { 1949 /* 1950 * We temporarily have to drop the PTL and 1951 * restart so we can process the PTE-mapped THP. 1952 */ 1953 split_huge_pmd_locked(vma, pvmw.address, 1954 pvmw.pmd, false); 1955 flags &= ~TTU_SPLIT_HUGE_PMD; 1956 page_vma_mapped_walk_restart(&pvmw); 1957 continue; 1958 } 1959 } 1960 1961 /* Unexpected PMD-mapped THP? */ 1962 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1963 1964 /* 1965 * Handle PFN swap PTEs, such as device-exclusive ones, that 1966 * actually map pages. 1967 */ 1968 pteval = ptep_get(pvmw.pte); 1969 if (likely(pte_present(pteval))) { 1970 pfn = pte_pfn(pteval); 1971 } else { 1972 const softleaf_t entry = softleaf_from_pte(pteval); 1973 1974 pfn = softleaf_to_pfn(entry); 1975 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1976 } 1977 1978 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1979 address = pvmw.address; 1980 anon_exclusive = folio_test_anon(folio) && 1981 PageAnonExclusive(subpage); 1982 1983 if (folio_test_hugetlb(folio)) { 1984 bool anon = folio_test_anon(folio); 1985 1986 /* 1987 * The try_to_unmap() is only passed a hugetlb page 1988 * in the case where the hugetlb page is poisoned. 1989 */ 1990 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1991 /* 1992 * huge_pmd_unshare may unmap an entire PMD page. 1993 * There is no way of knowing exactly which PMDs may 1994 * be cached for this mm, so we must flush them all. 1995 * start/end were already adjusted above to cover this 1996 * range. 1997 */ 1998 flush_cache_range(vma, range.start, range.end); 1999 2000 /* 2001 * To call huge_pmd_unshare, i_mmap_rwsem must be 2002 * held in write mode. Caller needs to explicitly 2003 * do this outside rmap routines. 2004 * 2005 * We also must hold hugetlb vma_lock in write mode. 2006 * Lock order dictates acquiring vma_lock BEFORE 2007 * i_mmap_rwsem. We can only try lock here and fail 2008 * if unsuccessful. 2009 */ 2010 if (!anon) { 2011 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2012 if (!hugetlb_vma_trylock_write(vma)) 2013 goto walk_abort; 2014 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2015 hugetlb_vma_unlock_write(vma); 2016 flush_tlb_range(vma, 2017 range.start, range.end); 2018 /* 2019 * The ref count of the PMD page was 2020 * dropped which is part of the way map 2021 * counting is done for shared PMDs. 2022 * Return 'true' here. When there is 2023 * no other sharing, huge_pmd_unshare 2024 * returns false and we will unmap the 2025 * actual page and drop map count 2026 * to zero. 2027 */ 2028 goto walk_done; 2029 } 2030 hugetlb_vma_unlock_write(vma); 2031 } 2032 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2033 if (pte_dirty(pteval)) 2034 folio_mark_dirty(folio); 2035 } else if (likely(pte_present(pteval))) { 2036 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2037 end_addr = address + nr_pages * PAGE_SIZE; 2038 flush_cache_range(vma, address, end_addr); 2039 2040 /* Nuke the page table entry. */ 2041 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); 2042 /* 2043 * We clear the PTE but do not flush so potentially 2044 * a remote CPU could still be writing to the folio. 2045 * If the entry was previously clean then the 2046 * architecture must guarantee that a clear->dirty 2047 * transition on a cached TLB entry is written through 2048 * and traps if the PTE is unmapped. 2049 */ 2050 if (should_defer_flush(mm, flags)) 2051 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2052 else 2053 flush_tlb_range(vma, address, end_addr); 2054 if (pte_dirty(pteval)) 2055 folio_mark_dirty(folio); 2056 } else { 2057 pte_clear(mm, address, pvmw.pte); 2058 } 2059 2060 /* 2061 * Now the pte is cleared. If this pte was uffd-wp armed, 2062 * we may want to replace a none pte with a marker pte if 2063 * it's file-backed, so we don't lose the tracking info. 2064 */ 2065 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2066 2067 /* Update high watermark before we lower rss */ 2068 update_hiwater_rss(mm); 2069 2070 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2071 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2072 if (folio_test_hugetlb(folio)) { 2073 hugetlb_count_sub(folio_nr_pages(folio), mm); 2074 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2075 hsz); 2076 } else { 2077 dec_mm_counter(mm, mm_counter(folio)); 2078 set_pte_at(mm, address, pvmw.pte, pteval); 2079 } 2080 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2081 !userfaultfd_armed(vma)) { 2082 /* 2083 * The guest indicated that the page content is of no 2084 * interest anymore. Simply discard the pte, vmscan 2085 * will take care of the rest. 2086 * A future reference will then fault in a new zero 2087 * page. When userfaultfd is active, we must not drop 2088 * this page though, as its main user (postcopy 2089 * migration) will not expect userfaults on already 2090 * copied pages. 2091 */ 2092 dec_mm_counter(mm, mm_counter(folio)); 2093 } else if (folio_test_anon(folio)) { 2094 swp_entry_t entry = page_swap_entry(subpage); 2095 pte_t swp_pte; 2096 /* 2097 * Store the swap location in the pte. 2098 * See handle_pte_fault() ... 2099 */ 2100 if (unlikely(folio_test_swapbacked(folio) != 2101 folio_test_swapcache(folio))) { 2102 WARN_ON_ONCE(1); 2103 goto walk_abort; 2104 } 2105 2106 /* MADV_FREE page check */ 2107 if (!folio_test_swapbacked(folio)) { 2108 int ref_count, map_count; 2109 2110 /* 2111 * Synchronize with gup_pte_range(): 2112 * - clear PTE; barrier; read refcount 2113 * - inc refcount; barrier; read PTE 2114 */ 2115 smp_mb(); 2116 2117 ref_count = folio_ref_count(folio); 2118 map_count = folio_mapcount(folio); 2119 2120 /* 2121 * Order reads for page refcount and dirty flag 2122 * (see comments in __remove_mapping()). 2123 */ 2124 smp_rmb(); 2125 2126 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2127 /* 2128 * redirtied either using the page table or a previously 2129 * obtained GUP reference. 2130 */ 2131 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2132 folio_set_swapbacked(folio); 2133 goto walk_abort; 2134 } else if (ref_count != 1 + map_count) { 2135 /* 2136 * Additional reference. Could be a GUP reference or any 2137 * speculative reference. GUP users must mark the folio 2138 * dirty if there was a modification. This folio cannot be 2139 * reclaimed right now either way, so act just like nothing 2140 * happened. 2141 * We'll come back here later and detect if the folio was 2142 * dirtied when the additional reference is gone. 2143 */ 2144 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2145 goto walk_abort; 2146 } 2147 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2148 goto discard; 2149 } 2150 2151 if (swap_duplicate(entry) < 0) { 2152 set_pte_at(mm, address, pvmw.pte, pteval); 2153 goto walk_abort; 2154 } 2155 2156 /* 2157 * arch_unmap_one() is expected to be a NOP on 2158 * architectures where we could have PFN swap PTEs, 2159 * so we'll not check/care. 2160 */ 2161 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2162 swap_free(entry); 2163 set_pte_at(mm, address, pvmw.pte, pteval); 2164 goto walk_abort; 2165 } 2166 2167 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2168 if (anon_exclusive && 2169 folio_try_share_anon_rmap_pte(folio, subpage)) { 2170 swap_free(entry); 2171 set_pte_at(mm, address, pvmw.pte, pteval); 2172 goto walk_abort; 2173 } 2174 if (list_empty(&mm->mmlist)) { 2175 spin_lock(&mmlist_lock); 2176 if (list_empty(&mm->mmlist)) 2177 list_add(&mm->mmlist, &init_mm.mmlist); 2178 spin_unlock(&mmlist_lock); 2179 } 2180 dec_mm_counter(mm, MM_ANONPAGES); 2181 inc_mm_counter(mm, MM_SWAPENTS); 2182 swp_pte = swp_entry_to_pte(entry); 2183 if (anon_exclusive) 2184 swp_pte = pte_swp_mkexclusive(swp_pte); 2185 if (likely(pte_present(pteval))) { 2186 if (pte_soft_dirty(pteval)) 2187 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2188 if (pte_uffd_wp(pteval)) 2189 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2190 } else { 2191 if (pte_swp_soft_dirty(pteval)) 2192 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2193 if (pte_swp_uffd_wp(pteval)) 2194 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2195 } 2196 set_pte_at(mm, address, pvmw.pte, swp_pte); 2197 } else { 2198 /* 2199 * This is a locked file-backed folio, 2200 * so it cannot be removed from the page 2201 * cache and replaced by a new folio before 2202 * mmu_notifier_invalidate_range_end, so no 2203 * concurrent thread might update its page table 2204 * to point at a new folio while a device is 2205 * still using this folio. 2206 * 2207 * See Documentation/mm/mmu_notifier.rst 2208 */ 2209 dec_mm_counter(mm, mm_counter_file(folio)); 2210 } 2211 discard: 2212 if (unlikely(folio_test_hugetlb(folio))) { 2213 hugetlb_remove_rmap(folio); 2214 } else { 2215 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2216 } 2217 if (vma->vm_flags & VM_LOCKED) 2218 mlock_drain_local(); 2219 folio_put_refs(folio, nr_pages); 2220 2221 /* 2222 * If we are sure that we batched the entire folio and cleared 2223 * all PTEs, we can just optimize and stop right here. 2224 */ 2225 if (nr_pages == folio_nr_pages(folio)) 2226 goto walk_done; 2227 continue; 2228 walk_abort: 2229 ret = false; 2230 walk_done: 2231 page_vma_mapped_walk_done(&pvmw); 2232 break; 2233 } 2234 2235 mmu_notifier_invalidate_range_end(&range); 2236 2237 return ret; 2238 } 2239 2240 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2241 { 2242 return vma_is_temporary_stack(vma); 2243 } 2244 2245 static int folio_not_mapped(struct folio *folio) 2246 { 2247 return !folio_mapped(folio); 2248 } 2249 2250 /** 2251 * try_to_unmap - Try to remove all page table mappings to a folio. 2252 * @folio: The folio to unmap. 2253 * @flags: action and flags 2254 * 2255 * Tries to remove all the page table entries which are mapping this 2256 * folio. It is the caller's responsibility to check if the folio is 2257 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2258 * 2259 * Context: Caller must hold the folio lock. 2260 */ 2261 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2262 { 2263 struct rmap_walk_control rwc = { 2264 .rmap_one = try_to_unmap_one, 2265 .arg = (void *)flags, 2266 .done = folio_not_mapped, 2267 .anon_lock = folio_lock_anon_vma_read, 2268 }; 2269 2270 if (flags & TTU_RMAP_LOCKED) 2271 rmap_walk_locked(folio, &rwc); 2272 else 2273 rmap_walk(folio, &rwc); 2274 } 2275 2276 /* 2277 * @arg: enum ttu_flags will be passed to this argument. 2278 * 2279 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2280 * containing migration entries. 2281 */ 2282 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2283 unsigned long address, void *arg) 2284 { 2285 struct mm_struct *mm = vma->vm_mm; 2286 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2287 bool anon_exclusive, writable, ret = true; 2288 pte_t pteval; 2289 struct page *subpage; 2290 struct mmu_notifier_range range; 2291 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2292 unsigned long pfn; 2293 unsigned long hsz = 0; 2294 2295 /* 2296 * When racing against e.g. zap_pte_range() on another cpu, 2297 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2298 * try_to_migrate() may return before page_mapped() has become false, 2299 * if page table locking is skipped: use TTU_SYNC to wait for that. 2300 */ 2301 if (flags & TTU_SYNC) 2302 pvmw.flags = PVMW_SYNC; 2303 2304 /* 2305 * For THP, we have to assume the worse case ie pmd for invalidation. 2306 * For hugetlb, it could be much worse if we need to do pud 2307 * invalidation in the case of pmd sharing. 2308 * 2309 * Note that the page can not be free in this function as call of 2310 * try_to_unmap() must hold a reference on the page. 2311 */ 2312 range.end = vma_address_end(&pvmw); 2313 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2314 address, range.end); 2315 if (folio_test_hugetlb(folio)) { 2316 /* 2317 * If sharing is possible, start and end will be adjusted 2318 * accordingly. 2319 */ 2320 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2321 &range.end); 2322 2323 /* We need the huge page size for set_huge_pte_at() */ 2324 hsz = huge_page_size(hstate_vma(vma)); 2325 } 2326 mmu_notifier_invalidate_range_start(&range); 2327 2328 while (page_vma_mapped_walk(&pvmw)) { 2329 /* PMD-mapped THP migration entry */ 2330 if (!pvmw.pte) { 2331 __maybe_unused unsigned long pfn; 2332 __maybe_unused pmd_t pmdval; 2333 2334 if (flags & TTU_SPLIT_HUGE_PMD) { 2335 split_huge_pmd_locked(vma, pvmw.address, 2336 pvmw.pmd, true); 2337 ret = false; 2338 page_vma_mapped_walk_done(&pvmw); 2339 break; 2340 } 2341 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2342 pmdval = pmdp_get(pvmw.pmd); 2343 if (likely(pmd_present(pmdval))) 2344 pfn = pmd_pfn(pmdval); 2345 else 2346 pfn = softleaf_to_pfn(softleaf_from_pmd(pmdval)); 2347 2348 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2349 2350 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2351 !folio_test_pmd_mappable(folio), folio); 2352 2353 if (set_pmd_migration_entry(&pvmw, subpage)) { 2354 ret = false; 2355 page_vma_mapped_walk_done(&pvmw); 2356 break; 2357 } 2358 continue; 2359 #endif 2360 } 2361 2362 /* Unexpected PMD-mapped THP? */ 2363 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2364 2365 /* 2366 * Handle PFN swap PTEs, such as device-exclusive ones, that 2367 * actually map pages. 2368 */ 2369 pteval = ptep_get(pvmw.pte); 2370 if (likely(pte_present(pteval))) { 2371 pfn = pte_pfn(pteval); 2372 } else { 2373 const softleaf_t entry = softleaf_from_pte(pteval); 2374 2375 pfn = softleaf_to_pfn(entry); 2376 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2377 } 2378 2379 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2380 address = pvmw.address; 2381 anon_exclusive = folio_test_anon(folio) && 2382 PageAnonExclusive(subpage); 2383 2384 if (folio_test_hugetlb(folio)) { 2385 bool anon = folio_test_anon(folio); 2386 2387 /* 2388 * huge_pmd_unshare may unmap an entire PMD page. 2389 * There is no way of knowing exactly which PMDs may 2390 * be cached for this mm, so we must flush them all. 2391 * start/end were already adjusted above to cover this 2392 * range. 2393 */ 2394 flush_cache_range(vma, range.start, range.end); 2395 2396 /* 2397 * To call huge_pmd_unshare, i_mmap_rwsem must be 2398 * held in write mode. Caller needs to explicitly 2399 * do this outside rmap routines. 2400 * 2401 * We also must hold hugetlb vma_lock in write mode. 2402 * Lock order dictates acquiring vma_lock BEFORE 2403 * i_mmap_rwsem. We can only try lock here and 2404 * fail if unsuccessful. 2405 */ 2406 if (!anon) { 2407 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2408 if (!hugetlb_vma_trylock_write(vma)) { 2409 page_vma_mapped_walk_done(&pvmw); 2410 ret = false; 2411 break; 2412 } 2413 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2414 hugetlb_vma_unlock_write(vma); 2415 flush_tlb_range(vma, 2416 range.start, range.end); 2417 2418 /* 2419 * The ref count of the PMD page was 2420 * dropped which is part of the way map 2421 * counting is done for shared PMDs. 2422 * Return 'true' here. When there is 2423 * no other sharing, huge_pmd_unshare 2424 * returns false and we will unmap the 2425 * actual page and drop map count 2426 * to zero. 2427 */ 2428 page_vma_mapped_walk_done(&pvmw); 2429 break; 2430 } 2431 hugetlb_vma_unlock_write(vma); 2432 } 2433 /* Nuke the hugetlb page table entry */ 2434 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2435 if (pte_dirty(pteval)) 2436 folio_mark_dirty(folio); 2437 writable = pte_write(pteval); 2438 } else if (likely(pte_present(pteval))) { 2439 flush_cache_page(vma, address, pfn); 2440 /* Nuke the page table entry. */ 2441 if (should_defer_flush(mm, flags)) { 2442 /* 2443 * We clear the PTE but do not flush so potentially 2444 * a remote CPU could still be writing to the folio. 2445 * If the entry was previously clean then the 2446 * architecture must guarantee that a clear->dirty 2447 * transition on a cached TLB entry is written through 2448 * and traps if the PTE is unmapped. 2449 */ 2450 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2451 2452 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2453 } else { 2454 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2455 } 2456 if (pte_dirty(pteval)) 2457 folio_mark_dirty(folio); 2458 writable = pte_write(pteval); 2459 } else { 2460 const softleaf_t entry = softleaf_from_pte(pteval); 2461 2462 pte_clear(mm, address, pvmw.pte); 2463 2464 writable = softleaf_is_device_private_write(entry); 2465 } 2466 2467 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2468 !anon_exclusive, folio); 2469 2470 /* Update high watermark before we lower rss */ 2471 update_hiwater_rss(mm); 2472 2473 if (PageHWPoison(subpage)) { 2474 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2475 2476 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2477 if (folio_test_hugetlb(folio)) { 2478 hugetlb_count_sub(folio_nr_pages(folio), mm); 2479 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2480 hsz); 2481 } else { 2482 dec_mm_counter(mm, mm_counter(folio)); 2483 set_pte_at(mm, address, pvmw.pte, pteval); 2484 } 2485 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2486 !userfaultfd_armed(vma)) { 2487 /* 2488 * The guest indicated that the page content is of no 2489 * interest anymore. Simply discard the pte, vmscan 2490 * will take care of the rest. 2491 * A future reference will then fault in a new zero 2492 * page. When userfaultfd is active, we must not drop 2493 * this page though, as its main user (postcopy 2494 * migration) will not expect userfaults on already 2495 * copied pages. 2496 */ 2497 dec_mm_counter(mm, mm_counter(folio)); 2498 } else { 2499 swp_entry_t entry; 2500 pte_t swp_pte; 2501 2502 /* 2503 * arch_unmap_one() is expected to be a NOP on 2504 * architectures where we could have PFN swap PTEs, 2505 * so we'll not check/care. 2506 */ 2507 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2508 if (folio_test_hugetlb(folio)) 2509 set_huge_pte_at(mm, address, pvmw.pte, 2510 pteval, hsz); 2511 else 2512 set_pte_at(mm, address, pvmw.pte, pteval); 2513 ret = false; 2514 page_vma_mapped_walk_done(&pvmw); 2515 break; 2516 } 2517 2518 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2519 if (folio_test_hugetlb(folio)) { 2520 if (anon_exclusive && 2521 hugetlb_try_share_anon_rmap(folio)) { 2522 set_huge_pte_at(mm, address, pvmw.pte, 2523 pteval, hsz); 2524 ret = false; 2525 page_vma_mapped_walk_done(&pvmw); 2526 break; 2527 } 2528 } else if (anon_exclusive && 2529 folio_try_share_anon_rmap_pte(folio, subpage)) { 2530 set_pte_at(mm, address, pvmw.pte, pteval); 2531 ret = false; 2532 page_vma_mapped_walk_done(&pvmw); 2533 break; 2534 } 2535 2536 /* 2537 * Store the pfn of the page in a special migration 2538 * pte. do_swap_page() will wait until the migration 2539 * pte is removed and then restart fault handling. 2540 */ 2541 if (writable) 2542 entry = make_writable_migration_entry( 2543 page_to_pfn(subpage)); 2544 else if (anon_exclusive) 2545 entry = make_readable_exclusive_migration_entry( 2546 page_to_pfn(subpage)); 2547 else 2548 entry = make_readable_migration_entry( 2549 page_to_pfn(subpage)); 2550 if (likely(pte_present(pteval))) { 2551 if (pte_young(pteval)) 2552 entry = make_migration_entry_young(entry); 2553 if (pte_dirty(pteval)) 2554 entry = make_migration_entry_dirty(entry); 2555 swp_pte = swp_entry_to_pte(entry); 2556 if (pte_soft_dirty(pteval)) 2557 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2558 if (pte_uffd_wp(pteval)) 2559 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2560 } else { 2561 swp_pte = swp_entry_to_pte(entry); 2562 if (pte_swp_soft_dirty(pteval)) 2563 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2564 if (pte_swp_uffd_wp(pteval)) 2565 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2566 } 2567 if (folio_test_hugetlb(folio)) 2568 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2569 hsz); 2570 else 2571 set_pte_at(mm, address, pvmw.pte, swp_pte); 2572 trace_set_migration_pte(address, pte_val(swp_pte), 2573 folio_order(folio)); 2574 /* 2575 * No need to invalidate here it will synchronize on 2576 * against the special swap migration pte. 2577 */ 2578 } 2579 2580 if (unlikely(folio_test_hugetlb(folio))) 2581 hugetlb_remove_rmap(folio); 2582 else 2583 folio_remove_rmap_pte(folio, subpage, vma); 2584 if (vma->vm_flags & VM_LOCKED) 2585 mlock_drain_local(); 2586 folio_put(folio); 2587 } 2588 2589 mmu_notifier_invalidate_range_end(&range); 2590 2591 return ret; 2592 } 2593 2594 /** 2595 * try_to_migrate - try to replace all page table mappings with swap entries 2596 * @folio: the folio to replace page table entries for 2597 * @flags: action and flags 2598 * 2599 * Tries to remove all the page table entries which are mapping this folio and 2600 * replace them with special swap entries. Caller must hold the folio lock. 2601 */ 2602 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2603 { 2604 struct rmap_walk_control rwc = { 2605 .rmap_one = try_to_migrate_one, 2606 .arg = (void *)flags, 2607 .done = folio_not_mapped, 2608 .anon_lock = folio_lock_anon_vma_read, 2609 }; 2610 2611 /* 2612 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2613 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2614 */ 2615 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2616 TTU_SYNC | TTU_BATCH_FLUSH))) 2617 return; 2618 2619 if (folio_is_zone_device(folio) && 2620 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2621 return; 2622 2623 /* 2624 * During exec, a temporary VMA is setup and later moved. 2625 * The VMA is moved under the anon_vma lock but not the 2626 * page tables leading to a race where migration cannot 2627 * find the migration ptes. Rather than increasing the 2628 * locking requirements of exec(), migration skips 2629 * temporary VMAs until after exec() completes. 2630 */ 2631 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2632 rwc.invalid_vma = invalid_migration_vma; 2633 2634 if (flags & TTU_RMAP_LOCKED) 2635 rmap_walk_locked(folio, &rwc); 2636 else 2637 rmap_walk(folio, &rwc); 2638 } 2639 2640 #ifdef CONFIG_DEVICE_PRIVATE 2641 /** 2642 * make_device_exclusive() - Mark a page for exclusive use by a device 2643 * @mm: mm_struct of associated target process 2644 * @addr: the virtual address to mark for exclusive device access 2645 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2646 * @foliop: folio pointer will be stored here on success. 2647 * 2648 * This function looks up the page mapped at the given address, grabs a 2649 * folio reference, locks the folio and replaces the PTE with special 2650 * device-exclusive PFN swap entry, preventing access through the process 2651 * page tables. The function will return with the folio locked and referenced. 2652 * 2653 * On fault, the device-exclusive entries are replaced with the original PTE 2654 * under folio lock, after calling MMU notifiers. 2655 * 2656 * Only anonymous non-hugetlb folios are supported and the VMA must have 2657 * write permissions such that we can fault in the anonymous page writable 2658 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2659 * mode. 2660 * 2661 * A driver using this to program access from a device must use a mmu notifier 2662 * critical section to hold a device specific lock during programming. Once 2663 * programming is complete it should drop the folio lock and reference after 2664 * which point CPU access to the page will revoke the exclusive access. 2665 * 2666 * Notes: 2667 * #. This function always operates on individual PTEs mapping individual 2668 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2669 * the conversion happens on a single PTE corresponding to @addr. 2670 * #. While concurrent access through the process page tables is prevented, 2671 * concurrent access through other page references (e.g., earlier GUP 2672 * invocation) is not handled and not supported. 2673 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2674 * Device drivers must update the folio state when informed by MMU 2675 * notifiers. 2676 * 2677 * Returns: pointer to mapped page on success, otherwise a negative error. 2678 */ 2679 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2680 void *owner, struct folio **foliop) 2681 { 2682 struct mmu_notifier_range range; 2683 struct folio *folio, *fw_folio; 2684 struct vm_area_struct *vma; 2685 struct folio_walk fw; 2686 struct page *page; 2687 swp_entry_t entry; 2688 pte_t swp_pte; 2689 int ret; 2690 2691 mmap_assert_locked(mm); 2692 addr = PAGE_ALIGN_DOWN(addr); 2693 2694 /* 2695 * Fault in the page writable and try to lock it; note that if the 2696 * address would already be marked for exclusive use by a device, 2697 * the GUP call would undo that first by triggering a fault. 2698 * 2699 * If any other device would already map this page exclusively, the 2700 * fault will trigger a conversion to an ordinary 2701 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2702 */ 2703 retry: 2704 page = get_user_page_vma_remote(mm, addr, 2705 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2706 &vma); 2707 if (IS_ERR(page)) 2708 return page; 2709 folio = page_folio(page); 2710 2711 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2712 folio_put(folio); 2713 return ERR_PTR(-EOPNOTSUPP); 2714 } 2715 2716 ret = folio_lock_killable(folio); 2717 if (ret) { 2718 folio_put(folio); 2719 return ERR_PTR(ret); 2720 } 2721 2722 /* 2723 * Inform secondary MMUs that we are going to convert this PTE to 2724 * device-exclusive, such that they unmap it now. Note that the 2725 * caller must filter this event out to prevent livelocks. 2726 */ 2727 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2728 mm, addr, addr + PAGE_SIZE, owner); 2729 mmu_notifier_invalidate_range_start(&range); 2730 2731 /* 2732 * Let's do a second walk and make sure we still find the same page 2733 * mapped writable. Note that any page of an anonymous folio can 2734 * only be mapped writable using exactly one PTE ("exclusive"), so 2735 * there cannot be other mappings. 2736 */ 2737 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2738 if (fw_folio != folio || fw.page != page || 2739 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2740 if (fw_folio) 2741 folio_walk_end(&fw, vma); 2742 mmu_notifier_invalidate_range_end(&range); 2743 folio_unlock(folio); 2744 folio_put(folio); 2745 goto retry; 2746 } 2747 2748 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2749 flush_cache_page(vma, addr, page_to_pfn(page)); 2750 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2751 2752 /* Set the dirty flag on the folio now the PTE is gone. */ 2753 if (pte_dirty(fw.pte)) 2754 folio_mark_dirty(folio); 2755 2756 /* 2757 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2758 * do_swap_page() will trigger the conversion back while holding the 2759 * folio lock. 2760 */ 2761 entry = make_device_exclusive_entry(page_to_pfn(page)); 2762 swp_pte = swp_entry_to_pte(entry); 2763 if (pte_soft_dirty(fw.pte)) 2764 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2765 /* The pte is writable, uffd-wp does not apply. */ 2766 set_pte_at(mm, addr, fw.ptep, swp_pte); 2767 2768 folio_walk_end(&fw, vma); 2769 mmu_notifier_invalidate_range_end(&range); 2770 *foliop = folio; 2771 return page; 2772 } 2773 EXPORT_SYMBOL_GPL(make_device_exclusive); 2774 #endif 2775 2776 void __put_anon_vma(struct anon_vma *anon_vma) 2777 { 2778 struct anon_vma *root = anon_vma->root; 2779 2780 anon_vma_free(anon_vma); 2781 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2782 anon_vma_free(root); 2783 } 2784 2785 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2786 struct rmap_walk_control *rwc) 2787 { 2788 struct anon_vma *anon_vma; 2789 2790 if (rwc->anon_lock) 2791 return rwc->anon_lock(folio, rwc); 2792 2793 /* 2794 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2795 * because that depends on page_mapped(); but not all its usages 2796 * are holding mmap_lock. Users without mmap_lock are required to 2797 * take a reference count to prevent the anon_vma disappearing 2798 */ 2799 anon_vma = folio_anon_vma(folio); 2800 if (!anon_vma) 2801 return NULL; 2802 2803 if (anon_vma_trylock_read(anon_vma)) 2804 goto out; 2805 2806 if (rwc->try_lock) { 2807 anon_vma = NULL; 2808 rwc->contended = true; 2809 goto out; 2810 } 2811 2812 anon_vma_lock_read(anon_vma); 2813 out: 2814 return anon_vma; 2815 } 2816 2817 /* 2818 * rmap_walk_anon - do something to anonymous page using the object-based 2819 * rmap method 2820 * @folio: the folio to be handled 2821 * @rwc: control variable according to each walk type 2822 * @locked: caller holds relevant rmap lock 2823 * 2824 * Find all the mappings of a folio using the mapping pointer and the vma 2825 * chains contained in the anon_vma struct it points to. 2826 */ 2827 static void rmap_walk_anon(struct folio *folio, 2828 struct rmap_walk_control *rwc, bool locked) 2829 { 2830 struct anon_vma *anon_vma; 2831 pgoff_t pgoff_start, pgoff_end; 2832 struct anon_vma_chain *avc; 2833 2834 /* 2835 * The folio lock ensures that folio->mapping can't be changed under us 2836 * to an anon_vma with different root. 2837 */ 2838 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2839 2840 if (locked) { 2841 anon_vma = folio_anon_vma(folio); 2842 /* anon_vma disappear under us? */ 2843 VM_BUG_ON_FOLIO(!anon_vma, folio); 2844 } else { 2845 anon_vma = rmap_walk_anon_lock(folio, rwc); 2846 } 2847 if (!anon_vma) 2848 return; 2849 2850 pgoff_start = folio_pgoff(folio); 2851 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2852 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2853 pgoff_start, pgoff_end) { 2854 struct vm_area_struct *vma = avc->vma; 2855 unsigned long address = vma_address(vma, pgoff_start, 2856 folio_nr_pages(folio)); 2857 2858 VM_BUG_ON_VMA(address == -EFAULT, vma); 2859 cond_resched(); 2860 2861 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2862 continue; 2863 2864 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2865 break; 2866 if (rwc->done && rwc->done(folio)) 2867 break; 2868 } 2869 2870 if (!locked) 2871 anon_vma_unlock_read(anon_vma); 2872 } 2873 2874 /** 2875 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2876 * of a page mapped within a specified page cache object at a specified offset. 2877 * 2878 * @folio: Either the folio whose mappings to traverse, or if NULL, 2879 * the callbacks specified in @rwc will be configured such 2880 * as to be able to look up mappings correctly. 2881 * @mapping: The page cache object whose mapping VMAs we intend to 2882 * traverse. If @folio is non-NULL, this should be equal to 2883 * folio_mapping(folio). 2884 * @pgoff_start: The offset within @mapping of the page which we are 2885 * looking up. If @folio is non-NULL, this should be equal 2886 * to folio_pgoff(folio). 2887 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2888 * non-NULL, this should be equal to folio_nr_pages(folio). 2889 * @rwc: The reverse mapping walk control object describing how 2890 * the traversal should proceed. 2891 * @locked: Is the @mapping already locked? If not, we acquire the 2892 * lock. 2893 */ 2894 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2895 pgoff_t pgoff_start, unsigned long nr_pages, 2896 struct rmap_walk_control *rwc, bool locked) 2897 { 2898 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2899 struct vm_area_struct *vma; 2900 2901 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2902 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2903 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2904 2905 if (!locked) { 2906 if (i_mmap_trylock_read(mapping)) 2907 goto lookup; 2908 2909 if (rwc->try_lock) { 2910 rwc->contended = true; 2911 return; 2912 } 2913 2914 i_mmap_lock_read(mapping); 2915 } 2916 lookup: 2917 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2918 pgoff_start, pgoff_end) { 2919 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2920 2921 VM_BUG_ON_VMA(address == -EFAULT, vma); 2922 cond_resched(); 2923 2924 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2925 continue; 2926 2927 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2928 goto done; 2929 if (rwc->done && rwc->done(folio)) 2930 goto done; 2931 } 2932 done: 2933 if (!locked) 2934 i_mmap_unlock_read(mapping); 2935 } 2936 2937 /* 2938 * rmap_walk_file - do something to file page using the object-based rmap method 2939 * @folio: the folio to be handled 2940 * @rwc: control variable according to each walk type 2941 * @locked: caller holds relevant rmap lock 2942 * 2943 * Find all the mappings of a folio using the mapping pointer and the vma chains 2944 * contained in the address_space struct it points to. 2945 */ 2946 static void rmap_walk_file(struct folio *folio, 2947 struct rmap_walk_control *rwc, bool locked) 2948 { 2949 /* 2950 * The folio lock not only makes sure that folio->mapping cannot 2951 * suddenly be NULLified by truncation, it makes sure that the structure 2952 * at mapping cannot be freed and reused yet, so we can safely take 2953 * mapping->i_mmap_rwsem. 2954 */ 2955 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2956 2957 if (!folio->mapping) 2958 return; 2959 2960 __rmap_walk_file(folio, folio->mapping, folio->index, 2961 folio_nr_pages(folio), rwc, locked); 2962 } 2963 2964 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2965 { 2966 if (unlikely(folio_test_ksm(folio))) 2967 rmap_walk_ksm(folio, rwc); 2968 else if (folio_test_anon(folio)) 2969 rmap_walk_anon(folio, rwc, false); 2970 else 2971 rmap_walk_file(folio, rwc, false); 2972 } 2973 2974 /* Like rmap_walk, but caller holds relevant rmap lock */ 2975 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2976 { 2977 /* no ksm support for now */ 2978 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2979 if (folio_test_anon(folio)) 2980 rmap_walk_anon(folio, rwc, true); 2981 else 2982 rmap_walk_file(folio, rwc, true); 2983 } 2984 2985 #ifdef CONFIG_HUGETLB_PAGE 2986 /* 2987 * The following two functions are for anonymous (private mapped) hugepages. 2988 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2989 * and no lru code, because we handle hugepages differently from common pages. 2990 */ 2991 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2992 unsigned long address, rmap_t flags) 2993 { 2994 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2995 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2996 2997 atomic_inc(&folio->_entire_mapcount); 2998 atomic_inc(&folio->_large_mapcount); 2999 if (flags & RMAP_EXCLUSIVE) 3000 SetPageAnonExclusive(&folio->page); 3001 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 3002 PageAnonExclusive(&folio->page), folio); 3003 } 3004 3005 void hugetlb_add_new_anon_rmap(struct folio *folio, 3006 struct vm_area_struct *vma, unsigned long address) 3007 { 3008 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 3009 3010 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 3011 /* increment count (starts at -1) */ 3012 atomic_set(&folio->_entire_mapcount, 0); 3013 atomic_set(&folio->_large_mapcount, 0); 3014 folio_clear_hugetlb_restore_reserve(folio); 3015 __folio_set_anon(folio, vma, address, true); 3016 SetPageAnonExclusive(&folio->page); 3017 } 3018 #endif /* CONFIG_HUGETLB_PAGE */ 3019