xref: /linux/mm/rmap.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64 
65 #include <asm/tlbflush.h>
66 
67 #include <trace/events/tlb.h>
68 
69 #include "internal.h"
70 
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73 
74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 	struct anon_vma *anon_vma;
77 
78 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 	if (anon_vma) {
80 		atomic_set(&anon_vma->refcount, 1);
81 		anon_vma->degree = 1;	/* Reference for first vma */
82 		anon_vma->parent = anon_vma;
83 		/*
84 		 * Initialise the anon_vma root to point to itself. If called
85 		 * from fork, the root will be reset to the parents anon_vma.
86 		 */
87 		anon_vma->root = anon_vma;
88 	}
89 
90 	return anon_vma;
91 }
92 
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
96 
97 	/*
98 	 * Synchronize against page_lock_anon_vma_read() such that
99 	 * we can safely hold the lock without the anon_vma getting
100 	 * freed.
101 	 *
102 	 * Relies on the full mb implied by the atomic_dec_and_test() from
103 	 * put_anon_vma() against the acquire barrier implied by
104 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 	 *
106 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
107 	 *   down_read_trylock()		  atomic_dec_and_test()
108 	 *   LOCK				  MB
109 	 *   atomic_read()			  rwsem_is_locked()
110 	 *
111 	 * LOCK should suffice since the actual taking of the lock must
112 	 * happen _before_ what follows.
113 	 */
114 	might_sleep();
115 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 		anon_vma_lock_write(anon_vma);
117 		anon_vma_unlock_write(anon_vma);
118 	}
119 
120 	kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122 
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127 
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132 
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 				struct anon_vma_chain *avc,
135 				struct anon_vma *anon_vma)
136 {
137 	avc->vma = vma;
138 	avc->anon_vma = anon_vma;
139 	list_add(&avc->same_vma, &vma->anon_vma_chain);
140 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142 
143 /**
144  * anon_vma_prepare - attach an anon_vma to a memory region
145  * @vma: the memory region in question
146  *
147  * This makes sure the memory mapping described by 'vma' has
148  * an 'anon_vma' attached to it, so that we can associate the
149  * anonymous pages mapped into it with that anon_vma.
150  *
151  * The common case will be that we already have one, but if
152  * not we either need to find an adjacent mapping that we
153  * can re-use the anon_vma from (very common when the only
154  * reason for splitting a vma has been mprotect()), or we
155  * allocate a new one.
156  *
157  * Anon-vma allocations are very subtle, because we may have
158  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159  * and that may actually touch the spinlock even in the newly
160  * allocated vma (it depends on RCU to make sure that the
161  * anon_vma isn't actually destroyed).
162  *
163  * As a result, we need to do proper anon_vma locking even
164  * for the new allocation. At the same time, we do not want
165  * to do any locking for the common case of already having
166  * an anon_vma.
167  *
168  * This must be called with the mmap_sem held for reading.
169  */
170 int anon_vma_prepare(struct vm_area_struct *vma)
171 {
172 	struct anon_vma *anon_vma = vma->anon_vma;
173 	struct anon_vma_chain *avc;
174 
175 	might_sleep();
176 	if (unlikely(!anon_vma)) {
177 		struct mm_struct *mm = vma->vm_mm;
178 		struct anon_vma *allocated;
179 
180 		avc = anon_vma_chain_alloc(GFP_KERNEL);
181 		if (!avc)
182 			goto out_enomem;
183 
184 		anon_vma = find_mergeable_anon_vma(vma);
185 		allocated = NULL;
186 		if (!anon_vma) {
187 			anon_vma = anon_vma_alloc();
188 			if (unlikely(!anon_vma))
189 				goto out_enomem_free_avc;
190 			allocated = anon_vma;
191 		}
192 
193 		anon_vma_lock_write(anon_vma);
194 		/* page_table_lock to protect against threads */
195 		spin_lock(&mm->page_table_lock);
196 		if (likely(!vma->anon_vma)) {
197 			vma->anon_vma = anon_vma;
198 			anon_vma_chain_link(vma, avc, anon_vma);
199 			/* vma reference or self-parent link for new root */
200 			anon_vma->degree++;
201 			allocated = NULL;
202 			avc = NULL;
203 		}
204 		spin_unlock(&mm->page_table_lock);
205 		anon_vma_unlock_write(anon_vma);
206 
207 		if (unlikely(allocated))
208 			put_anon_vma(allocated);
209 		if (unlikely(avc))
210 			anon_vma_chain_free(avc);
211 	}
212 	return 0;
213 
214  out_enomem_free_avc:
215 	anon_vma_chain_free(avc);
216  out_enomem:
217 	return -ENOMEM;
218 }
219 
220 /*
221  * This is a useful helper function for locking the anon_vma root as
222  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223  * have the same vma.
224  *
225  * Such anon_vma's should have the same root, so you'd expect to see
226  * just a single mutex_lock for the whole traversal.
227  */
228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 {
230 	struct anon_vma *new_root = anon_vma->root;
231 	if (new_root != root) {
232 		if (WARN_ON_ONCE(root))
233 			up_write(&root->rwsem);
234 		root = new_root;
235 		down_write(&root->rwsem);
236 	}
237 	return root;
238 }
239 
240 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 {
242 	if (root)
243 		up_write(&root->rwsem);
244 }
245 
246 /*
247  * Attach the anon_vmas from src to dst.
248  * Returns 0 on success, -ENOMEM on failure.
249  *
250  * If dst->anon_vma is NULL this function tries to find and reuse existing
251  * anon_vma which has no vmas and only one child anon_vma. This prevents
252  * degradation of anon_vma hierarchy to endless linear chain in case of
253  * constantly forking task. On the other hand, an anon_vma with more than one
254  * child isn't reused even if there was no alive vma, thus rmap walker has a
255  * good chance of avoiding scanning the whole hierarchy when it searches where
256  * page is mapped.
257  */
258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 {
260 	struct anon_vma_chain *avc, *pavc;
261 	struct anon_vma *root = NULL;
262 
263 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 		struct anon_vma *anon_vma;
265 
266 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 		if (unlikely(!avc)) {
268 			unlock_anon_vma_root(root);
269 			root = NULL;
270 			avc = anon_vma_chain_alloc(GFP_KERNEL);
271 			if (!avc)
272 				goto enomem_failure;
273 		}
274 		anon_vma = pavc->anon_vma;
275 		root = lock_anon_vma_root(root, anon_vma);
276 		anon_vma_chain_link(dst, avc, anon_vma);
277 
278 		/*
279 		 * Reuse existing anon_vma if its degree lower than two,
280 		 * that means it has no vma and only one anon_vma child.
281 		 *
282 		 * Do not chose parent anon_vma, otherwise first child
283 		 * will always reuse it. Root anon_vma is never reused:
284 		 * it has self-parent reference and at least one child.
285 		 */
286 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 				anon_vma->degree < 2)
288 			dst->anon_vma = anon_vma;
289 	}
290 	if (dst->anon_vma)
291 		dst->anon_vma->degree++;
292 	unlock_anon_vma_root(root);
293 	return 0;
294 
295  enomem_failure:
296 	/*
297 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 	 * decremented in unlink_anon_vmas().
299 	 * We can safely do this because callers of anon_vma_clone() don't care
300 	 * about dst->anon_vma if anon_vma_clone() failed.
301 	 */
302 	dst->anon_vma = NULL;
303 	unlink_anon_vmas(dst);
304 	return -ENOMEM;
305 }
306 
307 /*
308  * Attach vma to its own anon_vma, as well as to the anon_vmas that
309  * the corresponding VMA in the parent process is attached to.
310  * Returns 0 on success, non-zero on failure.
311  */
312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 {
314 	struct anon_vma_chain *avc;
315 	struct anon_vma *anon_vma;
316 	int error;
317 
318 	/* Don't bother if the parent process has no anon_vma here. */
319 	if (!pvma->anon_vma)
320 		return 0;
321 
322 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 	vma->anon_vma = NULL;
324 
325 	/*
326 	 * First, attach the new VMA to the parent VMA's anon_vmas,
327 	 * so rmap can find non-COWed pages in child processes.
328 	 */
329 	error = anon_vma_clone(vma, pvma);
330 	if (error)
331 		return error;
332 
333 	/* An existing anon_vma has been reused, all done then. */
334 	if (vma->anon_vma)
335 		return 0;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	anon_vma->parent = pvma->anon_vma;
351 	/*
352 	 * With refcounts, an anon_vma can stay around longer than the
353 	 * process it belongs to. The root anon_vma needs to be pinned until
354 	 * this anon_vma is freed, because the lock lives in the root.
355 	 */
356 	get_anon_vma(anon_vma->root);
357 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
358 	vma->anon_vma = anon_vma;
359 	anon_vma_lock_write(anon_vma);
360 	anon_vma_chain_link(vma, avc, anon_vma);
361 	anon_vma->parent->degree++;
362 	anon_vma_unlock_write(anon_vma);
363 
364 	return 0;
365 
366  out_error_free_anon_vma:
367 	put_anon_vma(anon_vma);
368  out_error:
369 	unlink_anon_vmas(vma);
370 	return -ENOMEM;
371 }
372 
373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc, *next;
376 	struct anon_vma *root = NULL;
377 
378 	/*
379 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
380 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 	 */
382 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 		struct anon_vma *anon_vma = avc->anon_vma;
384 
385 		root = lock_anon_vma_root(root, anon_vma);
386 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387 
388 		/*
389 		 * Leave empty anon_vmas on the list - we'll need
390 		 * to free them outside the lock.
391 		 */
392 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 			anon_vma->parent->degree--;
394 			continue;
395 		}
396 
397 		list_del(&avc->same_vma);
398 		anon_vma_chain_free(avc);
399 	}
400 	if (vma->anon_vma)
401 		vma->anon_vma->degree--;
402 	unlock_anon_vma_root(root);
403 
404 	/*
405 	 * Iterate the list once more, it now only contains empty and unlinked
406 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 	 * needing to write-acquire the anon_vma->root->rwsem.
408 	 */
409 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 		struct anon_vma *anon_vma = avc->anon_vma;
411 
412 		BUG_ON(anon_vma->degree);
413 		put_anon_vma(anon_vma);
414 
415 		list_del(&avc->same_vma);
416 		anon_vma_chain_free(avc);
417 	}
418 }
419 
420 static void anon_vma_ctor(void *data)
421 {
422 	struct anon_vma *anon_vma = data;
423 
424 	init_rwsem(&anon_vma->rwsem);
425 	atomic_set(&anon_vma->refcount, 0);
426 	anon_vma->rb_root = RB_ROOT;
427 }
428 
429 void __init anon_vma_init(void)
430 {
431 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 			anon_vma_ctor);
434 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 			SLAB_PANIC|SLAB_ACCOUNT);
436 }
437 
438 /*
439  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440  *
441  * Since there is no serialization what so ever against page_remove_rmap()
442  * the best this function can do is return a locked anon_vma that might
443  * have been relevant to this page.
444  *
445  * The page might have been remapped to a different anon_vma or the anon_vma
446  * returned may already be freed (and even reused).
447  *
448  * In case it was remapped to a different anon_vma, the new anon_vma will be a
449  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450  * ensure that any anon_vma obtained from the page will still be valid for as
451  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452  *
453  * All users of this function must be very careful when walking the anon_vma
454  * chain and verify that the page in question is indeed mapped in it
455  * [ something equivalent to page_mapped_in_vma() ].
456  *
457  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458  * that the anon_vma pointer from page->mapping is valid if there is a
459  * mapcount, we can dereference the anon_vma after observing those.
460  */
461 struct anon_vma *page_get_anon_vma(struct page *page)
462 {
463 	struct anon_vma *anon_vma = NULL;
464 	unsigned long anon_mapping;
465 
466 	rcu_read_lock();
467 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 		goto out;
470 	if (!page_mapped(page))
471 		goto out;
472 
473 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	/*
480 	 * If this page is still mapped, then its anon_vma cannot have been
481 	 * freed.  But if it has been unmapped, we have no security against the
482 	 * anon_vma structure being freed and reused (for another anon_vma:
483 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 	 * above cannot corrupt).
485 	 */
486 	if (!page_mapped(page)) {
487 		rcu_read_unlock();
488 		put_anon_vma(anon_vma);
489 		return NULL;
490 	}
491 out:
492 	rcu_read_unlock();
493 
494 	return anon_vma;
495 }
496 
497 /*
498  * Similar to page_get_anon_vma() except it locks the anon_vma.
499  *
500  * Its a little more complex as it tries to keep the fast path to a single
501  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502  * reference like with page_get_anon_vma() and then block on the mutex.
503  */
504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 {
506 	struct anon_vma *anon_vma = NULL;
507 	struct anon_vma *root_anon_vma;
508 	unsigned long anon_mapping;
509 
510 	rcu_read_lock();
511 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 		goto out;
514 	if (!page_mapped(page))
515 		goto out;
516 
517 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 	root_anon_vma = READ_ONCE(anon_vma->root);
519 	if (down_read_trylock(&root_anon_vma->rwsem)) {
520 		/*
521 		 * If the page is still mapped, then this anon_vma is still
522 		 * its anon_vma, and holding the mutex ensures that it will
523 		 * not go away, see anon_vma_free().
524 		 */
525 		if (!page_mapped(page)) {
526 			up_read(&root_anon_vma->rwsem);
527 			anon_vma = NULL;
528 		}
529 		goto out;
530 	}
531 
532 	/* trylock failed, we got to sleep */
533 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 		anon_vma = NULL;
535 		goto out;
536 	}
537 
538 	if (!page_mapped(page)) {
539 		rcu_read_unlock();
540 		put_anon_vma(anon_vma);
541 		return NULL;
542 	}
543 
544 	/* we pinned the anon_vma, its safe to sleep */
545 	rcu_read_unlock();
546 	anon_vma_lock_read(anon_vma);
547 
548 	if (atomic_dec_and_test(&anon_vma->refcount)) {
549 		/*
550 		 * Oops, we held the last refcount, release the lock
551 		 * and bail -- can't simply use put_anon_vma() because
552 		 * we'll deadlock on the anon_vma_lock_write() recursion.
553 		 */
554 		anon_vma_unlock_read(anon_vma);
555 		__put_anon_vma(anon_vma);
556 		anon_vma = NULL;
557 	}
558 
559 	return anon_vma;
560 
561 out:
562 	rcu_read_unlock();
563 	return anon_vma;
564 }
565 
566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 {
568 	anon_vma_unlock_read(anon_vma);
569 }
570 
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 static void percpu_flush_tlb_batch_pages(void *data)
573 {
574 	/*
575 	 * All TLB entries are flushed on the assumption that it is
576 	 * cheaper to flush all TLBs and let them be refilled than
577 	 * flushing individual PFNs. Note that we do not track mm's
578 	 * to flush as that might simply be multiple full TLB flushes
579 	 * for no gain.
580 	 */
581 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
582 	flush_tlb_local();
583 }
584 
585 /*
586  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
587  * important if a PTE was dirty when it was unmapped that it's flushed
588  * before any IO is initiated on the page to prevent lost writes. Similarly,
589  * it must be flushed before freeing to prevent data leakage.
590  */
591 void try_to_unmap_flush(void)
592 {
593 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
594 	int cpu;
595 
596 	if (!tlb_ubc->flush_required)
597 		return;
598 
599 	cpu = get_cpu();
600 
601 	trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
602 
603 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
604 		percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
605 
606 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
607 		smp_call_function_many(&tlb_ubc->cpumask,
608 			percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
609 	}
610 	cpumask_clear(&tlb_ubc->cpumask);
611 	tlb_ubc->flush_required = false;
612 	tlb_ubc->writable = false;
613 	put_cpu();
614 }
615 
616 /* Flush iff there are potentially writable TLB entries that can race with IO */
617 void try_to_unmap_flush_dirty(void)
618 {
619 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
620 
621 	if (tlb_ubc->writable)
622 		try_to_unmap_flush();
623 }
624 
625 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
626 		struct page *page, bool writable)
627 {
628 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
629 
630 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
631 	tlb_ubc->flush_required = true;
632 
633 	/*
634 	 * If the PTE was dirty then it's best to assume it's writable. The
635 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
636 	 * before the page is queued for IO.
637 	 */
638 	if (writable)
639 		tlb_ubc->writable = true;
640 }
641 
642 /*
643  * Returns true if the TLB flush should be deferred to the end of a batch of
644  * unmap operations to reduce IPIs.
645  */
646 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
647 {
648 	bool should_defer = false;
649 
650 	if (!(flags & TTU_BATCH_FLUSH))
651 		return false;
652 
653 	/* If remote CPUs need to be flushed then defer batch the flush */
654 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
655 		should_defer = true;
656 	put_cpu();
657 
658 	return should_defer;
659 }
660 #else
661 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
662 		struct page *page, bool writable)
663 {
664 }
665 
666 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
667 {
668 	return false;
669 }
670 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
671 
672 /*
673  * At what user virtual address is page expected in vma?
674  * Caller should check the page is actually part of the vma.
675  */
676 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
677 {
678 	unsigned long address;
679 	if (PageAnon(page)) {
680 		struct anon_vma *page__anon_vma = page_anon_vma(page);
681 		/*
682 		 * Note: swapoff's unuse_vma() is more efficient with this
683 		 * check, and needs it to match anon_vma when KSM is active.
684 		 */
685 		if (!vma->anon_vma || !page__anon_vma ||
686 		    vma->anon_vma->root != page__anon_vma->root)
687 			return -EFAULT;
688 	} else if (page->mapping) {
689 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
690 			return -EFAULT;
691 	} else
692 		return -EFAULT;
693 	address = __vma_address(page, vma);
694 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
695 		return -EFAULT;
696 	return address;
697 }
698 
699 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
700 {
701 	pgd_t *pgd;
702 	pud_t *pud;
703 	pmd_t *pmd = NULL;
704 	pmd_t pmde;
705 
706 	pgd = pgd_offset(mm, address);
707 	if (!pgd_present(*pgd))
708 		goto out;
709 
710 	pud = pud_offset(pgd, address);
711 	if (!pud_present(*pud))
712 		goto out;
713 
714 	pmd = pmd_offset(pud, address);
715 	/*
716 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
717 	 * without holding anon_vma lock for write.  So when looking for a
718 	 * genuine pmde (in which to find pte), test present and !THP together.
719 	 */
720 	pmde = *pmd;
721 	barrier();
722 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
723 		pmd = NULL;
724 out:
725 	return pmd;
726 }
727 
728 /*
729  * Check that @page is mapped at @address into @mm.
730  *
731  * If @sync is false, page_check_address may perform a racy check to avoid
732  * the page table lock when the pte is not present (helpful when reclaiming
733  * highly shared pages).
734  *
735  * On success returns with pte mapped and locked.
736  */
737 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
738 			  unsigned long address, spinlock_t **ptlp, int sync)
739 {
740 	pmd_t *pmd;
741 	pte_t *pte;
742 	spinlock_t *ptl;
743 
744 	if (unlikely(PageHuge(page))) {
745 		/* when pud is not present, pte will be NULL */
746 		pte = huge_pte_offset(mm, address);
747 		if (!pte)
748 			return NULL;
749 
750 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
751 		goto check;
752 	}
753 
754 	pmd = mm_find_pmd(mm, address);
755 	if (!pmd)
756 		return NULL;
757 
758 	pte = pte_offset_map(pmd, address);
759 	/* Make a quick check before getting the lock */
760 	if (!sync && !pte_present(*pte)) {
761 		pte_unmap(pte);
762 		return NULL;
763 	}
764 
765 	ptl = pte_lockptr(mm, pmd);
766 check:
767 	spin_lock(ptl);
768 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
769 		*ptlp = ptl;
770 		return pte;
771 	}
772 	pte_unmap_unlock(pte, ptl);
773 	return NULL;
774 }
775 
776 /**
777  * page_mapped_in_vma - check whether a page is really mapped in a VMA
778  * @page: the page to test
779  * @vma: the VMA to test
780  *
781  * Returns 1 if the page is mapped into the page tables of the VMA, 0
782  * if the page is not mapped into the page tables of this VMA.  Only
783  * valid for normal file or anonymous VMAs.
784  */
785 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
786 {
787 	unsigned long address;
788 	pte_t *pte;
789 	spinlock_t *ptl;
790 
791 	address = __vma_address(page, vma);
792 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
793 		return 0;
794 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
795 	if (!pte)			/* the page is not in this mm */
796 		return 0;
797 	pte_unmap_unlock(pte, ptl);
798 
799 	return 1;
800 }
801 
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 /*
804  * Check that @page is mapped at @address into @mm. In contrast to
805  * page_check_address(), this function can handle transparent huge pages.
806  *
807  * On success returns true with pte mapped and locked. For PMD-mapped
808  * transparent huge pages *@ptep is set to NULL.
809  */
810 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
811 				  unsigned long address, pmd_t **pmdp,
812 				  pte_t **ptep, spinlock_t **ptlp)
813 {
814 	pgd_t *pgd;
815 	pud_t *pud;
816 	pmd_t *pmd;
817 	pte_t *pte;
818 	spinlock_t *ptl;
819 
820 	if (unlikely(PageHuge(page))) {
821 		/* when pud is not present, pte will be NULL */
822 		pte = huge_pte_offset(mm, address);
823 		if (!pte)
824 			return false;
825 
826 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
827 		pmd = NULL;
828 		goto check_pte;
829 	}
830 
831 	pgd = pgd_offset(mm, address);
832 	if (!pgd_present(*pgd))
833 		return false;
834 	pud = pud_offset(pgd, address);
835 	if (!pud_present(*pud))
836 		return false;
837 	pmd = pmd_offset(pud, address);
838 
839 	if (pmd_trans_huge(*pmd)) {
840 		ptl = pmd_lock(mm, pmd);
841 		if (!pmd_present(*pmd))
842 			goto unlock_pmd;
843 		if (unlikely(!pmd_trans_huge(*pmd))) {
844 			spin_unlock(ptl);
845 			goto map_pte;
846 		}
847 
848 		if (pmd_page(*pmd) != page)
849 			goto unlock_pmd;
850 
851 		pte = NULL;
852 		goto found;
853 unlock_pmd:
854 		spin_unlock(ptl);
855 		return false;
856 	} else {
857 		pmd_t pmde = *pmd;
858 
859 		barrier();
860 		if (!pmd_present(pmde) || pmd_trans_huge(pmde))
861 			return false;
862 	}
863 map_pte:
864 	pte = pte_offset_map(pmd, address);
865 	if (!pte_present(*pte)) {
866 		pte_unmap(pte);
867 		return false;
868 	}
869 
870 	ptl = pte_lockptr(mm, pmd);
871 check_pte:
872 	spin_lock(ptl);
873 
874 	if (!pte_present(*pte)) {
875 		pte_unmap_unlock(pte, ptl);
876 		return false;
877 	}
878 
879 	/* THP can be referenced by any subpage */
880 	if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
881 		pte_unmap_unlock(pte, ptl);
882 		return false;
883 	}
884 found:
885 	*ptep = pte;
886 	*pmdp = pmd;
887 	*ptlp = ptl;
888 	return true;
889 }
890 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
891 
892 struct page_referenced_arg {
893 	int mapcount;
894 	int referenced;
895 	unsigned long vm_flags;
896 	struct mem_cgroup *memcg;
897 };
898 /*
899  * arg: page_referenced_arg will be passed
900  */
901 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
902 			unsigned long address, void *arg)
903 {
904 	struct mm_struct *mm = vma->vm_mm;
905 	struct page_referenced_arg *pra = arg;
906 	pmd_t *pmd;
907 	pte_t *pte;
908 	spinlock_t *ptl;
909 	int referenced = 0;
910 
911 	if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
912 		return SWAP_AGAIN;
913 
914 	if (vma->vm_flags & VM_LOCKED) {
915 		if (pte)
916 			pte_unmap(pte);
917 		spin_unlock(ptl);
918 		pra->vm_flags |= VM_LOCKED;
919 		return SWAP_FAIL; /* To break the loop */
920 	}
921 
922 	if (pte) {
923 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
924 			/*
925 			 * Don't treat a reference through a sequentially read
926 			 * mapping as such.  If the page has been used in
927 			 * another mapping, we will catch it; if this other
928 			 * mapping is already gone, the unmap path will have
929 			 * set PG_referenced or activated the page.
930 			 */
931 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
932 				referenced++;
933 		}
934 		pte_unmap(pte);
935 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
936 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
937 			referenced++;
938 	} else {
939 		/* unexpected pmd-mapped page? */
940 		WARN_ON_ONCE(1);
941 	}
942 	spin_unlock(ptl);
943 
944 	if (referenced)
945 		clear_page_idle(page);
946 	if (test_and_clear_page_young(page))
947 		referenced++;
948 
949 	if (referenced) {
950 		pra->referenced++;
951 		pra->vm_flags |= vma->vm_flags;
952 	}
953 
954 	pra->mapcount--;
955 	if (!pra->mapcount)
956 		return SWAP_SUCCESS; /* To break the loop */
957 
958 	return SWAP_AGAIN;
959 }
960 
961 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
962 {
963 	struct page_referenced_arg *pra = arg;
964 	struct mem_cgroup *memcg = pra->memcg;
965 
966 	if (!mm_match_cgroup(vma->vm_mm, memcg))
967 		return true;
968 
969 	return false;
970 }
971 
972 /**
973  * page_referenced - test if the page was referenced
974  * @page: the page to test
975  * @is_locked: caller holds lock on the page
976  * @memcg: target memory cgroup
977  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
978  *
979  * Quick test_and_clear_referenced for all mappings to a page,
980  * returns the number of ptes which referenced the page.
981  */
982 int page_referenced(struct page *page,
983 		    int is_locked,
984 		    struct mem_cgroup *memcg,
985 		    unsigned long *vm_flags)
986 {
987 	int ret;
988 	int we_locked = 0;
989 	struct page_referenced_arg pra = {
990 		.mapcount = total_mapcount(page),
991 		.memcg = memcg,
992 	};
993 	struct rmap_walk_control rwc = {
994 		.rmap_one = page_referenced_one,
995 		.arg = (void *)&pra,
996 		.anon_lock = page_lock_anon_vma_read,
997 	};
998 
999 	*vm_flags = 0;
1000 	if (!page_mapped(page))
1001 		return 0;
1002 
1003 	if (!page_rmapping(page))
1004 		return 0;
1005 
1006 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1007 		we_locked = trylock_page(page);
1008 		if (!we_locked)
1009 			return 1;
1010 	}
1011 
1012 	/*
1013 	 * If we are reclaiming on behalf of a cgroup, skip
1014 	 * counting on behalf of references from different
1015 	 * cgroups
1016 	 */
1017 	if (memcg) {
1018 		rwc.invalid_vma = invalid_page_referenced_vma;
1019 	}
1020 
1021 	ret = rmap_walk(page, &rwc);
1022 	*vm_flags = pra.vm_flags;
1023 
1024 	if (we_locked)
1025 		unlock_page(page);
1026 
1027 	return pra.referenced;
1028 }
1029 
1030 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1031 			    unsigned long address, void *arg)
1032 {
1033 	struct mm_struct *mm = vma->vm_mm;
1034 	pte_t *pte;
1035 	spinlock_t *ptl;
1036 	int ret = 0;
1037 	int *cleaned = arg;
1038 
1039 	pte = page_check_address(page, mm, address, &ptl, 1);
1040 	if (!pte)
1041 		goto out;
1042 
1043 	if (pte_dirty(*pte) || pte_write(*pte)) {
1044 		pte_t entry;
1045 
1046 		flush_cache_page(vma, address, pte_pfn(*pte));
1047 		entry = ptep_clear_flush(vma, address, pte);
1048 		entry = pte_wrprotect(entry);
1049 		entry = pte_mkclean(entry);
1050 		set_pte_at(mm, address, pte, entry);
1051 		ret = 1;
1052 	}
1053 
1054 	pte_unmap_unlock(pte, ptl);
1055 
1056 	if (ret) {
1057 		mmu_notifier_invalidate_page(mm, address);
1058 		(*cleaned)++;
1059 	}
1060 out:
1061 	return SWAP_AGAIN;
1062 }
1063 
1064 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1065 {
1066 	if (vma->vm_flags & VM_SHARED)
1067 		return false;
1068 
1069 	return true;
1070 }
1071 
1072 int page_mkclean(struct page *page)
1073 {
1074 	int cleaned = 0;
1075 	struct address_space *mapping;
1076 	struct rmap_walk_control rwc = {
1077 		.arg = (void *)&cleaned,
1078 		.rmap_one = page_mkclean_one,
1079 		.invalid_vma = invalid_mkclean_vma,
1080 	};
1081 
1082 	BUG_ON(!PageLocked(page));
1083 
1084 	if (!page_mapped(page))
1085 		return 0;
1086 
1087 	mapping = page_mapping(page);
1088 	if (!mapping)
1089 		return 0;
1090 
1091 	rmap_walk(page, &rwc);
1092 
1093 	return cleaned;
1094 }
1095 EXPORT_SYMBOL_GPL(page_mkclean);
1096 
1097 /**
1098  * page_move_anon_rmap - move a page to our anon_vma
1099  * @page:	the page to move to our anon_vma
1100  * @vma:	the vma the page belongs to
1101  * @address:	the user virtual address mapped
1102  *
1103  * When a page belongs exclusively to one process after a COW event,
1104  * that page can be moved into the anon_vma that belongs to just that
1105  * process, so the rmap code will not search the parent or sibling
1106  * processes.
1107  */
1108 void page_move_anon_rmap(struct page *page,
1109 	struct vm_area_struct *vma, unsigned long address)
1110 {
1111 	struct anon_vma *anon_vma = vma->anon_vma;
1112 
1113 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1114 	VM_BUG_ON_VMA(!anon_vma, vma);
1115 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1116 
1117 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1118 	/*
1119 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1120 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1121 	 * PageAnon()) will not see one without the other.
1122 	 */
1123 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1124 }
1125 
1126 /**
1127  * __page_set_anon_rmap - set up new anonymous rmap
1128  * @page:	Page to add to rmap
1129  * @vma:	VM area to add page to.
1130  * @address:	User virtual address of the mapping
1131  * @exclusive:	the page is exclusively owned by the current process
1132  */
1133 static void __page_set_anon_rmap(struct page *page,
1134 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1135 {
1136 	struct anon_vma *anon_vma = vma->anon_vma;
1137 
1138 	BUG_ON(!anon_vma);
1139 
1140 	if (PageAnon(page))
1141 		return;
1142 
1143 	/*
1144 	 * If the page isn't exclusively mapped into this vma,
1145 	 * we must use the _oldest_ possible anon_vma for the
1146 	 * page mapping!
1147 	 */
1148 	if (!exclusive)
1149 		anon_vma = anon_vma->root;
1150 
1151 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1152 	page->mapping = (struct address_space *) anon_vma;
1153 	page->index = linear_page_index(vma, address);
1154 }
1155 
1156 /**
1157  * __page_check_anon_rmap - sanity check anonymous rmap addition
1158  * @page:	the page to add the mapping to
1159  * @vma:	the vm area in which the mapping is added
1160  * @address:	the user virtual address mapped
1161  */
1162 static void __page_check_anon_rmap(struct page *page,
1163 	struct vm_area_struct *vma, unsigned long address)
1164 {
1165 #ifdef CONFIG_DEBUG_VM
1166 	/*
1167 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1168 	 * be set up correctly at this point.
1169 	 *
1170 	 * We have exclusion against page_add_anon_rmap because the caller
1171 	 * always holds the page locked, except if called from page_dup_rmap,
1172 	 * in which case the page is already known to be setup.
1173 	 *
1174 	 * We have exclusion against page_add_new_anon_rmap because those pages
1175 	 * are initially only visible via the pagetables, and the pte is locked
1176 	 * over the call to page_add_new_anon_rmap.
1177 	 */
1178 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1179 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1180 #endif
1181 }
1182 
1183 /**
1184  * page_add_anon_rmap - add pte mapping to an anonymous page
1185  * @page:	the page to add the mapping to
1186  * @vma:	the vm area in which the mapping is added
1187  * @address:	the user virtual address mapped
1188  * @compound:	charge the page as compound or small page
1189  *
1190  * The caller needs to hold the pte lock, and the page must be locked in
1191  * the anon_vma case: to serialize mapping,index checking after setting,
1192  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1193  * (but PageKsm is never downgraded to PageAnon).
1194  */
1195 void page_add_anon_rmap(struct page *page,
1196 	struct vm_area_struct *vma, unsigned long address, bool compound)
1197 {
1198 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1199 }
1200 
1201 /*
1202  * Special version of the above for do_swap_page, which often runs
1203  * into pages that are exclusively owned by the current process.
1204  * Everybody else should continue to use page_add_anon_rmap above.
1205  */
1206 void do_page_add_anon_rmap(struct page *page,
1207 	struct vm_area_struct *vma, unsigned long address, int flags)
1208 {
1209 	bool compound = flags & RMAP_COMPOUND;
1210 	bool first;
1211 
1212 	if (compound) {
1213 		atomic_t *mapcount;
1214 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1215 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1216 		mapcount = compound_mapcount_ptr(page);
1217 		first = atomic_inc_and_test(mapcount);
1218 	} else {
1219 		first = atomic_inc_and_test(&page->_mapcount);
1220 	}
1221 
1222 	if (first) {
1223 		int nr = compound ? hpage_nr_pages(page) : 1;
1224 		/*
1225 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1226 		 * these counters are not modified in interrupt context, and
1227 		 * pte lock(a spinlock) is held, which implies preemption
1228 		 * disabled.
1229 		 */
1230 		if (compound) {
1231 			__inc_zone_page_state(page,
1232 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1233 		}
1234 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1235 	}
1236 	if (unlikely(PageKsm(page)))
1237 		return;
1238 
1239 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1240 
1241 	/* address might be in next vma when migration races vma_adjust */
1242 	if (first)
1243 		__page_set_anon_rmap(page, vma, address,
1244 				flags & RMAP_EXCLUSIVE);
1245 	else
1246 		__page_check_anon_rmap(page, vma, address);
1247 }
1248 
1249 /**
1250  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1251  * @page:	the page to add the mapping to
1252  * @vma:	the vm area in which the mapping is added
1253  * @address:	the user virtual address mapped
1254  * @compound:	charge the page as compound or small page
1255  *
1256  * Same as page_add_anon_rmap but must only be called on *new* pages.
1257  * This means the inc-and-test can be bypassed.
1258  * Page does not have to be locked.
1259  */
1260 void page_add_new_anon_rmap(struct page *page,
1261 	struct vm_area_struct *vma, unsigned long address, bool compound)
1262 {
1263 	int nr = compound ? hpage_nr_pages(page) : 1;
1264 
1265 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 	SetPageSwapBacked(page);
1267 	if (compound) {
1268 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 		/* increment count (starts at -1) */
1270 		atomic_set(compound_mapcount_ptr(page), 0);
1271 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1272 	} else {
1273 		/* Anon THP always mapped first with PMD */
1274 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1275 		/* increment count (starts at -1) */
1276 		atomic_set(&page->_mapcount, 0);
1277 	}
1278 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1279 	__page_set_anon_rmap(page, vma, address, 1);
1280 }
1281 
1282 /**
1283  * page_add_file_rmap - add pte mapping to a file page
1284  * @page: the page to add the mapping to
1285  *
1286  * The caller needs to hold the pte lock.
1287  */
1288 void page_add_file_rmap(struct page *page)
1289 {
1290 	struct mem_cgroup *memcg;
1291 
1292 	memcg = mem_cgroup_begin_page_stat(page);
1293 	if (atomic_inc_and_test(&page->_mapcount)) {
1294 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1295 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1296 	}
1297 	mem_cgroup_end_page_stat(memcg);
1298 }
1299 
1300 static void page_remove_file_rmap(struct page *page)
1301 {
1302 	struct mem_cgroup *memcg;
1303 
1304 	memcg = mem_cgroup_begin_page_stat(page);
1305 
1306 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1307 	if (unlikely(PageHuge(page))) {
1308 		/* hugetlb pages are always mapped with pmds */
1309 		atomic_dec(compound_mapcount_ptr(page));
1310 		goto out;
1311 	}
1312 
1313 	/* page still mapped by someone else? */
1314 	if (!atomic_add_negative(-1, &page->_mapcount))
1315 		goto out;
1316 
1317 	/*
1318 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1319 	 * these counters are not modified in interrupt context, and
1320 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1321 	 */
1322 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1323 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1324 
1325 	if (unlikely(PageMlocked(page)))
1326 		clear_page_mlock(page);
1327 out:
1328 	mem_cgroup_end_page_stat(memcg);
1329 }
1330 
1331 static void page_remove_anon_compound_rmap(struct page *page)
1332 {
1333 	int i, nr;
1334 
1335 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1336 		return;
1337 
1338 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1339 	if (unlikely(PageHuge(page)))
1340 		return;
1341 
1342 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1343 		return;
1344 
1345 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1346 
1347 	if (TestClearPageDoubleMap(page)) {
1348 		/*
1349 		 * Subpages can be mapped with PTEs too. Check how many of
1350 		 * themi are still mapped.
1351 		 */
1352 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1353 			if (atomic_add_negative(-1, &page[i]._mapcount))
1354 				nr++;
1355 		}
1356 	} else {
1357 		nr = HPAGE_PMD_NR;
1358 	}
1359 
1360 	if (unlikely(PageMlocked(page)))
1361 		clear_page_mlock(page);
1362 
1363 	if (nr) {
1364 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1365 		deferred_split_huge_page(page);
1366 	}
1367 }
1368 
1369 /**
1370  * page_remove_rmap - take down pte mapping from a page
1371  * @page:	page to remove mapping from
1372  * @compound:	uncharge the page as compound or small page
1373  *
1374  * The caller needs to hold the pte lock.
1375  */
1376 void page_remove_rmap(struct page *page, bool compound)
1377 {
1378 	if (!PageAnon(page)) {
1379 		VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1380 		page_remove_file_rmap(page);
1381 		return;
1382 	}
1383 
1384 	if (compound)
1385 		return page_remove_anon_compound_rmap(page);
1386 
1387 	/* page still mapped by someone else? */
1388 	if (!atomic_add_negative(-1, &page->_mapcount))
1389 		return;
1390 
1391 	/*
1392 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1393 	 * these counters are not modified in interrupt context, and
1394 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1395 	 */
1396 	__dec_zone_page_state(page, NR_ANON_PAGES);
1397 
1398 	if (unlikely(PageMlocked(page)))
1399 		clear_page_mlock(page);
1400 
1401 	if (PageTransCompound(page))
1402 		deferred_split_huge_page(compound_head(page));
1403 
1404 	/*
1405 	 * It would be tidy to reset the PageAnon mapping here,
1406 	 * but that might overwrite a racing page_add_anon_rmap
1407 	 * which increments mapcount after us but sets mapping
1408 	 * before us: so leave the reset to free_hot_cold_page,
1409 	 * and remember that it's only reliable while mapped.
1410 	 * Leaving it set also helps swapoff to reinstate ptes
1411 	 * faster for those pages still in swapcache.
1412 	 */
1413 }
1414 
1415 struct rmap_private {
1416 	enum ttu_flags flags;
1417 	int lazyfreed;
1418 };
1419 
1420 /*
1421  * @arg: enum ttu_flags will be passed to this argument
1422  */
1423 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1424 		     unsigned long address, void *arg)
1425 {
1426 	struct mm_struct *mm = vma->vm_mm;
1427 	pte_t *pte;
1428 	pte_t pteval;
1429 	spinlock_t *ptl;
1430 	int ret = SWAP_AGAIN;
1431 	struct rmap_private *rp = arg;
1432 	enum ttu_flags flags = rp->flags;
1433 
1434 	/* munlock has nothing to gain from examining un-locked vmas */
1435 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1436 		goto out;
1437 
1438 	pte = page_check_address(page, mm, address, &ptl, 0);
1439 	if (!pte)
1440 		goto out;
1441 
1442 	/*
1443 	 * If the page is mlock()d, we cannot swap it out.
1444 	 * If it's recently referenced (perhaps page_referenced
1445 	 * skipped over this mm) then we should reactivate it.
1446 	 */
1447 	if (!(flags & TTU_IGNORE_MLOCK)) {
1448 		if (vma->vm_flags & VM_LOCKED) {
1449 			/* Holding pte lock, we do *not* need mmap_sem here */
1450 			mlock_vma_page(page);
1451 			ret = SWAP_MLOCK;
1452 			goto out_unmap;
1453 		}
1454 		if (flags & TTU_MUNLOCK)
1455 			goto out_unmap;
1456 	}
1457 	if (!(flags & TTU_IGNORE_ACCESS)) {
1458 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1459 			ret = SWAP_FAIL;
1460 			goto out_unmap;
1461 		}
1462   	}
1463 
1464 	/* Nuke the page table entry. */
1465 	flush_cache_page(vma, address, page_to_pfn(page));
1466 	if (should_defer_flush(mm, flags)) {
1467 		/*
1468 		 * We clear the PTE but do not flush so potentially a remote
1469 		 * CPU could still be writing to the page. If the entry was
1470 		 * previously clean then the architecture must guarantee that
1471 		 * a clear->dirty transition on a cached TLB entry is written
1472 		 * through and traps if the PTE is unmapped.
1473 		 */
1474 		pteval = ptep_get_and_clear(mm, address, pte);
1475 
1476 		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1477 	} else {
1478 		pteval = ptep_clear_flush(vma, address, pte);
1479 	}
1480 
1481 	/* Move the dirty bit to the physical page now the pte is gone. */
1482 	if (pte_dirty(pteval))
1483 		set_page_dirty(page);
1484 
1485 	/* Update high watermark before we lower rss */
1486 	update_hiwater_rss(mm);
1487 
1488 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1489 		if (PageHuge(page)) {
1490 			hugetlb_count_sub(1 << compound_order(page), mm);
1491 		} else {
1492 			dec_mm_counter(mm, mm_counter(page));
1493 		}
1494 		set_pte_at(mm, address, pte,
1495 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1496 	} else if (pte_unused(pteval)) {
1497 		/*
1498 		 * The guest indicated that the page content is of no
1499 		 * interest anymore. Simply discard the pte, vmscan
1500 		 * will take care of the rest.
1501 		 */
1502 		dec_mm_counter(mm, mm_counter(page));
1503 	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1504 		swp_entry_t entry;
1505 		pte_t swp_pte;
1506 		/*
1507 		 * Store the pfn of the page in a special migration
1508 		 * pte. do_swap_page() will wait until the migration
1509 		 * pte is removed and then restart fault handling.
1510 		 */
1511 		entry = make_migration_entry(page, pte_write(pteval));
1512 		swp_pte = swp_entry_to_pte(entry);
1513 		if (pte_soft_dirty(pteval))
1514 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1515 		set_pte_at(mm, address, pte, swp_pte);
1516 	} else if (PageAnon(page)) {
1517 		swp_entry_t entry = { .val = page_private(page) };
1518 		pte_t swp_pte;
1519 		/*
1520 		 * Store the swap location in the pte.
1521 		 * See handle_pte_fault() ...
1522 		 */
1523 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1524 
1525 		if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1526 			/* It's a freeable page by MADV_FREE */
1527 			dec_mm_counter(mm, MM_ANONPAGES);
1528 			rp->lazyfreed++;
1529 			goto discard;
1530 		}
1531 
1532 		if (swap_duplicate(entry) < 0) {
1533 			set_pte_at(mm, address, pte, pteval);
1534 			ret = SWAP_FAIL;
1535 			goto out_unmap;
1536 		}
1537 		if (list_empty(&mm->mmlist)) {
1538 			spin_lock(&mmlist_lock);
1539 			if (list_empty(&mm->mmlist))
1540 				list_add(&mm->mmlist, &init_mm.mmlist);
1541 			spin_unlock(&mmlist_lock);
1542 		}
1543 		dec_mm_counter(mm, MM_ANONPAGES);
1544 		inc_mm_counter(mm, MM_SWAPENTS);
1545 		swp_pte = swp_entry_to_pte(entry);
1546 		if (pte_soft_dirty(pteval))
1547 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1548 		set_pte_at(mm, address, pte, swp_pte);
1549 	} else
1550 		dec_mm_counter(mm, mm_counter_file(page));
1551 
1552 discard:
1553 	page_remove_rmap(page, PageHuge(page));
1554 	page_cache_release(page);
1555 
1556 out_unmap:
1557 	pte_unmap_unlock(pte, ptl);
1558 	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1559 		mmu_notifier_invalidate_page(mm, address);
1560 out:
1561 	return ret;
1562 }
1563 
1564 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1565 {
1566 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1567 
1568 	if (!maybe_stack)
1569 		return false;
1570 
1571 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1572 						VM_STACK_INCOMPLETE_SETUP)
1573 		return true;
1574 
1575 	return false;
1576 }
1577 
1578 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1579 {
1580 	return is_vma_temporary_stack(vma);
1581 }
1582 
1583 static int page_not_mapped(struct page *page)
1584 {
1585 	return !page_mapped(page);
1586 };
1587 
1588 /**
1589  * try_to_unmap - try to remove all page table mappings to a page
1590  * @page: the page to get unmapped
1591  * @flags: action and flags
1592  *
1593  * Tries to remove all the page table entries which are mapping this
1594  * page, used in the pageout path.  Caller must hold the page lock.
1595  * Return values are:
1596  *
1597  * SWAP_SUCCESS	- we succeeded in removing all mappings
1598  * SWAP_AGAIN	- we missed a mapping, try again later
1599  * SWAP_FAIL	- the page is unswappable
1600  * SWAP_MLOCK	- page is mlocked.
1601  */
1602 int try_to_unmap(struct page *page, enum ttu_flags flags)
1603 {
1604 	int ret;
1605 	struct rmap_private rp = {
1606 		.flags = flags,
1607 		.lazyfreed = 0,
1608 	};
1609 
1610 	struct rmap_walk_control rwc = {
1611 		.rmap_one = try_to_unmap_one,
1612 		.arg = &rp,
1613 		.done = page_not_mapped,
1614 		.anon_lock = page_lock_anon_vma_read,
1615 	};
1616 
1617 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1618 
1619 	/*
1620 	 * During exec, a temporary VMA is setup and later moved.
1621 	 * The VMA is moved under the anon_vma lock but not the
1622 	 * page tables leading to a race where migration cannot
1623 	 * find the migration ptes. Rather than increasing the
1624 	 * locking requirements of exec(), migration skips
1625 	 * temporary VMAs until after exec() completes.
1626 	 */
1627 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1628 		rwc.invalid_vma = invalid_migration_vma;
1629 
1630 	ret = rmap_walk(page, &rwc);
1631 
1632 	if (ret != SWAP_MLOCK && !page_mapped(page)) {
1633 		ret = SWAP_SUCCESS;
1634 		if (rp.lazyfreed && !PageDirty(page))
1635 			ret = SWAP_LZFREE;
1636 	}
1637 	return ret;
1638 }
1639 
1640 /**
1641  * try_to_munlock - try to munlock a page
1642  * @page: the page to be munlocked
1643  *
1644  * Called from munlock code.  Checks all of the VMAs mapping the page
1645  * to make sure nobody else has this page mlocked. The page will be
1646  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1647  *
1648  * Return values are:
1649  *
1650  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1651  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1652  * SWAP_FAIL	- page cannot be located at present
1653  * SWAP_MLOCK	- page is now mlocked.
1654  */
1655 int try_to_munlock(struct page *page)
1656 {
1657 	int ret;
1658 	struct rmap_private rp = {
1659 		.flags = TTU_MUNLOCK,
1660 		.lazyfreed = 0,
1661 	};
1662 
1663 	struct rmap_walk_control rwc = {
1664 		.rmap_one = try_to_unmap_one,
1665 		.arg = &rp,
1666 		.done = page_not_mapped,
1667 		.anon_lock = page_lock_anon_vma_read,
1668 
1669 	};
1670 
1671 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1672 
1673 	ret = rmap_walk(page, &rwc);
1674 	return ret;
1675 }
1676 
1677 void __put_anon_vma(struct anon_vma *anon_vma)
1678 {
1679 	struct anon_vma *root = anon_vma->root;
1680 
1681 	anon_vma_free(anon_vma);
1682 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1683 		anon_vma_free(root);
1684 }
1685 
1686 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1687 					struct rmap_walk_control *rwc)
1688 {
1689 	struct anon_vma *anon_vma;
1690 
1691 	if (rwc->anon_lock)
1692 		return rwc->anon_lock(page);
1693 
1694 	/*
1695 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1696 	 * because that depends on page_mapped(); but not all its usages
1697 	 * are holding mmap_sem. Users without mmap_sem are required to
1698 	 * take a reference count to prevent the anon_vma disappearing
1699 	 */
1700 	anon_vma = page_anon_vma(page);
1701 	if (!anon_vma)
1702 		return NULL;
1703 
1704 	anon_vma_lock_read(anon_vma);
1705 	return anon_vma;
1706 }
1707 
1708 /*
1709  * rmap_walk_anon - do something to anonymous page using the object-based
1710  * rmap method
1711  * @page: the page to be handled
1712  * @rwc: control variable according to each walk type
1713  *
1714  * Find all the mappings of a page using the mapping pointer and the vma chains
1715  * contained in the anon_vma struct it points to.
1716  *
1717  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1718  * where the page was found will be held for write.  So, we won't recheck
1719  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1720  * LOCKED.
1721  */
1722 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1723 {
1724 	struct anon_vma *anon_vma;
1725 	pgoff_t pgoff;
1726 	struct anon_vma_chain *avc;
1727 	int ret = SWAP_AGAIN;
1728 
1729 	anon_vma = rmap_walk_anon_lock(page, rwc);
1730 	if (!anon_vma)
1731 		return ret;
1732 
1733 	pgoff = page_to_pgoff(page);
1734 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1735 		struct vm_area_struct *vma = avc->vma;
1736 		unsigned long address = vma_address(page, vma);
1737 
1738 		cond_resched();
1739 
1740 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1741 			continue;
1742 
1743 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1744 		if (ret != SWAP_AGAIN)
1745 			break;
1746 		if (rwc->done && rwc->done(page))
1747 			break;
1748 	}
1749 	anon_vma_unlock_read(anon_vma);
1750 	return ret;
1751 }
1752 
1753 /*
1754  * rmap_walk_file - do something to file page using the object-based rmap method
1755  * @page: the page to be handled
1756  * @rwc: control variable according to each walk type
1757  *
1758  * Find all the mappings of a page using the mapping pointer and the vma chains
1759  * contained in the address_space struct it points to.
1760  *
1761  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1762  * where the page was found will be held for write.  So, we won't recheck
1763  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1764  * LOCKED.
1765  */
1766 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1767 {
1768 	struct address_space *mapping = page->mapping;
1769 	pgoff_t pgoff;
1770 	struct vm_area_struct *vma;
1771 	int ret = SWAP_AGAIN;
1772 
1773 	/*
1774 	 * The page lock not only makes sure that page->mapping cannot
1775 	 * suddenly be NULLified by truncation, it makes sure that the
1776 	 * structure at mapping cannot be freed and reused yet,
1777 	 * so we can safely take mapping->i_mmap_rwsem.
1778 	 */
1779 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1780 
1781 	if (!mapping)
1782 		return ret;
1783 
1784 	pgoff = page_to_pgoff(page);
1785 	i_mmap_lock_read(mapping);
1786 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1787 		unsigned long address = vma_address(page, vma);
1788 
1789 		cond_resched();
1790 
1791 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1792 			continue;
1793 
1794 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1795 		if (ret != SWAP_AGAIN)
1796 			goto done;
1797 		if (rwc->done && rwc->done(page))
1798 			goto done;
1799 	}
1800 
1801 done:
1802 	i_mmap_unlock_read(mapping);
1803 	return ret;
1804 }
1805 
1806 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1807 {
1808 	if (unlikely(PageKsm(page)))
1809 		return rmap_walk_ksm(page, rwc);
1810 	else if (PageAnon(page))
1811 		return rmap_walk_anon(page, rwc);
1812 	else
1813 		return rmap_walk_file(page, rwc);
1814 }
1815 
1816 #ifdef CONFIG_HUGETLB_PAGE
1817 /*
1818  * The following three functions are for anonymous (private mapped) hugepages.
1819  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1820  * and no lru code, because we handle hugepages differently from common pages.
1821  */
1822 static void __hugepage_set_anon_rmap(struct page *page,
1823 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1824 {
1825 	struct anon_vma *anon_vma = vma->anon_vma;
1826 
1827 	BUG_ON(!anon_vma);
1828 
1829 	if (PageAnon(page))
1830 		return;
1831 	if (!exclusive)
1832 		anon_vma = anon_vma->root;
1833 
1834 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1835 	page->mapping = (struct address_space *) anon_vma;
1836 	page->index = linear_page_index(vma, address);
1837 }
1838 
1839 void hugepage_add_anon_rmap(struct page *page,
1840 			    struct vm_area_struct *vma, unsigned long address)
1841 {
1842 	struct anon_vma *anon_vma = vma->anon_vma;
1843 	int first;
1844 
1845 	BUG_ON(!PageLocked(page));
1846 	BUG_ON(!anon_vma);
1847 	/* address might be in next vma when migration races vma_adjust */
1848 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1849 	if (first)
1850 		__hugepage_set_anon_rmap(page, vma, address, 0);
1851 }
1852 
1853 void hugepage_add_new_anon_rmap(struct page *page,
1854 			struct vm_area_struct *vma, unsigned long address)
1855 {
1856 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1857 	atomic_set(compound_mapcount_ptr(page), 0);
1858 	__hugepage_set_anon_rmap(page, vma, address, 1);
1859 }
1860 #endif /* CONFIG_HUGETLB_PAGE */
1861