1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma_read() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 97 * 98 * page_lock_anon_vma_read() VS put_anon_vma() 99 * down_read_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() rwsem_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 107 anon_vma_lock_write(anon_vma); 108 anon_vma_unlock_write(anon_vma); 109 } 110 111 kmem_cache_free(anon_vma_cachep, anon_vma); 112 } 113 114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 115 { 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 117 } 118 119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 120 { 121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 122 } 123 124 static void anon_vma_chain_link(struct vm_area_struct *vma, 125 struct anon_vma_chain *avc, 126 struct anon_vma *anon_vma) 127 { 128 avc->vma = vma; 129 avc->anon_vma = anon_vma; 130 list_add(&avc->same_vma, &vma->anon_vma_chain); 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 132 } 133 134 /** 135 * anon_vma_prepare - attach an anon_vma to a memory region 136 * @vma: the memory region in question 137 * 138 * This makes sure the memory mapping described by 'vma' has 139 * an 'anon_vma' attached to it, so that we can associate the 140 * anonymous pages mapped into it with that anon_vma. 141 * 142 * The common case will be that we already have one, but if 143 * not we either need to find an adjacent mapping that we 144 * can re-use the anon_vma from (very common when the only 145 * reason for splitting a vma has been mprotect()), or we 146 * allocate a new one. 147 * 148 * Anon-vma allocations are very subtle, because we may have 149 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 150 * and that may actually touch the spinlock even in the newly 151 * allocated vma (it depends on RCU to make sure that the 152 * anon_vma isn't actually destroyed). 153 * 154 * As a result, we need to do proper anon_vma locking even 155 * for the new allocation. At the same time, we do not want 156 * to do any locking for the common case of already having 157 * an anon_vma. 158 * 159 * This must be called with the mmap_sem held for reading. 160 */ 161 int anon_vma_prepare(struct vm_area_struct *vma) 162 { 163 struct anon_vma *anon_vma = vma->anon_vma; 164 struct anon_vma_chain *avc; 165 166 might_sleep(); 167 if (unlikely(!anon_vma)) { 168 struct mm_struct *mm = vma->vm_mm; 169 struct anon_vma *allocated; 170 171 avc = anon_vma_chain_alloc(GFP_KERNEL); 172 if (!avc) 173 goto out_enomem; 174 175 anon_vma = find_mergeable_anon_vma(vma); 176 allocated = NULL; 177 if (!anon_vma) { 178 anon_vma = anon_vma_alloc(); 179 if (unlikely(!anon_vma)) 180 goto out_enomem_free_avc; 181 allocated = anon_vma; 182 } 183 184 anon_vma_lock_write(anon_vma); 185 /* page_table_lock to protect against threads */ 186 spin_lock(&mm->page_table_lock); 187 if (likely(!vma->anon_vma)) { 188 vma->anon_vma = anon_vma; 189 anon_vma_chain_link(vma, avc, anon_vma); 190 allocated = NULL; 191 avc = NULL; 192 } 193 spin_unlock(&mm->page_table_lock); 194 anon_vma_unlock_write(anon_vma); 195 196 if (unlikely(allocated)) 197 put_anon_vma(allocated); 198 if (unlikely(avc)) 199 anon_vma_chain_free(avc); 200 } 201 return 0; 202 203 out_enomem_free_avc: 204 anon_vma_chain_free(avc); 205 out_enomem: 206 return -ENOMEM; 207 } 208 209 /* 210 * This is a useful helper function for locking the anon_vma root as 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 212 * have the same vma. 213 * 214 * Such anon_vma's should have the same root, so you'd expect to see 215 * just a single mutex_lock for the whole traversal. 216 */ 217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 218 { 219 struct anon_vma *new_root = anon_vma->root; 220 if (new_root != root) { 221 if (WARN_ON_ONCE(root)) 222 up_write(&root->rwsem); 223 root = new_root; 224 down_write(&root->rwsem); 225 } 226 return root; 227 } 228 229 static inline void unlock_anon_vma_root(struct anon_vma *root) 230 { 231 if (root) 232 up_write(&root->rwsem); 233 } 234 235 /* 236 * Attach the anon_vmas from src to dst. 237 * Returns 0 on success, -ENOMEM on failure. 238 */ 239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 240 { 241 struct anon_vma_chain *avc, *pavc; 242 struct anon_vma *root = NULL; 243 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 245 struct anon_vma *anon_vma; 246 247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 248 if (unlikely(!avc)) { 249 unlock_anon_vma_root(root); 250 root = NULL; 251 avc = anon_vma_chain_alloc(GFP_KERNEL); 252 if (!avc) 253 goto enomem_failure; 254 } 255 anon_vma = pavc->anon_vma; 256 root = lock_anon_vma_root(root, anon_vma); 257 anon_vma_chain_link(dst, avc, anon_vma); 258 } 259 unlock_anon_vma_root(root); 260 return 0; 261 262 enomem_failure: 263 unlink_anon_vmas(dst); 264 return -ENOMEM; 265 } 266 267 /* 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that 269 * the corresponding VMA in the parent process is attached to. 270 * Returns 0 on success, non-zero on failure. 271 */ 272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 273 { 274 struct anon_vma_chain *avc; 275 struct anon_vma *anon_vma; 276 277 /* Don't bother if the parent process has no anon_vma here. */ 278 if (!pvma->anon_vma) 279 return 0; 280 281 /* 282 * First, attach the new VMA to the parent VMA's anon_vmas, 283 * so rmap can find non-COWed pages in child processes. 284 */ 285 if (anon_vma_clone(vma, pvma)) 286 return -ENOMEM; 287 288 /* Then add our own anon_vma. */ 289 anon_vma = anon_vma_alloc(); 290 if (!anon_vma) 291 goto out_error; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto out_error_free_anon_vma; 295 296 /* 297 * The root anon_vma's spinlock is the lock actually used when we 298 * lock any of the anon_vmas in this anon_vma tree. 299 */ 300 anon_vma->root = pvma->anon_vma->root; 301 /* 302 * With refcounts, an anon_vma can stay around longer than the 303 * process it belongs to. The root anon_vma needs to be pinned until 304 * this anon_vma is freed, because the lock lives in the root. 305 */ 306 get_anon_vma(anon_vma->root); 307 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 308 vma->anon_vma = anon_vma; 309 anon_vma_lock_write(anon_vma); 310 anon_vma_chain_link(vma, avc, anon_vma); 311 anon_vma_unlock_write(anon_vma); 312 313 return 0; 314 315 out_error_free_anon_vma: 316 put_anon_vma(anon_vma); 317 out_error: 318 unlink_anon_vmas(vma); 319 return -ENOMEM; 320 } 321 322 void unlink_anon_vmas(struct vm_area_struct *vma) 323 { 324 struct anon_vma_chain *avc, *next; 325 struct anon_vma *root = NULL; 326 327 /* 328 * Unlink each anon_vma chained to the VMA. This list is ordered 329 * from newest to oldest, ensuring the root anon_vma gets freed last. 330 */ 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 332 struct anon_vma *anon_vma = avc->anon_vma; 333 334 root = lock_anon_vma_root(root, anon_vma); 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 336 337 /* 338 * Leave empty anon_vmas on the list - we'll need 339 * to free them outside the lock. 340 */ 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 342 continue; 343 344 list_del(&avc->same_vma); 345 anon_vma_chain_free(avc); 346 } 347 unlock_anon_vma_root(root); 348 349 /* 350 * Iterate the list once more, it now only contains empty and unlinked 351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 352 * needing to write-acquire the anon_vma->root->rwsem. 353 */ 354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 355 struct anon_vma *anon_vma = avc->anon_vma; 356 357 put_anon_vma(anon_vma); 358 359 list_del(&avc->same_vma); 360 anon_vma_chain_free(avc); 361 } 362 } 363 364 static void anon_vma_ctor(void *data) 365 { 366 struct anon_vma *anon_vma = data; 367 368 init_rwsem(&anon_vma->rwsem); 369 atomic_set(&anon_vma->refcount, 0); 370 anon_vma->rb_root = RB_ROOT; 371 } 372 373 void __init anon_vma_init(void) 374 { 375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 378 } 379 380 /* 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 382 * 383 * Since there is no serialization what so ever against page_remove_rmap() 384 * the best this function can do is return a locked anon_vma that might 385 * have been relevant to this page. 386 * 387 * The page might have been remapped to a different anon_vma or the anon_vma 388 * returned may already be freed (and even reused). 389 * 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 392 * ensure that any anon_vma obtained from the page will still be valid for as 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 394 * 395 * All users of this function must be very careful when walking the anon_vma 396 * chain and verify that the page in question is indeed mapped in it 397 * [ something equivalent to page_mapped_in_vma() ]. 398 * 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 400 * that the anon_vma pointer from page->mapping is valid if there is a 401 * mapcount, we can dereference the anon_vma after observing those. 402 */ 403 struct anon_vma *page_get_anon_vma(struct page *page) 404 { 405 struct anon_vma *anon_vma = NULL; 406 unsigned long anon_mapping; 407 408 rcu_read_lock(); 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 411 goto out; 412 if (!page_mapped(page)) 413 goto out; 414 415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 416 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 417 anon_vma = NULL; 418 goto out; 419 } 420 421 /* 422 * If this page is still mapped, then its anon_vma cannot have been 423 * freed. But if it has been unmapped, we have no security against the 424 * anon_vma structure being freed and reused (for another anon_vma: 425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 426 * above cannot corrupt). 427 */ 428 if (!page_mapped(page)) { 429 put_anon_vma(anon_vma); 430 anon_vma = NULL; 431 } 432 out: 433 rcu_read_unlock(); 434 435 return anon_vma; 436 } 437 438 /* 439 * Similar to page_get_anon_vma() except it locks the anon_vma. 440 * 441 * Its a little more complex as it tries to keep the fast path to a single 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 443 * reference like with page_get_anon_vma() and then block on the mutex. 444 */ 445 struct anon_vma *page_lock_anon_vma_read(struct page *page) 446 { 447 struct anon_vma *anon_vma = NULL; 448 struct anon_vma *root_anon_vma; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 root_anon_vma = ACCESS_ONCE(anon_vma->root); 460 if (down_read_trylock(&root_anon_vma->rwsem)) { 461 /* 462 * If the page is still mapped, then this anon_vma is still 463 * its anon_vma, and holding the mutex ensures that it will 464 * not go away, see anon_vma_free(). 465 */ 466 if (!page_mapped(page)) { 467 up_read(&root_anon_vma->rwsem); 468 anon_vma = NULL; 469 } 470 goto out; 471 } 472 473 /* trylock failed, we got to sleep */ 474 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 475 anon_vma = NULL; 476 goto out; 477 } 478 479 if (!page_mapped(page)) { 480 put_anon_vma(anon_vma); 481 anon_vma = NULL; 482 goto out; 483 } 484 485 /* we pinned the anon_vma, its safe to sleep */ 486 rcu_read_unlock(); 487 anon_vma_lock_read(anon_vma); 488 489 if (atomic_dec_and_test(&anon_vma->refcount)) { 490 /* 491 * Oops, we held the last refcount, release the lock 492 * and bail -- can't simply use put_anon_vma() because 493 * we'll deadlock on the anon_vma_lock_write() recursion. 494 */ 495 anon_vma_unlock_read(anon_vma); 496 __put_anon_vma(anon_vma); 497 anon_vma = NULL; 498 } 499 500 return anon_vma; 501 502 out: 503 rcu_read_unlock(); 504 return anon_vma; 505 } 506 507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 508 { 509 anon_vma_unlock_read(anon_vma); 510 } 511 512 /* 513 * At what user virtual address is page expected in @vma? 514 */ 515 static inline unsigned long 516 __vma_address(struct page *page, struct vm_area_struct *vma) 517 { 518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 519 520 if (unlikely(is_vm_hugetlb_page(vma))) 521 pgoff = page->index << huge_page_order(page_hstate(page)); 522 523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 524 } 525 526 inline unsigned long 527 vma_address(struct page *page, struct vm_area_struct *vma) 528 { 529 unsigned long address = __vma_address(page, vma); 530 531 /* page should be within @vma mapping range */ 532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 533 534 return address; 535 } 536 537 /* 538 * At what user virtual address is page expected in vma? 539 * Caller should check the page is actually part of the vma. 540 */ 541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 542 { 543 unsigned long address; 544 if (PageAnon(page)) { 545 struct anon_vma *page__anon_vma = page_anon_vma(page); 546 /* 547 * Note: swapoff's unuse_vma() is more efficient with this 548 * check, and needs it to match anon_vma when KSM is active. 549 */ 550 if (!vma->anon_vma || !page__anon_vma || 551 vma->anon_vma->root != page__anon_vma->root) 552 return -EFAULT; 553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 554 if (!vma->vm_file || 555 vma->vm_file->f_mapping != page->mapping) 556 return -EFAULT; 557 } else 558 return -EFAULT; 559 address = __vma_address(page, vma); 560 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 561 return -EFAULT; 562 return address; 563 } 564 565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 566 { 567 pgd_t *pgd; 568 pud_t *pud; 569 pmd_t *pmd = NULL; 570 571 pgd = pgd_offset(mm, address); 572 if (!pgd_present(*pgd)) 573 goto out; 574 575 pud = pud_offset(pgd, address); 576 if (!pud_present(*pud)) 577 goto out; 578 579 pmd = pmd_offset(pud, address); 580 if (!pmd_present(*pmd)) 581 pmd = NULL; 582 out: 583 return pmd; 584 } 585 586 /* 587 * Check that @page is mapped at @address into @mm. 588 * 589 * If @sync is false, page_check_address may perform a racy check to avoid 590 * the page table lock when the pte is not present (helpful when reclaiming 591 * highly shared pages). 592 * 593 * On success returns with pte mapped and locked. 594 */ 595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 596 unsigned long address, spinlock_t **ptlp, int sync) 597 { 598 pmd_t *pmd; 599 pte_t *pte; 600 spinlock_t *ptl; 601 602 if (unlikely(PageHuge(page))) { 603 /* when pud is not present, pte will be NULL */ 604 pte = huge_pte_offset(mm, address); 605 if (!pte) 606 return NULL; 607 608 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 609 goto check; 610 } 611 612 pmd = mm_find_pmd(mm, address); 613 if (!pmd) 614 return NULL; 615 616 if (pmd_trans_huge(*pmd)) 617 return NULL; 618 619 pte = pte_offset_map(pmd, address); 620 /* Make a quick check before getting the lock */ 621 if (!sync && !pte_present(*pte)) { 622 pte_unmap(pte); 623 return NULL; 624 } 625 626 ptl = pte_lockptr(mm, pmd); 627 check: 628 spin_lock(ptl); 629 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 630 *ptlp = ptl; 631 return pte; 632 } 633 pte_unmap_unlock(pte, ptl); 634 return NULL; 635 } 636 637 /** 638 * page_mapped_in_vma - check whether a page is really mapped in a VMA 639 * @page: the page to test 640 * @vma: the VMA to test 641 * 642 * Returns 1 if the page is mapped into the page tables of the VMA, 0 643 * if the page is not mapped into the page tables of this VMA. Only 644 * valid for normal file or anonymous VMAs. 645 */ 646 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 647 { 648 unsigned long address; 649 pte_t *pte; 650 spinlock_t *ptl; 651 652 address = __vma_address(page, vma); 653 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 654 return 0; 655 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 656 if (!pte) /* the page is not in this mm */ 657 return 0; 658 pte_unmap_unlock(pte, ptl); 659 660 return 1; 661 } 662 663 struct page_referenced_arg { 664 int mapcount; 665 int referenced; 666 unsigned long vm_flags; 667 struct mem_cgroup *memcg; 668 }; 669 /* 670 * arg: page_referenced_arg will be passed 671 */ 672 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 673 unsigned long address, void *arg) 674 { 675 struct mm_struct *mm = vma->vm_mm; 676 spinlock_t *ptl; 677 int referenced = 0; 678 struct page_referenced_arg *pra = arg; 679 680 if (unlikely(PageTransHuge(page))) { 681 pmd_t *pmd; 682 683 /* 684 * rmap might return false positives; we must filter 685 * these out using page_check_address_pmd(). 686 */ 687 pmd = page_check_address_pmd(page, mm, address, 688 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 689 if (!pmd) 690 return SWAP_AGAIN; 691 692 if (vma->vm_flags & VM_LOCKED) { 693 spin_unlock(ptl); 694 pra->vm_flags |= VM_LOCKED; 695 return SWAP_FAIL; /* To break the loop */ 696 } 697 698 /* go ahead even if the pmd is pmd_trans_splitting() */ 699 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 700 referenced++; 701 spin_unlock(ptl); 702 } else { 703 pte_t *pte; 704 705 /* 706 * rmap might return false positives; we must filter 707 * these out using page_check_address(). 708 */ 709 pte = page_check_address(page, mm, address, &ptl, 0); 710 if (!pte) 711 return SWAP_AGAIN; 712 713 if (vma->vm_flags & VM_LOCKED) { 714 pte_unmap_unlock(pte, ptl); 715 pra->vm_flags |= VM_LOCKED; 716 return SWAP_FAIL; /* To break the loop */ 717 } 718 719 if (ptep_clear_flush_young_notify(vma, address, pte)) { 720 /* 721 * Don't treat a reference through a sequentially read 722 * mapping as such. If the page has been used in 723 * another mapping, we will catch it; if this other 724 * mapping is already gone, the unmap path will have 725 * set PG_referenced or activated the page. 726 */ 727 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 728 referenced++; 729 } 730 pte_unmap_unlock(pte, ptl); 731 } 732 733 if (referenced) { 734 pra->referenced++; 735 pra->vm_flags |= vma->vm_flags; 736 } 737 738 pra->mapcount--; 739 if (!pra->mapcount) 740 return SWAP_SUCCESS; /* To break the loop */ 741 742 return SWAP_AGAIN; 743 } 744 745 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 746 { 747 struct page_referenced_arg *pra = arg; 748 struct mem_cgroup *memcg = pra->memcg; 749 750 if (!mm_match_cgroup(vma->vm_mm, memcg)) 751 return true; 752 753 return false; 754 } 755 756 /** 757 * page_referenced - test if the page was referenced 758 * @page: the page to test 759 * @is_locked: caller holds lock on the page 760 * @memcg: target memory cgroup 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 762 * 763 * Quick test_and_clear_referenced for all mappings to a page, 764 * returns the number of ptes which referenced the page. 765 */ 766 int page_referenced(struct page *page, 767 int is_locked, 768 struct mem_cgroup *memcg, 769 unsigned long *vm_flags) 770 { 771 int ret; 772 int we_locked = 0; 773 struct page_referenced_arg pra = { 774 .mapcount = page_mapcount(page), 775 .memcg = memcg, 776 }; 777 struct rmap_walk_control rwc = { 778 .rmap_one = page_referenced_one, 779 .arg = (void *)&pra, 780 .anon_lock = page_lock_anon_vma_read, 781 }; 782 783 *vm_flags = 0; 784 if (!page_mapped(page)) 785 return 0; 786 787 if (!page_rmapping(page)) 788 return 0; 789 790 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 791 we_locked = trylock_page(page); 792 if (!we_locked) 793 return 1; 794 } 795 796 /* 797 * If we are reclaiming on behalf of a cgroup, skip 798 * counting on behalf of references from different 799 * cgroups 800 */ 801 if (memcg) { 802 rwc.invalid_vma = invalid_page_referenced_vma; 803 } 804 805 ret = rmap_walk(page, &rwc); 806 *vm_flags = pra.vm_flags; 807 808 if (we_locked) 809 unlock_page(page); 810 811 return pra.referenced; 812 } 813 814 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 815 unsigned long address, void *arg) 816 { 817 struct mm_struct *mm = vma->vm_mm; 818 pte_t *pte; 819 spinlock_t *ptl; 820 int ret = 0; 821 int *cleaned = arg; 822 823 pte = page_check_address(page, mm, address, &ptl, 1); 824 if (!pte) 825 goto out; 826 827 if (pte_dirty(*pte) || pte_write(*pte)) { 828 pte_t entry; 829 830 flush_cache_page(vma, address, pte_pfn(*pte)); 831 entry = ptep_clear_flush(vma, address, pte); 832 entry = pte_wrprotect(entry); 833 entry = pte_mkclean(entry); 834 set_pte_at(mm, address, pte, entry); 835 ret = 1; 836 } 837 838 pte_unmap_unlock(pte, ptl); 839 840 if (ret) { 841 mmu_notifier_invalidate_page(mm, address); 842 (*cleaned)++; 843 } 844 out: 845 return SWAP_AGAIN; 846 } 847 848 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 849 { 850 if (vma->vm_flags & VM_SHARED) 851 return false; 852 853 return true; 854 } 855 856 int page_mkclean(struct page *page) 857 { 858 int cleaned = 0; 859 struct address_space *mapping; 860 struct rmap_walk_control rwc = { 861 .arg = (void *)&cleaned, 862 .rmap_one = page_mkclean_one, 863 .invalid_vma = invalid_mkclean_vma, 864 }; 865 866 BUG_ON(!PageLocked(page)); 867 868 if (!page_mapped(page)) 869 return 0; 870 871 mapping = page_mapping(page); 872 if (!mapping) 873 return 0; 874 875 rmap_walk(page, &rwc); 876 877 return cleaned; 878 } 879 EXPORT_SYMBOL_GPL(page_mkclean); 880 881 /** 882 * page_move_anon_rmap - move a page to our anon_vma 883 * @page: the page to move to our anon_vma 884 * @vma: the vma the page belongs to 885 * @address: the user virtual address mapped 886 * 887 * When a page belongs exclusively to one process after a COW event, 888 * that page can be moved into the anon_vma that belongs to just that 889 * process, so the rmap code will not search the parent or sibling 890 * processes. 891 */ 892 void page_move_anon_rmap(struct page *page, 893 struct vm_area_struct *vma, unsigned long address) 894 { 895 struct anon_vma *anon_vma = vma->anon_vma; 896 897 VM_BUG_ON_PAGE(!PageLocked(page), page); 898 VM_BUG_ON(!anon_vma); 899 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 900 901 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 902 page->mapping = (struct address_space *) anon_vma; 903 } 904 905 /** 906 * __page_set_anon_rmap - set up new anonymous rmap 907 * @page: Page to add to rmap 908 * @vma: VM area to add page to. 909 * @address: User virtual address of the mapping 910 * @exclusive: the page is exclusively owned by the current process 911 */ 912 static void __page_set_anon_rmap(struct page *page, 913 struct vm_area_struct *vma, unsigned long address, int exclusive) 914 { 915 struct anon_vma *anon_vma = vma->anon_vma; 916 917 BUG_ON(!anon_vma); 918 919 if (PageAnon(page)) 920 return; 921 922 /* 923 * If the page isn't exclusively mapped into this vma, 924 * we must use the _oldest_ possible anon_vma for the 925 * page mapping! 926 */ 927 if (!exclusive) 928 anon_vma = anon_vma->root; 929 930 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 931 page->mapping = (struct address_space *) anon_vma; 932 page->index = linear_page_index(vma, address); 933 } 934 935 /** 936 * __page_check_anon_rmap - sanity check anonymous rmap addition 937 * @page: the page to add the mapping to 938 * @vma: the vm area in which the mapping is added 939 * @address: the user virtual address mapped 940 */ 941 static void __page_check_anon_rmap(struct page *page, 942 struct vm_area_struct *vma, unsigned long address) 943 { 944 #ifdef CONFIG_DEBUG_VM 945 /* 946 * The page's anon-rmap details (mapping and index) are guaranteed to 947 * be set up correctly at this point. 948 * 949 * We have exclusion against page_add_anon_rmap because the caller 950 * always holds the page locked, except if called from page_dup_rmap, 951 * in which case the page is already known to be setup. 952 * 953 * We have exclusion against page_add_new_anon_rmap because those pages 954 * are initially only visible via the pagetables, and the pte is locked 955 * over the call to page_add_new_anon_rmap. 956 */ 957 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 958 BUG_ON(page->index != linear_page_index(vma, address)); 959 #endif 960 } 961 962 /** 963 * page_add_anon_rmap - add pte mapping to an anonymous page 964 * @page: the page to add the mapping to 965 * @vma: the vm area in which the mapping is added 966 * @address: the user virtual address mapped 967 * 968 * The caller needs to hold the pte lock, and the page must be locked in 969 * the anon_vma case: to serialize mapping,index checking after setting, 970 * and to ensure that PageAnon is not being upgraded racily to PageKsm 971 * (but PageKsm is never downgraded to PageAnon). 972 */ 973 void page_add_anon_rmap(struct page *page, 974 struct vm_area_struct *vma, unsigned long address) 975 { 976 do_page_add_anon_rmap(page, vma, address, 0); 977 } 978 979 /* 980 * Special version of the above for do_swap_page, which often runs 981 * into pages that are exclusively owned by the current process. 982 * Everybody else should continue to use page_add_anon_rmap above. 983 */ 984 void do_page_add_anon_rmap(struct page *page, 985 struct vm_area_struct *vma, unsigned long address, int exclusive) 986 { 987 int first = atomic_inc_and_test(&page->_mapcount); 988 if (first) { 989 if (PageTransHuge(page)) 990 __inc_zone_page_state(page, 991 NR_ANON_TRANSPARENT_HUGEPAGES); 992 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 993 hpage_nr_pages(page)); 994 } 995 if (unlikely(PageKsm(page))) 996 return; 997 998 VM_BUG_ON_PAGE(!PageLocked(page), page); 999 /* address might be in next vma when migration races vma_adjust */ 1000 if (first) 1001 __page_set_anon_rmap(page, vma, address, exclusive); 1002 else 1003 __page_check_anon_rmap(page, vma, address); 1004 } 1005 1006 /** 1007 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1008 * @page: the page to add the mapping to 1009 * @vma: the vm area in which the mapping is added 1010 * @address: the user virtual address mapped 1011 * 1012 * Same as page_add_anon_rmap but must only be called on *new* pages. 1013 * This means the inc-and-test can be bypassed. 1014 * Page does not have to be locked. 1015 */ 1016 void page_add_new_anon_rmap(struct page *page, 1017 struct vm_area_struct *vma, unsigned long address) 1018 { 1019 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1020 SetPageSwapBacked(page); 1021 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1022 if (PageTransHuge(page)) 1023 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1024 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1025 hpage_nr_pages(page)); 1026 __page_set_anon_rmap(page, vma, address, 1); 1027 if (!mlocked_vma_newpage(vma, page)) { 1028 SetPageActive(page); 1029 lru_cache_add(page); 1030 } else 1031 add_page_to_unevictable_list(page); 1032 } 1033 1034 /** 1035 * page_add_file_rmap - add pte mapping to a file page 1036 * @page: the page to add the mapping to 1037 * 1038 * The caller needs to hold the pte lock. 1039 */ 1040 void page_add_file_rmap(struct page *page) 1041 { 1042 bool locked; 1043 unsigned long flags; 1044 1045 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1046 if (atomic_inc_and_test(&page->_mapcount)) { 1047 __inc_zone_page_state(page, NR_FILE_MAPPED); 1048 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1049 } 1050 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1051 } 1052 1053 /** 1054 * page_remove_rmap - take down pte mapping from a page 1055 * @page: page to remove mapping from 1056 * 1057 * The caller needs to hold the pte lock. 1058 */ 1059 void page_remove_rmap(struct page *page) 1060 { 1061 bool anon = PageAnon(page); 1062 bool locked; 1063 unsigned long flags; 1064 1065 /* 1066 * The anon case has no mem_cgroup page_stat to update; but may 1067 * uncharge_page() below, where the lock ordering can deadlock if 1068 * we hold the lock against page_stat move: so avoid it on anon. 1069 */ 1070 if (!anon) 1071 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1072 1073 /* page still mapped by someone else? */ 1074 if (!atomic_add_negative(-1, &page->_mapcount)) 1075 goto out; 1076 1077 /* 1078 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1079 * and not charged by memcg for now. 1080 */ 1081 if (unlikely(PageHuge(page))) 1082 goto out; 1083 if (anon) { 1084 mem_cgroup_uncharge_page(page); 1085 if (PageTransHuge(page)) 1086 __dec_zone_page_state(page, 1087 NR_ANON_TRANSPARENT_HUGEPAGES); 1088 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1089 -hpage_nr_pages(page)); 1090 } else { 1091 __dec_zone_page_state(page, NR_FILE_MAPPED); 1092 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); 1093 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1094 } 1095 if (unlikely(PageMlocked(page))) 1096 clear_page_mlock(page); 1097 /* 1098 * It would be tidy to reset the PageAnon mapping here, 1099 * but that might overwrite a racing page_add_anon_rmap 1100 * which increments mapcount after us but sets mapping 1101 * before us: so leave the reset to free_hot_cold_page, 1102 * and remember that it's only reliable while mapped. 1103 * Leaving it set also helps swapoff to reinstate ptes 1104 * faster for those pages still in swapcache. 1105 */ 1106 return; 1107 out: 1108 if (!anon) 1109 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1110 } 1111 1112 /* 1113 * @arg: enum ttu_flags will be passed to this argument 1114 */ 1115 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1116 unsigned long address, void *arg) 1117 { 1118 struct mm_struct *mm = vma->vm_mm; 1119 pte_t *pte; 1120 pte_t pteval; 1121 spinlock_t *ptl; 1122 int ret = SWAP_AGAIN; 1123 enum ttu_flags flags = (enum ttu_flags)arg; 1124 1125 pte = page_check_address(page, mm, address, &ptl, 0); 1126 if (!pte) 1127 goto out; 1128 1129 /* 1130 * If the page is mlock()d, we cannot swap it out. 1131 * If it's recently referenced (perhaps page_referenced 1132 * skipped over this mm) then we should reactivate it. 1133 */ 1134 if (!(flags & TTU_IGNORE_MLOCK)) { 1135 if (vma->vm_flags & VM_LOCKED) 1136 goto out_mlock; 1137 1138 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1139 goto out_unmap; 1140 } 1141 if (!(flags & TTU_IGNORE_ACCESS)) { 1142 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1143 ret = SWAP_FAIL; 1144 goto out_unmap; 1145 } 1146 } 1147 1148 /* Nuke the page table entry. */ 1149 flush_cache_page(vma, address, page_to_pfn(page)); 1150 pteval = ptep_clear_flush(vma, address, pte); 1151 1152 /* Move the dirty bit to the physical page now the pte is gone. */ 1153 if (pte_dirty(pteval)) 1154 set_page_dirty(page); 1155 1156 /* Update high watermark before we lower rss */ 1157 update_hiwater_rss(mm); 1158 1159 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1160 if (!PageHuge(page)) { 1161 if (PageAnon(page)) 1162 dec_mm_counter(mm, MM_ANONPAGES); 1163 else 1164 dec_mm_counter(mm, MM_FILEPAGES); 1165 } 1166 set_pte_at(mm, address, pte, 1167 swp_entry_to_pte(make_hwpoison_entry(page))); 1168 } else if (PageAnon(page)) { 1169 swp_entry_t entry = { .val = page_private(page) }; 1170 pte_t swp_pte; 1171 1172 if (PageSwapCache(page)) { 1173 /* 1174 * Store the swap location in the pte. 1175 * See handle_pte_fault() ... 1176 */ 1177 if (swap_duplicate(entry) < 0) { 1178 set_pte_at(mm, address, pte, pteval); 1179 ret = SWAP_FAIL; 1180 goto out_unmap; 1181 } 1182 if (list_empty(&mm->mmlist)) { 1183 spin_lock(&mmlist_lock); 1184 if (list_empty(&mm->mmlist)) 1185 list_add(&mm->mmlist, &init_mm.mmlist); 1186 spin_unlock(&mmlist_lock); 1187 } 1188 dec_mm_counter(mm, MM_ANONPAGES); 1189 inc_mm_counter(mm, MM_SWAPENTS); 1190 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1191 /* 1192 * Store the pfn of the page in a special migration 1193 * pte. do_swap_page() will wait until the migration 1194 * pte is removed and then restart fault handling. 1195 */ 1196 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1197 entry = make_migration_entry(page, pte_write(pteval)); 1198 } 1199 swp_pte = swp_entry_to_pte(entry); 1200 if (pte_soft_dirty(pteval)) 1201 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1202 set_pte_at(mm, address, pte, swp_pte); 1203 BUG_ON(pte_file(*pte)); 1204 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1205 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1206 /* Establish migration entry for a file page */ 1207 swp_entry_t entry; 1208 entry = make_migration_entry(page, pte_write(pteval)); 1209 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1210 } else 1211 dec_mm_counter(mm, MM_FILEPAGES); 1212 1213 page_remove_rmap(page); 1214 page_cache_release(page); 1215 1216 out_unmap: 1217 pte_unmap_unlock(pte, ptl); 1218 if (ret != SWAP_FAIL) 1219 mmu_notifier_invalidate_page(mm, address); 1220 out: 1221 return ret; 1222 1223 out_mlock: 1224 pte_unmap_unlock(pte, ptl); 1225 1226 1227 /* 1228 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1229 * unstable result and race. Plus, We can't wait here because 1230 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. 1231 * if trylock failed, the page remain in evictable lru and later 1232 * vmscan could retry to move the page to unevictable lru if the 1233 * page is actually mlocked. 1234 */ 1235 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1236 if (vma->vm_flags & VM_LOCKED) { 1237 mlock_vma_page(page); 1238 ret = SWAP_MLOCK; 1239 } 1240 up_read(&vma->vm_mm->mmap_sem); 1241 } 1242 return ret; 1243 } 1244 1245 /* 1246 * objrmap doesn't work for nonlinear VMAs because the assumption that 1247 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1248 * Consequently, given a particular page and its ->index, we cannot locate the 1249 * ptes which are mapping that page without an exhaustive linear search. 1250 * 1251 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1252 * maps the file to which the target page belongs. The ->vm_private_data field 1253 * holds the current cursor into that scan. Successive searches will circulate 1254 * around the vma's virtual address space. 1255 * 1256 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1257 * more scanning pressure is placed against them as well. Eventually pages 1258 * will become fully unmapped and are eligible for eviction. 1259 * 1260 * For very sparsely populated VMAs this is a little inefficient - chances are 1261 * there there won't be many ptes located within the scan cluster. In this case 1262 * maybe we could scan further - to the end of the pte page, perhaps. 1263 * 1264 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1265 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1266 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1267 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1268 */ 1269 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1270 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1271 1272 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1273 struct vm_area_struct *vma, struct page *check_page) 1274 { 1275 struct mm_struct *mm = vma->vm_mm; 1276 pmd_t *pmd; 1277 pte_t *pte; 1278 pte_t pteval; 1279 spinlock_t *ptl; 1280 struct page *page; 1281 unsigned long address; 1282 unsigned long mmun_start; /* For mmu_notifiers */ 1283 unsigned long mmun_end; /* For mmu_notifiers */ 1284 unsigned long end; 1285 int ret = SWAP_AGAIN; 1286 int locked_vma = 0; 1287 1288 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1289 end = address + CLUSTER_SIZE; 1290 if (address < vma->vm_start) 1291 address = vma->vm_start; 1292 if (end > vma->vm_end) 1293 end = vma->vm_end; 1294 1295 pmd = mm_find_pmd(mm, address); 1296 if (!pmd) 1297 return ret; 1298 1299 mmun_start = address; 1300 mmun_end = end; 1301 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1302 1303 /* 1304 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1305 * keep the sem while scanning the cluster for mlocking pages. 1306 */ 1307 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1308 locked_vma = (vma->vm_flags & VM_LOCKED); 1309 if (!locked_vma) 1310 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1311 } 1312 1313 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1314 1315 /* Update high watermark before we lower rss */ 1316 update_hiwater_rss(mm); 1317 1318 for (; address < end; pte++, address += PAGE_SIZE) { 1319 if (!pte_present(*pte)) 1320 continue; 1321 page = vm_normal_page(vma, address, *pte); 1322 BUG_ON(!page || PageAnon(page)); 1323 1324 if (locked_vma) { 1325 mlock_vma_page(page); /* no-op if already mlocked */ 1326 if (page == check_page) 1327 ret = SWAP_MLOCK; 1328 continue; /* don't unmap */ 1329 } 1330 1331 if (ptep_clear_flush_young_notify(vma, address, pte)) 1332 continue; 1333 1334 /* Nuke the page table entry. */ 1335 flush_cache_page(vma, address, pte_pfn(*pte)); 1336 pteval = ptep_clear_flush(vma, address, pte); 1337 1338 /* If nonlinear, store the file page offset in the pte. */ 1339 if (page->index != linear_page_index(vma, address)) { 1340 pte_t ptfile = pgoff_to_pte(page->index); 1341 if (pte_soft_dirty(pteval)) 1342 pte_file_mksoft_dirty(ptfile); 1343 set_pte_at(mm, address, pte, ptfile); 1344 } 1345 1346 /* Move the dirty bit to the physical page now the pte is gone. */ 1347 if (pte_dirty(pteval)) 1348 set_page_dirty(page); 1349 1350 page_remove_rmap(page); 1351 page_cache_release(page); 1352 dec_mm_counter(mm, MM_FILEPAGES); 1353 (*mapcount)--; 1354 } 1355 pte_unmap_unlock(pte - 1, ptl); 1356 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1357 if (locked_vma) 1358 up_read(&vma->vm_mm->mmap_sem); 1359 return ret; 1360 } 1361 1362 static int try_to_unmap_nonlinear(struct page *page, 1363 struct address_space *mapping, struct vm_area_struct *vma) 1364 { 1365 int ret = SWAP_AGAIN; 1366 unsigned long cursor; 1367 unsigned long max_nl_cursor = 0; 1368 unsigned long max_nl_size = 0; 1369 unsigned int mapcount; 1370 1371 list_for_each_entry(vma, 1372 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1373 1374 cursor = (unsigned long) vma->vm_private_data; 1375 if (cursor > max_nl_cursor) 1376 max_nl_cursor = cursor; 1377 cursor = vma->vm_end - vma->vm_start; 1378 if (cursor > max_nl_size) 1379 max_nl_size = cursor; 1380 } 1381 1382 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1383 return SWAP_FAIL; 1384 } 1385 1386 /* 1387 * We don't try to search for this page in the nonlinear vmas, 1388 * and page_referenced wouldn't have found it anyway. Instead 1389 * just walk the nonlinear vmas trying to age and unmap some. 1390 * The mapcount of the page we came in with is irrelevant, 1391 * but even so use it as a guide to how hard we should try? 1392 */ 1393 mapcount = page_mapcount(page); 1394 if (!mapcount) 1395 return ret; 1396 1397 cond_resched(); 1398 1399 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1400 if (max_nl_cursor == 0) 1401 max_nl_cursor = CLUSTER_SIZE; 1402 1403 do { 1404 list_for_each_entry(vma, 1405 &mapping->i_mmap_nonlinear, shared.nonlinear) { 1406 1407 cursor = (unsigned long) vma->vm_private_data; 1408 while (cursor < max_nl_cursor && 1409 cursor < vma->vm_end - vma->vm_start) { 1410 if (try_to_unmap_cluster(cursor, &mapcount, 1411 vma, page) == SWAP_MLOCK) 1412 ret = SWAP_MLOCK; 1413 cursor += CLUSTER_SIZE; 1414 vma->vm_private_data = (void *) cursor; 1415 if ((int)mapcount <= 0) 1416 return ret; 1417 } 1418 vma->vm_private_data = (void *) max_nl_cursor; 1419 } 1420 cond_resched(); 1421 max_nl_cursor += CLUSTER_SIZE; 1422 } while (max_nl_cursor <= max_nl_size); 1423 1424 /* 1425 * Don't loop forever (perhaps all the remaining pages are 1426 * in locked vmas). Reset cursor on all unreserved nonlinear 1427 * vmas, now forgetting on which ones it had fallen behind. 1428 */ 1429 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1430 vma->vm_private_data = NULL; 1431 1432 return ret; 1433 } 1434 1435 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1436 { 1437 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1438 1439 if (!maybe_stack) 1440 return false; 1441 1442 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1443 VM_STACK_INCOMPLETE_SETUP) 1444 return true; 1445 1446 return false; 1447 } 1448 1449 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1450 { 1451 return is_vma_temporary_stack(vma); 1452 } 1453 1454 static int page_not_mapped(struct page *page) 1455 { 1456 return !page_mapped(page); 1457 }; 1458 1459 /** 1460 * try_to_unmap - try to remove all page table mappings to a page 1461 * @page: the page to get unmapped 1462 * @flags: action and flags 1463 * 1464 * Tries to remove all the page table entries which are mapping this 1465 * page, used in the pageout path. Caller must hold the page lock. 1466 * Return values are: 1467 * 1468 * SWAP_SUCCESS - we succeeded in removing all mappings 1469 * SWAP_AGAIN - we missed a mapping, try again later 1470 * SWAP_FAIL - the page is unswappable 1471 * SWAP_MLOCK - page is mlocked. 1472 */ 1473 int try_to_unmap(struct page *page, enum ttu_flags flags) 1474 { 1475 int ret; 1476 struct rmap_walk_control rwc = { 1477 .rmap_one = try_to_unmap_one, 1478 .arg = (void *)flags, 1479 .done = page_not_mapped, 1480 .file_nonlinear = try_to_unmap_nonlinear, 1481 .anon_lock = page_lock_anon_vma_read, 1482 }; 1483 1484 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1485 1486 /* 1487 * During exec, a temporary VMA is setup and later moved. 1488 * The VMA is moved under the anon_vma lock but not the 1489 * page tables leading to a race where migration cannot 1490 * find the migration ptes. Rather than increasing the 1491 * locking requirements of exec(), migration skips 1492 * temporary VMAs until after exec() completes. 1493 */ 1494 if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page)) 1495 rwc.invalid_vma = invalid_migration_vma; 1496 1497 ret = rmap_walk(page, &rwc); 1498 1499 if (ret != SWAP_MLOCK && !page_mapped(page)) 1500 ret = SWAP_SUCCESS; 1501 return ret; 1502 } 1503 1504 /** 1505 * try_to_munlock - try to munlock a page 1506 * @page: the page to be munlocked 1507 * 1508 * Called from munlock code. Checks all of the VMAs mapping the page 1509 * to make sure nobody else has this page mlocked. The page will be 1510 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1511 * 1512 * Return values are: 1513 * 1514 * SWAP_AGAIN - no vma is holding page mlocked, or, 1515 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1516 * SWAP_FAIL - page cannot be located at present 1517 * SWAP_MLOCK - page is now mlocked. 1518 */ 1519 int try_to_munlock(struct page *page) 1520 { 1521 int ret; 1522 struct rmap_walk_control rwc = { 1523 .rmap_one = try_to_unmap_one, 1524 .arg = (void *)TTU_MUNLOCK, 1525 .done = page_not_mapped, 1526 /* 1527 * We don't bother to try to find the munlocked page in 1528 * nonlinears. It's costly. Instead, later, page reclaim logic 1529 * may call try_to_unmap() and recover PG_mlocked lazily. 1530 */ 1531 .file_nonlinear = NULL, 1532 .anon_lock = page_lock_anon_vma_read, 1533 1534 }; 1535 1536 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1537 1538 ret = rmap_walk(page, &rwc); 1539 return ret; 1540 } 1541 1542 void __put_anon_vma(struct anon_vma *anon_vma) 1543 { 1544 struct anon_vma *root = anon_vma->root; 1545 1546 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1547 anon_vma_free(root); 1548 1549 anon_vma_free(anon_vma); 1550 } 1551 1552 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1553 struct rmap_walk_control *rwc) 1554 { 1555 struct anon_vma *anon_vma; 1556 1557 if (rwc->anon_lock) 1558 return rwc->anon_lock(page); 1559 1560 /* 1561 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1562 * because that depends on page_mapped(); but not all its usages 1563 * are holding mmap_sem. Users without mmap_sem are required to 1564 * take a reference count to prevent the anon_vma disappearing 1565 */ 1566 anon_vma = page_anon_vma(page); 1567 if (!anon_vma) 1568 return NULL; 1569 1570 anon_vma_lock_read(anon_vma); 1571 return anon_vma; 1572 } 1573 1574 /* 1575 * rmap_walk_anon - do something to anonymous page using the object-based 1576 * rmap method 1577 * @page: the page to be handled 1578 * @rwc: control variable according to each walk type 1579 * 1580 * Find all the mappings of a page using the mapping pointer and the vma chains 1581 * contained in the anon_vma struct it points to. 1582 * 1583 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1584 * where the page was found will be held for write. So, we won't recheck 1585 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1586 * LOCKED. 1587 */ 1588 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1589 { 1590 struct anon_vma *anon_vma; 1591 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1592 struct anon_vma_chain *avc; 1593 int ret = SWAP_AGAIN; 1594 1595 anon_vma = rmap_walk_anon_lock(page, rwc); 1596 if (!anon_vma) 1597 return ret; 1598 1599 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1600 struct vm_area_struct *vma = avc->vma; 1601 unsigned long address = vma_address(page, vma); 1602 1603 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1604 continue; 1605 1606 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1607 if (ret != SWAP_AGAIN) 1608 break; 1609 if (rwc->done && rwc->done(page)) 1610 break; 1611 } 1612 anon_vma_unlock_read(anon_vma); 1613 return ret; 1614 } 1615 1616 /* 1617 * rmap_walk_file - do something to file page using the object-based rmap method 1618 * @page: the page to be handled 1619 * @rwc: control variable according to each walk type 1620 * 1621 * Find all the mappings of a page using the mapping pointer and the vma chains 1622 * contained in the address_space struct it points to. 1623 * 1624 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1625 * where the page was found will be held for write. So, we won't recheck 1626 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1627 * LOCKED. 1628 */ 1629 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1630 { 1631 struct address_space *mapping = page->mapping; 1632 pgoff_t pgoff = page->index << compound_order(page); 1633 struct vm_area_struct *vma; 1634 int ret = SWAP_AGAIN; 1635 1636 /* 1637 * The page lock not only makes sure that page->mapping cannot 1638 * suddenly be NULLified by truncation, it makes sure that the 1639 * structure at mapping cannot be freed and reused yet, 1640 * so we can safely take mapping->i_mmap_mutex. 1641 */ 1642 VM_BUG_ON(!PageLocked(page)); 1643 1644 if (!mapping) 1645 return ret; 1646 mutex_lock(&mapping->i_mmap_mutex); 1647 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1648 unsigned long address = vma_address(page, vma); 1649 1650 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1651 continue; 1652 1653 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1654 if (ret != SWAP_AGAIN) 1655 goto done; 1656 if (rwc->done && rwc->done(page)) 1657 goto done; 1658 } 1659 1660 if (!rwc->file_nonlinear) 1661 goto done; 1662 1663 if (list_empty(&mapping->i_mmap_nonlinear)) 1664 goto done; 1665 1666 ret = rwc->file_nonlinear(page, mapping, vma); 1667 1668 done: 1669 mutex_unlock(&mapping->i_mmap_mutex); 1670 return ret; 1671 } 1672 1673 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1674 { 1675 if (unlikely(PageKsm(page))) 1676 return rmap_walk_ksm(page, rwc); 1677 else if (PageAnon(page)) 1678 return rmap_walk_anon(page, rwc); 1679 else 1680 return rmap_walk_file(page, rwc); 1681 } 1682 1683 #ifdef CONFIG_HUGETLB_PAGE 1684 /* 1685 * The following three functions are for anonymous (private mapped) hugepages. 1686 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1687 * and no lru code, because we handle hugepages differently from common pages. 1688 */ 1689 static void __hugepage_set_anon_rmap(struct page *page, 1690 struct vm_area_struct *vma, unsigned long address, int exclusive) 1691 { 1692 struct anon_vma *anon_vma = vma->anon_vma; 1693 1694 BUG_ON(!anon_vma); 1695 1696 if (PageAnon(page)) 1697 return; 1698 if (!exclusive) 1699 anon_vma = anon_vma->root; 1700 1701 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1702 page->mapping = (struct address_space *) anon_vma; 1703 page->index = linear_page_index(vma, address); 1704 } 1705 1706 void hugepage_add_anon_rmap(struct page *page, 1707 struct vm_area_struct *vma, unsigned long address) 1708 { 1709 struct anon_vma *anon_vma = vma->anon_vma; 1710 int first; 1711 1712 BUG_ON(!PageLocked(page)); 1713 BUG_ON(!anon_vma); 1714 /* address might be in next vma when migration races vma_adjust */ 1715 first = atomic_inc_and_test(&page->_mapcount); 1716 if (first) 1717 __hugepage_set_anon_rmap(page, vma, address, 0); 1718 } 1719 1720 void hugepage_add_new_anon_rmap(struct page *page, 1721 struct vm_area_struct *vma, unsigned long address) 1722 { 1723 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1724 atomic_set(&page->_mapcount, 0); 1725 __hugepage_set_anon_rmap(page, vma, address, 1); 1726 } 1727 #endif /* CONFIG_HUGETLB_PAGE */ 1728