xref: /linux/mm/rmap.c (revision a5f6ea29f9a918403629f8369ae55fac6b09cb53)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma_read() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 	 *
98 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99 	 *   down_read_trylock()		  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  rwsem_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 		anon_vma_lock_write(anon_vma);
108 		anon_vma_unlock_write(anon_vma);
109 	}
110 
111 	kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 				struct anon_vma_chain *avc,
126 				struct anon_vma *anon_vma)
127 {
128 	avc->vma = vma;
129 	avc->anon_vma = anon_vma;
130 	list_add(&avc->same_vma, &vma->anon_vma_chain);
131 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
134 /**
135  * anon_vma_prepare - attach an anon_vma to a memory region
136  * @vma: the memory region in question
137  *
138  * This makes sure the memory mapping described by 'vma' has
139  * an 'anon_vma' attached to it, so that we can associate the
140  * anonymous pages mapped into it with that anon_vma.
141  *
142  * The common case will be that we already have one, but if
143  * not we either need to find an adjacent mapping that we
144  * can re-use the anon_vma from (very common when the only
145  * reason for splitting a vma has been mprotect()), or we
146  * allocate a new one.
147  *
148  * Anon-vma allocations are very subtle, because we may have
149  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150  * and that may actually touch the spinlock even in the newly
151  * allocated vma (it depends on RCU to make sure that the
152  * anon_vma isn't actually destroyed).
153  *
154  * As a result, we need to do proper anon_vma locking even
155  * for the new allocation. At the same time, we do not want
156  * to do any locking for the common case of already having
157  * an anon_vma.
158  *
159  * This must be called with the mmap_sem held for reading.
160  */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 	struct anon_vma *anon_vma = vma->anon_vma;
164 	struct anon_vma_chain *avc;
165 
166 	might_sleep();
167 	if (unlikely(!anon_vma)) {
168 		struct mm_struct *mm = vma->vm_mm;
169 		struct anon_vma *allocated;
170 
171 		avc = anon_vma_chain_alloc(GFP_KERNEL);
172 		if (!avc)
173 			goto out_enomem;
174 
175 		anon_vma = find_mergeable_anon_vma(vma);
176 		allocated = NULL;
177 		if (!anon_vma) {
178 			anon_vma = anon_vma_alloc();
179 			if (unlikely(!anon_vma))
180 				goto out_enomem_free_avc;
181 			allocated = anon_vma;
182 		}
183 
184 		anon_vma_lock_write(anon_vma);
185 		/* page_table_lock to protect against threads */
186 		spin_lock(&mm->page_table_lock);
187 		if (likely(!vma->anon_vma)) {
188 			vma->anon_vma = anon_vma;
189 			anon_vma_chain_link(vma, avc, anon_vma);
190 			allocated = NULL;
191 			avc = NULL;
192 		}
193 		spin_unlock(&mm->page_table_lock);
194 		anon_vma_unlock_write(anon_vma);
195 
196 		if (unlikely(allocated))
197 			put_anon_vma(allocated);
198 		if (unlikely(avc))
199 			anon_vma_chain_free(avc);
200 	}
201 	return 0;
202 
203  out_enomem_free_avc:
204 	anon_vma_chain_free(avc);
205  out_enomem:
206 	return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 	struct anon_vma *new_root = anon_vma->root;
220 	if (new_root != root) {
221 		if (WARN_ON_ONCE(root))
222 			up_write(&root->rwsem);
223 		root = new_root;
224 		down_write(&root->rwsem);
225 	}
226 	return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 	if (root)
232 		up_write(&root->rwsem);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 	struct anon_vma_chain *avc, *pavc;
242 	struct anon_vma *root = NULL;
243 
244 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 		struct anon_vma *anon_vma;
246 
247 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 		if (unlikely(!avc)) {
249 			unlock_anon_vma_root(root);
250 			root = NULL;
251 			avc = anon_vma_chain_alloc(GFP_KERNEL);
252 			if (!avc)
253 				goto enomem_failure;
254 		}
255 		anon_vma = pavc->anon_vma;
256 		root = lock_anon_vma_root(root, anon_vma);
257 		anon_vma_chain_link(dst, avc, anon_vma);
258 	}
259 	unlock_anon_vma_root(root);
260 	return 0;
261 
262  enomem_failure:
263 	unlink_anon_vmas(dst);
264 	return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 	struct anon_vma_chain *avc;
275 	struct anon_vma *anon_vma;
276 
277 	/* Don't bother if the parent process has no anon_vma here. */
278 	if (!pvma->anon_vma)
279 		return 0;
280 
281 	/*
282 	 * First, attach the new VMA to the parent VMA's anon_vmas,
283 	 * so rmap can find non-COWed pages in child processes.
284 	 */
285 	if (anon_vma_clone(vma, pvma))
286 		return -ENOMEM;
287 
288 	/* Then add our own anon_vma. */
289 	anon_vma = anon_vma_alloc();
290 	if (!anon_vma)
291 		goto out_error;
292 	avc = anon_vma_chain_alloc(GFP_KERNEL);
293 	if (!avc)
294 		goto out_error_free_anon_vma;
295 
296 	/*
297 	 * The root anon_vma's spinlock is the lock actually used when we
298 	 * lock any of the anon_vmas in this anon_vma tree.
299 	 */
300 	anon_vma->root = pvma->anon_vma->root;
301 	/*
302 	 * With refcounts, an anon_vma can stay around longer than the
303 	 * process it belongs to. The root anon_vma needs to be pinned until
304 	 * this anon_vma is freed, because the lock lives in the root.
305 	 */
306 	get_anon_vma(anon_vma->root);
307 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308 	vma->anon_vma = anon_vma;
309 	anon_vma_lock_write(anon_vma);
310 	anon_vma_chain_link(vma, avc, anon_vma);
311 	anon_vma_unlock_write(anon_vma);
312 
313 	return 0;
314 
315  out_error_free_anon_vma:
316 	put_anon_vma(anon_vma);
317  out_error:
318 	unlink_anon_vmas(vma);
319 	return -ENOMEM;
320 }
321 
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 	struct anon_vma_chain *avc, *next;
325 	struct anon_vma *root = NULL;
326 
327 	/*
328 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 	 */
331 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 		struct anon_vma *anon_vma = avc->anon_vma;
333 
334 		root = lock_anon_vma_root(root, anon_vma);
335 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337 		/*
338 		 * Leave empty anon_vmas on the list - we'll need
339 		 * to free them outside the lock.
340 		 */
341 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 			continue;
343 
344 		list_del(&avc->same_vma);
345 		anon_vma_chain_free(avc);
346 	}
347 	unlock_anon_vma_root(root);
348 
349 	/*
350 	 * Iterate the list once more, it now only contains empty and unlinked
351 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 	 * needing to write-acquire the anon_vma->root->rwsem.
353 	 */
354 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 		struct anon_vma *anon_vma = avc->anon_vma;
356 
357 		put_anon_vma(anon_vma);
358 
359 		list_del(&avc->same_vma);
360 		anon_vma_chain_free(avc);
361 	}
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366 	struct anon_vma *anon_vma = data;
367 
368 	init_rwsem(&anon_vma->rwsem);
369 	atomic_set(&anon_vma->refcount, 0);
370 	anon_vma->rb_root = RB_ROOT;
371 }
372 
373 void __init anon_vma_init(void)
374 {
375 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 	struct anon_vma *anon_vma = NULL;
406 	unsigned long anon_mapping;
407 
408 	rcu_read_lock();
409 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 		goto out;
412 	if (!page_mapped(page))
413 		goto out;
414 
415 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 		anon_vma = NULL;
418 		goto out;
419 	}
420 
421 	/*
422 	 * If this page is still mapped, then its anon_vma cannot have been
423 	 * freed.  But if it has been unmapped, we have no security against the
424 	 * anon_vma structure being freed and reused (for another anon_vma:
425 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 	 * above cannot corrupt).
427 	 */
428 	if (!page_mapped(page)) {
429 		put_anon_vma(anon_vma);
430 		anon_vma = NULL;
431 	}
432 out:
433 	rcu_read_unlock();
434 
435 	return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
446 {
447 	struct anon_vma *anon_vma = NULL;
448 	struct anon_vma *root_anon_vma;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 	if (down_read_trylock(&root_anon_vma->rwsem)) {
461 		/*
462 		 * If the page is still mapped, then this anon_vma is still
463 		 * its anon_vma, and holding the mutex ensures that it will
464 		 * not go away, see anon_vma_free().
465 		 */
466 		if (!page_mapped(page)) {
467 			up_read(&root_anon_vma->rwsem);
468 			anon_vma = NULL;
469 		}
470 		goto out;
471 	}
472 
473 	/* trylock failed, we got to sleep */
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	if (!page_mapped(page)) {
480 		put_anon_vma(anon_vma);
481 		anon_vma = NULL;
482 		goto out;
483 	}
484 
485 	/* we pinned the anon_vma, its safe to sleep */
486 	rcu_read_unlock();
487 	anon_vma_lock_read(anon_vma);
488 
489 	if (atomic_dec_and_test(&anon_vma->refcount)) {
490 		/*
491 		 * Oops, we held the last refcount, release the lock
492 		 * and bail -- can't simply use put_anon_vma() because
493 		 * we'll deadlock on the anon_vma_lock_write() recursion.
494 		 */
495 		anon_vma_unlock_read(anon_vma);
496 		__put_anon_vma(anon_vma);
497 		anon_vma = NULL;
498 	}
499 
500 	return anon_vma;
501 
502 out:
503 	rcu_read_unlock();
504 	return anon_vma;
505 }
506 
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508 {
509 	anon_vma_unlock_read(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		pgoff = page->index << huge_page_order(page_hstate(page));
522 
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 	pgd_t *pgd;
568 	pud_t *pud;
569 	pmd_t *pmd = NULL;
570 
571 	pgd = pgd_offset(mm, address);
572 	if (!pgd_present(*pgd))
573 		goto out;
574 
575 	pud = pud_offset(pgd, address);
576 	if (!pud_present(*pud))
577 		goto out;
578 
579 	pmd = pmd_offset(pud, address);
580 	if (!pmd_present(*pmd))
581 		pmd = NULL;
582 out:
583 	return pmd;
584 }
585 
586 /*
587  * Check that @page is mapped at @address into @mm.
588  *
589  * If @sync is false, page_check_address may perform a racy check to avoid
590  * the page table lock when the pte is not present (helpful when reclaiming
591  * highly shared pages).
592  *
593  * On success returns with pte mapped and locked.
594  */
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 			  unsigned long address, spinlock_t **ptlp, int sync)
597 {
598 	pmd_t *pmd;
599 	pte_t *pte;
600 	spinlock_t *ptl;
601 
602 	if (unlikely(PageHuge(page))) {
603 		/* when pud is not present, pte will be NULL */
604 		pte = huge_pte_offset(mm, address);
605 		if (!pte)
606 			return NULL;
607 
608 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
609 		goto check;
610 	}
611 
612 	pmd = mm_find_pmd(mm, address);
613 	if (!pmd)
614 		return NULL;
615 
616 	if (pmd_trans_huge(*pmd))
617 		return NULL;
618 
619 	pte = pte_offset_map(pmd, address);
620 	/* Make a quick check before getting the lock */
621 	if (!sync && !pte_present(*pte)) {
622 		pte_unmap(pte);
623 		return NULL;
624 	}
625 
626 	ptl = pte_lockptr(mm, pmd);
627 check:
628 	spin_lock(ptl);
629 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
630 		*ptlp = ptl;
631 		return pte;
632 	}
633 	pte_unmap_unlock(pte, ptl);
634 	return NULL;
635 }
636 
637 /**
638  * page_mapped_in_vma - check whether a page is really mapped in a VMA
639  * @page: the page to test
640  * @vma: the VMA to test
641  *
642  * Returns 1 if the page is mapped into the page tables of the VMA, 0
643  * if the page is not mapped into the page tables of this VMA.  Only
644  * valid for normal file or anonymous VMAs.
645  */
646 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
647 {
648 	unsigned long address;
649 	pte_t *pte;
650 	spinlock_t *ptl;
651 
652 	address = __vma_address(page, vma);
653 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
654 		return 0;
655 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
656 	if (!pte)			/* the page is not in this mm */
657 		return 0;
658 	pte_unmap_unlock(pte, ptl);
659 
660 	return 1;
661 }
662 
663 struct page_referenced_arg {
664 	int mapcount;
665 	int referenced;
666 	unsigned long vm_flags;
667 	struct mem_cgroup *memcg;
668 };
669 /*
670  * arg: page_referenced_arg will be passed
671  */
672 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
673 			unsigned long address, void *arg)
674 {
675 	struct mm_struct *mm = vma->vm_mm;
676 	spinlock_t *ptl;
677 	int referenced = 0;
678 	struct page_referenced_arg *pra = arg;
679 
680 	if (unlikely(PageTransHuge(page))) {
681 		pmd_t *pmd;
682 
683 		/*
684 		 * rmap might return false positives; we must filter
685 		 * these out using page_check_address_pmd().
686 		 */
687 		pmd = page_check_address_pmd(page, mm, address,
688 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
689 		if (!pmd)
690 			return SWAP_AGAIN;
691 
692 		if (vma->vm_flags & VM_LOCKED) {
693 			spin_unlock(ptl);
694 			pra->vm_flags |= VM_LOCKED;
695 			return SWAP_FAIL; /* To break the loop */
696 		}
697 
698 		/* go ahead even if the pmd is pmd_trans_splitting() */
699 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
700 			referenced++;
701 		spin_unlock(ptl);
702 	} else {
703 		pte_t *pte;
704 
705 		/*
706 		 * rmap might return false positives; we must filter
707 		 * these out using page_check_address().
708 		 */
709 		pte = page_check_address(page, mm, address, &ptl, 0);
710 		if (!pte)
711 			return SWAP_AGAIN;
712 
713 		if (vma->vm_flags & VM_LOCKED) {
714 			pte_unmap_unlock(pte, ptl);
715 			pra->vm_flags |= VM_LOCKED;
716 			return SWAP_FAIL; /* To break the loop */
717 		}
718 
719 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
720 			/*
721 			 * Don't treat a reference through a sequentially read
722 			 * mapping as such.  If the page has been used in
723 			 * another mapping, we will catch it; if this other
724 			 * mapping is already gone, the unmap path will have
725 			 * set PG_referenced or activated the page.
726 			 */
727 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
728 				referenced++;
729 		}
730 		pte_unmap_unlock(pte, ptl);
731 	}
732 
733 	if (referenced) {
734 		pra->referenced++;
735 		pra->vm_flags |= vma->vm_flags;
736 	}
737 
738 	pra->mapcount--;
739 	if (!pra->mapcount)
740 		return SWAP_SUCCESS; /* To break the loop */
741 
742 	return SWAP_AGAIN;
743 }
744 
745 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
746 {
747 	struct page_referenced_arg *pra = arg;
748 	struct mem_cgroup *memcg = pra->memcg;
749 
750 	if (!mm_match_cgroup(vma->vm_mm, memcg))
751 		return true;
752 
753 	return false;
754 }
755 
756 /**
757  * page_referenced - test if the page was referenced
758  * @page: the page to test
759  * @is_locked: caller holds lock on the page
760  * @memcg: target memory cgroup
761  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
762  *
763  * Quick test_and_clear_referenced for all mappings to a page,
764  * returns the number of ptes which referenced the page.
765  */
766 int page_referenced(struct page *page,
767 		    int is_locked,
768 		    struct mem_cgroup *memcg,
769 		    unsigned long *vm_flags)
770 {
771 	int ret;
772 	int we_locked = 0;
773 	struct page_referenced_arg pra = {
774 		.mapcount = page_mapcount(page),
775 		.memcg = memcg,
776 	};
777 	struct rmap_walk_control rwc = {
778 		.rmap_one = page_referenced_one,
779 		.arg = (void *)&pra,
780 		.anon_lock = page_lock_anon_vma_read,
781 	};
782 
783 	*vm_flags = 0;
784 	if (!page_mapped(page))
785 		return 0;
786 
787 	if (!page_rmapping(page))
788 		return 0;
789 
790 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
791 		we_locked = trylock_page(page);
792 		if (!we_locked)
793 			return 1;
794 	}
795 
796 	/*
797 	 * If we are reclaiming on behalf of a cgroup, skip
798 	 * counting on behalf of references from different
799 	 * cgroups
800 	 */
801 	if (memcg) {
802 		rwc.invalid_vma = invalid_page_referenced_vma;
803 	}
804 
805 	ret = rmap_walk(page, &rwc);
806 	*vm_flags = pra.vm_flags;
807 
808 	if (we_locked)
809 		unlock_page(page);
810 
811 	return pra.referenced;
812 }
813 
814 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
815 			    unsigned long address, void *arg)
816 {
817 	struct mm_struct *mm = vma->vm_mm;
818 	pte_t *pte;
819 	spinlock_t *ptl;
820 	int ret = 0;
821 	int *cleaned = arg;
822 
823 	pte = page_check_address(page, mm, address, &ptl, 1);
824 	if (!pte)
825 		goto out;
826 
827 	if (pte_dirty(*pte) || pte_write(*pte)) {
828 		pte_t entry;
829 
830 		flush_cache_page(vma, address, pte_pfn(*pte));
831 		entry = ptep_clear_flush(vma, address, pte);
832 		entry = pte_wrprotect(entry);
833 		entry = pte_mkclean(entry);
834 		set_pte_at(mm, address, pte, entry);
835 		ret = 1;
836 	}
837 
838 	pte_unmap_unlock(pte, ptl);
839 
840 	if (ret) {
841 		mmu_notifier_invalidate_page(mm, address);
842 		(*cleaned)++;
843 	}
844 out:
845 	return SWAP_AGAIN;
846 }
847 
848 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
849 {
850 	if (vma->vm_flags & VM_SHARED)
851 		return false;
852 
853 	return true;
854 }
855 
856 int page_mkclean(struct page *page)
857 {
858 	int cleaned = 0;
859 	struct address_space *mapping;
860 	struct rmap_walk_control rwc = {
861 		.arg = (void *)&cleaned,
862 		.rmap_one = page_mkclean_one,
863 		.invalid_vma = invalid_mkclean_vma,
864 	};
865 
866 	BUG_ON(!PageLocked(page));
867 
868 	if (!page_mapped(page))
869 		return 0;
870 
871 	mapping = page_mapping(page);
872 	if (!mapping)
873 		return 0;
874 
875 	rmap_walk(page, &rwc);
876 
877 	return cleaned;
878 }
879 EXPORT_SYMBOL_GPL(page_mkclean);
880 
881 /**
882  * page_move_anon_rmap - move a page to our anon_vma
883  * @page:	the page to move to our anon_vma
884  * @vma:	the vma the page belongs to
885  * @address:	the user virtual address mapped
886  *
887  * When a page belongs exclusively to one process after a COW event,
888  * that page can be moved into the anon_vma that belongs to just that
889  * process, so the rmap code will not search the parent or sibling
890  * processes.
891  */
892 void page_move_anon_rmap(struct page *page,
893 	struct vm_area_struct *vma, unsigned long address)
894 {
895 	struct anon_vma *anon_vma = vma->anon_vma;
896 
897 	VM_BUG_ON_PAGE(!PageLocked(page), page);
898 	VM_BUG_ON(!anon_vma);
899 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
900 
901 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
902 	page->mapping = (struct address_space *) anon_vma;
903 }
904 
905 /**
906  * __page_set_anon_rmap - set up new anonymous rmap
907  * @page:	Page to add to rmap
908  * @vma:	VM area to add page to.
909  * @address:	User virtual address of the mapping
910  * @exclusive:	the page is exclusively owned by the current process
911  */
912 static void __page_set_anon_rmap(struct page *page,
913 	struct vm_area_struct *vma, unsigned long address, int exclusive)
914 {
915 	struct anon_vma *anon_vma = vma->anon_vma;
916 
917 	BUG_ON(!anon_vma);
918 
919 	if (PageAnon(page))
920 		return;
921 
922 	/*
923 	 * If the page isn't exclusively mapped into this vma,
924 	 * we must use the _oldest_ possible anon_vma for the
925 	 * page mapping!
926 	 */
927 	if (!exclusive)
928 		anon_vma = anon_vma->root;
929 
930 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
931 	page->mapping = (struct address_space *) anon_vma;
932 	page->index = linear_page_index(vma, address);
933 }
934 
935 /**
936  * __page_check_anon_rmap - sanity check anonymous rmap addition
937  * @page:	the page to add the mapping to
938  * @vma:	the vm area in which the mapping is added
939  * @address:	the user virtual address mapped
940  */
941 static void __page_check_anon_rmap(struct page *page,
942 	struct vm_area_struct *vma, unsigned long address)
943 {
944 #ifdef CONFIG_DEBUG_VM
945 	/*
946 	 * The page's anon-rmap details (mapping and index) are guaranteed to
947 	 * be set up correctly at this point.
948 	 *
949 	 * We have exclusion against page_add_anon_rmap because the caller
950 	 * always holds the page locked, except if called from page_dup_rmap,
951 	 * in which case the page is already known to be setup.
952 	 *
953 	 * We have exclusion against page_add_new_anon_rmap because those pages
954 	 * are initially only visible via the pagetables, and the pte is locked
955 	 * over the call to page_add_new_anon_rmap.
956 	 */
957 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
958 	BUG_ON(page->index != linear_page_index(vma, address));
959 #endif
960 }
961 
962 /**
963  * page_add_anon_rmap - add pte mapping to an anonymous page
964  * @page:	the page to add the mapping to
965  * @vma:	the vm area in which the mapping is added
966  * @address:	the user virtual address mapped
967  *
968  * The caller needs to hold the pte lock, and the page must be locked in
969  * the anon_vma case: to serialize mapping,index checking after setting,
970  * and to ensure that PageAnon is not being upgraded racily to PageKsm
971  * (but PageKsm is never downgraded to PageAnon).
972  */
973 void page_add_anon_rmap(struct page *page,
974 	struct vm_area_struct *vma, unsigned long address)
975 {
976 	do_page_add_anon_rmap(page, vma, address, 0);
977 }
978 
979 /*
980  * Special version of the above for do_swap_page, which often runs
981  * into pages that are exclusively owned by the current process.
982  * Everybody else should continue to use page_add_anon_rmap above.
983  */
984 void do_page_add_anon_rmap(struct page *page,
985 	struct vm_area_struct *vma, unsigned long address, int exclusive)
986 {
987 	int first = atomic_inc_and_test(&page->_mapcount);
988 	if (first) {
989 		if (PageTransHuge(page))
990 			__inc_zone_page_state(page,
991 					      NR_ANON_TRANSPARENT_HUGEPAGES);
992 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
993 				hpage_nr_pages(page));
994 	}
995 	if (unlikely(PageKsm(page)))
996 		return;
997 
998 	VM_BUG_ON_PAGE(!PageLocked(page), page);
999 	/* address might be in next vma when migration races vma_adjust */
1000 	if (first)
1001 		__page_set_anon_rmap(page, vma, address, exclusive);
1002 	else
1003 		__page_check_anon_rmap(page, vma, address);
1004 }
1005 
1006 /**
1007  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1008  * @page:	the page to add the mapping to
1009  * @vma:	the vm area in which the mapping is added
1010  * @address:	the user virtual address mapped
1011  *
1012  * Same as page_add_anon_rmap but must only be called on *new* pages.
1013  * This means the inc-and-test can be bypassed.
1014  * Page does not have to be locked.
1015  */
1016 void page_add_new_anon_rmap(struct page *page,
1017 	struct vm_area_struct *vma, unsigned long address)
1018 {
1019 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1020 	SetPageSwapBacked(page);
1021 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1022 	if (PageTransHuge(page))
1023 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1024 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1025 			hpage_nr_pages(page));
1026 	__page_set_anon_rmap(page, vma, address, 1);
1027 	if (!mlocked_vma_newpage(vma, page)) {
1028 		SetPageActive(page);
1029 		lru_cache_add(page);
1030 	} else
1031 		add_page_to_unevictable_list(page);
1032 }
1033 
1034 /**
1035  * page_add_file_rmap - add pte mapping to a file page
1036  * @page: the page to add the mapping to
1037  *
1038  * The caller needs to hold the pte lock.
1039  */
1040 void page_add_file_rmap(struct page *page)
1041 {
1042 	bool locked;
1043 	unsigned long flags;
1044 
1045 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1046 	if (atomic_inc_and_test(&page->_mapcount)) {
1047 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1048 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1049 	}
1050 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1051 }
1052 
1053 /**
1054  * page_remove_rmap - take down pte mapping from a page
1055  * @page: page to remove mapping from
1056  *
1057  * The caller needs to hold the pte lock.
1058  */
1059 void page_remove_rmap(struct page *page)
1060 {
1061 	bool anon = PageAnon(page);
1062 	bool locked;
1063 	unsigned long flags;
1064 
1065 	/*
1066 	 * The anon case has no mem_cgroup page_stat to update; but may
1067 	 * uncharge_page() below, where the lock ordering can deadlock if
1068 	 * we hold the lock against page_stat move: so avoid it on anon.
1069 	 */
1070 	if (!anon)
1071 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1072 
1073 	/* page still mapped by someone else? */
1074 	if (!atomic_add_negative(-1, &page->_mapcount))
1075 		goto out;
1076 
1077 	/*
1078 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1079 	 * and not charged by memcg for now.
1080 	 */
1081 	if (unlikely(PageHuge(page)))
1082 		goto out;
1083 	if (anon) {
1084 		mem_cgroup_uncharge_page(page);
1085 		if (PageTransHuge(page))
1086 			__dec_zone_page_state(page,
1087 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1088 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1089 				-hpage_nr_pages(page));
1090 	} else {
1091 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1092 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1093 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1094 	}
1095 	if (unlikely(PageMlocked(page)))
1096 		clear_page_mlock(page);
1097 	/*
1098 	 * It would be tidy to reset the PageAnon mapping here,
1099 	 * but that might overwrite a racing page_add_anon_rmap
1100 	 * which increments mapcount after us but sets mapping
1101 	 * before us: so leave the reset to free_hot_cold_page,
1102 	 * and remember that it's only reliable while mapped.
1103 	 * Leaving it set also helps swapoff to reinstate ptes
1104 	 * faster for those pages still in swapcache.
1105 	 */
1106 	return;
1107 out:
1108 	if (!anon)
1109 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110 }
1111 
1112 /*
1113  * @arg: enum ttu_flags will be passed to this argument
1114  */
1115 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1116 		     unsigned long address, void *arg)
1117 {
1118 	struct mm_struct *mm = vma->vm_mm;
1119 	pte_t *pte;
1120 	pte_t pteval;
1121 	spinlock_t *ptl;
1122 	int ret = SWAP_AGAIN;
1123 	enum ttu_flags flags = (enum ttu_flags)arg;
1124 
1125 	pte = page_check_address(page, mm, address, &ptl, 0);
1126 	if (!pte)
1127 		goto out;
1128 
1129 	/*
1130 	 * If the page is mlock()d, we cannot swap it out.
1131 	 * If it's recently referenced (perhaps page_referenced
1132 	 * skipped over this mm) then we should reactivate it.
1133 	 */
1134 	if (!(flags & TTU_IGNORE_MLOCK)) {
1135 		if (vma->vm_flags & VM_LOCKED)
1136 			goto out_mlock;
1137 
1138 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1139 			goto out_unmap;
1140 	}
1141 	if (!(flags & TTU_IGNORE_ACCESS)) {
1142 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1143 			ret = SWAP_FAIL;
1144 			goto out_unmap;
1145 		}
1146   	}
1147 
1148 	/* Nuke the page table entry. */
1149 	flush_cache_page(vma, address, page_to_pfn(page));
1150 	pteval = ptep_clear_flush(vma, address, pte);
1151 
1152 	/* Move the dirty bit to the physical page now the pte is gone. */
1153 	if (pte_dirty(pteval))
1154 		set_page_dirty(page);
1155 
1156 	/* Update high watermark before we lower rss */
1157 	update_hiwater_rss(mm);
1158 
1159 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1160 		if (!PageHuge(page)) {
1161 			if (PageAnon(page))
1162 				dec_mm_counter(mm, MM_ANONPAGES);
1163 			else
1164 				dec_mm_counter(mm, MM_FILEPAGES);
1165 		}
1166 		set_pte_at(mm, address, pte,
1167 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1168 	} else if (PageAnon(page)) {
1169 		swp_entry_t entry = { .val = page_private(page) };
1170 		pte_t swp_pte;
1171 
1172 		if (PageSwapCache(page)) {
1173 			/*
1174 			 * Store the swap location in the pte.
1175 			 * See handle_pte_fault() ...
1176 			 */
1177 			if (swap_duplicate(entry) < 0) {
1178 				set_pte_at(mm, address, pte, pteval);
1179 				ret = SWAP_FAIL;
1180 				goto out_unmap;
1181 			}
1182 			if (list_empty(&mm->mmlist)) {
1183 				spin_lock(&mmlist_lock);
1184 				if (list_empty(&mm->mmlist))
1185 					list_add(&mm->mmlist, &init_mm.mmlist);
1186 				spin_unlock(&mmlist_lock);
1187 			}
1188 			dec_mm_counter(mm, MM_ANONPAGES);
1189 			inc_mm_counter(mm, MM_SWAPENTS);
1190 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1191 			/*
1192 			 * Store the pfn of the page in a special migration
1193 			 * pte. do_swap_page() will wait until the migration
1194 			 * pte is removed and then restart fault handling.
1195 			 */
1196 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1197 			entry = make_migration_entry(page, pte_write(pteval));
1198 		}
1199 		swp_pte = swp_entry_to_pte(entry);
1200 		if (pte_soft_dirty(pteval))
1201 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1202 		set_pte_at(mm, address, pte, swp_pte);
1203 		BUG_ON(pte_file(*pte));
1204 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1205 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1206 		/* Establish migration entry for a file page */
1207 		swp_entry_t entry;
1208 		entry = make_migration_entry(page, pte_write(pteval));
1209 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1210 	} else
1211 		dec_mm_counter(mm, MM_FILEPAGES);
1212 
1213 	page_remove_rmap(page);
1214 	page_cache_release(page);
1215 
1216 out_unmap:
1217 	pte_unmap_unlock(pte, ptl);
1218 	if (ret != SWAP_FAIL)
1219 		mmu_notifier_invalidate_page(mm, address);
1220 out:
1221 	return ret;
1222 
1223 out_mlock:
1224 	pte_unmap_unlock(pte, ptl);
1225 
1226 
1227 	/*
1228 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1229 	 * unstable result and race. Plus, We can't wait here because
1230 	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1231 	 * if trylock failed, the page remain in evictable lru and later
1232 	 * vmscan could retry to move the page to unevictable lru if the
1233 	 * page is actually mlocked.
1234 	 */
1235 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1236 		if (vma->vm_flags & VM_LOCKED) {
1237 			mlock_vma_page(page);
1238 			ret = SWAP_MLOCK;
1239 		}
1240 		up_read(&vma->vm_mm->mmap_sem);
1241 	}
1242 	return ret;
1243 }
1244 
1245 /*
1246  * objrmap doesn't work for nonlinear VMAs because the assumption that
1247  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1248  * Consequently, given a particular page and its ->index, we cannot locate the
1249  * ptes which are mapping that page without an exhaustive linear search.
1250  *
1251  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1252  * maps the file to which the target page belongs.  The ->vm_private_data field
1253  * holds the current cursor into that scan.  Successive searches will circulate
1254  * around the vma's virtual address space.
1255  *
1256  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1257  * more scanning pressure is placed against them as well.   Eventually pages
1258  * will become fully unmapped and are eligible for eviction.
1259  *
1260  * For very sparsely populated VMAs this is a little inefficient - chances are
1261  * there there won't be many ptes located within the scan cluster.  In this case
1262  * maybe we could scan further - to the end of the pte page, perhaps.
1263  *
1264  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1265  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1266  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1267  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1268  */
1269 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1270 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1271 
1272 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1273 		struct vm_area_struct *vma, struct page *check_page)
1274 {
1275 	struct mm_struct *mm = vma->vm_mm;
1276 	pmd_t *pmd;
1277 	pte_t *pte;
1278 	pte_t pteval;
1279 	spinlock_t *ptl;
1280 	struct page *page;
1281 	unsigned long address;
1282 	unsigned long mmun_start;	/* For mmu_notifiers */
1283 	unsigned long mmun_end;		/* For mmu_notifiers */
1284 	unsigned long end;
1285 	int ret = SWAP_AGAIN;
1286 	int locked_vma = 0;
1287 
1288 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1289 	end = address + CLUSTER_SIZE;
1290 	if (address < vma->vm_start)
1291 		address = vma->vm_start;
1292 	if (end > vma->vm_end)
1293 		end = vma->vm_end;
1294 
1295 	pmd = mm_find_pmd(mm, address);
1296 	if (!pmd)
1297 		return ret;
1298 
1299 	mmun_start = address;
1300 	mmun_end   = end;
1301 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1302 
1303 	/*
1304 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1305 	 * keep the sem while scanning the cluster for mlocking pages.
1306 	 */
1307 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308 		locked_vma = (vma->vm_flags & VM_LOCKED);
1309 		if (!locked_vma)
1310 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1311 	}
1312 
1313 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1314 
1315 	/* Update high watermark before we lower rss */
1316 	update_hiwater_rss(mm);
1317 
1318 	for (; address < end; pte++, address += PAGE_SIZE) {
1319 		if (!pte_present(*pte))
1320 			continue;
1321 		page = vm_normal_page(vma, address, *pte);
1322 		BUG_ON(!page || PageAnon(page));
1323 
1324 		if (locked_vma) {
1325 			mlock_vma_page(page);   /* no-op if already mlocked */
1326 			if (page == check_page)
1327 				ret = SWAP_MLOCK;
1328 			continue;	/* don't unmap */
1329 		}
1330 
1331 		if (ptep_clear_flush_young_notify(vma, address, pte))
1332 			continue;
1333 
1334 		/* Nuke the page table entry. */
1335 		flush_cache_page(vma, address, pte_pfn(*pte));
1336 		pteval = ptep_clear_flush(vma, address, pte);
1337 
1338 		/* If nonlinear, store the file page offset in the pte. */
1339 		if (page->index != linear_page_index(vma, address)) {
1340 			pte_t ptfile = pgoff_to_pte(page->index);
1341 			if (pte_soft_dirty(pteval))
1342 				pte_file_mksoft_dirty(ptfile);
1343 			set_pte_at(mm, address, pte, ptfile);
1344 		}
1345 
1346 		/* Move the dirty bit to the physical page now the pte is gone. */
1347 		if (pte_dirty(pteval))
1348 			set_page_dirty(page);
1349 
1350 		page_remove_rmap(page);
1351 		page_cache_release(page);
1352 		dec_mm_counter(mm, MM_FILEPAGES);
1353 		(*mapcount)--;
1354 	}
1355 	pte_unmap_unlock(pte - 1, ptl);
1356 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1357 	if (locked_vma)
1358 		up_read(&vma->vm_mm->mmap_sem);
1359 	return ret;
1360 }
1361 
1362 static int try_to_unmap_nonlinear(struct page *page,
1363 		struct address_space *mapping, struct vm_area_struct *vma)
1364 {
1365 	int ret = SWAP_AGAIN;
1366 	unsigned long cursor;
1367 	unsigned long max_nl_cursor = 0;
1368 	unsigned long max_nl_size = 0;
1369 	unsigned int mapcount;
1370 
1371 	list_for_each_entry(vma,
1372 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1373 
1374 		cursor = (unsigned long) vma->vm_private_data;
1375 		if (cursor > max_nl_cursor)
1376 			max_nl_cursor = cursor;
1377 		cursor = vma->vm_end - vma->vm_start;
1378 		if (cursor > max_nl_size)
1379 			max_nl_size = cursor;
1380 	}
1381 
1382 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1383 		return SWAP_FAIL;
1384 	}
1385 
1386 	/*
1387 	 * We don't try to search for this page in the nonlinear vmas,
1388 	 * and page_referenced wouldn't have found it anyway.  Instead
1389 	 * just walk the nonlinear vmas trying to age and unmap some.
1390 	 * The mapcount of the page we came in with is irrelevant,
1391 	 * but even so use it as a guide to how hard we should try?
1392 	 */
1393 	mapcount = page_mapcount(page);
1394 	if (!mapcount)
1395 		return ret;
1396 
1397 	cond_resched();
1398 
1399 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1400 	if (max_nl_cursor == 0)
1401 		max_nl_cursor = CLUSTER_SIZE;
1402 
1403 	do {
1404 		list_for_each_entry(vma,
1405 			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1406 
1407 			cursor = (unsigned long) vma->vm_private_data;
1408 			while (cursor < max_nl_cursor &&
1409 				cursor < vma->vm_end - vma->vm_start) {
1410 				if (try_to_unmap_cluster(cursor, &mapcount,
1411 						vma, page) == SWAP_MLOCK)
1412 					ret = SWAP_MLOCK;
1413 				cursor += CLUSTER_SIZE;
1414 				vma->vm_private_data = (void *) cursor;
1415 				if ((int)mapcount <= 0)
1416 					return ret;
1417 			}
1418 			vma->vm_private_data = (void *) max_nl_cursor;
1419 		}
1420 		cond_resched();
1421 		max_nl_cursor += CLUSTER_SIZE;
1422 	} while (max_nl_cursor <= max_nl_size);
1423 
1424 	/*
1425 	 * Don't loop forever (perhaps all the remaining pages are
1426 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1427 	 * vmas, now forgetting on which ones it had fallen behind.
1428 	 */
1429 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1430 		vma->vm_private_data = NULL;
1431 
1432 	return ret;
1433 }
1434 
1435 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1436 {
1437 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1438 
1439 	if (!maybe_stack)
1440 		return false;
1441 
1442 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1443 						VM_STACK_INCOMPLETE_SETUP)
1444 		return true;
1445 
1446 	return false;
1447 }
1448 
1449 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1450 {
1451 	return is_vma_temporary_stack(vma);
1452 }
1453 
1454 static int page_not_mapped(struct page *page)
1455 {
1456 	return !page_mapped(page);
1457 };
1458 
1459 /**
1460  * try_to_unmap - try to remove all page table mappings to a page
1461  * @page: the page to get unmapped
1462  * @flags: action and flags
1463  *
1464  * Tries to remove all the page table entries which are mapping this
1465  * page, used in the pageout path.  Caller must hold the page lock.
1466  * Return values are:
1467  *
1468  * SWAP_SUCCESS	- we succeeded in removing all mappings
1469  * SWAP_AGAIN	- we missed a mapping, try again later
1470  * SWAP_FAIL	- the page is unswappable
1471  * SWAP_MLOCK	- page is mlocked.
1472  */
1473 int try_to_unmap(struct page *page, enum ttu_flags flags)
1474 {
1475 	int ret;
1476 	struct rmap_walk_control rwc = {
1477 		.rmap_one = try_to_unmap_one,
1478 		.arg = (void *)flags,
1479 		.done = page_not_mapped,
1480 		.file_nonlinear = try_to_unmap_nonlinear,
1481 		.anon_lock = page_lock_anon_vma_read,
1482 	};
1483 
1484 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1485 
1486 	/*
1487 	 * During exec, a temporary VMA is setup and later moved.
1488 	 * The VMA is moved under the anon_vma lock but not the
1489 	 * page tables leading to a race where migration cannot
1490 	 * find the migration ptes. Rather than increasing the
1491 	 * locking requirements of exec(), migration skips
1492 	 * temporary VMAs until after exec() completes.
1493 	 */
1494 	if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1495 		rwc.invalid_vma = invalid_migration_vma;
1496 
1497 	ret = rmap_walk(page, &rwc);
1498 
1499 	if (ret != SWAP_MLOCK && !page_mapped(page))
1500 		ret = SWAP_SUCCESS;
1501 	return ret;
1502 }
1503 
1504 /**
1505  * try_to_munlock - try to munlock a page
1506  * @page: the page to be munlocked
1507  *
1508  * Called from munlock code.  Checks all of the VMAs mapping the page
1509  * to make sure nobody else has this page mlocked. The page will be
1510  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1511  *
1512  * Return values are:
1513  *
1514  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1515  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1516  * SWAP_FAIL	- page cannot be located at present
1517  * SWAP_MLOCK	- page is now mlocked.
1518  */
1519 int try_to_munlock(struct page *page)
1520 {
1521 	int ret;
1522 	struct rmap_walk_control rwc = {
1523 		.rmap_one = try_to_unmap_one,
1524 		.arg = (void *)TTU_MUNLOCK,
1525 		.done = page_not_mapped,
1526 		/*
1527 		 * We don't bother to try to find the munlocked page in
1528 		 * nonlinears. It's costly. Instead, later, page reclaim logic
1529 		 * may call try_to_unmap() and recover PG_mlocked lazily.
1530 		 */
1531 		.file_nonlinear = NULL,
1532 		.anon_lock = page_lock_anon_vma_read,
1533 
1534 	};
1535 
1536 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1537 
1538 	ret = rmap_walk(page, &rwc);
1539 	return ret;
1540 }
1541 
1542 void __put_anon_vma(struct anon_vma *anon_vma)
1543 {
1544 	struct anon_vma *root = anon_vma->root;
1545 
1546 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1547 		anon_vma_free(root);
1548 
1549 	anon_vma_free(anon_vma);
1550 }
1551 
1552 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1553 					struct rmap_walk_control *rwc)
1554 {
1555 	struct anon_vma *anon_vma;
1556 
1557 	if (rwc->anon_lock)
1558 		return rwc->anon_lock(page);
1559 
1560 	/*
1561 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1562 	 * because that depends on page_mapped(); but not all its usages
1563 	 * are holding mmap_sem. Users without mmap_sem are required to
1564 	 * take a reference count to prevent the anon_vma disappearing
1565 	 */
1566 	anon_vma = page_anon_vma(page);
1567 	if (!anon_vma)
1568 		return NULL;
1569 
1570 	anon_vma_lock_read(anon_vma);
1571 	return anon_vma;
1572 }
1573 
1574 /*
1575  * rmap_walk_anon - do something to anonymous page using the object-based
1576  * rmap method
1577  * @page: the page to be handled
1578  * @rwc: control variable according to each walk type
1579  *
1580  * Find all the mappings of a page using the mapping pointer and the vma chains
1581  * contained in the anon_vma struct it points to.
1582  *
1583  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1584  * where the page was found will be held for write.  So, we won't recheck
1585  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1586  * LOCKED.
1587  */
1588 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1589 {
1590 	struct anon_vma *anon_vma;
1591 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1592 	struct anon_vma_chain *avc;
1593 	int ret = SWAP_AGAIN;
1594 
1595 	anon_vma = rmap_walk_anon_lock(page, rwc);
1596 	if (!anon_vma)
1597 		return ret;
1598 
1599 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1600 		struct vm_area_struct *vma = avc->vma;
1601 		unsigned long address = vma_address(page, vma);
1602 
1603 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1604 			continue;
1605 
1606 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1607 		if (ret != SWAP_AGAIN)
1608 			break;
1609 		if (rwc->done && rwc->done(page))
1610 			break;
1611 	}
1612 	anon_vma_unlock_read(anon_vma);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * rmap_walk_file - do something to file page using the object-based rmap method
1618  * @page: the page to be handled
1619  * @rwc: control variable according to each walk type
1620  *
1621  * Find all the mappings of a page using the mapping pointer and the vma chains
1622  * contained in the address_space struct it points to.
1623  *
1624  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1625  * where the page was found will be held for write.  So, we won't recheck
1626  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1627  * LOCKED.
1628  */
1629 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1630 {
1631 	struct address_space *mapping = page->mapping;
1632 	pgoff_t pgoff = page->index << compound_order(page);
1633 	struct vm_area_struct *vma;
1634 	int ret = SWAP_AGAIN;
1635 
1636 	/*
1637 	 * The page lock not only makes sure that page->mapping cannot
1638 	 * suddenly be NULLified by truncation, it makes sure that the
1639 	 * structure at mapping cannot be freed and reused yet,
1640 	 * so we can safely take mapping->i_mmap_mutex.
1641 	 */
1642 	VM_BUG_ON(!PageLocked(page));
1643 
1644 	if (!mapping)
1645 		return ret;
1646 	mutex_lock(&mapping->i_mmap_mutex);
1647 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1648 		unsigned long address = vma_address(page, vma);
1649 
1650 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1651 			continue;
1652 
1653 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1654 		if (ret != SWAP_AGAIN)
1655 			goto done;
1656 		if (rwc->done && rwc->done(page))
1657 			goto done;
1658 	}
1659 
1660 	if (!rwc->file_nonlinear)
1661 		goto done;
1662 
1663 	if (list_empty(&mapping->i_mmap_nonlinear))
1664 		goto done;
1665 
1666 	ret = rwc->file_nonlinear(page, mapping, vma);
1667 
1668 done:
1669 	mutex_unlock(&mapping->i_mmap_mutex);
1670 	return ret;
1671 }
1672 
1673 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1674 {
1675 	if (unlikely(PageKsm(page)))
1676 		return rmap_walk_ksm(page, rwc);
1677 	else if (PageAnon(page))
1678 		return rmap_walk_anon(page, rwc);
1679 	else
1680 		return rmap_walk_file(page, rwc);
1681 }
1682 
1683 #ifdef CONFIG_HUGETLB_PAGE
1684 /*
1685  * The following three functions are for anonymous (private mapped) hugepages.
1686  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1687  * and no lru code, because we handle hugepages differently from common pages.
1688  */
1689 static void __hugepage_set_anon_rmap(struct page *page,
1690 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1691 {
1692 	struct anon_vma *anon_vma = vma->anon_vma;
1693 
1694 	BUG_ON(!anon_vma);
1695 
1696 	if (PageAnon(page))
1697 		return;
1698 	if (!exclusive)
1699 		anon_vma = anon_vma->root;
1700 
1701 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1702 	page->mapping = (struct address_space *) anon_vma;
1703 	page->index = linear_page_index(vma, address);
1704 }
1705 
1706 void hugepage_add_anon_rmap(struct page *page,
1707 			    struct vm_area_struct *vma, unsigned long address)
1708 {
1709 	struct anon_vma *anon_vma = vma->anon_vma;
1710 	int first;
1711 
1712 	BUG_ON(!PageLocked(page));
1713 	BUG_ON(!anon_vma);
1714 	/* address might be in next vma when migration races vma_adjust */
1715 	first = atomic_inc_and_test(&page->_mapcount);
1716 	if (first)
1717 		__hugepage_set_anon_rmap(page, vma, address, 0);
1718 }
1719 
1720 void hugepage_add_new_anon_rmap(struct page *page,
1721 			struct vm_area_struct *vma, unsigned long address)
1722 {
1723 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1724 	atomic_set(&page->_mapcount, 0);
1725 	__hugepage_set_anon_rmap(page, vma, address, 1);
1726 }
1727 #endif /* CONFIG_HUGETLB_PAGE */
1728