xref: /linux/mm/rmap.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 
52 #include <asm/tlbflush.h>
53 
54 struct kmem_cache *anon_vma_cachep;
55 
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 	struct anon_vma *anon_vma = find_vma->anon_vma;
60 	struct vm_area_struct *vma;
61 	unsigned int mapcount = 0;
62 	int found = 0;
63 
64 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 		mapcount++;
66 		BUG_ON(mapcount > 100000);
67 		if (vma == find_vma)
68 			found = 1;
69 	}
70 	BUG_ON(!found);
71 #endif
72 }
73 
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 	struct anon_vma *anon_vma = vma->anon_vma;
78 
79 	might_sleep();
80 	if (unlikely(!anon_vma)) {
81 		struct mm_struct *mm = vma->vm_mm;
82 		struct anon_vma *allocated, *locked;
83 
84 		anon_vma = find_mergeable_anon_vma(vma);
85 		if (anon_vma) {
86 			allocated = NULL;
87 			locked = anon_vma;
88 			spin_lock(&locked->lock);
89 		} else {
90 			anon_vma = anon_vma_alloc();
91 			if (unlikely(!anon_vma))
92 				return -ENOMEM;
93 			allocated = anon_vma;
94 			locked = NULL;
95 		}
96 
97 		/* page_table_lock to protect against threads */
98 		spin_lock(&mm->page_table_lock);
99 		if (likely(!vma->anon_vma)) {
100 			vma->anon_vma = anon_vma;
101 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 			allocated = NULL;
103 		}
104 		spin_unlock(&mm->page_table_lock);
105 
106 		if (locked)
107 			spin_unlock(&locked->lock);
108 		if (unlikely(allocated))
109 			anon_vma_free(allocated);
110 	}
111 	return 0;
112 }
113 
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 	BUG_ON(vma->anon_vma != next->anon_vma);
117 	list_del(&next->anon_vma_node);
118 }
119 
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 	struct anon_vma *anon_vma = vma->anon_vma;
123 
124 	if (anon_vma) {
125 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 		validate_anon_vma(vma);
127 	}
128 }
129 
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 	struct anon_vma *anon_vma = vma->anon_vma;
133 
134 	if (anon_vma) {
135 		spin_lock(&anon_vma->lock);
136 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 		validate_anon_vma(vma);
138 		spin_unlock(&anon_vma->lock);
139 	}
140 }
141 
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 	struct anon_vma *anon_vma = vma->anon_vma;
145 	int empty;
146 
147 	if (!anon_vma)
148 		return;
149 
150 	spin_lock(&anon_vma->lock);
151 	validate_anon_vma(vma);
152 	list_del(&vma->anon_vma_node);
153 
154 	/* We must garbage collect the anon_vma if it's empty */
155 	empty = list_empty(&anon_vma->head);
156 	spin_unlock(&anon_vma->lock);
157 
158 	if (empty)
159 		anon_vma_free(anon_vma);
160 }
161 
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 			  unsigned long flags)
164 {
165 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166 						SLAB_CTOR_CONSTRUCTOR) {
167 		struct anon_vma *anon_vma = data;
168 
169 		spin_lock_init(&anon_vma->lock);
170 		INIT_LIST_HEAD(&anon_vma->head);
171 	}
172 }
173 
174 void __init anon_vma_init(void)
175 {
176 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
178 }
179 
180 /*
181  * Getting a lock on a stable anon_vma from a page off the LRU is
182  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
183  */
184 static struct anon_vma *page_lock_anon_vma(struct page *page)
185 {
186 	struct anon_vma *anon_vma = NULL;
187 	unsigned long anon_mapping;
188 
189 	rcu_read_lock();
190 	anon_mapping = (unsigned long) page->mapping;
191 	if (!(anon_mapping & PAGE_MAPPING_ANON))
192 		goto out;
193 	if (!page_mapped(page))
194 		goto out;
195 
196 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197 	spin_lock(&anon_vma->lock);
198 out:
199 	rcu_read_unlock();
200 	return anon_vma;
201 }
202 
203 /*
204  * At what user virtual address is page expected in vma?
205  */
206 static inline unsigned long
207 vma_address(struct page *page, struct vm_area_struct *vma)
208 {
209 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
210 	unsigned long address;
211 
212 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
213 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
214 		/* page should be within any vma from prio_tree_next */
215 		BUG_ON(!PageAnon(page));
216 		return -EFAULT;
217 	}
218 	return address;
219 }
220 
221 /*
222  * At what user virtual address is page expected in vma? checking that the
223  * page matches the vma: currently only used on anon pages, by unuse_vma;
224  */
225 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
226 {
227 	if (PageAnon(page)) {
228 		if ((void *)vma->anon_vma !=
229 		    (void *)page->mapping - PAGE_MAPPING_ANON)
230 			return -EFAULT;
231 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
232 		if (!vma->vm_file ||
233 		    vma->vm_file->f_mapping != page->mapping)
234 			return -EFAULT;
235 	} else
236 		return -EFAULT;
237 	return vma_address(page, vma);
238 }
239 
240 /*
241  * Check that @page is mapped at @address into @mm.
242  *
243  * On success returns with pte mapped and locked.
244  */
245 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
246 			  unsigned long address, spinlock_t **ptlp)
247 {
248 	pgd_t *pgd;
249 	pud_t *pud;
250 	pmd_t *pmd;
251 	pte_t *pte;
252 	spinlock_t *ptl;
253 
254 	pgd = pgd_offset(mm, address);
255 	if (!pgd_present(*pgd))
256 		return NULL;
257 
258 	pud = pud_offset(pgd, address);
259 	if (!pud_present(*pud))
260 		return NULL;
261 
262 	pmd = pmd_offset(pud, address);
263 	if (!pmd_present(*pmd))
264 		return NULL;
265 
266 	pte = pte_offset_map(pmd, address);
267 	/* Make a quick check before getting the lock */
268 	if (!pte_present(*pte)) {
269 		pte_unmap(pte);
270 		return NULL;
271 	}
272 
273 	ptl = pte_lockptr(mm, pmd);
274 	spin_lock(ptl);
275 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
276 		*ptlp = ptl;
277 		return pte;
278 	}
279 	pte_unmap_unlock(pte, ptl);
280 	return NULL;
281 }
282 
283 /*
284  * Subfunctions of page_referenced: page_referenced_one called
285  * repeatedly from either page_referenced_anon or page_referenced_file.
286  */
287 static int page_referenced_one(struct page *page,
288 	struct vm_area_struct *vma, unsigned int *mapcount)
289 {
290 	struct mm_struct *mm = vma->vm_mm;
291 	unsigned long address;
292 	pte_t *pte;
293 	spinlock_t *ptl;
294 	int referenced = 0;
295 
296 	address = vma_address(page, vma);
297 	if (address == -EFAULT)
298 		goto out;
299 
300 	pte = page_check_address(page, mm, address, &ptl);
301 	if (!pte)
302 		goto out;
303 
304 	if (ptep_clear_flush_young(vma, address, pte))
305 		referenced++;
306 
307 	/* Pretend the page is referenced if the task has the
308 	   swap token and is in the middle of a page fault. */
309 	if (mm != current->mm && has_swap_token(mm) &&
310 			rwsem_is_locked(&mm->mmap_sem))
311 		referenced++;
312 
313 	(*mapcount)--;
314 	pte_unmap_unlock(pte, ptl);
315 out:
316 	return referenced;
317 }
318 
319 static int page_referenced_anon(struct page *page)
320 {
321 	unsigned int mapcount;
322 	struct anon_vma *anon_vma;
323 	struct vm_area_struct *vma;
324 	int referenced = 0;
325 
326 	anon_vma = page_lock_anon_vma(page);
327 	if (!anon_vma)
328 		return referenced;
329 
330 	mapcount = page_mapcount(page);
331 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
332 		referenced += page_referenced_one(page, vma, &mapcount);
333 		if (!mapcount)
334 			break;
335 	}
336 	spin_unlock(&anon_vma->lock);
337 	return referenced;
338 }
339 
340 /**
341  * page_referenced_file - referenced check for object-based rmap
342  * @page: the page we're checking references on.
343  *
344  * For an object-based mapped page, find all the places it is mapped and
345  * check/clear the referenced flag.  This is done by following the page->mapping
346  * pointer, then walking the chain of vmas it holds.  It returns the number
347  * of references it found.
348  *
349  * This function is only called from page_referenced for object-based pages.
350  */
351 static int page_referenced_file(struct page *page)
352 {
353 	unsigned int mapcount;
354 	struct address_space *mapping = page->mapping;
355 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
356 	struct vm_area_struct *vma;
357 	struct prio_tree_iter iter;
358 	int referenced = 0;
359 
360 	/*
361 	 * The caller's checks on page->mapping and !PageAnon have made
362 	 * sure that this is a file page: the check for page->mapping
363 	 * excludes the case just before it gets set on an anon page.
364 	 */
365 	BUG_ON(PageAnon(page));
366 
367 	/*
368 	 * The page lock not only makes sure that page->mapping cannot
369 	 * suddenly be NULLified by truncation, it makes sure that the
370 	 * structure at mapping cannot be freed and reused yet,
371 	 * so we can safely take mapping->i_mmap_lock.
372 	 */
373 	BUG_ON(!PageLocked(page));
374 
375 	spin_lock(&mapping->i_mmap_lock);
376 
377 	/*
378 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
379 	 * is more likely to be accurate if we note it after spinning.
380 	 */
381 	mapcount = page_mapcount(page);
382 
383 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
384 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
385 				  == (VM_LOCKED|VM_MAYSHARE)) {
386 			referenced++;
387 			break;
388 		}
389 		referenced += page_referenced_one(page, vma, &mapcount);
390 		if (!mapcount)
391 			break;
392 	}
393 
394 	spin_unlock(&mapping->i_mmap_lock);
395 	return referenced;
396 }
397 
398 /**
399  * page_referenced - test if the page was referenced
400  * @page: the page to test
401  * @is_locked: caller holds lock on the page
402  *
403  * Quick test_and_clear_referenced for all mappings to a page,
404  * returns the number of ptes which referenced the page.
405  */
406 int page_referenced(struct page *page, int is_locked)
407 {
408 	int referenced = 0;
409 
410 	if (page_test_and_clear_young(page))
411 		referenced++;
412 
413 	if (TestClearPageReferenced(page))
414 		referenced++;
415 
416 	if (page_mapped(page) && page->mapping) {
417 		if (PageAnon(page))
418 			referenced += page_referenced_anon(page);
419 		else if (is_locked)
420 			referenced += page_referenced_file(page);
421 		else if (TestSetPageLocked(page))
422 			referenced++;
423 		else {
424 			if (page->mapping)
425 				referenced += page_referenced_file(page);
426 			unlock_page(page);
427 		}
428 	}
429 	return referenced;
430 }
431 
432 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
433 {
434 	struct mm_struct *mm = vma->vm_mm;
435 	unsigned long address;
436 	pte_t *pte;
437 	spinlock_t *ptl;
438 	int ret = 0;
439 
440 	address = vma_address(page, vma);
441 	if (address == -EFAULT)
442 		goto out;
443 
444 	pte = page_check_address(page, mm, address, &ptl);
445 	if (!pte)
446 		goto out;
447 
448 	if (pte_dirty(*pte) || pte_write(*pte)) {
449 		pte_t entry;
450 
451 		flush_cache_page(vma, address, pte_pfn(*pte));
452 		entry = ptep_clear_flush(vma, address, pte);
453 		entry = pte_wrprotect(entry);
454 		entry = pte_mkclean(entry);
455 		set_pte_at(mm, address, pte, entry);
456 		lazy_mmu_prot_update(entry);
457 		ret = 1;
458 	}
459 
460 	pte_unmap_unlock(pte, ptl);
461 out:
462 	return ret;
463 }
464 
465 static int page_mkclean_file(struct address_space *mapping, struct page *page)
466 {
467 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
468 	struct vm_area_struct *vma;
469 	struct prio_tree_iter iter;
470 	int ret = 0;
471 
472 	BUG_ON(PageAnon(page));
473 
474 	spin_lock(&mapping->i_mmap_lock);
475 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
476 		if (vma->vm_flags & VM_SHARED)
477 			ret += page_mkclean_one(page, vma);
478 	}
479 	spin_unlock(&mapping->i_mmap_lock);
480 	return ret;
481 }
482 
483 int page_mkclean(struct page *page)
484 {
485 	int ret = 0;
486 
487 	BUG_ON(!PageLocked(page));
488 
489 	if (page_mapped(page)) {
490 		struct address_space *mapping = page_mapping(page);
491 		if (mapping)
492 			ret = page_mkclean_file(mapping, page);
493 	}
494 	if (page_test_and_clear_dirty(page))
495 		ret = 1;
496 
497 	return ret;
498 }
499 
500 /**
501  * page_set_anon_rmap - setup new anonymous rmap
502  * @page:	the page to add the mapping to
503  * @vma:	the vm area in which the mapping is added
504  * @address:	the user virtual address mapped
505  */
506 static void __page_set_anon_rmap(struct page *page,
507 	struct vm_area_struct *vma, unsigned long address)
508 {
509 	struct anon_vma *anon_vma = vma->anon_vma;
510 
511 	BUG_ON(!anon_vma);
512 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
513 	page->mapping = (struct address_space *) anon_vma;
514 
515 	page->index = linear_page_index(vma, address);
516 
517 	/*
518 	 * nr_mapped state can be updated without turning off
519 	 * interrupts because it is not modified via interrupt.
520 	 */
521 	__inc_zone_page_state(page, NR_ANON_PAGES);
522 }
523 
524 /**
525  * page_add_anon_rmap - add pte mapping to an anonymous page
526  * @page:	the page to add the mapping to
527  * @vma:	the vm area in which the mapping is added
528  * @address:	the user virtual address mapped
529  *
530  * The caller needs to hold the pte lock.
531  */
532 void page_add_anon_rmap(struct page *page,
533 	struct vm_area_struct *vma, unsigned long address)
534 {
535 	if (atomic_inc_and_test(&page->_mapcount))
536 		__page_set_anon_rmap(page, vma, address);
537 	/* else checking page index and mapping is racy */
538 }
539 
540 /*
541  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
542  * @page:	the page to add the mapping to
543  * @vma:	the vm area in which the mapping is added
544  * @address:	the user virtual address mapped
545  *
546  * Same as page_add_anon_rmap but must only be called on *new* pages.
547  * This means the inc-and-test can be bypassed.
548  */
549 void page_add_new_anon_rmap(struct page *page,
550 	struct vm_area_struct *vma, unsigned long address)
551 {
552 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
553 	__page_set_anon_rmap(page, vma, address);
554 }
555 
556 /**
557  * page_add_file_rmap - add pte mapping to a file page
558  * @page: the page to add the mapping to
559  *
560  * The caller needs to hold the pte lock.
561  */
562 void page_add_file_rmap(struct page *page)
563 {
564 	if (atomic_inc_and_test(&page->_mapcount))
565 		__inc_zone_page_state(page, NR_FILE_MAPPED);
566 }
567 
568 /**
569  * page_remove_rmap - take down pte mapping from a page
570  * @page: page to remove mapping from
571  *
572  * The caller needs to hold the pte lock.
573  */
574 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
575 {
576 	if (atomic_add_negative(-1, &page->_mapcount)) {
577 		if (unlikely(page_mapcount(page) < 0)) {
578 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
579 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
580 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
581 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
582 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
583 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
584 			if (vma->vm_ops)
585 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
586 			if (vma->vm_file && vma->vm_file->f_op)
587 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
588 			BUG();
589 		}
590 
591 		/*
592 		 * It would be tidy to reset the PageAnon mapping here,
593 		 * but that might overwrite a racing page_add_anon_rmap
594 		 * which increments mapcount after us but sets mapping
595 		 * before us: so leave the reset to free_hot_cold_page,
596 		 * and remember that it's only reliable while mapped.
597 		 * Leaving it set also helps swapoff to reinstate ptes
598 		 * faster for those pages still in swapcache.
599 		 */
600 		if (page_test_and_clear_dirty(page))
601 			set_page_dirty(page);
602 		__dec_zone_page_state(page,
603 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
604 	}
605 }
606 
607 /*
608  * Subfunctions of try_to_unmap: try_to_unmap_one called
609  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
610  */
611 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
612 				int migration)
613 {
614 	struct mm_struct *mm = vma->vm_mm;
615 	unsigned long address;
616 	pte_t *pte;
617 	pte_t pteval;
618 	spinlock_t *ptl;
619 	int ret = SWAP_AGAIN;
620 
621 	address = vma_address(page, vma);
622 	if (address == -EFAULT)
623 		goto out;
624 
625 	pte = page_check_address(page, mm, address, &ptl);
626 	if (!pte)
627 		goto out;
628 
629 	/*
630 	 * If the page is mlock()d, we cannot swap it out.
631 	 * If it's recently referenced (perhaps page_referenced
632 	 * skipped over this mm) then we should reactivate it.
633 	 */
634 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
635 			(ptep_clear_flush_young(vma, address, pte)))) {
636 		ret = SWAP_FAIL;
637 		goto out_unmap;
638 	}
639 
640 	/* Nuke the page table entry. */
641 	flush_cache_page(vma, address, page_to_pfn(page));
642 	pteval = ptep_clear_flush(vma, address, pte);
643 
644 	/* Move the dirty bit to the physical page now the pte is gone. */
645 	if (pte_dirty(pteval))
646 		set_page_dirty(page);
647 
648 	/* Update high watermark before we lower rss */
649 	update_hiwater_rss(mm);
650 
651 	if (PageAnon(page)) {
652 		swp_entry_t entry = { .val = page_private(page) };
653 
654 		if (PageSwapCache(page)) {
655 			/*
656 			 * Store the swap location in the pte.
657 			 * See handle_pte_fault() ...
658 			 */
659 			swap_duplicate(entry);
660 			if (list_empty(&mm->mmlist)) {
661 				spin_lock(&mmlist_lock);
662 				if (list_empty(&mm->mmlist))
663 					list_add(&mm->mmlist, &init_mm.mmlist);
664 				spin_unlock(&mmlist_lock);
665 			}
666 			dec_mm_counter(mm, anon_rss);
667 #ifdef CONFIG_MIGRATION
668 		} else {
669 			/*
670 			 * Store the pfn of the page in a special migration
671 			 * pte. do_swap_page() will wait until the migration
672 			 * pte is removed and then restart fault handling.
673 			 */
674 			BUG_ON(!migration);
675 			entry = make_migration_entry(page, pte_write(pteval));
676 #endif
677 		}
678 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
679 		BUG_ON(pte_file(*pte));
680 	} else
681 #ifdef CONFIG_MIGRATION
682 	if (migration) {
683 		/* Establish migration entry for a file page */
684 		swp_entry_t entry;
685 		entry = make_migration_entry(page, pte_write(pteval));
686 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
687 	} else
688 #endif
689 		dec_mm_counter(mm, file_rss);
690 
691 
692 	page_remove_rmap(page, vma);
693 	page_cache_release(page);
694 
695 out_unmap:
696 	pte_unmap_unlock(pte, ptl);
697 out:
698 	return ret;
699 }
700 
701 /*
702  * objrmap doesn't work for nonlinear VMAs because the assumption that
703  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
704  * Consequently, given a particular page and its ->index, we cannot locate the
705  * ptes which are mapping that page without an exhaustive linear search.
706  *
707  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
708  * maps the file to which the target page belongs.  The ->vm_private_data field
709  * holds the current cursor into that scan.  Successive searches will circulate
710  * around the vma's virtual address space.
711  *
712  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
713  * more scanning pressure is placed against them as well.   Eventually pages
714  * will become fully unmapped and are eligible for eviction.
715  *
716  * For very sparsely populated VMAs this is a little inefficient - chances are
717  * there there won't be many ptes located within the scan cluster.  In this case
718  * maybe we could scan further - to the end of the pte page, perhaps.
719  */
720 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
721 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
722 
723 static void try_to_unmap_cluster(unsigned long cursor,
724 	unsigned int *mapcount, struct vm_area_struct *vma)
725 {
726 	struct mm_struct *mm = vma->vm_mm;
727 	pgd_t *pgd;
728 	pud_t *pud;
729 	pmd_t *pmd;
730 	pte_t *pte;
731 	pte_t pteval;
732 	spinlock_t *ptl;
733 	struct page *page;
734 	unsigned long address;
735 	unsigned long end;
736 
737 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
738 	end = address + CLUSTER_SIZE;
739 	if (address < vma->vm_start)
740 		address = vma->vm_start;
741 	if (end > vma->vm_end)
742 		end = vma->vm_end;
743 
744 	pgd = pgd_offset(mm, address);
745 	if (!pgd_present(*pgd))
746 		return;
747 
748 	pud = pud_offset(pgd, address);
749 	if (!pud_present(*pud))
750 		return;
751 
752 	pmd = pmd_offset(pud, address);
753 	if (!pmd_present(*pmd))
754 		return;
755 
756 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
757 
758 	/* Update high watermark before we lower rss */
759 	update_hiwater_rss(mm);
760 
761 	for (; address < end; pte++, address += PAGE_SIZE) {
762 		if (!pte_present(*pte))
763 			continue;
764 		page = vm_normal_page(vma, address, *pte);
765 		BUG_ON(!page || PageAnon(page));
766 
767 		if (ptep_clear_flush_young(vma, address, pte))
768 			continue;
769 
770 		/* Nuke the page table entry. */
771 		flush_cache_page(vma, address, pte_pfn(*pte));
772 		pteval = ptep_clear_flush(vma, address, pte);
773 
774 		/* If nonlinear, store the file page offset in the pte. */
775 		if (page->index != linear_page_index(vma, address))
776 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
777 
778 		/* Move the dirty bit to the physical page now the pte is gone. */
779 		if (pte_dirty(pteval))
780 			set_page_dirty(page);
781 
782 		page_remove_rmap(page, vma);
783 		page_cache_release(page);
784 		dec_mm_counter(mm, file_rss);
785 		(*mapcount)--;
786 	}
787 	pte_unmap_unlock(pte - 1, ptl);
788 }
789 
790 static int try_to_unmap_anon(struct page *page, int migration)
791 {
792 	struct anon_vma *anon_vma;
793 	struct vm_area_struct *vma;
794 	int ret = SWAP_AGAIN;
795 
796 	anon_vma = page_lock_anon_vma(page);
797 	if (!anon_vma)
798 		return ret;
799 
800 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
801 		ret = try_to_unmap_one(page, vma, migration);
802 		if (ret == SWAP_FAIL || !page_mapped(page))
803 			break;
804 	}
805 	spin_unlock(&anon_vma->lock);
806 	return ret;
807 }
808 
809 /**
810  * try_to_unmap_file - unmap file page using the object-based rmap method
811  * @page: the page to unmap
812  *
813  * Find all the mappings of a page using the mapping pointer and the vma chains
814  * contained in the address_space struct it points to.
815  *
816  * This function is only called from try_to_unmap for object-based pages.
817  */
818 static int try_to_unmap_file(struct page *page, int migration)
819 {
820 	struct address_space *mapping = page->mapping;
821 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
822 	struct vm_area_struct *vma;
823 	struct prio_tree_iter iter;
824 	int ret = SWAP_AGAIN;
825 	unsigned long cursor;
826 	unsigned long max_nl_cursor = 0;
827 	unsigned long max_nl_size = 0;
828 	unsigned int mapcount;
829 
830 	spin_lock(&mapping->i_mmap_lock);
831 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
832 		ret = try_to_unmap_one(page, vma, migration);
833 		if (ret == SWAP_FAIL || !page_mapped(page))
834 			goto out;
835 	}
836 
837 	if (list_empty(&mapping->i_mmap_nonlinear))
838 		goto out;
839 
840 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
841 						shared.vm_set.list) {
842 		if ((vma->vm_flags & VM_LOCKED) && !migration)
843 			continue;
844 		cursor = (unsigned long) vma->vm_private_data;
845 		if (cursor > max_nl_cursor)
846 			max_nl_cursor = cursor;
847 		cursor = vma->vm_end - vma->vm_start;
848 		if (cursor > max_nl_size)
849 			max_nl_size = cursor;
850 	}
851 
852 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
853 		ret = SWAP_FAIL;
854 		goto out;
855 	}
856 
857 	/*
858 	 * We don't try to search for this page in the nonlinear vmas,
859 	 * and page_referenced wouldn't have found it anyway.  Instead
860 	 * just walk the nonlinear vmas trying to age and unmap some.
861 	 * The mapcount of the page we came in with is irrelevant,
862 	 * but even so use it as a guide to how hard we should try?
863 	 */
864 	mapcount = page_mapcount(page);
865 	if (!mapcount)
866 		goto out;
867 	cond_resched_lock(&mapping->i_mmap_lock);
868 
869 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
870 	if (max_nl_cursor == 0)
871 		max_nl_cursor = CLUSTER_SIZE;
872 
873 	do {
874 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
875 						shared.vm_set.list) {
876 			if ((vma->vm_flags & VM_LOCKED) && !migration)
877 				continue;
878 			cursor = (unsigned long) vma->vm_private_data;
879 			while ( cursor < max_nl_cursor &&
880 				cursor < vma->vm_end - vma->vm_start) {
881 				try_to_unmap_cluster(cursor, &mapcount, vma);
882 				cursor += CLUSTER_SIZE;
883 				vma->vm_private_data = (void *) cursor;
884 				if ((int)mapcount <= 0)
885 					goto out;
886 			}
887 			vma->vm_private_data = (void *) max_nl_cursor;
888 		}
889 		cond_resched_lock(&mapping->i_mmap_lock);
890 		max_nl_cursor += CLUSTER_SIZE;
891 	} while (max_nl_cursor <= max_nl_size);
892 
893 	/*
894 	 * Don't loop forever (perhaps all the remaining pages are
895 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
896 	 * vmas, now forgetting on which ones it had fallen behind.
897 	 */
898 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
899 		vma->vm_private_data = NULL;
900 out:
901 	spin_unlock(&mapping->i_mmap_lock);
902 	return ret;
903 }
904 
905 /**
906  * try_to_unmap - try to remove all page table mappings to a page
907  * @page: the page to get unmapped
908  *
909  * Tries to remove all the page table entries which are mapping this
910  * page, used in the pageout path.  Caller must hold the page lock.
911  * Return values are:
912  *
913  * SWAP_SUCCESS	- we succeeded in removing all mappings
914  * SWAP_AGAIN	- we missed a mapping, try again later
915  * SWAP_FAIL	- the page is unswappable
916  */
917 int try_to_unmap(struct page *page, int migration)
918 {
919 	int ret;
920 
921 	BUG_ON(!PageLocked(page));
922 
923 	if (PageAnon(page))
924 		ret = try_to_unmap_anon(page, migration);
925 	else
926 		ret = try_to_unmap_file(page, migration);
927 
928 	if (!page_mapped(page))
929 		ret = SWAP_SUCCESS;
930 	return ret;
931 }
932 
933