xref: /linux/mm/rmap.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70 }
71 
72 void anon_vma_free(struct anon_vma *anon_vma)
73 {
74 	kmem_cache_free(anon_vma_cachep, anon_vma);
75 }
76 
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78 {
79 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80 }
81 
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83 {
84 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85 }
86 
87 /**
88  * anon_vma_prepare - attach an anon_vma to a memory region
89  * @vma: the memory region in question
90  *
91  * This makes sure the memory mapping described by 'vma' has
92  * an 'anon_vma' attached to it, so that we can associate the
93  * anonymous pages mapped into it with that anon_vma.
94  *
95  * The common case will be that we already have one, but if
96  * if not we either need to find an adjacent mapping that we
97  * can re-use the anon_vma from (very common when the only
98  * reason for splitting a vma has been mprotect()), or we
99  * allocate a new one.
100  *
101  * Anon-vma allocations are very subtle, because we may have
102  * optimistically looked up an anon_vma in page_lock_anon_vma()
103  * and that may actually touch the spinlock even in the newly
104  * allocated vma (it depends on RCU to make sure that the
105  * anon_vma isn't actually destroyed).
106  *
107  * As a result, we need to do proper anon_vma locking even
108  * for the new allocation. At the same time, we do not want
109  * to do any locking for the common case of already having
110  * an anon_vma.
111  *
112  * This must be called with the mmap_sem held for reading.
113  */
114 int anon_vma_prepare(struct vm_area_struct *vma)
115 {
116 	struct anon_vma *anon_vma = vma->anon_vma;
117 	struct anon_vma_chain *avc;
118 
119 	might_sleep();
120 	if (unlikely(!anon_vma)) {
121 		struct mm_struct *mm = vma->vm_mm;
122 		struct anon_vma *allocated;
123 
124 		avc = anon_vma_chain_alloc();
125 		if (!avc)
126 			goto out_enomem;
127 
128 		anon_vma = find_mergeable_anon_vma(vma);
129 		allocated = NULL;
130 		if (!anon_vma) {
131 			anon_vma = anon_vma_alloc();
132 			if (unlikely(!anon_vma))
133 				goto out_enomem_free_avc;
134 			allocated = anon_vma;
135 		}
136 		spin_lock(&anon_vma->lock);
137 
138 		/* page_table_lock to protect against threads */
139 		spin_lock(&mm->page_table_lock);
140 		if (likely(!vma->anon_vma)) {
141 			vma->anon_vma = anon_vma;
142 			avc->anon_vma = anon_vma;
143 			avc->vma = vma;
144 			list_add(&avc->same_vma, &vma->anon_vma_chain);
145 			list_add(&avc->same_anon_vma, &anon_vma->head);
146 			allocated = NULL;
147 		}
148 		spin_unlock(&mm->page_table_lock);
149 
150 		spin_unlock(&anon_vma->lock);
151 		if (unlikely(allocated)) {
152 			anon_vma_free(allocated);
153 			anon_vma_chain_free(avc);
154 		}
155 	}
156 	return 0;
157 
158  out_enomem_free_avc:
159 	anon_vma_chain_free(avc);
160  out_enomem:
161 	return -ENOMEM;
162 }
163 
164 static void anon_vma_chain_link(struct vm_area_struct *vma,
165 				struct anon_vma_chain *avc,
166 				struct anon_vma *anon_vma)
167 {
168 	avc->vma = vma;
169 	avc->anon_vma = anon_vma;
170 	list_add(&avc->same_vma, &vma->anon_vma_chain);
171 
172 	spin_lock(&anon_vma->lock);
173 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 	spin_unlock(&anon_vma->lock);
175 }
176 
177 /*
178  * Attach the anon_vmas from src to dst.
179  * Returns 0 on success, -ENOMEM on failure.
180  */
181 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
182 {
183 	struct anon_vma_chain *avc, *pavc;
184 
185 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
186 		avc = anon_vma_chain_alloc();
187 		if (!avc)
188 			goto enomem_failure;
189 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
190 	}
191 	return 0;
192 
193  enomem_failure:
194 	unlink_anon_vmas(dst);
195 	return -ENOMEM;
196 }
197 
198 /*
199  * Attach vma to its own anon_vma, as well as to the anon_vmas that
200  * the corresponding VMA in the parent process is attached to.
201  * Returns 0 on success, non-zero on failure.
202  */
203 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
204 {
205 	struct anon_vma_chain *avc;
206 	struct anon_vma *anon_vma;
207 
208 	/* Don't bother if the parent process has no anon_vma here. */
209 	if (!pvma->anon_vma)
210 		return 0;
211 
212 	/*
213 	 * First, attach the new VMA to the parent VMA's anon_vmas,
214 	 * so rmap can find non-COWed pages in child processes.
215 	 */
216 	if (anon_vma_clone(vma, pvma))
217 		return -ENOMEM;
218 
219 	/* Then add our own anon_vma. */
220 	anon_vma = anon_vma_alloc();
221 	if (!anon_vma)
222 		goto out_error;
223 	avc = anon_vma_chain_alloc();
224 	if (!avc)
225 		goto out_error_free_anon_vma;
226 	anon_vma_chain_link(vma, avc, anon_vma);
227 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
228 	vma->anon_vma = anon_vma;
229 
230 	return 0;
231 
232  out_error_free_anon_vma:
233 	anon_vma_free(anon_vma);
234  out_error:
235 	unlink_anon_vmas(vma);
236 	return -ENOMEM;
237 }
238 
239 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
240 {
241 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
242 	int empty;
243 
244 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
245 	if (!anon_vma)
246 		return;
247 
248 	spin_lock(&anon_vma->lock);
249 	list_del(&anon_vma_chain->same_anon_vma);
250 
251 	/* We must garbage collect the anon_vma if it's empty */
252 	empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
253 	spin_unlock(&anon_vma->lock);
254 
255 	if (empty)
256 		anon_vma_free(anon_vma);
257 }
258 
259 void unlink_anon_vmas(struct vm_area_struct *vma)
260 {
261 	struct anon_vma_chain *avc, *next;
262 
263 	/* Unlink each anon_vma chained to the VMA. */
264 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
265 		anon_vma_unlink(avc);
266 		list_del(&avc->same_vma);
267 		anon_vma_chain_free(avc);
268 	}
269 }
270 
271 static void anon_vma_ctor(void *data)
272 {
273 	struct anon_vma *anon_vma = data;
274 
275 	spin_lock_init(&anon_vma->lock);
276 	ksm_refcount_init(anon_vma);
277 	INIT_LIST_HEAD(&anon_vma->head);
278 }
279 
280 void __init anon_vma_init(void)
281 {
282 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
283 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
284 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
285 }
286 
287 /*
288  * Getting a lock on a stable anon_vma from a page off the LRU is
289  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
290  */
291 struct anon_vma *page_lock_anon_vma(struct page *page)
292 {
293 	struct anon_vma *anon_vma;
294 	unsigned long anon_mapping;
295 
296 	rcu_read_lock();
297 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
298 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
299 		goto out;
300 	if (!page_mapped(page))
301 		goto out;
302 
303 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
304 	spin_lock(&anon_vma->lock);
305 	return anon_vma;
306 out:
307 	rcu_read_unlock();
308 	return NULL;
309 }
310 
311 void page_unlock_anon_vma(struct anon_vma *anon_vma)
312 {
313 	spin_unlock(&anon_vma->lock);
314 	rcu_read_unlock();
315 }
316 
317 /*
318  * At what user virtual address is page expected in @vma?
319  * Returns virtual address or -EFAULT if page's index/offset is not
320  * within the range mapped the @vma.
321  */
322 static inline unsigned long
323 vma_address(struct page *page, struct vm_area_struct *vma)
324 {
325 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
326 	unsigned long address;
327 
328 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
329 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
330 		/* page should be within @vma mapping range */
331 		return -EFAULT;
332 	}
333 	return address;
334 }
335 
336 /*
337  * At what user virtual address is page expected in vma?
338  * checking that the page matches the vma.
339  */
340 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
341 {
342 	if (PageAnon(page)) {
343 		if (vma->anon_vma != page_anon_vma(page))
344 			return -EFAULT;
345 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
346 		if (!vma->vm_file ||
347 		    vma->vm_file->f_mapping != page->mapping)
348 			return -EFAULT;
349 	} else
350 		return -EFAULT;
351 	return vma_address(page, vma);
352 }
353 
354 /*
355  * Check that @page is mapped at @address into @mm.
356  *
357  * If @sync is false, page_check_address may perform a racy check to avoid
358  * the page table lock when the pte is not present (helpful when reclaiming
359  * highly shared pages).
360  *
361  * On success returns with pte mapped and locked.
362  */
363 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
364 			  unsigned long address, spinlock_t **ptlp, int sync)
365 {
366 	pgd_t *pgd;
367 	pud_t *pud;
368 	pmd_t *pmd;
369 	pte_t *pte;
370 	spinlock_t *ptl;
371 
372 	pgd = pgd_offset(mm, address);
373 	if (!pgd_present(*pgd))
374 		return NULL;
375 
376 	pud = pud_offset(pgd, address);
377 	if (!pud_present(*pud))
378 		return NULL;
379 
380 	pmd = pmd_offset(pud, address);
381 	if (!pmd_present(*pmd))
382 		return NULL;
383 
384 	pte = pte_offset_map(pmd, address);
385 	/* Make a quick check before getting the lock */
386 	if (!sync && !pte_present(*pte)) {
387 		pte_unmap(pte);
388 		return NULL;
389 	}
390 
391 	ptl = pte_lockptr(mm, pmd);
392 	spin_lock(ptl);
393 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
394 		*ptlp = ptl;
395 		return pte;
396 	}
397 	pte_unmap_unlock(pte, ptl);
398 	return NULL;
399 }
400 
401 /**
402  * page_mapped_in_vma - check whether a page is really mapped in a VMA
403  * @page: the page to test
404  * @vma: the VMA to test
405  *
406  * Returns 1 if the page is mapped into the page tables of the VMA, 0
407  * if the page is not mapped into the page tables of this VMA.  Only
408  * valid for normal file or anonymous VMAs.
409  */
410 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
411 {
412 	unsigned long address;
413 	pte_t *pte;
414 	spinlock_t *ptl;
415 
416 	address = vma_address(page, vma);
417 	if (address == -EFAULT)		/* out of vma range */
418 		return 0;
419 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
420 	if (!pte)			/* the page is not in this mm */
421 		return 0;
422 	pte_unmap_unlock(pte, ptl);
423 
424 	return 1;
425 }
426 
427 /*
428  * Subfunctions of page_referenced: page_referenced_one called
429  * repeatedly from either page_referenced_anon or page_referenced_file.
430  */
431 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
432 			unsigned long address, unsigned int *mapcount,
433 			unsigned long *vm_flags)
434 {
435 	struct mm_struct *mm = vma->vm_mm;
436 	pte_t *pte;
437 	spinlock_t *ptl;
438 	int referenced = 0;
439 
440 	pte = page_check_address(page, mm, address, &ptl, 0);
441 	if (!pte)
442 		goto out;
443 
444 	/*
445 	 * Don't want to elevate referenced for mlocked page that gets this far,
446 	 * in order that it progresses to try_to_unmap and is moved to the
447 	 * unevictable list.
448 	 */
449 	if (vma->vm_flags & VM_LOCKED) {
450 		*mapcount = 1;	/* break early from loop */
451 		*vm_flags |= VM_LOCKED;
452 		goto out_unmap;
453 	}
454 
455 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
456 		/*
457 		 * Don't treat a reference through a sequentially read
458 		 * mapping as such.  If the page has been used in
459 		 * another mapping, we will catch it; if this other
460 		 * mapping is already gone, the unmap path will have
461 		 * set PG_referenced or activated the page.
462 		 */
463 		if (likely(!VM_SequentialReadHint(vma)))
464 			referenced++;
465 	}
466 
467 	/* Pretend the page is referenced if the task has the
468 	   swap token and is in the middle of a page fault. */
469 	if (mm != current->mm && has_swap_token(mm) &&
470 			rwsem_is_locked(&mm->mmap_sem))
471 		referenced++;
472 
473 out_unmap:
474 	(*mapcount)--;
475 	pte_unmap_unlock(pte, ptl);
476 
477 	if (referenced)
478 		*vm_flags |= vma->vm_flags;
479 out:
480 	return referenced;
481 }
482 
483 static int page_referenced_anon(struct page *page,
484 				struct mem_cgroup *mem_cont,
485 				unsigned long *vm_flags)
486 {
487 	unsigned int mapcount;
488 	struct anon_vma *anon_vma;
489 	struct anon_vma_chain *avc;
490 	int referenced = 0;
491 
492 	anon_vma = page_lock_anon_vma(page);
493 	if (!anon_vma)
494 		return referenced;
495 
496 	mapcount = page_mapcount(page);
497 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
498 		struct vm_area_struct *vma = avc->vma;
499 		unsigned long address = vma_address(page, vma);
500 		if (address == -EFAULT)
501 			continue;
502 		/*
503 		 * If we are reclaiming on behalf of a cgroup, skip
504 		 * counting on behalf of references from different
505 		 * cgroups
506 		 */
507 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
508 			continue;
509 		referenced += page_referenced_one(page, vma, address,
510 						  &mapcount, vm_flags);
511 		if (!mapcount)
512 			break;
513 	}
514 
515 	page_unlock_anon_vma(anon_vma);
516 	return referenced;
517 }
518 
519 /**
520  * page_referenced_file - referenced check for object-based rmap
521  * @page: the page we're checking references on.
522  * @mem_cont: target memory controller
523  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
524  *
525  * For an object-based mapped page, find all the places it is mapped and
526  * check/clear the referenced flag.  This is done by following the page->mapping
527  * pointer, then walking the chain of vmas it holds.  It returns the number
528  * of references it found.
529  *
530  * This function is only called from page_referenced for object-based pages.
531  */
532 static int page_referenced_file(struct page *page,
533 				struct mem_cgroup *mem_cont,
534 				unsigned long *vm_flags)
535 {
536 	unsigned int mapcount;
537 	struct address_space *mapping = page->mapping;
538 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
539 	struct vm_area_struct *vma;
540 	struct prio_tree_iter iter;
541 	int referenced = 0;
542 
543 	/*
544 	 * The caller's checks on page->mapping and !PageAnon have made
545 	 * sure that this is a file page: the check for page->mapping
546 	 * excludes the case just before it gets set on an anon page.
547 	 */
548 	BUG_ON(PageAnon(page));
549 
550 	/*
551 	 * The page lock not only makes sure that page->mapping cannot
552 	 * suddenly be NULLified by truncation, it makes sure that the
553 	 * structure at mapping cannot be freed and reused yet,
554 	 * so we can safely take mapping->i_mmap_lock.
555 	 */
556 	BUG_ON(!PageLocked(page));
557 
558 	spin_lock(&mapping->i_mmap_lock);
559 
560 	/*
561 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 	 * is more likely to be accurate if we note it after spinning.
563 	 */
564 	mapcount = page_mapcount(page);
565 
566 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
567 		unsigned long address = vma_address(page, vma);
568 		if (address == -EFAULT)
569 			continue;
570 		/*
571 		 * If we are reclaiming on behalf of a cgroup, skip
572 		 * counting on behalf of references from different
573 		 * cgroups
574 		 */
575 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
576 			continue;
577 		referenced += page_referenced_one(page, vma, address,
578 						  &mapcount, vm_flags);
579 		if (!mapcount)
580 			break;
581 	}
582 
583 	spin_unlock(&mapping->i_mmap_lock);
584 	return referenced;
585 }
586 
587 /**
588  * page_referenced - test if the page was referenced
589  * @page: the page to test
590  * @is_locked: caller holds lock on the page
591  * @mem_cont: target memory controller
592  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
593  *
594  * Quick test_and_clear_referenced for all mappings to a page,
595  * returns the number of ptes which referenced the page.
596  */
597 int page_referenced(struct page *page,
598 		    int is_locked,
599 		    struct mem_cgroup *mem_cont,
600 		    unsigned long *vm_flags)
601 {
602 	int referenced = 0;
603 	int we_locked = 0;
604 
605 	*vm_flags = 0;
606 	if (page_mapped(page) && page_rmapping(page)) {
607 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
608 			we_locked = trylock_page(page);
609 			if (!we_locked) {
610 				referenced++;
611 				goto out;
612 			}
613 		}
614 		if (unlikely(PageKsm(page)))
615 			referenced += page_referenced_ksm(page, mem_cont,
616 								vm_flags);
617 		else if (PageAnon(page))
618 			referenced += page_referenced_anon(page, mem_cont,
619 								vm_flags);
620 		else if (page->mapping)
621 			referenced += page_referenced_file(page, mem_cont,
622 								vm_flags);
623 		if (we_locked)
624 			unlock_page(page);
625 	}
626 out:
627 	if (page_test_and_clear_young(page))
628 		referenced++;
629 
630 	return referenced;
631 }
632 
633 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
634 			    unsigned long address)
635 {
636 	struct mm_struct *mm = vma->vm_mm;
637 	pte_t *pte;
638 	spinlock_t *ptl;
639 	int ret = 0;
640 
641 	pte = page_check_address(page, mm, address, &ptl, 1);
642 	if (!pte)
643 		goto out;
644 
645 	if (pte_dirty(*pte) || pte_write(*pte)) {
646 		pte_t entry;
647 
648 		flush_cache_page(vma, address, pte_pfn(*pte));
649 		entry = ptep_clear_flush_notify(vma, address, pte);
650 		entry = pte_wrprotect(entry);
651 		entry = pte_mkclean(entry);
652 		set_pte_at(mm, address, pte, entry);
653 		ret = 1;
654 	}
655 
656 	pte_unmap_unlock(pte, ptl);
657 out:
658 	return ret;
659 }
660 
661 static int page_mkclean_file(struct address_space *mapping, struct page *page)
662 {
663 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
664 	struct vm_area_struct *vma;
665 	struct prio_tree_iter iter;
666 	int ret = 0;
667 
668 	BUG_ON(PageAnon(page));
669 
670 	spin_lock(&mapping->i_mmap_lock);
671 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
672 		if (vma->vm_flags & VM_SHARED) {
673 			unsigned long address = vma_address(page, vma);
674 			if (address == -EFAULT)
675 				continue;
676 			ret += page_mkclean_one(page, vma, address);
677 		}
678 	}
679 	spin_unlock(&mapping->i_mmap_lock);
680 	return ret;
681 }
682 
683 int page_mkclean(struct page *page)
684 {
685 	int ret = 0;
686 
687 	BUG_ON(!PageLocked(page));
688 
689 	if (page_mapped(page)) {
690 		struct address_space *mapping = page_mapping(page);
691 		if (mapping) {
692 			ret = page_mkclean_file(mapping, page);
693 			if (page_test_dirty(page)) {
694 				page_clear_dirty(page);
695 				ret = 1;
696 			}
697 		}
698 	}
699 
700 	return ret;
701 }
702 EXPORT_SYMBOL_GPL(page_mkclean);
703 
704 /**
705  * page_move_anon_rmap - move a page to our anon_vma
706  * @page:	the page to move to our anon_vma
707  * @vma:	the vma the page belongs to
708  * @address:	the user virtual address mapped
709  *
710  * When a page belongs exclusively to one process after a COW event,
711  * that page can be moved into the anon_vma that belongs to just that
712  * process, so the rmap code will not search the parent or sibling
713  * processes.
714  */
715 void page_move_anon_rmap(struct page *page,
716 	struct vm_area_struct *vma, unsigned long address)
717 {
718 	struct anon_vma *anon_vma = vma->anon_vma;
719 
720 	VM_BUG_ON(!PageLocked(page));
721 	VM_BUG_ON(!anon_vma);
722 	VM_BUG_ON(page->index != linear_page_index(vma, address));
723 
724 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
725 	page->mapping = (struct address_space *) anon_vma;
726 }
727 
728 /**
729  * __page_set_anon_rmap - setup new anonymous rmap
730  * @page:	the page to add the mapping to
731  * @vma:	the vm area in which the mapping is added
732  * @address:	the user virtual address mapped
733  * @exclusive:	the page is exclusively owned by the current process
734  */
735 static void __page_set_anon_rmap(struct page *page,
736 	struct vm_area_struct *vma, unsigned long address, int exclusive)
737 {
738 	struct anon_vma *anon_vma = vma->anon_vma;
739 
740 	BUG_ON(!anon_vma);
741 
742 	/*
743 	 * If the page isn't exclusively mapped into this vma,
744 	 * we must use the _oldest_ possible anon_vma for the
745 	 * page mapping!
746 	 *
747 	 * So take the last AVC chain entry in the vma, which is
748 	 * the deepest ancestor, and use the anon_vma from that.
749 	 */
750 	if (!exclusive) {
751 		struct anon_vma_chain *avc;
752 		avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
753 		anon_vma = avc->anon_vma;
754 	}
755 
756 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
757 	page->mapping = (struct address_space *) anon_vma;
758 	page->index = linear_page_index(vma, address);
759 }
760 
761 /**
762  * __page_check_anon_rmap - sanity check anonymous rmap addition
763  * @page:	the page to add the mapping to
764  * @vma:	the vm area in which the mapping is added
765  * @address:	the user virtual address mapped
766  */
767 static void __page_check_anon_rmap(struct page *page,
768 	struct vm_area_struct *vma, unsigned long address)
769 {
770 #ifdef CONFIG_DEBUG_VM
771 	/*
772 	 * The page's anon-rmap details (mapping and index) are guaranteed to
773 	 * be set up correctly at this point.
774 	 *
775 	 * We have exclusion against page_add_anon_rmap because the caller
776 	 * always holds the page locked, except if called from page_dup_rmap,
777 	 * in which case the page is already known to be setup.
778 	 *
779 	 * We have exclusion against page_add_new_anon_rmap because those pages
780 	 * are initially only visible via the pagetables, and the pte is locked
781 	 * over the call to page_add_new_anon_rmap.
782 	 */
783 	BUG_ON(page->index != linear_page_index(vma, address));
784 #endif
785 }
786 
787 /**
788  * page_add_anon_rmap - add pte mapping to an anonymous page
789  * @page:	the page to add the mapping to
790  * @vma:	the vm area in which the mapping is added
791  * @address:	the user virtual address mapped
792  *
793  * The caller needs to hold the pte lock, and the page must be locked in
794  * the anon_vma case: to serialize mapping,index checking after setting,
795  * and to ensure that PageAnon is not being upgraded racily to PageKsm
796  * (but PageKsm is never downgraded to PageAnon).
797  */
798 void page_add_anon_rmap(struct page *page,
799 	struct vm_area_struct *vma, unsigned long address)
800 {
801 	int first = atomic_inc_and_test(&page->_mapcount);
802 	if (first)
803 		__inc_zone_page_state(page, NR_ANON_PAGES);
804 	if (unlikely(PageKsm(page)))
805 		return;
806 
807 	VM_BUG_ON(!PageLocked(page));
808 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
809 	if (first)
810 		__page_set_anon_rmap(page, vma, address, 0);
811 	else
812 		__page_check_anon_rmap(page, vma, address);
813 }
814 
815 /**
816  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
817  * @page:	the page to add the mapping to
818  * @vma:	the vm area in which the mapping is added
819  * @address:	the user virtual address mapped
820  *
821  * Same as page_add_anon_rmap but must only be called on *new* pages.
822  * This means the inc-and-test can be bypassed.
823  * Page does not have to be locked.
824  */
825 void page_add_new_anon_rmap(struct page *page,
826 	struct vm_area_struct *vma, unsigned long address)
827 {
828 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
829 	SetPageSwapBacked(page);
830 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
831 	__inc_zone_page_state(page, NR_ANON_PAGES);
832 	__page_set_anon_rmap(page, vma, address, 1);
833 	if (page_evictable(page, vma))
834 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
835 	else
836 		add_page_to_unevictable_list(page);
837 }
838 
839 /**
840  * page_add_file_rmap - add pte mapping to a file page
841  * @page: the page to add the mapping to
842  *
843  * The caller needs to hold the pte lock.
844  */
845 void page_add_file_rmap(struct page *page)
846 {
847 	if (atomic_inc_and_test(&page->_mapcount)) {
848 		__inc_zone_page_state(page, NR_FILE_MAPPED);
849 		mem_cgroup_update_file_mapped(page, 1);
850 	}
851 }
852 
853 /**
854  * page_remove_rmap - take down pte mapping from a page
855  * @page: page to remove mapping from
856  *
857  * The caller needs to hold the pte lock.
858  */
859 void page_remove_rmap(struct page *page)
860 {
861 	/* page still mapped by someone else? */
862 	if (!atomic_add_negative(-1, &page->_mapcount))
863 		return;
864 
865 	/*
866 	 * Now that the last pte has gone, s390 must transfer dirty
867 	 * flag from storage key to struct page.  We can usually skip
868 	 * this if the page is anon, so about to be freed; but perhaps
869 	 * not if it's in swapcache - there might be another pte slot
870 	 * containing the swap entry, but page not yet written to swap.
871 	 */
872 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
873 		page_clear_dirty(page);
874 		set_page_dirty(page);
875 	}
876 	if (PageAnon(page)) {
877 		mem_cgroup_uncharge_page(page);
878 		__dec_zone_page_state(page, NR_ANON_PAGES);
879 	} else {
880 		__dec_zone_page_state(page, NR_FILE_MAPPED);
881 		mem_cgroup_update_file_mapped(page, -1);
882 	}
883 	/*
884 	 * It would be tidy to reset the PageAnon mapping here,
885 	 * but that might overwrite a racing page_add_anon_rmap
886 	 * which increments mapcount after us but sets mapping
887 	 * before us: so leave the reset to free_hot_cold_page,
888 	 * and remember that it's only reliable while mapped.
889 	 * Leaving it set also helps swapoff to reinstate ptes
890 	 * faster for those pages still in swapcache.
891 	 */
892 }
893 
894 /*
895  * Subfunctions of try_to_unmap: try_to_unmap_one called
896  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
897  */
898 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
899 		     unsigned long address, enum ttu_flags flags)
900 {
901 	struct mm_struct *mm = vma->vm_mm;
902 	pte_t *pte;
903 	pte_t pteval;
904 	spinlock_t *ptl;
905 	int ret = SWAP_AGAIN;
906 
907 	pte = page_check_address(page, mm, address, &ptl, 0);
908 	if (!pte)
909 		goto out;
910 
911 	/*
912 	 * If the page is mlock()d, we cannot swap it out.
913 	 * If it's recently referenced (perhaps page_referenced
914 	 * skipped over this mm) then we should reactivate it.
915 	 */
916 	if (!(flags & TTU_IGNORE_MLOCK)) {
917 		if (vma->vm_flags & VM_LOCKED)
918 			goto out_mlock;
919 
920 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
921 			goto out_unmap;
922 	}
923 	if (!(flags & TTU_IGNORE_ACCESS)) {
924 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
925 			ret = SWAP_FAIL;
926 			goto out_unmap;
927 		}
928   	}
929 
930 	/* Nuke the page table entry. */
931 	flush_cache_page(vma, address, page_to_pfn(page));
932 	pteval = ptep_clear_flush_notify(vma, address, pte);
933 
934 	/* Move the dirty bit to the physical page now the pte is gone. */
935 	if (pte_dirty(pteval))
936 		set_page_dirty(page);
937 
938 	/* Update high watermark before we lower rss */
939 	update_hiwater_rss(mm);
940 
941 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
942 		if (PageAnon(page))
943 			dec_mm_counter(mm, MM_ANONPAGES);
944 		else
945 			dec_mm_counter(mm, MM_FILEPAGES);
946 		set_pte_at(mm, address, pte,
947 				swp_entry_to_pte(make_hwpoison_entry(page)));
948 	} else if (PageAnon(page)) {
949 		swp_entry_t entry = { .val = page_private(page) };
950 
951 		if (PageSwapCache(page)) {
952 			/*
953 			 * Store the swap location in the pte.
954 			 * See handle_pte_fault() ...
955 			 */
956 			if (swap_duplicate(entry) < 0) {
957 				set_pte_at(mm, address, pte, pteval);
958 				ret = SWAP_FAIL;
959 				goto out_unmap;
960 			}
961 			if (list_empty(&mm->mmlist)) {
962 				spin_lock(&mmlist_lock);
963 				if (list_empty(&mm->mmlist))
964 					list_add(&mm->mmlist, &init_mm.mmlist);
965 				spin_unlock(&mmlist_lock);
966 			}
967 			dec_mm_counter(mm, MM_ANONPAGES);
968 			inc_mm_counter(mm, MM_SWAPENTS);
969 		} else if (PAGE_MIGRATION) {
970 			/*
971 			 * Store the pfn of the page in a special migration
972 			 * pte. do_swap_page() will wait until the migration
973 			 * pte is removed and then restart fault handling.
974 			 */
975 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
976 			entry = make_migration_entry(page, pte_write(pteval));
977 		}
978 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
979 		BUG_ON(pte_file(*pte));
980 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
981 		/* Establish migration entry for a file page */
982 		swp_entry_t entry;
983 		entry = make_migration_entry(page, pte_write(pteval));
984 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
985 	} else
986 		dec_mm_counter(mm, MM_FILEPAGES);
987 
988 	page_remove_rmap(page);
989 	page_cache_release(page);
990 
991 out_unmap:
992 	pte_unmap_unlock(pte, ptl);
993 out:
994 	return ret;
995 
996 out_mlock:
997 	pte_unmap_unlock(pte, ptl);
998 
999 
1000 	/*
1001 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1002 	 * unstable result and race. Plus, We can't wait here because
1003 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1004 	 * if trylock failed, the page remain in evictable lru and later
1005 	 * vmscan could retry to move the page to unevictable lru if the
1006 	 * page is actually mlocked.
1007 	 */
1008 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1009 		if (vma->vm_flags & VM_LOCKED) {
1010 			mlock_vma_page(page);
1011 			ret = SWAP_MLOCK;
1012 		}
1013 		up_read(&vma->vm_mm->mmap_sem);
1014 	}
1015 	return ret;
1016 }
1017 
1018 /*
1019  * objrmap doesn't work for nonlinear VMAs because the assumption that
1020  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1021  * Consequently, given a particular page and its ->index, we cannot locate the
1022  * ptes which are mapping that page without an exhaustive linear search.
1023  *
1024  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1025  * maps the file to which the target page belongs.  The ->vm_private_data field
1026  * holds the current cursor into that scan.  Successive searches will circulate
1027  * around the vma's virtual address space.
1028  *
1029  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1030  * more scanning pressure is placed against them as well.   Eventually pages
1031  * will become fully unmapped and are eligible for eviction.
1032  *
1033  * For very sparsely populated VMAs this is a little inefficient - chances are
1034  * there there won't be many ptes located within the scan cluster.  In this case
1035  * maybe we could scan further - to the end of the pte page, perhaps.
1036  *
1037  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1038  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1039  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1040  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1041  */
1042 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1043 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1044 
1045 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1046 		struct vm_area_struct *vma, struct page *check_page)
1047 {
1048 	struct mm_struct *mm = vma->vm_mm;
1049 	pgd_t *pgd;
1050 	pud_t *pud;
1051 	pmd_t *pmd;
1052 	pte_t *pte;
1053 	pte_t pteval;
1054 	spinlock_t *ptl;
1055 	struct page *page;
1056 	unsigned long address;
1057 	unsigned long end;
1058 	int ret = SWAP_AGAIN;
1059 	int locked_vma = 0;
1060 
1061 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1062 	end = address + CLUSTER_SIZE;
1063 	if (address < vma->vm_start)
1064 		address = vma->vm_start;
1065 	if (end > vma->vm_end)
1066 		end = vma->vm_end;
1067 
1068 	pgd = pgd_offset(mm, address);
1069 	if (!pgd_present(*pgd))
1070 		return ret;
1071 
1072 	pud = pud_offset(pgd, address);
1073 	if (!pud_present(*pud))
1074 		return ret;
1075 
1076 	pmd = pmd_offset(pud, address);
1077 	if (!pmd_present(*pmd))
1078 		return ret;
1079 
1080 	/*
1081 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1082 	 * keep the sem while scanning the cluster for mlocking pages.
1083 	 */
1084 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1085 		locked_vma = (vma->vm_flags & VM_LOCKED);
1086 		if (!locked_vma)
1087 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1088 	}
1089 
1090 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1091 
1092 	/* Update high watermark before we lower rss */
1093 	update_hiwater_rss(mm);
1094 
1095 	for (; address < end; pte++, address += PAGE_SIZE) {
1096 		if (!pte_present(*pte))
1097 			continue;
1098 		page = vm_normal_page(vma, address, *pte);
1099 		BUG_ON(!page || PageAnon(page));
1100 
1101 		if (locked_vma) {
1102 			mlock_vma_page(page);   /* no-op if already mlocked */
1103 			if (page == check_page)
1104 				ret = SWAP_MLOCK;
1105 			continue;	/* don't unmap */
1106 		}
1107 
1108 		if (ptep_clear_flush_young_notify(vma, address, pte))
1109 			continue;
1110 
1111 		/* Nuke the page table entry. */
1112 		flush_cache_page(vma, address, pte_pfn(*pte));
1113 		pteval = ptep_clear_flush_notify(vma, address, pte);
1114 
1115 		/* If nonlinear, store the file page offset in the pte. */
1116 		if (page->index != linear_page_index(vma, address))
1117 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1118 
1119 		/* Move the dirty bit to the physical page now the pte is gone. */
1120 		if (pte_dirty(pteval))
1121 			set_page_dirty(page);
1122 
1123 		page_remove_rmap(page);
1124 		page_cache_release(page);
1125 		dec_mm_counter(mm, MM_FILEPAGES);
1126 		(*mapcount)--;
1127 	}
1128 	pte_unmap_unlock(pte - 1, ptl);
1129 	if (locked_vma)
1130 		up_read(&vma->vm_mm->mmap_sem);
1131 	return ret;
1132 }
1133 
1134 /**
1135  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1136  * rmap method
1137  * @page: the page to unmap/unlock
1138  * @flags: action and flags
1139  *
1140  * Find all the mappings of a page using the mapping pointer and the vma chains
1141  * contained in the anon_vma struct it points to.
1142  *
1143  * This function is only called from try_to_unmap/try_to_munlock for
1144  * anonymous pages.
1145  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1146  * where the page was found will be held for write.  So, we won't recheck
1147  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1148  * 'LOCKED.
1149  */
1150 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1151 {
1152 	struct anon_vma *anon_vma;
1153 	struct anon_vma_chain *avc;
1154 	int ret = SWAP_AGAIN;
1155 
1156 	anon_vma = page_lock_anon_vma(page);
1157 	if (!anon_vma)
1158 		return ret;
1159 
1160 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1161 		struct vm_area_struct *vma = avc->vma;
1162 		unsigned long address = vma_address(page, vma);
1163 		if (address == -EFAULT)
1164 			continue;
1165 		ret = try_to_unmap_one(page, vma, address, flags);
1166 		if (ret != SWAP_AGAIN || !page_mapped(page))
1167 			break;
1168 	}
1169 
1170 	page_unlock_anon_vma(anon_vma);
1171 	return ret;
1172 }
1173 
1174 /**
1175  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1176  * @page: the page to unmap/unlock
1177  * @flags: action and flags
1178  *
1179  * Find all the mappings of a page using the mapping pointer and the vma chains
1180  * contained in the address_space struct it points to.
1181  *
1182  * This function is only called from try_to_unmap/try_to_munlock for
1183  * object-based pages.
1184  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1185  * where the page was found will be held for write.  So, we won't recheck
1186  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1187  * 'LOCKED.
1188  */
1189 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1190 {
1191 	struct address_space *mapping = page->mapping;
1192 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1193 	struct vm_area_struct *vma;
1194 	struct prio_tree_iter iter;
1195 	int ret = SWAP_AGAIN;
1196 	unsigned long cursor;
1197 	unsigned long max_nl_cursor = 0;
1198 	unsigned long max_nl_size = 0;
1199 	unsigned int mapcount;
1200 
1201 	spin_lock(&mapping->i_mmap_lock);
1202 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1203 		unsigned long address = vma_address(page, vma);
1204 		if (address == -EFAULT)
1205 			continue;
1206 		ret = try_to_unmap_one(page, vma, address, flags);
1207 		if (ret != SWAP_AGAIN || !page_mapped(page))
1208 			goto out;
1209 	}
1210 
1211 	if (list_empty(&mapping->i_mmap_nonlinear))
1212 		goto out;
1213 
1214 	/*
1215 	 * We don't bother to try to find the munlocked page in nonlinears.
1216 	 * It's costly. Instead, later, page reclaim logic may call
1217 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1218 	 */
1219 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1220 		goto out;
1221 
1222 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1223 						shared.vm_set.list) {
1224 		cursor = (unsigned long) vma->vm_private_data;
1225 		if (cursor > max_nl_cursor)
1226 			max_nl_cursor = cursor;
1227 		cursor = vma->vm_end - vma->vm_start;
1228 		if (cursor > max_nl_size)
1229 			max_nl_size = cursor;
1230 	}
1231 
1232 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1233 		ret = SWAP_FAIL;
1234 		goto out;
1235 	}
1236 
1237 	/*
1238 	 * We don't try to search for this page in the nonlinear vmas,
1239 	 * and page_referenced wouldn't have found it anyway.  Instead
1240 	 * just walk the nonlinear vmas trying to age and unmap some.
1241 	 * The mapcount of the page we came in with is irrelevant,
1242 	 * but even so use it as a guide to how hard we should try?
1243 	 */
1244 	mapcount = page_mapcount(page);
1245 	if (!mapcount)
1246 		goto out;
1247 	cond_resched_lock(&mapping->i_mmap_lock);
1248 
1249 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1250 	if (max_nl_cursor == 0)
1251 		max_nl_cursor = CLUSTER_SIZE;
1252 
1253 	do {
1254 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1255 						shared.vm_set.list) {
1256 			cursor = (unsigned long) vma->vm_private_data;
1257 			while ( cursor < max_nl_cursor &&
1258 				cursor < vma->vm_end - vma->vm_start) {
1259 				if (try_to_unmap_cluster(cursor, &mapcount,
1260 						vma, page) == SWAP_MLOCK)
1261 					ret = SWAP_MLOCK;
1262 				cursor += CLUSTER_SIZE;
1263 				vma->vm_private_data = (void *) cursor;
1264 				if ((int)mapcount <= 0)
1265 					goto out;
1266 			}
1267 			vma->vm_private_data = (void *) max_nl_cursor;
1268 		}
1269 		cond_resched_lock(&mapping->i_mmap_lock);
1270 		max_nl_cursor += CLUSTER_SIZE;
1271 	} while (max_nl_cursor <= max_nl_size);
1272 
1273 	/*
1274 	 * Don't loop forever (perhaps all the remaining pages are
1275 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1276 	 * vmas, now forgetting on which ones it had fallen behind.
1277 	 */
1278 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1279 		vma->vm_private_data = NULL;
1280 out:
1281 	spin_unlock(&mapping->i_mmap_lock);
1282 	return ret;
1283 }
1284 
1285 /**
1286  * try_to_unmap - try to remove all page table mappings to a page
1287  * @page: the page to get unmapped
1288  * @flags: action and flags
1289  *
1290  * Tries to remove all the page table entries which are mapping this
1291  * page, used in the pageout path.  Caller must hold the page lock.
1292  * Return values are:
1293  *
1294  * SWAP_SUCCESS	- we succeeded in removing all mappings
1295  * SWAP_AGAIN	- we missed a mapping, try again later
1296  * SWAP_FAIL	- the page is unswappable
1297  * SWAP_MLOCK	- page is mlocked.
1298  */
1299 int try_to_unmap(struct page *page, enum ttu_flags flags)
1300 {
1301 	int ret;
1302 
1303 	BUG_ON(!PageLocked(page));
1304 
1305 	if (unlikely(PageKsm(page)))
1306 		ret = try_to_unmap_ksm(page, flags);
1307 	else if (PageAnon(page))
1308 		ret = try_to_unmap_anon(page, flags);
1309 	else
1310 		ret = try_to_unmap_file(page, flags);
1311 	if (ret != SWAP_MLOCK && !page_mapped(page))
1312 		ret = SWAP_SUCCESS;
1313 	return ret;
1314 }
1315 
1316 /**
1317  * try_to_munlock - try to munlock a page
1318  * @page: the page to be munlocked
1319  *
1320  * Called from munlock code.  Checks all of the VMAs mapping the page
1321  * to make sure nobody else has this page mlocked. The page will be
1322  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1323  *
1324  * Return values are:
1325  *
1326  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1327  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1328  * SWAP_FAIL	- page cannot be located at present
1329  * SWAP_MLOCK	- page is now mlocked.
1330  */
1331 int try_to_munlock(struct page *page)
1332 {
1333 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1334 
1335 	if (unlikely(PageKsm(page)))
1336 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1337 	else if (PageAnon(page))
1338 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1339 	else
1340 		return try_to_unmap_file(page, TTU_MUNLOCK);
1341 }
1342 
1343 #ifdef CONFIG_MIGRATION
1344 /*
1345  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1346  * Called by migrate.c to remove migration ptes, but might be used more later.
1347  */
1348 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1349 		struct vm_area_struct *, unsigned long, void *), void *arg)
1350 {
1351 	struct anon_vma *anon_vma;
1352 	struct anon_vma_chain *avc;
1353 	int ret = SWAP_AGAIN;
1354 
1355 	/*
1356 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1357 	 * because that depends on page_mapped(); but not all its usages
1358 	 * are holding mmap_sem, which also gave the necessary guarantee
1359 	 * (that this anon_vma's slab has not already been destroyed).
1360 	 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1361 	 * is risky, and currently limits the usefulness of rmap_walk().
1362 	 */
1363 	anon_vma = page_anon_vma(page);
1364 	if (!anon_vma)
1365 		return ret;
1366 	spin_lock(&anon_vma->lock);
1367 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1368 		struct vm_area_struct *vma = avc->vma;
1369 		unsigned long address = vma_address(page, vma);
1370 		if (address == -EFAULT)
1371 			continue;
1372 		ret = rmap_one(page, vma, address, arg);
1373 		if (ret != SWAP_AGAIN)
1374 			break;
1375 	}
1376 	spin_unlock(&anon_vma->lock);
1377 	return ret;
1378 }
1379 
1380 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1381 		struct vm_area_struct *, unsigned long, void *), void *arg)
1382 {
1383 	struct address_space *mapping = page->mapping;
1384 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1385 	struct vm_area_struct *vma;
1386 	struct prio_tree_iter iter;
1387 	int ret = SWAP_AGAIN;
1388 
1389 	if (!mapping)
1390 		return ret;
1391 	spin_lock(&mapping->i_mmap_lock);
1392 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1393 		unsigned long address = vma_address(page, vma);
1394 		if (address == -EFAULT)
1395 			continue;
1396 		ret = rmap_one(page, vma, address, arg);
1397 		if (ret != SWAP_AGAIN)
1398 			break;
1399 	}
1400 	/*
1401 	 * No nonlinear handling: being always shared, nonlinear vmas
1402 	 * never contain migration ptes.  Decide what to do about this
1403 	 * limitation to linear when we need rmap_walk() on nonlinear.
1404 	 */
1405 	spin_unlock(&mapping->i_mmap_lock);
1406 	return ret;
1407 }
1408 
1409 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1410 		struct vm_area_struct *, unsigned long, void *), void *arg)
1411 {
1412 	VM_BUG_ON(!PageLocked(page));
1413 
1414 	if (unlikely(PageKsm(page)))
1415 		return rmap_walk_ksm(page, rmap_one, arg);
1416 	else if (PageAnon(page))
1417 		return rmap_walk_anon(page, rmap_one, arg);
1418 	else
1419 		return rmap_walk_file(page, rmap_one, arg);
1420 }
1421 #endif /* CONFIG_MIGRATION */
1422