xref: /linux/mm/rmap.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70 }
71 
72 void anon_vma_free(struct anon_vma *anon_vma)
73 {
74 	kmem_cache_free(anon_vma_cachep, anon_vma);
75 }
76 
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78 {
79 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80 }
81 
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83 {
84 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85 }
86 
87 /**
88  * anon_vma_prepare - attach an anon_vma to a memory region
89  * @vma: the memory region in question
90  *
91  * This makes sure the memory mapping described by 'vma' has
92  * an 'anon_vma' attached to it, so that we can associate the
93  * anonymous pages mapped into it with that anon_vma.
94  *
95  * The common case will be that we already have one, but if
96  * if not we either need to find an adjacent mapping that we
97  * can re-use the anon_vma from (very common when the only
98  * reason for splitting a vma has been mprotect()), or we
99  * allocate a new one.
100  *
101  * Anon-vma allocations are very subtle, because we may have
102  * optimistically looked up an anon_vma in page_lock_anon_vma()
103  * and that may actually touch the spinlock even in the newly
104  * allocated vma (it depends on RCU to make sure that the
105  * anon_vma isn't actually destroyed).
106  *
107  * As a result, we need to do proper anon_vma locking even
108  * for the new allocation. At the same time, we do not want
109  * to do any locking for the common case of already having
110  * an anon_vma.
111  *
112  * This must be called with the mmap_sem held for reading.
113  */
114 int anon_vma_prepare(struct vm_area_struct *vma)
115 {
116 	struct anon_vma *anon_vma = vma->anon_vma;
117 	struct anon_vma_chain *avc;
118 
119 	might_sleep();
120 	if (unlikely(!anon_vma)) {
121 		struct mm_struct *mm = vma->vm_mm;
122 		struct anon_vma *allocated;
123 
124 		avc = anon_vma_chain_alloc();
125 		if (!avc)
126 			goto out_enomem;
127 
128 		anon_vma = find_mergeable_anon_vma(vma);
129 		allocated = NULL;
130 		if (!anon_vma) {
131 			anon_vma = anon_vma_alloc();
132 			if (unlikely(!anon_vma))
133 				goto out_enomem_free_avc;
134 			allocated = anon_vma;
135 		}
136 
137 		spin_lock(&anon_vma->lock);
138 		/* page_table_lock to protect against threads */
139 		spin_lock(&mm->page_table_lock);
140 		if (likely(!vma->anon_vma)) {
141 			vma->anon_vma = anon_vma;
142 			avc->anon_vma = anon_vma;
143 			avc->vma = vma;
144 			list_add(&avc->same_vma, &vma->anon_vma_chain);
145 			list_add(&avc->same_anon_vma, &anon_vma->head);
146 			allocated = NULL;
147 			avc = NULL;
148 		}
149 		spin_unlock(&mm->page_table_lock);
150 		spin_unlock(&anon_vma->lock);
151 
152 		if (unlikely(allocated))
153 			anon_vma_free(allocated);
154 		if (unlikely(avc))
155 			anon_vma_chain_free(avc);
156 	}
157 	return 0;
158 
159  out_enomem_free_avc:
160 	anon_vma_chain_free(avc);
161  out_enomem:
162 	return -ENOMEM;
163 }
164 
165 static void anon_vma_chain_link(struct vm_area_struct *vma,
166 				struct anon_vma_chain *avc,
167 				struct anon_vma *anon_vma)
168 {
169 	avc->vma = vma;
170 	avc->anon_vma = anon_vma;
171 	list_add(&avc->same_vma, &vma->anon_vma_chain);
172 
173 	spin_lock(&anon_vma->lock);
174 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
175 	spin_unlock(&anon_vma->lock);
176 }
177 
178 /*
179  * Attach the anon_vmas from src to dst.
180  * Returns 0 on success, -ENOMEM on failure.
181  */
182 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
183 {
184 	struct anon_vma_chain *avc, *pavc;
185 
186 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
187 		avc = anon_vma_chain_alloc();
188 		if (!avc)
189 			goto enomem_failure;
190 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
191 	}
192 	return 0;
193 
194  enomem_failure:
195 	unlink_anon_vmas(dst);
196 	return -ENOMEM;
197 }
198 
199 /*
200  * Attach vma to its own anon_vma, as well as to the anon_vmas that
201  * the corresponding VMA in the parent process is attached to.
202  * Returns 0 on success, non-zero on failure.
203  */
204 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
205 {
206 	struct anon_vma_chain *avc;
207 	struct anon_vma *anon_vma;
208 
209 	/* Don't bother if the parent process has no anon_vma here. */
210 	if (!pvma->anon_vma)
211 		return 0;
212 
213 	/*
214 	 * First, attach the new VMA to the parent VMA's anon_vmas,
215 	 * so rmap can find non-COWed pages in child processes.
216 	 */
217 	if (anon_vma_clone(vma, pvma))
218 		return -ENOMEM;
219 
220 	/* Then add our own anon_vma. */
221 	anon_vma = anon_vma_alloc();
222 	if (!anon_vma)
223 		goto out_error;
224 	avc = anon_vma_chain_alloc();
225 	if (!avc)
226 		goto out_error_free_anon_vma;
227 	anon_vma_chain_link(vma, avc, anon_vma);
228 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
229 	vma->anon_vma = anon_vma;
230 
231 	return 0;
232 
233  out_error_free_anon_vma:
234 	anon_vma_free(anon_vma);
235  out_error:
236 	unlink_anon_vmas(vma);
237 	return -ENOMEM;
238 }
239 
240 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
241 {
242 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
243 	int empty;
244 
245 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
246 	if (!anon_vma)
247 		return;
248 
249 	spin_lock(&anon_vma->lock);
250 	list_del(&anon_vma_chain->same_anon_vma);
251 
252 	/* We must garbage collect the anon_vma if it's empty */
253 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
254 	spin_unlock(&anon_vma->lock);
255 
256 	if (empty)
257 		anon_vma_free(anon_vma);
258 }
259 
260 void unlink_anon_vmas(struct vm_area_struct *vma)
261 {
262 	struct anon_vma_chain *avc, *next;
263 
264 	/* Unlink each anon_vma chained to the VMA. */
265 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
266 		anon_vma_unlink(avc);
267 		list_del(&avc->same_vma);
268 		anon_vma_chain_free(avc);
269 	}
270 }
271 
272 static void anon_vma_ctor(void *data)
273 {
274 	struct anon_vma *anon_vma = data;
275 
276 	spin_lock_init(&anon_vma->lock);
277 	anonvma_external_refcount_init(anon_vma);
278 	INIT_LIST_HEAD(&anon_vma->head);
279 }
280 
281 void __init anon_vma_init(void)
282 {
283 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
284 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
285 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
286 }
287 
288 /*
289  * Getting a lock on a stable anon_vma from a page off the LRU is
290  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
291  */
292 struct anon_vma *page_lock_anon_vma(struct page *page)
293 {
294 	struct anon_vma *anon_vma;
295 	unsigned long anon_mapping;
296 
297 	rcu_read_lock();
298 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
299 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
300 		goto out;
301 	if (!page_mapped(page))
302 		goto out;
303 
304 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
305 	spin_lock(&anon_vma->lock);
306 	return anon_vma;
307 out:
308 	rcu_read_unlock();
309 	return NULL;
310 }
311 
312 void page_unlock_anon_vma(struct anon_vma *anon_vma)
313 {
314 	spin_unlock(&anon_vma->lock);
315 	rcu_read_unlock();
316 }
317 
318 /*
319  * At what user virtual address is page expected in @vma?
320  * Returns virtual address or -EFAULT if page's index/offset is not
321  * within the range mapped the @vma.
322  */
323 static inline unsigned long
324 vma_address(struct page *page, struct vm_area_struct *vma)
325 {
326 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
327 	unsigned long address;
328 
329 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
330 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
331 		/* page should be within @vma mapping range */
332 		return -EFAULT;
333 	}
334 	return address;
335 }
336 
337 /*
338  * At what user virtual address is page expected in vma?
339  * Caller should check the page is actually part of the vma.
340  */
341 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
342 {
343 	if (PageAnon(page))
344 		;
345 	else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
346 		if (!vma->vm_file ||
347 		    vma->vm_file->f_mapping != page->mapping)
348 			return -EFAULT;
349 	} else
350 		return -EFAULT;
351 	return vma_address(page, vma);
352 }
353 
354 /*
355  * Check that @page is mapped at @address into @mm.
356  *
357  * If @sync is false, page_check_address may perform a racy check to avoid
358  * the page table lock when the pte is not present (helpful when reclaiming
359  * highly shared pages).
360  *
361  * On success returns with pte mapped and locked.
362  */
363 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
364 			  unsigned long address, spinlock_t **ptlp, int sync)
365 {
366 	pgd_t *pgd;
367 	pud_t *pud;
368 	pmd_t *pmd;
369 	pte_t *pte;
370 	spinlock_t *ptl;
371 
372 	pgd = pgd_offset(mm, address);
373 	if (!pgd_present(*pgd))
374 		return NULL;
375 
376 	pud = pud_offset(pgd, address);
377 	if (!pud_present(*pud))
378 		return NULL;
379 
380 	pmd = pmd_offset(pud, address);
381 	if (!pmd_present(*pmd))
382 		return NULL;
383 
384 	pte = pte_offset_map(pmd, address);
385 	/* Make a quick check before getting the lock */
386 	if (!sync && !pte_present(*pte)) {
387 		pte_unmap(pte);
388 		return NULL;
389 	}
390 
391 	ptl = pte_lockptr(mm, pmd);
392 	spin_lock(ptl);
393 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
394 		*ptlp = ptl;
395 		return pte;
396 	}
397 	pte_unmap_unlock(pte, ptl);
398 	return NULL;
399 }
400 
401 /**
402  * page_mapped_in_vma - check whether a page is really mapped in a VMA
403  * @page: the page to test
404  * @vma: the VMA to test
405  *
406  * Returns 1 if the page is mapped into the page tables of the VMA, 0
407  * if the page is not mapped into the page tables of this VMA.  Only
408  * valid for normal file or anonymous VMAs.
409  */
410 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
411 {
412 	unsigned long address;
413 	pte_t *pte;
414 	spinlock_t *ptl;
415 
416 	address = vma_address(page, vma);
417 	if (address == -EFAULT)		/* out of vma range */
418 		return 0;
419 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
420 	if (!pte)			/* the page is not in this mm */
421 		return 0;
422 	pte_unmap_unlock(pte, ptl);
423 
424 	return 1;
425 }
426 
427 /*
428  * Subfunctions of page_referenced: page_referenced_one called
429  * repeatedly from either page_referenced_anon or page_referenced_file.
430  */
431 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
432 			unsigned long address, unsigned int *mapcount,
433 			unsigned long *vm_flags)
434 {
435 	struct mm_struct *mm = vma->vm_mm;
436 	pte_t *pte;
437 	spinlock_t *ptl;
438 	int referenced = 0;
439 
440 	pte = page_check_address(page, mm, address, &ptl, 0);
441 	if (!pte)
442 		goto out;
443 
444 	/*
445 	 * Don't want to elevate referenced for mlocked page that gets this far,
446 	 * in order that it progresses to try_to_unmap and is moved to the
447 	 * unevictable list.
448 	 */
449 	if (vma->vm_flags & VM_LOCKED) {
450 		*mapcount = 1;	/* break early from loop */
451 		*vm_flags |= VM_LOCKED;
452 		goto out_unmap;
453 	}
454 
455 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
456 		/*
457 		 * Don't treat a reference through a sequentially read
458 		 * mapping as such.  If the page has been used in
459 		 * another mapping, we will catch it; if this other
460 		 * mapping is already gone, the unmap path will have
461 		 * set PG_referenced or activated the page.
462 		 */
463 		if (likely(!VM_SequentialReadHint(vma)))
464 			referenced++;
465 	}
466 
467 	/* Pretend the page is referenced if the task has the
468 	   swap token and is in the middle of a page fault. */
469 	if (mm != current->mm && has_swap_token(mm) &&
470 			rwsem_is_locked(&mm->mmap_sem))
471 		referenced++;
472 
473 out_unmap:
474 	(*mapcount)--;
475 	pte_unmap_unlock(pte, ptl);
476 
477 	if (referenced)
478 		*vm_flags |= vma->vm_flags;
479 out:
480 	return referenced;
481 }
482 
483 static int page_referenced_anon(struct page *page,
484 				struct mem_cgroup *mem_cont,
485 				unsigned long *vm_flags)
486 {
487 	unsigned int mapcount;
488 	struct anon_vma *anon_vma;
489 	struct anon_vma_chain *avc;
490 	int referenced = 0;
491 
492 	anon_vma = page_lock_anon_vma(page);
493 	if (!anon_vma)
494 		return referenced;
495 
496 	mapcount = page_mapcount(page);
497 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
498 		struct vm_area_struct *vma = avc->vma;
499 		unsigned long address = vma_address(page, vma);
500 		if (address == -EFAULT)
501 			continue;
502 		/*
503 		 * If we are reclaiming on behalf of a cgroup, skip
504 		 * counting on behalf of references from different
505 		 * cgroups
506 		 */
507 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
508 			continue;
509 		referenced += page_referenced_one(page, vma, address,
510 						  &mapcount, vm_flags);
511 		if (!mapcount)
512 			break;
513 	}
514 
515 	page_unlock_anon_vma(anon_vma);
516 	return referenced;
517 }
518 
519 /**
520  * page_referenced_file - referenced check for object-based rmap
521  * @page: the page we're checking references on.
522  * @mem_cont: target memory controller
523  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
524  *
525  * For an object-based mapped page, find all the places it is mapped and
526  * check/clear the referenced flag.  This is done by following the page->mapping
527  * pointer, then walking the chain of vmas it holds.  It returns the number
528  * of references it found.
529  *
530  * This function is only called from page_referenced for object-based pages.
531  */
532 static int page_referenced_file(struct page *page,
533 				struct mem_cgroup *mem_cont,
534 				unsigned long *vm_flags)
535 {
536 	unsigned int mapcount;
537 	struct address_space *mapping = page->mapping;
538 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
539 	struct vm_area_struct *vma;
540 	struct prio_tree_iter iter;
541 	int referenced = 0;
542 
543 	/*
544 	 * The caller's checks on page->mapping and !PageAnon have made
545 	 * sure that this is a file page: the check for page->mapping
546 	 * excludes the case just before it gets set on an anon page.
547 	 */
548 	BUG_ON(PageAnon(page));
549 
550 	/*
551 	 * The page lock not only makes sure that page->mapping cannot
552 	 * suddenly be NULLified by truncation, it makes sure that the
553 	 * structure at mapping cannot be freed and reused yet,
554 	 * so we can safely take mapping->i_mmap_lock.
555 	 */
556 	BUG_ON(!PageLocked(page));
557 
558 	spin_lock(&mapping->i_mmap_lock);
559 
560 	/*
561 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 	 * is more likely to be accurate if we note it after spinning.
563 	 */
564 	mapcount = page_mapcount(page);
565 
566 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
567 		unsigned long address = vma_address(page, vma);
568 		if (address == -EFAULT)
569 			continue;
570 		/*
571 		 * If we are reclaiming on behalf of a cgroup, skip
572 		 * counting on behalf of references from different
573 		 * cgroups
574 		 */
575 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
576 			continue;
577 		referenced += page_referenced_one(page, vma, address,
578 						  &mapcount, vm_flags);
579 		if (!mapcount)
580 			break;
581 	}
582 
583 	spin_unlock(&mapping->i_mmap_lock);
584 	return referenced;
585 }
586 
587 /**
588  * page_referenced - test if the page was referenced
589  * @page: the page to test
590  * @is_locked: caller holds lock on the page
591  * @mem_cont: target memory controller
592  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
593  *
594  * Quick test_and_clear_referenced for all mappings to a page,
595  * returns the number of ptes which referenced the page.
596  */
597 int page_referenced(struct page *page,
598 		    int is_locked,
599 		    struct mem_cgroup *mem_cont,
600 		    unsigned long *vm_flags)
601 {
602 	int referenced = 0;
603 	int we_locked = 0;
604 
605 	*vm_flags = 0;
606 	if (page_mapped(page) && page_rmapping(page)) {
607 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
608 			we_locked = trylock_page(page);
609 			if (!we_locked) {
610 				referenced++;
611 				goto out;
612 			}
613 		}
614 		if (unlikely(PageKsm(page)))
615 			referenced += page_referenced_ksm(page, mem_cont,
616 								vm_flags);
617 		else if (PageAnon(page))
618 			referenced += page_referenced_anon(page, mem_cont,
619 								vm_flags);
620 		else if (page->mapping)
621 			referenced += page_referenced_file(page, mem_cont,
622 								vm_flags);
623 		if (we_locked)
624 			unlock_page(page);
625 	}
626 out:
627 	if (page_test_and_clear_young(page))
628 		referenced++;
629 
630 	return referenced;
631 }
632 
633 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
634 			    unsigned long address)
635 {
636 	struct mm_struct *mm = vma->vm_mm;
637 	pte_t *pte;
638 	spinlock_t *ptl;
639 	int ret = 0;
640 
641 	pte = page_check_address(page, mm, address, &ptl, 1);
642 	if (!pte)
643 		goto out;
644 
645 	if (pte_dirty(*pte) || pte_write(*pte)) {
646 		pte_t entry;
647 
648 		flush_cache_page(vma, address, pte_pfn(*pte));
649 		entry = ptep_clear_flush_notify(vma, address, pte);
650 		entry = pte_wrprotect(entry);
651 		entry = pte_mkclean(entry);
652 		set_pte_at(mm, address, pte, entry);
653 		ret = 1;
654 	}
655 
656 	pte_unmap_unlock(pte, ptl);
657 out:
658 	return ret;
659 }
660 
661 static int page_mkclean_file(struct address_space *mapping, struct page *page)
662 {
663 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
664 	struct vm_area_struct *vma;
665 	struct prio_tree_iter iter;
666 	int ret = 0;
667 
668 	BUG_ON(PageAnon(page));
669 
670 	spin_lock(&mapping->i_mmap_lock);
671 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
672 		if (vma->vm_flags & VM_SHARED) {
673 			unsigned long address = vma_address(page, vma);
674 			if (address == -EFAULT)
675 				continue;
676 			ret += page_mkclean_one(page, vma, address);
677 		}
678 	}
679 	spin_unlock(&mapping->i_mmap_lock);
680 	return ret;
681 }
682 
683 int page_mkclean(struct page *page)
684 {
685 	int ret = 0;
686 
687 	BUG_ON(!PageLocked(page));
688 
689 	if (page_mapped(page)) {
690 		struct address_space *mapping = page_mapping(page);
691 		if (mapping) {
692 			ret = page_mkclean_file(mapping, page);
693 			if (page_test_dirty(page)) {
694 				page_clear_dirty(page);
695 				ret = 1;
696 			}
697 		}
698 	}
699 
700 	return ret;
701 }
702 EXPORT_SYMBOL_GPL(page_mkclean);
703 
704 /**
705  * page_move_anon_rmap - move a page to our anon_vma
706  * @page:	the page to move to our anon_vma
707  * @vma:	the vma the page belongs to
708  * @address:	the user virtual address mapped
709  *
710  * When a page belongs exclusively to one process after a COW event,
711  * that page can be moved into the anon_vma that belongs to just that
712  * process, so the rmap code will not search the parent or sibling
713  * processes.
714  */
715 void page_move_anon_rmap(struct page *page,
716 	struct vm_area_struct *vma, unsigned long address)
717 {
718 	struct anon_vma *anon_vma = vma->anon_vma;
719 
720 	VM_BUG_ON(!PageLocked(page));
721 	VM_BUG_ON(!anon_vma);
722 	VM_BUG_ON(page->index != linear_page_index(vma, address));
723 
724 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
725 	page->mapping = (struct address_space *) anon_vma;
726 }
727 
728 /**
729  * __page_set_anon_rmap - setup new anonymous rmap
730  * @page:	the page to add the mapping to
731  * @vma:	the vm area in which the mapping is added
732  * @address:	the user virtual address mapped
733  * @exclusive:	the page is exclusively owned by the current process
734  */
735 static void __page_set_anon_rmap(struct page *page,
736 	struct vm_area_struct *vma, unsigned long address, int exclusive)
737 {
738 	struct anon_vma *anon_vma = vma->anon_vma;
739 
740 	BUG_ON(!anon_vma);
741 
742 	/*
743 	 * If the page isn't exclusively mapped into this vma,
744 	 * we must use the _oldest_ possible anon_vma for the
745 	 * page mapping!
746 	 *
747 	 * So take the last AVC chain entry in the vma, which is
748 	 * the deepest ancestor, and use the anon_vma from that.
749 	 */
750 	if (!exclusive) {
751 		struct anon_vma_chain *avc;
752 		avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
753 		anon_vma = avc->anon_vma;
754 	}
755 
756 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
757 	page->mapping = (struct address_space *) anon_vma;
758 	page->index = linear_page_index(vma, address);
759 }
760 
761 /**
762  * __page_check_anon_rmap - sanity check anonymous rmap addition
763  * @page:	the page to add the mapping to
764  * @vma:	the vm area in which the mapping is added
765  * @address:	the user virtual address mapped
766  */
767 static void __page_check_anon_rmap(struct page *page,
768 	struct vm_area_struct *vma, unsigned long address)
769 {
770 #ifdef CONFIG_DEBUG_VM
771 	/*
772 	 * The page's anon-rmap details (mapping and index) are guaranteed to
773 	 * be set up correctly at this point.
774 	 *
775 	 * We have exclusion against page_add_anon_rmap because the caller
776 	 * always holds the page locked, except if called from page_dup_rmap,
777 	 * in which case the page is already known to be setup.
778 	 *
779 	 * We have exclusion against page_add_new_anon_rmap because those pages
780 	 * are initially only visible via the pagetables, and the pte is locked
781 	 * over the call to page_add_new_anon_rmap.
782 	 */
783 	BUG_ON(page->index != linear_page_index(vma, address));
784 #endif
785 }
786 
787 /**
788  * page_add_anon_rmap - add pte mapping to an anonymous page
789  * @page:	the page to add the mapping to
790  * @vma:	the vm area in which the mapping is added
791  * @address:	the user virtual address mapped
792  *
793  * The caller needs to hold the pte lock, and the page must be locked in
794  * the anon_vma case: to serialize mapping,index checking after setting,
795  * and to ensure that PageAnon is not being upgraded racily to PageKsm
796  * (but PageKsm is never downgraded to PageAnon).
797  */
798 void page_add_anon_rmap(struct page *page,
799 	struct vm_area_struct *vma, unsigned long address)
800 {
801 	int first = atomic_inc_and_test(&page->_mapcount);
802 	if (first)
803 		__inc_zone_page_state(page, NR_ANON_PAGES);
804 	if (unlikely(PageKsm(page)))
805 		return;
806 
807 	VM_BUG_ON(!PageLocked(page));
808 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
809 	if (first)
810 		__page_set_anon_rmap(page, vma, address, 0);
811 	else
812 		__page_check_anon_rmap(page, vma, address);
813 }
814 
815 /**
816  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
817  * @page:	the page to add the mapping to
818  * @vma:	the vm area in which the mapping is added
819  * @address:	the user virtual address mapped
820  *
821  * Same as page_add_anon_rmap but must only be called on *new* pages.
822  * This means the inc-and-test can be bypassed.
823  * Page does not have to be locked.
824  */
825 void page_add_new_anon_rmap(struct page *page,
826 	struct vm_area_struct *vma, unsigned long address)
827 {
828 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
829 	SetPageSwapBacked(page);
830 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
831 	__inc_zone_page_state(page, NR_ANON_PAGES);
832 	__page_set_anon_rmap(page, vma, address, 1);
833 	if (page_evictable(page, vma))
834 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
835 	else
836 		add_page_to_unevictable_list(page);
837 }
838 
839 /**
840  * page_add_file_rmap - add pte mapping to a file page
841  * @page: the page to add the mapping to
842  *
843  * The caller needs to hold the pte lock.
844  */
845 void page_add_file_rmap(struct page *page)
846 {
847 	if (atomic_inc_and_test(&page->_mapcount)) {
848 		__inc_zone_page_state(page, NR_FILE_MAPPED);
849 		mem_cgroup_update_file_mapped(page, 1);
850 	}
851 }
852 
853 /**
854  * page_remove_rmap - take down pte mapping from a page
855  * @page: page to remove mapping from
856  *
857  * The caller needs to hold the pte lock.
858  */
859 void page_remove_rmap(struct page *page)
860 {
861 	/* page still mapped by someone else? */
862 	if (!atomic_add_negative(-1, &page->_mapcount))
863 		return;
864 
865 	/*
866 	 * Now that the last pte has gone, s390 must transfer dirty
867 	 * flag from storage key to struct page.  We can usually skip
868 	 * this if the page is anon, so about to be freed; but perhaps
869 	 * not if it's in swapcache - there might be another pte slot
870 	 * containing the swap entry, but page not yet written to swap.
871 	 */
872 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
873 		page_clear_dirty(page);
874 		set_page_dirty(page);
875 	}
876 	if (PageAnon(page)) {
877 		mem_cgroup_uncharge_page(page);
878 		__dec_zone_page_state(page, NR_ANON_PAGES);
879 	} else {
880 		__dec_zone_page_state(page, NR_FILE_MAPPED);
881 		mem_cgroup_update_file_mapped(page, -1);
882 	}
883 	/*
884 	 * It would be tidy to reset the PageAnon mapping here,
885 	 * but that might overwrite a racing page_add_anon_rmap
886 	 * which increments mapcount after us but sets mapping
887 	 * before us: so leave the reset to free_hot_cold_page,
888 	 * and remember that it's only reliable while mapped.
889 	 * Leaving it set also helps swapoff to reinstate ptes
890 	 * faster for those pages still in swapcache.
891 	 */
892 }
893 
894 /*
895  * Subfunctions of try_to_unmap: try_to_unmap_one called
896  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
897  */
898 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
899 		     unsigned long address, enum ttu_flags flags)
900 {
901 	struct mm_struct *mm = vma->vm_mm;
902 	pte_t *pte;
903 	pte_t pteval;
904 	spinlock_t *ptl;
905 	int ret = SWAP_AGAIN;
906 
907 	pte = page_check_address(page, mm, address, &ptl, 0);
908 	if (!pte)
909 		goto out;
910 
911 	/*
912 	 * If the page is mlock()d, we cannot swap it out.
913 	 * If it's recently referenced (perhaps page_referenced
914 	 * skipped over this mm) then we should reactivate it.
915 	 */
916 	if (!(flags & TTU_IGNORE_MLOCK)) {
917 		if (vma->vm_flags & VM_LOCKED)
918 			goto out_mlock;
919 
920 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
921 			goto out_unmap;
922 	}
923 	if (!(flags & TTU_IGNORE_ACCESS)) {
924 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
925 			ret = SWAP_FAIL;
926 			goto out_unmap;
927 		}
928   	}
929 
930 	/* Nuke the page table entry. */
931 	flush_cache_page(vma, address, page_to_pfn(page));
932 	pteval = ptep_clear_flush_notify(vma, address, pte);
933 
934 	/* Move the dirty bit to the physical page now the pte is gone. */
935 	if (pte_dirty(pteval))
936 		set_page_dirty(page);
937 
938 	/* Update high watermark before we lower rss */
939 	update_hiwater_rss(mm);
940 
941 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
942 		if (PageAnon(page))
943 			dec_mm_counter(mm, MM_ANONPAGES);
944 		else
945 			dec_mm_counter(mm, MM_FILEPAGES);
946 		set_pte_at(mm, address, pte,
947 				swp_entry_to_pte(make_hwpoison_entry(page)));
948 	} else if (PageAnon(page)) {
949 		swp_entry_t entry = { .val = page_private(page) };
950 
951 		if (PageSwapCache(page)) {
952 			/*
953 			 * Store the swap location in the pte.
954 			 * See handle_pte_fault() ...
955 			 */
956 			if (swap_duplicate(entry) < 0) {
957 				set_pte_at(mm, address, pte, pteval);
958 				ret = SWAP_FAIL;
959 				goto out_unmap;
960 			}
961 			if (list_empty(&mm->mmlist)) {
962 				spin_lock(&mmlist_lock);
963 				if (list_empty(&mm->mmlist))
964 					list_add(&mm->mmlist, &init_mm.mmlist);
965 				spin_unlock(&mmlist_lock);
966 			}
967 			dec_mm_counter(mm, MM_ANONPAGES);
968 			inc_mm_counter(mm, MM_SWAPENTS);
969 		} else if (PAGE_MIGRATION) {
970 			/*
971 			 * Store the pfn of the page in a special migration
972 			 * pte. do_swap_page() will wait until the migration
973 			 * pte is removed and then restart fault handling.
974 			 */
975 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
976 			entry = make_migration_entry(page, pte_write(pteval));
977 		}
978 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
979 		BUG_ON(pte_file(*pte));
980 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
981 		/* Establish migration entry for a file page */
982 		swp_entry_t entry;
983 		entry = make_migration_entry(page, pte_write(pteval));
984 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
985 	} else
986 		dec_mm_counter(mm, MM_FILEPAGES);
987 
988 	page_remove_rmap(page);
989 	page_cache_release(page);
990 
991 out_unmap:
992 	pte_unmap_unlock(pte, ptl);
993 out:
994 	return ret;
995 
996 out_mlock:
997 	pte_unmap_unlock(pte, ptl);
998 
999 
1000 	/*
1001 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1002 	 * unstable result and race. Plus, We can't wait here because
1003 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1004 	 * if trylock failed, the page remain in evictable lru and later
1005 	 * vmscan could retry to move the page to unevictable lru if the
1006 	 * page is actually mlocked.
1007 	 */
1008 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1009 		if (vma->vm_flags & VM_LOCKED) {
1010 			mlock_vma_page(page);
1011 			ret = SWAP_MLOCK;
1012 		}
1013 		up_read(&vma->vm_mm->mmap_sem);
1014 	}
1015 	return ret;
1016 }
1017 
1018 /*
1019  * objrmap doesn't work for nonlinear VMAs because the assumption that
1020  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1021  * Consequently, given a particular page and its ->index, we cannot locate the
1022  * ptes which are mapping that page without an exhaustive linear search.
1023  *
1024  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1025  * maps the file to which the target page belongs.  The ->vm_private_data field
1026  * holds the current cursor into that scan.  Successive searches will circulate
1027  * around the vma's virtual address space.
1028  *
1029  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1030  * more scanning pressure is placed against them as well.   Eventually pages
1031  * will become fully unmapped and are eligible for eviction.
1032  *
1033  * For very sparsely populated VMAs this is a little inefficient - chances are
1034  * there there won't be many ptes located within the scan cluster.  In this case
1035  * maybe we could scan further - to the end of the pte page, perhaps.
1036  *
1037  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1038  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1039  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1040  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1041  */
1042 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1043 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1044 
1045 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1046 		struct vm_area_struct *vma, struct page *check_page)
1047 {
1048 	struct mm_struct *mm = vma->vm_mm;
1049 	pgd_t *pgd;
1050 	pud_t *pud;
1051 	pmd_t *pmd;
1052 	pte_t *pte;
1053 	pte_t pteval;
1054 	spinlock_t *ptl;
1055 	struct page *page;
1056 	unsigned long address;
1057 	unsigned long end;
1058 	int ret = SWAP_AGAIN;
1059 	int locked_vma = 0;
1060 
1061 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1062 	end = address + CLUSTER_SIZE;
1063 	if (address < vma->vm_start)
1064 		address = vma->vm_start;
1065 	if (end > vma->vm_end)
1066 		end = vma->vm_end;
1067 
1068 	pgd = pgd_offset(mm, address);
1069 	if (!pgd_present(*pgd))
1070 		return ret;
1071 
1072 	pud = pud_offset(pgd, address);
1073 	if (!pud_present(*pud))
1074 		return ret;
1075 
1076 	pmd = pmd_offset(pud, address);
1077 	if (!pmd_present(*pmd))
1078 		return ret;
1079 
1080 	/*
1081 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1082 	 * keep the sem while scanning the cluster for mlocking pages.
1083 	 */
1084 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1085 		locked_vma = (vma->vm_flags & VM_LOCKED);
1086 		if (!locked_vma)
1087 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1088 	}
1089 
1090 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1091 
1092 	/* Update high watermark before we lower rss */
1093 	update_hiwater_rss(mm);
1094 
1095 	for (; address < end; pte++, address += PAGE_SIZE) {
1096 		if (!pte_present(*pte))
1097 			continue;
1098 		page = vm_normal_page(vma, address, *pte);
1099 		BUG_ON(!page || PageAnon(page));
1100 
1101 		if (locked_vma) {
1102 			mlock_vma_page(page);   /* no-op if already mlocked */
1103 			if (page == check_page)
1104 				ret = SWAP_MLOCK;
1105 			continue;	/* don't unmap */
1106 		}
1107 
1108 		if (ptep_clear_flush_young_notify(vma, address, pte))
1109 			continue;
1110 
1111 		/* Nuke the page table entry. */
1112 		flush_cache_page(vma, address, pte_pfn(*pte));
1113 		pteval = ptep_clear_flush_notify(vma, address, pte);
1114 
1115 		/* If nonlinear, store the file page offset in the pte. */
1116 		if (page->index != linear_page_index(vma, address))
1117 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1118 
1119 		/* Move the dirty bit to the physical page now the pte is gone. */
1120 		if (pte_dirty(pteval))
1121 			set_page_dirty(page);
1122 
1123 		page_remove_rmap(page);
1124 		page_cache_release(page);
1125 		dec_mm_counter(mm, MM_FILEPAGES);
1126 		(*mapcount)--;
1127 	}
1128 	pte_unmap_unlock(pte - 1, ptl);
1129 	if (locked_vma)
1130 		up_read(&vma->vm_mm->mmap_sem);
1131 	return ret;
1132 }
1133 
1134 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1135 {
1136 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1137 
1138 	if (!maybe_stack)
1139 		return false;
1140 
1141 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1142 						VM_STACK_INCOMPLETE_SETUP)
1143 		return true;
1144 
1145 	return false;
1146 }
1147 
1148 /**
1149  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1150  * rmap method
1151  * @page: the page to unmap/unlock
1152  * @flags: action and flags
1153  *
1154  * Find all the mappings of a page using the mapping pointer and the vma chains
1155  * contained in the anon_vma struct it points to.
1156  *
1157  * This function is only called from try_to_unmap/try_to_munlock for
1158  * anonymous pages.
1159  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1160  * where the page was found will be held for write.  So, we won't recheck
1161  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1162  * 'LOCKED.
1163  */
1164 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1165 {
1166 	struct anon_vma *anon_vma;
1167 	struct anon_vma_chain *avc;
1168 	int ret = SWAP_AGAIN;
1169 
1170 	anon_vma = page_lock_anon_vma(page);
1171 	if (!anon_vma)
1172 		return ret;
1173 
1174 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1175 		struct vm_area_struct *vma = avc->vma;
1176 		unsigned long address;
1177 
1178 		/*
1179 		 * During exec, a temporary VMA is setup and later moved.
1180 		 * The VMA is moved under the anon_vma lock but not the
1181 		 * page tables leading to a race where migration cannot
1182 		 * find the migration ptes. Rather than increasing the
1183 		 * locking requirements of exec(), migration skips
1184 		 * temporary VMAs until after exec() completes.
1185 		 */
1186 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1187 				is_vma_temporary_stack(vma))
1188 			continue;
1189 
1190 		address = vma_address(page, vma);
1191 		if (address == -EFAULT)
1192 			continue;
1193 		ret = try_to_unmap_one(page, vma, address, flags);
1194 		if (ret != SWAP_AGAIN || !page_mapped(page))
1195 			break;
1196 	}
1197 
1198 	page_unlock_anon_vma(anon_vma);
1199 	return ret;
1200 }
1201 
1202 /**
1203  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1204  * @page: the page to unmap/unlock
1205  * @flags: action and flags
1206  *
1207  * Find all the mappings of a page using the mapping pointer and the vma chains
1208  * contained in the address_space struct it points to.
1209  *
1210  * This function is only called from try_to_unmap/try_to_munlock for
1211  * object-based pages.
1212  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1213  * where the page was found will be held for write.  So, we won't recheck
1214  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1215  * 'LOCKED.
1216  */
1217 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1218 {
1219 	struct address_space *mapping = page->mapping;
1220 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1221 	struct vm_area_struct *vma;
1222 	struct prio_tree_iter iter;
1223 	int ret = SWAP_AGAIN;
1224 	unsigned long cursor;
1225 	unsigned long max_nl_cursor = 0;
1226 	unsigned long max_nl_size = 0;
1227 	unsigned int mapcount;
1228 
1229 	spin_lock(&mapping->i_mmap_lock);
1230 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1231 		unsigned long address = vma_address(page, vma);
1232 		if (address == -EFAULT)
1233 			continue;
1234 		ret = try_to_unmap_one(page, vma, address, flags);
1235 		if (ret != SWAP_AGAIN || !page_mapped(page))
1236 			goto out;
1237 	}
1238 
1239 	if (list_empty(&mapping->i_mmap_nonlinear))
1240 		goto out;
1241 
1242 	/*
1243 	 * We don't bother to try to find the munlocked page in nonlinears.
1244 	 * It's costly. Instead, later, page reclaim logic may call
1245 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1246 	 */
1247 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1248 		goto out;
1249 
1250 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1251 						shared.vm_set.list) {
1252 		cursor = (unsigned long) vma->vm_private_data;
1253 		if (cursor > max_nl_cursor)
1254 			max_nl_cursor = cursor;
1255 		cursor = vma->vm_end - vma->vm_start;
1256 		if (cursor > max_nl_size)
1257 			max_nl_size = cursor;
1258 	}
1259 
1260 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1261 		ret = SWAP_FAIL;
1262 		goto out;
1263 	}
1264 
1265 	/*
1266 	 * We don't try to search for this page in the nonlinear vmas,
1267 	 * and page_referenced wouldn't have found it anyway.  Instead
1268 	 * just walk the nonlinear vmas trying to age and unmap some.
1269 	 * The mapcount of the page we came in with is irrelevant,
1270 	 * but even so use it as a guide to how hard we should try?
1271 	 */
1272 	mapcount = page_mapcount(page);
1273 	if (!mapcount)
1274 		goto out;
1275 	cond_resched_lock(&mapping->i_mmap_lock);
1276 
1277 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1278 	if (max_nl_cursor == 0)
1279 		max_nl_cursor = CLUSTER_SIZE;
1280 
1281 	do {
1282 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1283 						shared.vm_set.list) {
1284 			cursor = (unsigned long) vma->vm_private_data;
1285 			while ( cursor < max_nl_cursor &&
1286 				cursor < vma->vm_end - vma->vm_start) {
1287 				if (try_to_unmap_cluster(cursor, &mapcount,
1288 						vma, page) == SWAP_MLOCK)
1289 					ret = SWAP_MLOCK;
1290 				cursor += CLUSTER_SIZE;
1291 				vma->vm_private_data = (void *) cursor;
1292 				if ((int)mapcount <= 0)
1293 					goto out;
1294 			}
1295 			vma->vm_private_data = (void *) max_nl_cursor;
1296 		}
1297 		cond_resched_lock(&mapping->i_mmap_lock);
1298 		max_nl_cursor += CLUSTER_SIZE;
1299 	} while (max_nl_cursor <= max_nl_size);
1300 
1301 	/*
1302 	 * Don't loop forever (perhaps all the remaining pages are
1303 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1304 	 * vmas, now forgetting on which ones it had fallen behind.
1305 	 */
1306 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1307 		vma->vm_private_data = NULL;
1308 out:
1309 	spin_unlock(&mapping->i_mmap_lock);
1310 	return ret;
1311 }
1312 
1313 /**
1314  * try_to_unmap - try to remove all page table mappings to a page
1315  * @page: the page to get unmapped
1316  * @flags: action and flags
1317  *
1318  * Tries to remove all the page table entries which are mapping this
1319  * page, used in the pageout path.  Caller must hold the page lock.
1320  * Return values are:
1321  *
1322  * SWAP_SUCCESS	- we succeeded in removing all mappings
1323  * SWAP_AGAIN	- we missed a mapping, try again later
1324  * SWAP_FAIL	- the page is unswappable
1325  * SWAP_MLOCK	- page is mlocked.
1326  */
1327 int try_to_unmap(struct page *page, enum ttu_flags flags)
1328 {
1329 	int ret;
1330 
1331 	BUG_ON(!PageLocked(page));
1332 
1333 	if (unlikely(PageKsm(page)))
1334 		ret = try_to_unmap_ksm(page, flags);
1335 	else if (PageAnon(page))
1336 		ret = try_to_unmap_anon(page, flags);
1337 	else
1338 		ret = try_to_unmap_file(page, flags);
1339 	if (ret != SWAP_MLOCK && !page_mapped(page))
1340 		ret = SWAP_SUCCESS;
1341 	return ret;
1342 }
1343 
1344 /**
1345  * try_to_munlock - try to munlock a page
1346  * @page: the page to be munlocked
1347  *
1348  * Called from munlock code.  Checks all of the VMAs mapping the page
1349  * to make sure nobody else has this page mlocked. The page will be
1350  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1351  *
1352  * Return values are:
1353  *
1354  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1355  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1356  * SWAP_FAIL	- page cannot be located at present
1357  * SWAP_MLOCK	- page is now mlocked.
1358  */
1359 int try_to_munlock(struct page *page)
1360 {
1361 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1362 
1363 	if (unlikely(PageKsm(page)))
1364 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1365 	else if (PageAnon(page))
1366 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1367 	else
1368 		return try_to_unmap_file(page, TTU_MUNLOCK);
1369 }
1370 
1371 #ifdef CONFIG_MIGRATION
1372 /*
1373  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1374  * Called by migrate.c to remove migration ptes, but might be used more later.
1375  */
1376 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1377 		struct vm_area_struct *, unsigned long, void *), void *arg)
1378 {
1379 	struct anon_vma *anon_vma;
1380 	struct anon_vma_chain *avc;
1381 	int ret = SWAP_AGAIN;
1382 
1383 	/*
1384 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1385 	 * because that depends on page_mapped(); but not all its usages
1386 	 * are holding mmap_sem. Users without mmap_sem are required to
1387 	 * take a reference count to prevent the anon_vma disappearing
1388 	 */
1389 	anon_vma = page_anon_vma(page);
1390 	if (!anon_vma)
1391 		return ret;
1392 	spin_lock(&anon_vma->lock);
1393 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1394 		struct vm_area_struct *vma = avc->vma;
1395 		unsigned long address = vma_address(page, vma);
1396 		if (address == -EFAULT)
1397 			continue;
1398 		ret = rmap_one(page, vma, address, arg);
1399 		if (ret != SWAP_AGAIN)
1400 			break;
1401 	}
1402 	spin_unlock(&anon_vma->lock);
1403 	return ret;
1404 }
1405 
1406 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1407 		struct vm_area_struct *, unsigned long, void *), void *arg)
1408 {
1409 	struct address_space *mapping = page->mapping;
1410 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1411 	struct vm_area_struct *vma;
1412 	struct prio_tree_iter iter;
1413 	int ret = SWAP_AGAIN;
1414 
1415 	if (!mapping)
1416 		return ret;
1417 	spin_lock(&mapping->i_mmap_lock);
1418 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1419 		unsigned long address = vma_address(page, vma);
1420 		if (address == -EFAULT)
1421 			continue;
1422 		ret = rmap_one(page, vma, address, arg);
1423 		if (ret != SWAP_AGAIN)
1424 			break;
1425 	}
1426 	/*
1427 	 * No nonlinear handling: being always shared, nonlinear vmas
1428 	 * never contain migration ptes.  Decide what to do about this
1429 	 * limitation to linear when we need rmap_walk() on nonlinear.
1430 	 */
1431 	spin_unlock(&mapping->i_mmap_lock);
1432 	return ret;
1433 }
1434 
1435 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1436 		struct vm_area_struct *, unsigned long, void *), void *arg)
1437 {
1438 	VM_BUG_ON(!PageLocked(page));
1439 
1440 	if (unlikely(PageKsm(page)))
1441 		return rmap_walk_ksm(page, rmap_one, arg);
1442 	else if (PageAnon(page))
1443 		return rmap_walk_anon(page, rmap_one, arg);
1444 	else
1445 		return rmap_walk_file(page, rmap_one, arg);
1446 }
1447 #endif /* CONFIG_MIGRATION */
1448