1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * mapping->i_mmap_rwsem 29 * anon_vma->rwsem 30 * mm->page_table_lock or pte_lock 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in block_dirty_folio) 34 * folio_lock_memcg move_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 78 #include <asm/tlbflush.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/tlb.h> 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 * 185 * This must be called with the mmap_lock held for reading. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against page_remove_rmap() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 */ 493 struct anon_vma *folio_get_anon_vma(struct folio *folio) 494 { 495 struct anon_vma *anon_vma = NULL; 496 unsigned long anon_mapping; 497 498 rcu_read_lock(); 499 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 500 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 501 goto out; 502 if (!folio_mapped(folio)) 503 goto out; 504 505 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 506 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 507 anon_vma = NULL; 508 goto out; 509 } 510 511 /* 512 * If this folio is still mapped, then its anon_vma cannot have been 513 * freed. But if it has been unmapped, we have no security against the 514 * anon_vma structure being freed and reused (for another anon_vma: 515 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 516 * above cannot corrupt). 517 */ 518 if (!folio_mapped(folio)) { 519 rcu_read_unlock(); 520 put_anon_vma(anon_vma); 521 return NULL; 522 } 523 out: 524 rcu_read_unlock(); 525 526 return anon_vma; 527 } 528 529 /* 530 * Similar to folio_get_anon_vma() except it locks the anon_vma. 531 * 532 * Its a little more complex as it tries to keep the fast path to a single 533 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 534 * reference like with folio_get_anon_vma() and then block on the mutex 535 * on !rwc->try_lock case. 536 */ 537 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 538 struct rmap_walk_control *rwc) 539 { 540 struct anon_vma *anon_vma = NULL; 541 struct anon_vma *root_anon_vma; 542 unsigned long anon_mapping; 543 544 rcu_read_lock(); 545 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 546 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 547 goto out; 548 if (!folio_mapped(folio)) 549 goto out; 550 551 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 552 root_anon_vma = READ_ONCE(anon_vma->root); 553 if (down_read_trylock(&root_anon_vma->rwsem)) { 554 /* 555 * If the folio is still mapped, then this anon_vma is still 556 * its anon_vma, and holding the mutex ensures that it will 557 * not go away, see anon_vma_free(). 558 */ 559 if (!folio_mapped(folio)) { 560 up_read(&root_anon_vma->rwsem); 561 anon_vma = NULL; 562 } 563 goto out; 564 } 565 566 if (rwc && rwc->try_lock) { 567 anon_vma = NULL; 568 rwc->contended = true; 569 goto out; 570 } 571 572 /* trylock failed, we got to sleep */ 573 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 574 anon_vma = NULL; 575 goto out; 576 } 577 578 if (!folio_mapped(folio)) { 579 rcu_read_unlock(); 580 put_anon_vma(anon_vma); 581 return NULL; 582 } 583 584 /* we pinned the anon_vma, its safe to sleep */ 585 rcu_read_unlock(); 586 anon_vma_lock_read(anon_vma); 587 588 if (atomic_dec_and_test(&anon_vma->refcount)) { 589 /* 590 * Oops, we held the last refcount, release the lock 591 * and bail -- can't simply use put_anon_vma() because 592 * we'll deadlock on the anon_vma_lock_write() recursion. 593 */ 594 anon_vma_unlock_read(anon_vma); 595 __put_anon_vma(anon_vma); 596 anon_vma = NULL; 597 } 598 599 return anon_vma; 600 601 out: 602 rcu_read_unlock(); 603 return anon_vma; 604 } 605 606 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 607 /* 608 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 609 * important if a PTE was dirty when it was unmapped that it's flushed 610 * before any IO is initiated on the page to prevent lost writes. Similarly, 611 * it must be flushed before freeing to prevent data leakage. 612 */ 613 void try_to_unmap_flush(void) 614 { 615 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 616 617 if (!tlb_ubc->flush_required) 618 return; 619 620 arch_tlbbatch_flush(&tlb_ubc->arch); 621 tlb_ubc->flush_required = false; 622 tlb_ubc->writable = false; 623 } 624 625 /* Flush iff there are potentially writable TLB entries that can race with IO */ 626 void try_to_unmap_flush_dirty(void) 627 { 628 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 629 630 if (tlb_ubc->writable) 631 try_to_unmap_flush(); 632 } 633 634 /* 635 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 636 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 637 */ 638 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 639 #define TLB_FLUSH_BATCH_PENDING_MASK \ 640 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 641 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 642 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 643 644 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 645 { 646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 int batch, nbatch; 648 649 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 650 tlb_ubc->flush_required = true; 651 652 /* 653 * Ensure compiler does not re-order the setting of tlb_flush_batched 654 * before the PTE is cleared. 655 */ 656 barrier(); 657 batch = atomic_read(&mm->tlb_flush_batched); 658 retry: 659 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 660 /* 661 * Prevent `pending' from catching up with `flushed' because of 662 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 663 * `pending' becomes large. 664 */ 665 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 666 if (nbatch != batch) { 667 batch = nbatch; 668 goto retry; 669 } 670 } else { 671 atomic_inc(&mm->tlb_flush_batched); 672 } 673 674 /* 675 * If the PTE was dirty then it's best to assume it's writable. The 676 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 677 * before the page is queued for IO. 678 */ 679 if (writable) 680 tlb_ubc->writable = true; 681 } 682 683 /* 684 * Returns true if the TLB flush should be deferred to the end of a batch of 685 * unmap operations to reduce IPIs. 686 */ 687 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 688 { 689 bool should_defer = false; 690 691 if (!(flags & TTU_BATCH_FLUSH)) 692 return false; 693 694 /* If remote CPUs need to be flushed then defer batch the flush */ 695 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 696 should_defer = true; 697 put_cpu(); 698 699 return should_defer; 700 } 701 702 /* 703 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 704 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 705 * operation such as mprotect or munmap to race between reclaim unmapping 706 * the page and flushing the page. If this race occurs, it potentially allows 707 * access to data via a stale TLB entry. Tracking all mm's that have TLB 708 * batching in flight would be expensive during reclaim so instead track 709 * whether TLB batching occurred in the past and if so then do a flush here 710 * if required. This will cost one additional flush per reclaim cycle paid 711 * by the first operation at risk such as mprotect and mumap. 712 * 713 * This must be called under the PTL so that an access to tlb_flush_batched 714 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 715 * via the PTL. 716 */ 717 void flush_tlb_batched_pending(struct mm_struct *mm) 718 { 719 int batch = atomic_read(&mm->tlb_flush_batched); 720 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 721 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 722 723 if (pending != flushed) { 724 flush_tlb_mm(mm); 725 /* 726 * If the new TLB flushing is pending during flushing, leave 727 * mm->tlb_flush_batched as is, to avoid losing flushing. 728 */ 729 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 730 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 731 } 732 } 733 #else 734 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 735 { 736 } 737 738 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 739 { 740 return false; 741 } 742 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 743 744 /* 745 * At what user virtual address is page expected in vma? 746 * Caller should check the page is actually part of the vma. 747 */ 748 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 749 { 750 struct folio *folio = page_folio(page); 751 if (folio_test_anon(folio)) { 752 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 753 /* 754 * Note: swapoff's unuse_vma() is more efficient with this 755 * check, and needs it to match anon_vma when KSM is active. 756 */ 757 if (!vma->anon_vma || !page__anon_vma || 758 vma->anon_vma->root != page__anon_vma->root) 759 return -EFAULT; 760 } else if (!vma->vm_file) { 761 return -EFAULT; 762 } else if (vma->vm_file->f_mapping != folio->mapping) { 763 return -EFAULT; 764 } 765 766 return vma_address(page, vma); 767 } 768 769 /* 770 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 771 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 772 * represents. 773 */ 774 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 775 { 776 pgd_t *pgd; 777 p4d_t *p4d; 778 pud_t *pud; 779 pmd_t *pmd = NULL; 780 781 pgd = pgd_offset(mm, address); 782 if (!pgd_present(*pgd)) 783 goto out; 784 785 p4d = p4d_offset(pgd, address); 786 if (!p4d_present(*p4d)) 787 goto out; 788 789 pud = pud_offset(p4d, address); 790 if (!pud_present(*pud)) 791 goto out; 792 793 pmd = pmd_offset(pud, address); 794 out: 795 return pmd; 796 } 797 798 struct folio_referenced_arg { 799 int mapcount; 800 int referenced; 801 unsigned long vm_flags; 802 struct mem_cgroup *memcg; 803 }; 804 /* 805 * arg: folio_referenced_arg will be passed 806 */ 807 static bool folio_referenced_one(struct folio *folio, 808 struct vm_area_struct *vma, unsigned long address, void *arg) 809 { 810 struct folio_referenced_arg *pra = arg; 811 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 812 int referenced = 0; 813 814 while (page_vma_mapped_walk(&pvmw)) { 815 address = pvmw.address; 816 817 if ((vma->vm_flags & VM_LOCKED) && 818 (!folio_test_large(folio) || !pvmw.pte)) { 819 /* Restore the mlock which got missed */ 820 mlock_vma_folio(folio, vma, !pvmw.pte); 821 page_vma_mapped_walk_done(&pvmw); 822 pra->vm_flags |= VM_LOCKED; 823 return false; /* To break the loop */ 824 } 825 826 if (pvmw.pte) { 827 if (lru_gen_enabled() && pte_young(*pvmw.pte)) { 828 lru_gen_look_around(&pvmw); 829 referenced++; 830 } 831 832 if (ptep_clear_flush_young_notify(vma, address, 833 pvmw.pte)) 834 referenced++; 835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 836 if (pmdp_clear_flush_young_notify(vma, address, 837 pvmw.pmd)) 838 referenced++; 839 } else { 840 /* unexpected pmd-mapped folio? */ 841 WARN_ON_ONCE(1); 842 } 843 844 pra->mapcount--; 845 } 846 847 if (referenced) 848 folio_clear_idle(folio); 849 if (folio_test_clear_young(folio)) 850 referenced++; 851 852 if (referenced) { 853 pra->referenced++; 854 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 855 } 856 857 if (!pra->mapcount) 858 return false; /* To break the loop */ 859 860 return true; 861 } 862 863 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 864 { 865 struct folio_referenced_arg *pra = arg; 866 struct mem_cgroup *memcg = pra->memcg; 867 868 /* 869 * Ignore references from this mapping if it has no recency. If the 870 * folio has been used in another mapping, we will catch it; if this 871 * other mapping is already gone, the unmap path will have set the 872 * referenced flag or activated the folio in zap_pte_range(). 873 */ 874 if (!vma_has_recency(vma)) 875 return true; 876 877 /* 878 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 879 * of references from different cgroups. 880 */ 881 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 882 return true; 883 884 return false; 885 } 886 887 /** 888 * folio_referenced() - Test if the folio was referenced. 889 * @folio: The folio to test. 890 * @is_locked: Caller holds lock on the folio. 891 * @memcg: target memory cgroup 892 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 893 * 894 * Quick test_and_clear_referenced for all mappings of a folio, 895 * 896 * Return: The number of mappings which referenced the folio. Return -1 if 897 * the function bailed out due to rmap lock contention. 898 */ 899 int folio_referenced(struct folio *folio, int is_locked, 900 struct mem_cgroup *memcg, unsigned long *vm_flags) 901 { 902 int we_locked = 0; 903 struct folio_referenced_arg pra = { 904 .mapcount = folio_mapcount(folio), 905 .memcg = memcg, 906 }; 907 struct rmap_walk_control rwc = { 908 .rmap_one = folio_referenced_one, 909 .arg = (void *)&pra, 910 .anon_lock = folio_lock_anon_vma_read, 911 .try_lock = true, 912 .invalid_vma = invalid_folio_referenced_vma, 913 }; 914 915 *vm_flags = 0; 916 if (!pra.mapcount) 917 return 0; 918 919 if (!folio_raw_mapping(folio)) 920 return 0; 921 922 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 923 we_locked = folio_trylock(folio); 924 if (!we_locked) 925 return 1; 926 } 927 928 rmap_walk(folio, &rwc); 929 *vm_flags = pra.vm_flags; 930 931 if (we_locked) 932 folio_unlock(folio); 933 934 return rwc.contended ? -1 : pra.referenced; 935 } 936 937 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 938 { 939 int cleaned = 0; 940 struct vm_area_struct *vma = pvmw->vma; 941 struct mmu_notifier_range range; 942 unsigned long address = pvmw->address; 943 944 /* 945 * We have to assume the worse case ie pmd for invalidation. Note that 946 * the folio can not be freed from this function. 947 */ 948 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 949 vma->vm_mm, address, vma_address_end(pvmw)); 950 mmu_notifier_invalidate_range_start(&range); 951 952 while (page_vma_mapped_walk(pvmw)) { 953 int ret = 0; 954 955 address = pvmw->address; 956 if (pvmw->pte) { 957 pte_t entry; 958 pte_t *pte = pvmw->pte; 959 960 if (!pte_dirty(*pte) && !pte_write(*pte)) 961 continue; 962 963 flush_cache_page(vma, address, pte_pfn(*pte)); 964 entry = ptep_clear_flush(vma, address, pte); 965 entry = pte_wrprotect(entry); 966 entry = pte_mkclean(entry); 967 set_pte_at(vma->vm_mm, address, pte, entry); 968 ret = 1; 969 } else { 970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 971 pmd_t *pmd = pvmw->pmd; 972 pmd_t entry; 973 974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 975 continue; 976 977 flush_cache_range(vma, address, 978 address + HPAGE_PMD_SIZE); 979 entry = pmdp_invalidate(vma, address, pmd); 980 entry = pmd_wrprotect(entry); 981 entry = pmd_mkclean(entry); 982 set_pmd_at(vma->vm_mm, address, pmd, entry); 983 ret = 1; 984 #else 985 /* unexpected pmd-mapped folio? */ 986 WARN_ON_ONCE(1); 987 #endif 988 } 989 990 /* 991 * No need to call mmu_notifier_invalidate_range() as we are 992 * downgrading page table protection not changing it to point 993 * to a new page. 994 * 995 * See Documentation/mm/mmu_notifier.rst 996 */ 997 if (ret) 998 cleaned++; 999 } 1000 1001 mmu_notifier_invalidate_range_end(&range); 1002 1003 return cleaned; 1004 } 1005 1006 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1007 unsigned long address, void *arg) 1008 { 1009 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1010 int *cleaned = arg; 1011 1012 *cleaned += page_vma_mkclean_one(&pvmw); 1013 1014 return true; 1015 } 1016 1017 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1018 { 1019 if (vma->vm_flags & VM_SHARED) 1020 return false; 1021 1022 return true; 1023 } 1024 1025 int folio_mkclean(struct folio *folio) 1026 { 1027 int cleaned = 0; 1028 struct address_space *mapping; 1029 struct rmap_walk_control rwc = { 1030 .arg = (void *)&cleaned, 1031 .rmap_one = page_mkclean_one, 1032 .invalid_vma = invalid_mkclean_vma, 1033 }; 1034 1035 BUG_ON(!folio_test_locked(folio)); 1036 1037 if (!folio_mapped(folio)) 1038 return 0; 1039 1040 mapping = folio_mapping(folio); 1041 if (!mapping) 1042 return 0; 1043 1044 rmap_walk(folio, &rwc); 1045 1046 return cleaned; 1047 } 1048 EXPORT_SYMBOL_GPL(folio_mkclean); 1049 1050 /** 1051 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1052 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1053 * within the @vma of shared mappings. And since clean PTEs 1054 * should also be readonly, write protects them too. 1055 * @pfn: start pfn. 1056 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1057 * @pgoff: page offset that the @pfn mapped with. 1058 * @vma: vma that @pfn mapped within. 1059 * 1060 * Returns the number of cleaned PTEs (including PMDs). 1061 */ 1062 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1063 struct vm_area_struct *vma) 1064 { 1065 struct page_vma_mapped_walk pvmw = { 1066 .pfn = pfn, 1067 .nr_pages = nr_pages, 1068 .pgoff = pgoff, 1069 .vma = vma, 1070 .flags = PVMW_SYNC, 1071 }; 1072 1073 if (invalid_mkclean_vma(vma, NULL)) 1074 return 0; 1075 1076 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1077 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1078 1079 return page_vma_mkclean_one(&pvmw); 1080 } 1081 1082 int folio_total_mapcount(struct folio *folio) 1083 { 1084 int mapcount = folio_entire_mapcount(folio); 1085 int nr_pages; 1086 int i; 1087 1088 /* In the common case, avoid the loop when no pages mapped by PTE */ 1089 if (folio_nr_pages_mapped(folio) == 0) 1090 return mapcount; 1091 /* 1092 * Add all the PTE mappings of those pages mapped by PTE. 1093 * Limit the loop to folio_nr_pages_mapped()? 1094 * Perhaps: given all the raciness, that may be a good or a bad idea. 1095 */ 1096 nr_pages = folio_nr_pages(folio); 1097 for (i = 0; i < nr_pages; i++) 1098 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1099 1100 /* But each of those _mapcounts was based on -1 */ 1101 mapcount += nr_pages; 1102 return mapcount; 1103 } 1104 1105 /** 1106 * page_move_anon_rmap - move a page to our anon_vma 1107 * @page: the page to move to our anon_vma 1108 * @vma: the vma the page belongs to 1109 * 1110 * When a page belongs exclusively to one process after a COW event, 1111 * that page can be moved into the anon_vma that belongs to just that 1112 * process, so the rmap code will not search the parent or sibling 1113 * processes. 1114 */ 1115 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1116 { 1117 void *anon_vma = vma->anon_vma; 1118 struct folio *folio = page_folio(page); 1119 1120 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1121 VM_BUG_ON_VMA(!anon_vma, vma); 1122 1123 anon_vma += PAGE_MAPPING_ANON; 1124 /* 1125 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1126 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1127 * folio_test_anon()) will not see one without the other. 1128 */ 1129 WRITE_ONCE(folio->mapping, anon_vma); 1130 SetPageAnonExclusive(page); 1131 } 1132 1133 /** 1134 * __page_set_anon_rmap - set up new anonymous rmap 1135 * @folio: Folio which contains page. 1136 * @page: Page to add to rmap. 1137 * @vma: VM area to add page to. 1138 * @address: User virtual address of the mapping 1139 * @exclusive: the page is exclusively owned by the current process 1140 */ 1141 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1142 struct vm_area_struct *vma, unsigned long address, int exclusive) 1143 { 1144 struct anon_vma *anon_vma = vma->anon_vma; 1145 1146 BUG_ON(!anon_vma); 1147 1148 if (folio_test_anon(folio)) 1149 goto out; 1150 1151 /* 1152 * If the page isn't exclusively mapped into this vma, 1153 * we must use the _oldest_ possible anon_vma for the 1154 * page mapping! 1155 */ 1156 if (!exclusive) 1157 anon_vma = anon_vma->root; 1158 1159 /* 1160 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1161 * Make sure the compiler doesn't split the stores of anon_vma and 1162 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1163 * could mistake the mapping for a struct address_space and crash. 1164 */ 1165 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1166 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1167 folio->index = linear_page_index(vma, address); 1168 out: 1169 if (exclusive) 1170 SetPageAnonExclusive(page); 1171 } 1172 1173 /** 1174 * __page_check_anon_rmap - sanity check anonymous rmap addition 1175 * @page: the page to add the mapping to 1176 * @vma: the vm area in which the mapping is added 1177 * @address: the user virtual address mapped 1178 */ 1179 static void __page_check_anon_rmap(struct page *page, 1180 struct vm_area_struct *vma, unsigned long address) 1181 { 1182 struct folio *folio = page_folio(page); 1183 /* 1184 * The page's anon-rmap details (mapping and index) are guaranteed to 1185 * be set up correctly at this point. 1186 * 1187 * We have exclusion against page_add_anon_rmap because the caller 1188 * always holds the page locked. 1189 * 1190 * We have exclusion against page_add_new_anon_rmap because those pages 1191 * are initially only visible via the pagetables, and the pte is locked 1192 * over the call to page_add_new_anon_rmap. 1193 */ 1194 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1195 folio); 1196 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1197 page); 1198 } 1199 1200 /** 1201 * page_add_anon_rmap - add pte mapping to an anonymous page 1202 * @page: the page to add the mapping to 1203 * @vma: the vm area in which the mapping is added 1204 * @address: the user virtual address mapped 1205 * @flags: the rmap flags 1206 * 1207 * The caller needs to hold the pte lock, and the page must be locked in 1208 * the anon_vma case: to serialize mapping,index checking after setting, 1209 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1210 * (but PageKsm is never downgraded to PageAnon). 1211 */ 1212 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1213 unsigned long address, rmap_t flags) 1214 { 1215 struct folio *folio = page_folio(page); 1216 atomic_t *mapped = &folio->_nr_pages_mapped; 1217 int nr = 0, nr_pmdmapped = 0; 1218 bool compound = flags & RMAP_COMPOUND; 1219 bool first = true; 1220 1221 /* Is page being mapped by PTE? Is this its first map to be added? */ 1222 if (likely(!compound)) { 1223 first = atomic_inc_and_test(&page->_mapcount); 1224 nr = first; 1225 if (first && folio_test_large(folio)) { 1226 nr = atomic_inc_return_relaxed(mapped); 1227 nr = (nr < COMPOUND_MAPPED); 1228 } 1229 } else if (folio_test_pmd_mappable(folio)) { 1230 /* That test is redundant: it's for safety or to optimize out */ 1231 1232 first = atomic_inc_and_test(&folio->_entire_mapcount); 1233 if (first) { 1234 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1235 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1236 nr_pmdmapped = folio_nr_pages(folio); 1237 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1238 /* Raced ahead of a remove and another add? */ 1239 if (unlikely(nr < 0)) 1240 nr = 0; 1241 } else { 1242 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1243 nr = 0; 1244 } 1245 } 1246 } 1247 1248 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1249 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1250 1251 if (nr_pmdmapped) 1252 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1253 if (nr) 1254 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1255 1256 if (likely(!folio_test_ksm(folio))) { 1257 /* address might be in next vma when migration races vma_merge */ 1258 if (first) 1259 __page_set_anon_rmap(folio, page, vma, address, 1260 !!(flags & RMAP_EXCLUSIVE)); 1261 else 1262 __page_check_anon_rmap(page, vma, address); 1263 } 1264 1265 mlock_vma_folio(folio, vma, compound); 1266 } 1267 1268 /** 1269 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1270 * @folio: The folio to add the mapping to. 1271 * @vma: the vm area in which the mapping is added 1272 * @address: the user virtual address mapped 1273 * 1274 * Like page_add_anon_rmap() but must only be called on *new* folios. 1275 * This means the inc-and-test can be bypassed. 1276 * The folio does not have to be locked. 1277 * 1278 * If the folio is large, it is accounted as a THP. As the folio 1279 * is new, it's assumed to be mapped exclusively by a single process. 1280 */ 1281 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1282 unsigned long address) 1283 { 1284 int nr; 1285 1286 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1287 __folio_set_swapbacked(folio); 1288 1289 if (likely(!folio_test_pmd_mappable(folio))) { 1290 /* increment count (starts at -1) */ 1291 atomic_set(&folio->_mapcount, 0); 1292 nr = 1; 1293 } else { 1294 /* increment count (starts at -1) */ 1295 atomic_set(&folio->_entire_mapcount, 0); 1296 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1297 nr = folio_nr_pages(folio); 1298 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1299 } 1300 1301 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1302 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1303 } 1304 1305 /** 1306 * page_add_file_rmap - add pte mapping to a file page 1307 * @page: the page to add the mapping to 1308 * @vma: the vm area in which the mapping is added 1309 * @compound: charge the page as compound or small page 1310 * 1311 * The caller needs to hold the pte lock. 1312 */ 1313 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1314 bool compound) 1315 { 1316 struct folio *folio = page_folio(page); 1317 atomic_t *mapped = &folio->_nr_pages_mapped; 1318 int nr = 0, nr_pmdmapped = 0; 1319 bool first; 1320 1321 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1322 1323 /* Is page being mapped by PTE? Is this its first map to be added? */ 1324 if (likely(!compound)) { 1325 first = atomic_inc_and_test(&page->_mapcount); 1326 nr = first; 1327 if (first && folio_test_large(folio)) { 1328 nr = atomic_inc_return_relaxed(mapped); 1329 nr = (nr < COMPOUND_MAPPED); 1330 } 1331 } else if (folio_test_pmd_mappable(folio)) { 1332 /* That test is redundant: it's for safety or to optimize out */ 1333 1334 first = atomic_inc_and_test(&folio->_entire_mapcount); 1335 if (first) { 1336 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1337 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1338 nr_pmdmapped = folio_nr_pages(folio); 1339 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1340 /* Raced ahead of a remove and another add? */ 1341 if (unlikely(nr < 0)) 1342 nr = 0; 1343 } else { 1344 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1345 nr = 0; 1346 } 1347 } 1348 } 1349 1350 if (nr_pmdmapped) 1351 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1352 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1353 if (nr) 1354 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1355 1356 mlock_vma_folio(folio, vma, compound); 1357 } 1358 1359 /** 1360 * page_remove_rmap - take down pte mapping from a page 1361 * @page: page to remove mapping from 1362 * @vma: the vm area from which the mapping is removed 1363 * @compound: uncharge the page as compound or small page 1364 * 1365 * The caller needs to hold the pte lock. 1366 */ 1367 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1368 bool compound) 1369 { 1370 struct folio *folio = page_folio(page); 1371 atomic_t *mapped = &folio->_nr_pages_mapped; 1372 int nr = 0, nr_pmdmapped = 0; 1373 bool last; 1374 enum node_stat_item idx; 1375 1376 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1377 1378 /* Hugetlb pages are not counted in NR_*MAPPED */ 1379 if (unlikely(folio_test_hugetlb(folio))) { 1380 /* hugetlb pages are always mapped with pmds */ 1381 atomic_dec(&folio->_entire_mapcount); 1382 return; 1383 } 1384 1385 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1386 if (likely(!compound)) { 1387 last = atomic_add_negative(-1, &page->_mapcount); 1388 nr = last; 1389 if (last && folio_test_large(folio)) { 1390 nr = atomic_dec_return_relaxed(mapped); 1391 nr = (nr < COMPOUND_MAPPED); 1392 } 1393 } else if (folio_test_pmd_mappable(folio)) { 1394 /* That test is redundant: it's for safety or to optimize out */ 1395 1396 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1397 if (last) { 1398 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1399 if (likely(nr < COMPOUND_MAPPED)) { 1400 nr_pmdmapped = folio_nr_pages(folio); 1401 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1402 /* Raced ahead of another remove and an add? */ 1403 if (unlikely(nr < 0)) 1404 nr = 0; 1405 } else { 1406 /* An add of COMPOUND_MAPPED raced ahead */ 1407 nr = 0; 1408 } 1409 } 1410 } 1411 1412 if (nr_pmdmapped) { 1413 if (folio_test_anon(folio)) 1414 idx = NR_ANON_THPS; 1415 else if (folio_test_swapbacked(folio)) 1416 idx = NR_SHMEM_PMDMAPPED; 1417 else 1418 idx = NR_FILE_PMDMAPPED; 1419 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1420 } 1421 if (nr) { 1422 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1423 __lruvec_stat_mod_folio(folio, idx, -nr); 1424 1425 /* 1426 * Queue anon THP for deferred split if at least one 1427 * page of the folio is unmapped and at least one page 1428 * is still mapped. 1429 */ 1430 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1431 if (!compound || nr < nr_pmdmapped) 1432 deferred_split_folio(folio); 1433 } 1434 1435 /* 1436 * It would be tidy to reset folio_test_anon mapping when fully 1437 * unmapped, but that might overwrite a racing page_add_anon_rmap 1438 * which increments mapcount after us but sets mapping before us: 1439 * so leave the reset to free_pages_prepare, and remember that 1440 * it's only reliable while mapped. 1441 */ 1442 1443 munlock_vma_folio(folio, vma, compound); 1444 } 1445 1446 /* 1447 * @arg: enum ttu_flags will be passed to this argument 1448 */ 1449 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1450 unsigned long address, void *arg) 1451 { 1452 struct mm_struct *mm = vma->vm_mm; 1453 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1454 pte_t pteval; 1455 struct page *subpage; 1456 bool anon_exclusive, ret = true; 1457 struct mmu_notifier_range range; 1458 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1459 1460 /* 1461 * When racing against e.g. zap_pte_range() on another cpu, 1462 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1463 * try_to_unmap() may return before page_mapped() has become false, 1464 * if page table locking is skipped: use TTU_SYNC to wait for that. 1465 */ 1466 if (flags & TTU_SYNC) 1467 pvmw.flags = PVMW_SYNC; 1468 1469 if (flags & TTU_SPLIT_HUGE_PMD) 1470 split_huge_pmd_address(vma, address, false, folio); 1471 1472 /* 1473 * For THP, we have to assume the worse case ie pmd for invalidation. 1474 * For hugetlb, it could be much worse if we need to do pud 1475 * invalidation in the case of pmd sharing. 1476 * 1477 * Note that the folio can not be freed in this function as call of 1478 * try_to_unmap() must hold a reference on the folio. 1479 */ 1480 range.end = vma_address_end(&pvmw); 1481 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1482 address, range.end); 1483 if (folio_test_hugetlb(folio)) { 1484 /* 1485 * If sharing is possible, start and end will be adjusted 1486 * accordingly. 1487 */ 1488 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1489 &range.end); 1490 } 1491 mmu_notifier_invalidate_range_start(&range); 1492 1493 while (page_vma_mapped_walk(&pvmw)) { 1494 /* Unexpected PMD-mapped THP? */ 1495 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1496 1497 /* 1498 * If the folio is in an mlock()d vma, we must not swap it out. 1499 */ 1500 if (!(flags & TTU_IGNORE_MLOCK) && 1501 (vma->vm_flags & VM_LOCKED)) { 1502 /* Restore the mlock which got missed */ 1503 mlock_vma_folio(folio, vma, false); 1504 page_vma_mapped_walk_done(&pvmw); 1505 ret = false; 1506 break; 1507 } 1508 1509 subpage = folio_page(folio, 1510 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1511 address = pvmw.address; 1512 anon_exclusive = folio_test_anon(folio) && 1513 PageAnonExclusive(subpage); 1514 1515 if (folio_test_hugetlb(folio)) { 1516 bool anon = folio_test_anon(folio); 1517 1518 /* 1519 * The try_to_unmap() is only passed a hugetlb page 1520 * in the case where the hugetlb page is poisoned. 1521 */ 1522 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1523 /* 1524 * huge_pmd_unshare may unmap an entire PMD page. 1525 * There is no way of knowing exactly which PMDs may 1526 * be cached for this mm, so we must flush them all. 1527 * start/end were already adjusted above to cover this 1528 * range. 1529 */ 1530 flush_cache_range(vma, range.start, range.end); 1531 1532 /* 1533 * To call huge_pmd_unshare, i_mmap_rwsem must be 1534 * held in write mode. Caller needs to explicitly 1535 * do this outside rmap routines. 1536 * 1537 * We also must hold hugetlb vma_lock in write mode. 1538 * Lock order dictates acquiring vma_lock BEFORE 1539 * i_mmap_rwsem. We can only try lock here and fail 1540 * if unsuccessful. 1541 */ 1542 if (!anon) { 1543 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1544 if (!hugetlb_vma_trylock_write(vma)) { 1545 page_vma_mapped_walk_done(&pvmw); 1546 ret = false; 1547 break; 1548 } 1549 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1550 hugetlb_vma_unlock_write(vma); 1551 flush_tlb_range(vma, 1552 range.start, range.end); 1553 mmu_notifier_invalidate_range(mm, 1554 range.start, range.end); 1555 /* 1556 * The ref count of the PMD page was 1557 * dropped which is part of the way map 1558 * counting is done for shared PMDs. 1559 * Return 'true' here. When there is 1560 * no other sharing, huge_pmd_unshare 1561 * returns false and we will unmap the 1562 * actual page and drop map count 1563 * to zero. 1564 */ 1565 page_vma_mapped_walk_done(&pvmw); 1566 break; 1567 } 1568 hugetlb_vma_unlock_write(vma); 1569 } 1570 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1571 } else { 1572 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1573 /* Nuke the page table entry. */ 1574 if (should_defer_flush(mm, flags)) { 1575 /* 1576 * We clear the PTE but do not flush so potentially 1577 * a remote CPU could still be writing to the folio. 1578 * If the entry was previously clean then the 1579 * architecture must guarantee that a clear->dirty 1580 * transition on a cached TLB entry is written through 1581 * and traps if the PTE is unmapped. 1582 */ 1583 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1584 1585 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1586 } else { 1587 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1588 } 1589 } 1590 1591 /* 1592 * Now the pte is cleared. If this pte was uffd-wp armed, 1593 * we may want to replace a none pte with a marker pte if 1594 * it's file-backed, so we don't lose the tracking info. 1595 */ 1596 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1597 1598 /* Set the dirty flag on the folio now the pte is gone. */ 1599 if (pte_dirty(pteval)) 1600 folio_mark_dirty(folio); 1601 1602 /* Update high watermark before we lower rss */ 1603 update_hiwater_rss(mm); 1604 1605 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1606 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1607 if (folio_test_hugetlb(folio)) { 1608 hugetlb_count_sub(folio_nr_pages(folio), mm); 1609 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1610 } else { 1611 dec_mm_counter(mm, mm_counter(&folio->page)); 1612 set_pte_at(mm, address, pvmw.pte, pteval); 1613 } 1614 1615 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1616 /* 1617 * The guest indicated that the page content is of no 1618 * interest anymore. Simply discard the pte, vmscan 1619 * will take care of the rest. 1620 * A future reference will then fault in a new zero 1621 * page. When userfaultfd is active, we must not drop 1622 * this page though, as its main user (postcopy 1623 * migration) will not expect userfaults on already 1624 * copied pages. 1625 */ 1626 dec_mm_counter(mm, mm_counter(&folio->page)); 1627 /* We have to invalidate as we cleared the pte */ 1628 mmu_notifier_invalidate_range(mm, address, 1629 address + PAGE_SIZE); 1630 } else if (folio_test_anon(folio)) { 1631 swp_entry_t entry = { .val = page_private(subpage) }; 1632 pte_t swp_pte; 1633 /* 1634 * Store the swap location in the pte. 1635 * See handle_pte_fault() ... 1636 */ 1637 if (unlikely(folio_test_swapbacked(folio) != 1638 folio_test_swapcache(folio))) { 1639 WARN_ON_ONCE(1); 1640 ret = false; 1641 /* We have to invalidate as we cleared the pte */ 1642 mmu_notifier_invalidate_range(mm, address, 1643 address + PAGE_SIZE); 1644 page_vma_mapped_walk_done(&pvmw); 1645 break; 1646 } 1647 1648 /* MADV_FREE page check */ 1649 if (!folio_test_swapbacked(folio)) { 1650 int ref_count, map_count; 1651 1652 /* 1653 * Synchronize with gup_pte_range(): 1654 * - clear PTE; barrier; read refcount 1655 * - inc refcount; barrier; read PTE 1656 */ 1657 smp_mb(); 1658 1659 ref_count = folio_ref_count(folio); 1660 map_count = folio_mapcount(folio); 1661 1662 /* 1663 * Order reads for page refcount and dirty flag 1664 * (see comments in __remove_mapping()). 1665 */ 1666 smp_rmb(); 1667 1668 /* 1669 * The only page refs must be one from isolation 1670 * plus the rmap(s) (dropped by discard:). 1671 */ 1672 if (ref_count == 1 + map_count && 1673 !folio_test_dirty(folio)) { 1674 /* Invalidate as we cleared the pte */ 1675 mmu_notifier_invalidate_range(mm, 1676 address, address + PAGE_SIZE); 1677 dec_mm_counter(mm, MM_ANONPAGES); 1678 goto discard; 1679 } 1680 1681 /* 1682 * If the folio was redirtied, it cannot be 1683 * discarded. Remap the page to page table. 1684 */ 1685 set_pte_at(mm, address, pvmw.pte, pteval); 1686 folio_set_swapbacked(folio); 1687 ret = false; 1688 page_vma_mapped_walk_done(&pvmw); 1689 break; 1690 } 1691 1692 if (swap_duplicate(entry) < 0) { 1693 set_pte_at(mm, address, pvmw.pte, pteval); 1694 ret = false; 1695 page_vma_mapped_walk_done(&pvmw); 1696 break; 1697 } 1698 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1699 swap_free(entry); 1700 set_pte_at(mm, address, pvmw.pte, pteval); 1701 ret = false; 1702 page_vma_mapped_walk_done(&pvmw); 1703 break; 1704 } 1705 1706 /* See page_try_share_anon_rmap(): clear PTE first. */ 1707 if (anon_exclusive && 1708 page_try_share_anon_rmap(subpage)) { 1709 swap_free(entry); 1710 set_pte_at(mm, address, pvmw.pte, pteval); 1711 ret = false; 1712 page_vma_mapped_walk_done(&pvmw); 1713 break; 1714 } 1715 if (list_empty(&mm->mmlist)) { 1716 spin_lock(&mmlist_lock); 1717 if (list_empty(&mm->mmlist)) 1718 list_add(&mm->mmlist, &init_mm.mmlist); 1719 spin_unlock(&mmlist_lock); 1720 } 1721 dec_mm_counter(mm, MM_ANONPAGES); 1722 inc_mm_counter(mm, MM_SWAPENTS); 1723 swp_pte = swp_entry_to_pte(entry); 1724 if (anon_exclusive) 1725 swp_pte = pte_swp_mkexclusive(swp_pte); 1726 if (pte_soft_dirty(pteval)) 1727 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1728 if (pte_uffd_wp(pteval)) 1729 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1730 set_pte_at(mm, address, pvmw.pte, swp_pte); 1731 /* Invalidate as we cleared the pte */ 1732 mmu_notifier_invalidate_range(mm, address, 1733 address + PAGE_SIZE); 1734 } else { 1735 /* 1736 * This is a locked file-backed folio, 1737 * so it cannot be removed from the page 1738 * cache and replaced by a new folio before 1739 * mmu_notifier_invalidate_range_end, so no 1740 * concurrent thread might update its page table 1741 * to point at a new folio while a device is 1742 * still using this folio. 1743 * 1744 * See Documentation/mm/mmu_notifier.rst 1745 */ 1746 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1747 } 1748 discard: 1749 /* 1750 * No need to call mmu_notifier_invalidate_range() it has be 1751 * done above for all cases requiring it to happen under page 1752 * table lock before mmu_notifier_invalidate_range_end() 1753 * 1754 * See Documentation/mm/mmu_notifier.rst 1755 */ 1756 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1757 if (vma->vm_flags & VM_LOCKED) 1758 mlock_drain_local(); 1759 folio_put(folio); 1760 } 1761 1762 mmu_notifier_invalidate_range_end(&range); 1763 1764 return ret; 1765 } 1766 1767 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1768 { 1769 return vma_is_temporary_stack(vma); 1770 } 1771 1772 static int folio_not_mapped(struct folio *folio) 1773 { 1774 return !folio_mapped(folio); 1775 } 1776 1777 /** 1778 * try_to_unmap - Try to remove all page table mappings to a folio. 1779 * @folio: The folio to unmap. 1780 * @flags: action and flags 1781 * 1782 * Tries to remove all the page table entries which are mapping this 1783 * folio. It is the caller's responsibility to check if the folio is 1784 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1785 * 1786 * Context: Caller must hold the folio lock. 1787 */ 1788 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1789 { 1790 struct rmap_walk_control rwc = { 1791 .rmap_one = try_to_unmap_one, 1792 .arg = (void *)flags, 1793 .done = folio_not_mapped, 1794 .anon_lock = folio_lock_anon_vma_read, 1795 }; 1796 1797 if (flags & TTU_RMAP_LOCKED) 1798 rmap_walk_locked(folio, &rwc); 1799 else 1800 rmap_walk(folio, &rwc); 1801 } 1802 1803 /* 1804 * @arg: enum ttu_flags will be passed to this argument. 1805 * 1806 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1807 * containing migration entries. 1808 */ 1809 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1810 unsigned long address, void *arg) 1811 { 1812 struct mm_struct *mm = vma->vm_mm; 1813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1814 pte_t pteval; 1815 struct page *subpage; 1816 bool anon_exclusive, ret = true; 1817 struct mmu_notifier_range range; 1818 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1819 1820 /* 1821 * When racing against e.g. zap_pte_range() on another cpu, 1822 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1823 * try_to_migrate() may return before page_mapped() has become false, 1824 * if page table locking is skipped: use TTU_SYNC to wait for that. 1825 */ 1826 if (flags & TTU_SYNC) 1827 pvmw.flags = PVMW_SYNC; 1828 1829 /* 1830 * unmap_page() in mm/huge_memory.c is the only user of migration with 1831 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1832 */ 1833 if (flags & TTU_SPLIT_HUGE_PMD) 1834 split_huge_pmd_address(vma, address, true, folio); 1835 1836 /* 1837 * For THP, we have to assume the worse case ie pmd for invalidation. 1838 * For hugetlb, it could be much worse if we need to do pud 1839 * invalidation in the case of pmd sharing. 1840 * 1841 * Note that the page can not be free in this function as call of 1842 * try_to_unmap() must hold a reference on the page. 1843 */ 1844 range.end = vma_address_end(&pvmw); 1845 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1846 address, range.end); 1847 if (folio_test_hugetlb(folio)) { 1848 /* 1849 * If sharing is possible, start and end will be adjusted 1850 * accordingly. 1851 */ 1852 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1853 &range.end); 1854 } 1855 mmu_notifier_invalidate_range_start(&range); 1856 1857 while (page_vma_mapped_walk(&pvmw)) { 1858 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1859 /* PMD-mapped THP migration entry */ 1860 if (!pvmw.pte) { 1861 subpage = folio_page(folio, 1862 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1863 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1864 !folio_test_pmd_mappable(folio), folio); 1865 1866 if (set_pmd_migration_entry(&pvmw, subpage)) { 1867 ret = false; 1868 page_vma_mapped_walk_done(&pvmw); 1869 break; 1870 } 1871 continue; 1872 } 1873 #endif 1874 1875 /* Unexpected PMD-mapped THP? */ 1876 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1877 1878 if (folio_is_zone_device(folio)) { 1879 /* 1880 * Our PTE is a non-present device exclusive entry and 1881 * calculating the subpage as for the common case would 1882 * result in an invalid pointer. 1883 * 1884 * Since only PAGE_SIZE pages can currently be 1885 * migrated, just set it to page. This will need to be 1886 * changed when hugepage migrations to device private 1887 * memory are supported. 1888 */ 1889 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1890 subpage = &folio->page; 1891 } else { 1892 subpage = folio_page(folio, 1893 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1894 } 1895 address = pvmw.address; 1896 anon_exclusive = folio_test_anon(folio) && 1897 PageAnonExclusive(subpage); 1898 1899 if (folio_test_hugetlb(folio)) { 1900 bool anon = folio_test_anon(folio); 1901 1902 /* 1903 * huge_pmd_unshare may unmap an entire PMD page. 1904 * There is no way of knowing exactly which PMDs may 1905 * be cached for this mm, so we must flush them all. 1906 * start/end were already adjusted above to cover this 1907 * range. 1908 */ 1909 flush_cache_range(vma, range.start, range.end); 1910 1911 /* 1912 * To call huge_pmd_unshare, i_mmap_rwsem must be 1913 * held in write mode. Caller needs to explicitly 1914 * do this outside rmap routines. 1915 * 1916 * We also must hold hugetlb vma_lock in write mode. 1917 * Lock order dictates acquiring vma_lock BEFORE 1918 * i_mmap_rwsem. We can only try lock here and 1919 * fail if unsuccessful. 1920 */ 1921 if (!anon) { 1922 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1923 if (!hugetlb_vma_trylock_write(vma)) { 1924 page_vma_mapped_walk_done(&pvmw); 1925 ret = false; 1926 break; 1927 } 1928 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1929 hugetlb_vma_unlock_write(vma); 1930 flush_tlb_range(vma, 1931 range.start, range.end); 1932 mmu_notifier_invalidate_range(mm, 1933 range.start, range.end); 1934 1935 /* 1936 * The ref count of the PMD page was 1937 * dropped which is part of the way map 1938 * counting is done for shared PMDs. 1939 * Return 'true' here. When there is 1940 * no other sharing, huge_pmd_unshare 1941 * returns false and we will unmap the 1942 * actual page and drop map count 1943 * to zero. 1944 */ 1945 page_vma_mapped_walk_done(&pvmw); 1946 break; 1947 } 1948 hugetlb_vma_unlock_write(vma); 1949 } 1950 /* Nuke the hugetlb page table entry */ 1951 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1952 } else { 1953 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1954 /* Nuke the page table entry. */ 1955 if (should_defer_flush(mm, flags)) { 1956 /* 1957 * We clear the PTE but do not flush so potentially 1958 * a remote CPU could still be writing to the folio. 1959 * If the entry was previously clean then the 1960 * architecture must guarantee that a clear->dirty 1961 * transition on a cached TLB entry is written through 1962 * and traps if the PTE is unmapped. 1963 */ 1964 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1965 1966 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1967 } else { 1968 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1969 } 1970 } 1971 1972 /* Set the dirty flag on the folio now the pte is gone. */ 1973 if (pte_dirty(pteval)) 1974 folio_mark_dirty(folio); 1975 1976 /* Update high watermark before we lower rss */ 1977 update_hiwater_rss(mm); 1978 1979 if (folio_is_device_private(folio)) { 1980 unsigned long pfn = folio_pfn(folio); 1981 swp_entry_t entry; 1982 pte_t swp_pte; 1983 1984 if (anon_exclusive) 1985 BUG_ON(page_try_share_anon_rmap(subpage)); 1986 1987 /* 1988 * Store the pfn of the page in a special migration 1989 * pte. do_swap_page() will wait until the migration 1990 * pte is removed and then restart fault handling. 1991 */ 1992 entry = pte_to_swp_entry(pteval); 1993 if (is_writable_device_private_entry(entry)) 1994 entry = make_writable_migration_entry(pfn); 1995 else if (anon_exclusive) 1996 entry = make_readable_exclusive_migration_entry(pfn); 1997 else 1998 entry = make_readable_migration_entry(pfn); 1999 swp_pte = swp_entry_to_pte(entry); 2000 2001 /* 2002 * pteval maps a zone device page and is therefore 2003 * a swap pte. 2004 */ 2005 if (pte_swp_soft_dirty(pteval)) 2006 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2007 if (pte_swp_uffd_wp(pteval)) 2008 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2009 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2010 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2011 compound_order(&folio->page)); 2012 /* 2013 * No need to invalidate here it will synchronize on 2014 * against the special swap migration pte. 2015 */ 2016 } else if (PageHWPoison(subpage)) { 2017 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2018 if (folio_test_hugetlb(folio)) { 2019 hugetlb_count_sub(folio_nr_pages(folio), mm); 2020 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2021 } else { 2022 dec_mm_counter(mm, mm_counter(&folio->page)); 2023 set_pte_at(mm, address, pvmw.pte, pteval); 2024 } 2025 2026 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2027 /* 2028 * The guest indicated that the page content is of no 2029 * interest anymore. Simply discard the pte, vmscan 2030 * will take care of the rest. 2031 * A future reference will then fault in a new zero 2032 * page. When userfaultfd is active, we must not drop 2033 * this page though, as its main user (postcopy 2034 * migration) will not expect userfaults on already 2035 * copied pages. 2036 */ 2037 dec_mm_counter(mm, mm_counter(&folio->page)); 2038 /* We have to invalidate as we cleared the pte */ 2039 mmu_notifier_invalidate_range(mm, address, 2040 address + PAGE_SIZE); 2041 } else { 2042 swp_entry_t entry; 2043 pte_t swp_pte; 2044 2045 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2046 if (folio_test_hugetlb(folio)) 2047 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2048 else 2049 set_pte_at(mm, address, pvmw.pte, pteval); 2050 ret = false; 2051 page_vma_mapped_walk_done(&pvmw); 2052 break; 2053 } 2054 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2055 !anon_exclusive, subpage); 2056 2057 /* See page_try_share_anon_rmap(): clear PTE first. */ 2058 if (anon_exclusive && 2059 page_try_share_anon_rmap(subpage)) { 2060 if (folio_test_hugetlb(folio)) 2061 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2062 else 2063 set_pte_at(mm, address, pvmw.pte, pteval); 2064 ret = false; 2065 page_vma_mapped_walk_done(&pvmw); 2066 break; 2067 } 2068 2069 /* 2070 * Store the pfn of the page in a special migration 2071 * pte. do_swap_page() will wait until the migration 2072 * pte is removed and then restart fault handling. 2073 */ 2074 if (pte_write(pteval)) 2075 entry = make_writable_migration_entry( 2076 page_to_pfn(subpage)); 2077 else if (anon_exclusive) 2078 entry = make_readable_exclusive_migration_entry( 2079 page_to_pfn(subpage)); 2080 else 2081 entry = make_readable_migration_entry( 2082 page_to_pfn(subpage)); 2083 if (pte_young(pteval)) 2084 entry = make_migration_entry_young(entry); 2085 if (pte_dirty(pteval)) 2086 entry = make_migration_entry_dirty(entry); 2087 swp_pte = swp_entry_to_pte(entry); 2088 if (pte_soft_dirty(pteval)) 2089 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2090 if (pte_uffd_wp(pteval)) 2091 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2092 if (folio_test_hugetlb(folio)) 2093 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2094 else 2095 set_pte_at(mm, address, pvmw.pte, swp_pte); 2096 trace_set_migration_pte(address, pte_val(swp_pte), 2097 compound_order(&folio->page)); 2098 /* 2099 * No need to invalidate here it will synchronize on 2100 * against the special swap migration pte. 2101 */ 2102 } 2103 2104 /* 2105 * No need to call mmu_notifier_invalidate_range() it has be 2106 * done above for all cases requiring it to happen under page 2107 * table lock before mmu_notifier_invalidate_range_end() 2108 * 2109 * See Documentation/mm/mmu_notifier.rst 2110 */ 2111 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2112 if (vma->vm_flags & VM_LOCKED) 2113 mlock_drain_local(); 2114 folio_put(folio); 2115 } 2116 2117 mmu_notifier_invalidate_range_end(&range); 2118 2119 return ret; 2120 } 2121 2122 /** 2123 * try_to_migrate - try to replace all page table mappings with swap entries 2124 * @folio: the folio to replace page table entries for 2125 * @flags: action and flags 2126 * 2127 * Tries to remove all the page table entries which are mapping this folio and 2128 * replace them with special swap entries. Caller must hold the folio lock. 2129 */ 2130 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2131 { 2132 struct rmap_walk_control rwc = { 2133 .rmap_one = try_to_migrate_one, 2134 .arg = (void *)flags, 2135 .done = folio_not_mapped, 2136 .anon_lock = folio_lock_anon_vma_read, 2137 }; 2138 2139 /* 2140 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2141 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2142 */ 2143 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2144 TTU_SYNC | TTU_BATCH_FLUSH))) 2145 return; 2146 2147 if (folio_is_zone_device(folio) && 2148 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2149 return; 2150 2151 /* 2152 * During exec, a temporary VMA is setup and later moved. 2153 * The VMA is moved under the anon_vma lock but not the 2154 * page tables leading to a race where migration cannot 2155 * find the migration ptes. Rather than increasing the 2156 * locking requirements of exec(), migration skips 2157 * temporary VMAs until after exec() completes. 2158 */ 2159 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2160 rwc.invalid_vma = invalid_migration_vma; 2161 2162 if (flags & TTU_RMAP_LOCKED) 2163 rmap_walk_locked(folio, &rwc); 2164 else 2165 rmap_walk(folio, &rwc); 2166 } 2167 2168 #ifdef CONFIG_DEVICE_PRIVATE 2169 struct make_exclusive_args { 2170 struct mm_struct *mm; 2171 unsigned long address; 2172 void *owner; 2173 bool valid; 2174 }; 2175 2176 static bool page_make_device_exclusive_one(struct folio *folio, 2177 struct vm_area_struct *vma, unsigned long address, void *priv) 2178 { 2179 struct mm_struct *mm = vma->vm_mm; 2180 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2181 struct make_exclusive_args *args = priv; 2182 pte_t pteval; 2183 struct page *subpage; 2184 bool ret = true; 2185 struct mmu_notifier_range range; 2186 swp_entry_t entry; 2187 pte_t swp_pte; 2188 2189 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2190 vma->vm_mm, address, min(vma->vm_end, 2191 address + folio_size(folio)), 2192 args->owner); 2193 mmu_notifier_invalidate_range_start(&range); 2194 2195 while (page_vma_mapped_walk(&pvmw)) { 2196 /* Unexpected PMD-mapped THP? */ 2197 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2198 2199 if (!pte_present(*pvmw.pte)) { 2200 ret = false; 2201 page_vma_mapped_walk_done(&pvmw); 2202 break; 2203 } 2204 2205 subpage = folio_page(folio, 2206 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2207 address = pvmw.address; 2208 2209 /* Nuke the page table entry. */ 2210 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2211 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2212 2213 /* Set the dirty flag on the folio now the pte is gone. */ 2214 if (pte_dirty(pteval)) 2215 folio_mark_dirty(folio); 2216 2217 /* 2218 * Check that our target page is still mapped at the expected 2219 * address. 2220 */ 2221 if (args->mm == mm && args->address == address && 2222 pte_write(pteval)) 2223 args->valid = true; 2224 2225 /* 2226 * Store the pfn of the page in a special migration 2227 * pte. do_swap_page() will wait until the migration 2228 * pte is removed and then restart fault handling. 2229 */ 2230 if (pte_write(pteval)) 2231 entry = make_writable_device_exclusive_entry( 2232 page_to_pfn(subpage)); 2233 else 2234 entry = make_readable_device_exclusive_entry( 2235 page_to_pfn(subpage)); 2236 swp_pte = swp_entry_to_pte(entry); 2237 if (pte_soft_dirty(pteval)) 2238 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2239 if (pte_uffd_wp(pteval)) 2240 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2241 2242 set_pte_at(mm, address, pvmw.pte, swp_pte); 2243 2244 /* 2245 * There is a reference on the page for the swap entry which has 2246 * been removed, so shouldn't take another. 2247 */ 2248 page_remove_rmap(subpage, vma, false); 2249 } 2250 2251 mmu_notifier_invalidate_range_end(&range); 2252 2253 return ret; 2254 } 2255 2256 /** 2257 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2258 * @folio: The folio to replace page table entries for. 2259 * @mm: The mm_struct where the folio is expected to be mapped. 2260 * @address: Address where the folio is expected to be mapped. 2261 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2262 * 2263 * Tries to remove all the page table entries which are mapping this 2264 * folio and replace them with special device exclusive swap entries to 2265 * grant a device exclusive access to the folio. 2266 * 2267 * Context: Caller must hold the folio lock. 2268 * Return: false if the page is still mapped, or if it could not be unmapped 2269 * from the expected address. Otherwise returns true (success). 2270 */ 2271 static bool folio_make_device_exclusive(struct folio *folio, 2272 struct mm_struct *mm, unsigned long address, void *owner) 2273 { 2274 struct make_exclusive_args args = { 2275 .mm = mm, 2276 .address = address, 2277 .owner = owner, 2278 .valid = false, 2279 }; 2280 struct rmap_walk_control rwc = { 2281 .rmap_one = page_make_device_exclusive_one, 2282 .done = folio_not_mapped, 2283 .anon_lock = folio_lock_anon_vma_read, 2284 .arg = &args, 2285 }; 2286 2287 /* 2288 * Restrict to anonymous folios for now to avoid potential writeback 2289 * issues. 2290 */ 2291 if (!folio_test_anon(folio)) 2292 return false; 2293 2294 rmap_walk(folio, &rwc); 2295 2296 return args.valid && !folio_mapcount(folio); 2297 } 2298 2299 /** 2300 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2301 * @mm: mm_struct of associated target process 2302 * @start: start of the region to mark for exclusive device access 2303 * @end: end address of region 2304 * @pages: returns the pages which were successfully marked for exclusive access 2305 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2306 * 2307 * Returns: number of pages found in the range by GUP. A page is marked for 2308 * exclusive access only if the page pointer is non-NULL. 2309 * 2310 * This function finds ptes mapping page(s) to the given address range, locks 2311 * them and replaces mappings with special swap entries preventing userspace CPU 2312 * access. On fault these entries are replaced with the original mapping after 2313 * calling MMU notifiers. 2314 * 2315 * A driver using this to program access from a device must use a mmu notifier 2316 * critical section to hold a device specific lock during programming. Once 2317 * programming is complete it should drop the page lock and reference after 2318 * which point CPU access to the page will revoke the exclusive access. 2319 */ 2320 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2321 unsigned long end, struct page **pages, 2322 void *owner) 2323 { 2324 long npages = (end - start) >> PAGE_SHIFT; 2325 long i; 2326 2327 npages = get_user_pages_remote(mm, start, npages, 2328 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2329 pages, NULL, NULL); 2330 if (npages < 0) 2331 return npages; 2332 2333 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2334 struct folio *folio = page_folio(pages[i]); 2335 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2336 folio_put(folio); 2337 pages[i] = NULL; 2338 continue; 2339 } 2340 2341 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2342 folio_unlock(folio); 2343 folio_put(folio); 2344 pages[i] = NULL; 2345 } 2346 } 2347 2348 return npages; 2349 } 2350 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2351 #endif 2352 2353 void __put_anon_vma(struct anon_vma *anon_vma) 2354 { 2355 struct anon_vma *root = anon_vma->root; 2356 2357 anon_vma_free(anon_vma); 2358 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2359 anon_vma_free(root); 2360 } 2361 2362 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2363 struct rmap_walk_control *rwc) 2364 { 2365 struct anon_vma *anon_vma; 2366 2367 if (rwc->anon_lock) 2368 return rwc->anon_lock(folio, rwc); 2369 2370 /* 2371 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2372 * because that depends on page_mapped(); but not all its usages 2373 * are holding mmap_lock. Users without mmap_lock are required to 2374 * take a reference count to prevent the anon_vma disappearing 2375 */ 2376 anon_vma = folio_anon_vma(folio); 2377 if (!anon_vma) 2378 return NULL; 2379 2380 if (anon_vma_trylock_read(anon_vma)) 2381 goto out; 2382 2383 if (rwc->try_lock) { 2384 anon_vma = NULL; 2385 rwc->contended = true; 2386 goto out; 2387 } 2388 2389 anon_vma_lock_read(anon_vma); 2390 out: 2391 return anon_vma; 2392 } 2393 2394 /* 2395 * rmap_walk_anon - do something to anonymous page using the object-based 2396 * rmap method 2397 * @page: the page to be handled 2398 * @rwc: control variable according to each walk type 2399 * 2400 * Find all the mappings of a page using the mapping pointer and the vma chains 2401 * contained in the anon_vma struct it points to. 2402 */ 2403 static void rmap_walk_anon(struct folio *folio, 2404 struct rmap_walk_control *rwc, bool locked) 2405 { 2406 struct anon_vma *anon_vma; 2407 pgoff_t pgoff_start, pgoff_end; 2408 struct anon_vma_chain *avc; 2409 2410 if (locked) { 2411 anon_vma = folio_anon_vma(folio); 2412 /* anon_vma disappear under us? */ 2413 VM_BUG_ON_FOLIO(!anon_vma, folio); 2414 } else { 2415 anon_vma = rmap_walk_anon_lock(folio, rwc); 2416 } 2417 if (!anon_vma) 2418 return; 2419 2420 pgoff_start = folio_pgoff(folio); 2421 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2422 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2423 pgoff_start, pgoff_end) { 2424 struct vm_area_struct *vma = avc->vma; 2425 unsigned long address = vma_address(&folio->page, vma); 2426 2427 VM_BUG_ON_VMA(address == -EFAULT, vma); 2428 cond_resched(); 2429 2430 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2431 continue; 2432 2433 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2434 break; 2435 if (rwc->done && rwc->done(folio)) 2436 break; 2437 } 2438 2439 if (!locked) 2440 anon_vma_unlock_read(anon_vma); 2441 } 2442 2443 /* 2444 * rmap_walk_file - do something to file page using the object-based rmap method 2445 * @page: the page to be handled 2446 * @rwc: control variable according to each walk type 2447 * 2448 * Find all the mappings of a page using the mapping pointer and the vma chains 2449 * contained in the address_space struct it points to. 2450 */ 2451 static void rmap_walk_file(struct folio *folio, 2452 struct rmap_walk_control *rwc, bool locked) 2453 { 2454 struct address_space *mapping = folio_mapping(folio); 2455 pgoff_t pgoff_start, pgoff_end; 2456 struct vm_area_struct *vma; 2457 2458 /* 2459 * The page lock not only makes sure that page->mapping cannot 2460 * suddenly be NULLified by truncation, it makes sure that the 2461 * structure at mapping cannot be freed and reused yet, 2462 * so we can safely take mapping->i_mmap_rwsem. 2463 */ 2464 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2465 2466 if (!mapping) 2467 return; 2468 2469 pgoff_start = folio_pgoff(folio); 2470 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2471 if (!locked) { 2472 if (i_mmap_trylock_read(mapping)) 2473 goto lookup; 2474 2475 if (rwc->try_lock) { 2476 rwc->contended = true; 2477 return; 2478 } 2479 2480 i_mmap_lock_read(mapping); 2481 } 2482 lookup: 2483 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2484 pgoff_start, pgoff_end) { 2485 unsigned long address = vma_address(&folio->page, vma); 2486 2487 VM_BUG_ON_VMA(address == -EFAULT, vma); 2488 cond_resched(); 2489 2490 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2491 continue; 2492 2493 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2494 goto done; 2495 if (rwc->done && rwc->done(folio)) 2496 goto done; 2497 } 2498 2499 done: 2500 if (!locked) 2501 i_mmap_unlock_read(mapping); 2502 } 2503 2504 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2505 { 2506 if (unlikely(folio_test_ksm(folio))) 2507 rmap_walk_ksm(folio, rwc); 2508 else if (folio_test_anon(folio)) 2509 rmap_walk_anon(folio, rwc, false); 2510 else 2511 rmap_walk_file(folio, rwc, false); 2512 } 2513 2514 /* Like rmap_walk, but caller holds relevant rmap lock */ 2515 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2516 { 2517 /* no ksm support for now */ 2518 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2519 if (folio_test_anon(folio)) 2520 rmap_walk_anon(folio, rwc, true); 2521 else 2522 rmap_walk_file(folio, rwc, true); 2523 } 2524 2525 #ifdef CONFIG_HUGETLB_PAGE 2526 /* 2527 * The following two functions are for anonymous (private mapped) hugepages. 2528 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2529 * and no lru code, because we handle hugepages differently from common pages. 2530 * 2531 * RMAP_COMPOUND is ignored. 2532 */ 2533 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2534 unsigned long address, rmap_t flags) 2535 { 2536 struct folio *folio = page_folio(page); 2537 struct anon_vma *anon_vma = vma->anon_vma; 2538 int first; 2539 2540 BUG_ON(!folio_test_locked(folio)); 2541 BUG_ON(!anon_vma); 2542 /* address might be in next vma when migration races vma_merge */ 2543 first = atomic_inc_and_test(&folio->_entire_mapcount); 2544 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2545 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2546 if (first) 2547 __page_set_anon_rmap(folio, page, vma, address, 2548 !!(flags & RMAP_EXCLUSIVE)); 2549 } 2550 2551 void hugepage_add_new_anon_rmap(struct folio *folio, 2552 struct vm_area_struct *vma, unsigned long address) 2553 { 2554 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2555 /* increment count (starts at -1) */ 2556 atomic_set(&folio->_entire_mapcount, 0); 2557 folio_clear_hugetlb_restore_reserve(folio); 2558 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2559 } 2560 #endif /* CONFIG_HUGETLB_PAGE */ 2561