xref: /linux/mm/rmap.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70 }
71 
72 void anon_vma_free(struct anon_vma *anon_vma)
73 {
74 	kmem_cache_free(anon_vma_cachep, anon_vma);
75 }
76 
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78 {
79 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80 }
81 
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83 {
84 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85 }
86 
87 /**
88  * anon_vma_prepare - attach an anon_vma to a memory region
89  * @vma: the memory region in question
90  *
91  * This makes sure the memory mapping described by 'vma' has
92  * an 'anon_vma' attached to it, so that we can associate the
93  * anonymous pages mapped into it with that anon_vma.
94  *
95  * The common case will be that we already have one, but if
96  * if not we either need to find an adjacent mapping that we
97  * can re-use the anon_vma from (very common when the only
98  * reason for splitting a vma has been mprotect()), or we
99  * allocate a new one.
100  *
101  * Anon-vma allocations are very subtle, because we may have
102  * optimistically looked up an anon_vma in page_lock_anon_vma()
103  * and that may actually touch the spinlock even in the newly
104  * allocated vma (it depends on RCU to make sure that the
105  * anon_vma isn't actually destroyed).
106  *
107  * As a result, we need to do proper anon_vma locking even
108  * for the new allocation. At the same time, we do not want
109  * to do any locking for the common case of already having
110  * an anon_vma.
111  *
112  * This must be called with the mmap_sem held for reading.
113  */
114 int anon_vma_prepare(struct vm_area_struct *vma)
115 {
116 	struct anon_vma *anon_vma = vma->anon_vma;
117 	struct anon_vma_chain *avc;
118 
119 	might_sleep();
120 	if (unlikely(!anon_vma)) {
121 		struct mm_struct *mm = vma->vm_mm;
122 		struct anon_vma *allocated;
123 
124 		avc = anon_vma_chain_alloc();
125 		if (!avc)
126 			goto out_enomem;
127 
128 		anon_vma = find_mergeable_anon_vma(vma);
129 		allocated = NULL;
130 		if (!anon_vma) {
131 			anon_vma = anon_vma_alloc();
132 			if (unlikely(!anon_vma))
133 				goto out_enomem_free_avc;
134 			allocated = anon_vma;
135 		}
136 		spin_lock(&anon_vma->lock);
137 
138 		/* page_table_lock to protect against threads */
139 		spin_lock(&mm->page_table_lock);
140 		if (likely(!vma->anon_vma)) {
141 			vma->anon_vma = anon_vma;
142 			avc->anon_vma = anon_vma;
143 			avc->vma = vma;
144 			list_add(&avc->same_vma, &vma->anon_vma_chain);
145 			list_add(&avc->same_anon_vma, &anon_vma->head);
146 			allocated = NULL;
147 		}
148 		spin_unlock(&mm->page_table_lock);
149 
150 		spin_unlock(&anon_vma->lock);
151 		if (unlikely(allocated)) {
152 			anon_vma_free(allocated);
153 			anon_vma_chain_free(avc);
154 		}
155 	}
156 	return 0;
157 
158  out_enomem_free_avc:
159 	anon_vma_chain_free(avc);
160  out_enomem:
161 	return -ENOMEM;
162 }
163 
164 static void anon_vma_chain_link(struct vm_area_struct *vma,
165 				struct anon_vma_chain *avc,
166 				struct anon_vma *anon_vma)
167 {
168 	avc->vma = vma;
169 	avc->anon_vma = anon_vma;
170 	list_add(&avc->same_vma, &vma->anon_vma_chain);
171 
172 	spin_lock(&anon_vma->lock);
173 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 	spin_unlock(&anon_vma->lock);
175 }
176 
177 /*
178  * Attach the anon_vmas from src to dst.
179  * Returns 0 on success, -ENOMEM on failure.
180  */
181 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
182 {
183 	struct anon_vma_chain *avc, *pavc;
184 
185 	list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
186 		avc = anon_vma_chain_alloc();
187 		if (!avc)
188 			goto enomem_failure;
189 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
190 	}
191 	return 0;
192 
193  enomem_failure:
194 	unlink_anon_vmas(dst);
195 	return -ENOMEM;
196 }
197 
198 /*
199  * Attach vma to its own anon_vma, as well as to the anon_vmas that
200  * the corresponding VMA in the parent process is attached to.
201  * Returns 0 on success, non-zero on failure.
202  */
203 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
204 {
205 	struct anon_vma_chain *avc;
206 	struct anon_vma *anon_vma;
207 
208 	/* Don't bother if the parent process has no anon_vma here. */
209 	if (!pvma->anon_vma)
210 		return 0;
211 
212 	/*
213 	 * First, attach the new VMA to the parent VMA's anon_vmas,
214 	 * so rmap can find non-COWed pages in child processes.
215 	 */
216 	if (anon_vma_clone(vma, pvma))
217 		return -ENOMEM;
218 
219 	/* Then add our own anon_vma. */
220 	anon_vma = anon_vma_alloc();
221 	if (!anon_vma)
222 		goto out_error;
223 	avc = anon_vma_chain_alloc();
224 	if (!avc)
225 		goto out_error_free_anon_vma;
226 	anon_vma_chain_link(vma, avc, anon_vma);
227 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
228 	vma->anon_vma = anon_vma;
229 
230 	return 0;
231 
232  out_error_free_anon_vma:
233 	anon_vma_free(anon_vma);
234  out_error:
235 	return -ENOMEM;
236 }
237 
238 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
239 {
240 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
241 	int empty;
242 
243 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
244 	if (!anon_vma)
245 		return;
246 
247 	spin_lock(&anon_vma->lock);
248 	list_del(&anon_vma_chain->same_anon_vma);
249 
250 	/* We must garbage collect the anon_vma if it's empty */
251 	empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
252 	spin_unlock(&anon_vma->lock);
253 
254 	if (empty)
255 		anon_vma_free(anon_vma);
256 }
257 
258 void unlink_anon_vmas(struct vm_area_struct *vma)
259 {
260 	struct anon_vma_chain *avc, *next;
261 
262 	/* Unlink each anon_vma chained to the VMA. */
263 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
264 		anon_vma_unlink(avc);
265 		list_del(&avc->same_vma);
266 		anon_vma_chain_free(avc);
267 	}
268 }
269 
270 static void anon_vma_ctor(void *data)
271 {
272 	struct anon_vma *anon_vma = data;
273 
274 	spin_lock_init(&anon_vma->lock);
275 	ksm_refcount_init(anon_vma);
276 	INIT_LIST_HEAD(&anon_vma->head);
277 }
278 
279 void __init anon_vma_init(void)
280 {
281 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
282 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
283 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
284 }
285 
286 /*
287  * Getting a lock on a stable anon_vma from a page off the LRU is
288  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
289  */
290 struct anon_vma *page_lock_anon_vma(struct page *page)
291 {
292 	struct anon_vma *anon_vma;
293 	unsigned long anon_mapping;
294 
295 	rcu_read_lock();
296 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
297 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
298 		goto out;
299 	if (!page_mapped(page))
300 		goto out;
301 
302 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
303 	spin_lock(&anon_vma->lock);
304 	return anon_vma;
305 out:
306 	rcu_read_unlock();
307 	return NULL;
308 }
309 
310 void page_unlock_anon_vma(struct anon_vma *anon_vma)
311 {
312 	spin_unlock(&anon_vma->lock);
313 	rcu_read_unlock();
314 }
315 
316 /*
317  * At what user virtual address is page expected in @vma?
318  * Returns virtual address or -EFAULT if page's index/offset is not
319  * within the range mapped the @vma.
320  */
321 static inline unsigned long
322 vma_address(struct page *page, struct vm_area_struct *vma)
323 {
324 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
325 	unsigned long address;
326 
327 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
328 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
329 		/* page should be within @vma mapping range */
330 		return -EFAULT;
331 	}
332 	return address;
333 }
334 
335 /*
336  * At what user virtual address is page expected in vma?
337  * checking that the page matches the vma.
338  */
339 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
340 {
341 	if (PageAnon(page)) {
342 		if (vma->anon_vma != page_anon_vma(page))
343 			return -EFAULT;
344 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
345 		if (!vma->vm_file ||
346 		    vma->vm_file->f_mapping != page->mapping)
347 			return -EFAULT;
348 	} else
349 		return -EFAULT;
350 	return vma_address(page, vma);
351 }
352 
353 /*
354  * Check that @page is mapped at @address into @mm.
355  *
356  * If @sync is false, page_check_address may perform a racy check to avoid
357  * the page table lock when the pte is not present (helpful when reclaiming
358  * highly shared pages).
359  *
360  * On success returns with pte mapped and locked.
361  */
362 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
363 			  unsigned long address, spinlock_t **ptlp, int sync)
364 {
365 	pgd_t *pgd;
366 	pud_t *pud;
367 	pmd_t *pmd;
368 	pte_t *pte;
369 	spinlock_t *ptl;
370 
371 	pgd = pgd_offset(mm, address);
372 	if (!pgd_present(*pgd))
373 		return NULL;
374 
375 	pud = pud_offset(pgd, address);
376 	if (!pud_present(*pud))
377 		return NULL;
378 
379 	pmd = pmd_offset(pud, address);
380 	if (!pmd_present(*pmd))
381 		return NULL;
382 
383 	pte = pte_offset_map(pmd, address);
384 	/* Make a quick check before getting the lock */
385 	if (!sync && !pte_present(*pte)) {
386 		pte_unmap(pte);
387 		return NULL;
388 	}
389 
390 	ptl = pte_lockptr(mm, pmd);
391 	spin_lock(ptl);
392 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
393 		*ptlp = ptl;
394 		return pte;
395 	}
396 	pte_unmap_unlock(pte, ptl);
397 	return NULL;
398 }
399 
400 /**
401  * page_mapped_in_vma - check whether a page is really mapped in a VMA
402  * @page: the page to test
403  * @vma: the VMA to test
404  *
405  * Returns 1 if the page is mapped into the page tables of the VMA, 0
406  * if the page is not mapped into the page tables of this VMA.  Only
407  * valid for normal file or anonymous VMAs.
408  */
409 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
410 {
411 	unsigned long address;
412 	pte_t *pte;
413 	spinlock_t *ptl;
414 
415 	address = vma_address(page, vma);
416 	if (address == -EFAULT)		/* out of vma range */
417 		return 0;
418 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
419 	if (!pte)			/* the page is not in this mm */
420 		return 0;
421 	pte_unmap_unlock(pte, ptl);
422 
423 	return 1;
424 }
425 
426 /*
427  * Subfunctions of page_referenced: page_referenced_one called
428  * repeatedly from either page_referenced_anon or page_referenced_file.
429  */
430 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
431 			unsigned long address, unsigned int *mapcount,
432 			unsigned long *vm_flags)
433 {
434 	struct mm_struct *mm = vma->vm_mm;
435 	pte_t *pte;
436 	spinlock_t *ptl;
437 	int referenced = 0;
438 
439 	pte = page_check_address(page, mm, address, &ptl, 0);
440 	if (!pte)
441 		goto out;
442 
443 	/*
444 	 * Don't want to elevate referenced for mlocked page that gets this far,
445 	 * in order that it progresses to try_to_unmap and is moved to the
446 	 * unevictable list.
447 	 */
448 	if (vma->vm_flags & VM_LOCKED) {
449 		*mapcount = 1;	/* break early from loop */
450 		*vm_flags |= VM_LOCKED;
451 		goto out_unmap;
452 	}
453 
454 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
455 		/*
456 		 * Don't treat a reference through a sequentially read
457 		 * mapping as such.  If the page has been used in
458 		 * another mapping, we will catch it; if this other
459 		 * mapping is already gone, the unmap path will have
460 		 * set PG_referenced or activated the page.
461 		 */
462 		if (likely(!VM_SequentialReadHint(vma)))
463 			referenced++;
464 	}
465 
466 	/* Pretend the page is referenced if the task has the
467 	   swap token and is in the middle of a page fault. */
468 	if (mm != current->mm && has_swap_token(mm) &&
469 			rwsem_is_locked(&mm->mmap_sem))
470 		referenced++;
471 
472 out_unmap:
473 	(*mapcount)--;
474 	pte_unmap_unlock(pte, ptl);
475 
476 	if (referenced)
477 		*vm_flags |= vma->vm_flags;
478 out:
479 	return referenced;
480 }
481 
482 static int page_referenced_anon(struct page *page,
483 				struct mem_cgroup *mem_cont,
484 				unsigned long *vm_flags)
485 {
486 	unsigned int mapcount;
487 	struct anon_vma *anon_vma;
488 	struct anon_vma_chain *avc;
489 	int referenced = 0;
490 
491 	anon_vma = page_lock_anon_vma(page);
492 	if (!anon_vma)
493 		return referenced;
494 
495 	mapcount = page_mapcount(page);
496 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
497 		struct vm_area_struct *vma = avc->vma;
498 		unsigned long address = vma_address(page, vma);
499 		if (address == -EFAULT)
500 			continue;
501 		/*
502 		 * If we are reclaiming on behalf of a cgroup, skip
503 		 * counting on behalf of references from different
504 		 * cgroups
505 		 */
506 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
507 			continue;
508 		referenced += page_referenced_one(page, vma, address,
509 						  &mapcount, vm_flags);
510 		if (!mapcount)
511 			break;
512 	}
513 
514 	page_unlock_anon_vma(anon_vma);
515 	return referenced;
516 }
517 
518 /**
519  * page_referenced_file - referenced check for object-based rmap
520  * @page: the page we're checking references on.
521  * @mem_cont: target memory controller
522  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
523  *
524  * For an object-based mapped page, find all the places it is mapped and
525  * check/clear the referenced flag.  This is done by following the page->mapping
526  * pointer, then walking the chain of vmas it holds.  It returns the number
527  * of references it found.
528  *
529  * This function is only called from page_referenced for object-based pages.
530  */
531 static int page_referenced_file(struct page *page,
532 				struct mem_cgroup *mem_cont,
533 				unsigned long *vm_flags)
534 {
535 	unsigned int mapcount;
536 	struct address_space *mapping = page->mapping;
537 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
538 	struct vm_area_struct *vma;
539 	struct prio_tree_iter iter;
540 	int referenced = 0;
541 
542 	/*
543 	 * The caller's checks on page->mapping and !PageAnon have made
544 	 * sure that this is a file page: the check for page->mapping
545 	 * excludes the case just before it gets set on an anon page.
546 	 */
547 	BUG_ON(PageAnon(page));
548 
549 	/*
550 	 * The page lock not only makes sure that page->mapping cannot
551 	 * suddenly be NULLified by truncation, it makes sure that the
552 	 * structure at mapping cannot be freed and reused yet,
553 	 * so we can safely take mapping->i_mmap_lock.
554 	 */
555 	BUG_ON(!PageLocked(page));
556 
557 	spin_lock(&mapping->i_mmap_lock);
558 
559 	/*
560 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
561 	 * is more likely to be accurate if we note it after spinning.
562 	 */
563 	mapcount = page_mapcount(page);
564 
565 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
566 		unsigned long address = vma_address(page, vma);
567 		if (address == -EFAULT)
568 			continue;
569 		/*
570 		 * If we are reclaiming on behalf of a cgroup, skip
571 		 * counting on behalf of references from different
572 		 * cgroups
573 		 */
574 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
575 			continue;
576 		referenced += page_referenced_one(page, vma, address,
577 						  &mapcount, vm_flags);
578 		if (!mapcount)
579 			break;
580 	}
581 
582 	spin_unlock(&mapping->i_mmap_lock);
583 	return referenced;
584 }
585 
586 /**
587  * page_referenced - test if the page was referenced
588  * @page: the page to test
589  * @is_locked: caller holds lock on the page
590  * @mem_cont: target memory controller
591  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
592  *
593  * Quick test_and_clear_referenced for all mappings to a page,
594  * returns the number of ptes which referenced the page.
595  */
596 int page_referenced(struct page *page,
597 		    int is_locked,
598 		    struct mem_cgroup *mem_cont,
599 		    unsigned long *vm_flags)
600 {
601 	int referenced = 0;
602 	int we_locked = 0;
603 
604 	*vm_flags = 0;
605 	if (page_mapped(page) && page_rmapping(page)) {
606 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
607 			we_locked = trylock_page(page);
608 			if (!we_locked) {
609 				referenced++;
610 				goto out;
611 			}
612 		}
613 		if (unlikely(PageKsm(page)))
614 			referenced += page_referenced_ksm(page, mem_cont,
615 								vm_flags);
616 		else if (PageAnon(page))
617 			referenced += page_referenced_anon(page, mem_cont,
618 								vm_flags);
619 		else if (page->mapping)
620 			referenced += page_referenced_file(page, mem_cont,
621 								vm_flags);
622 		if (we_locked)
623 			unlock_page(page);
624 	}
625 out:
626 	if (page_test_and_clear_young(page))
627 		referenced++;
628 
629 	return referenced;
630 }
631 
632 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
633 			    unsigned long address)
634 {
635 	struct mm_struct *mm = vma->vm_mm;
636 	pte_t *pte;
637 	spinlock_t *ptl;
638 	int ret = 0;
639 
640 	pte = page_check_address(page, mm, address, &ptl, 1);
641 	if (!pte)
642 		goto out;
643 
644 	if (pte_dirty(*pte) || pte_write(*pte)) {
645 		pte_t entry;
646 
647 		flush_cache_page(vma, address, pte_pfn(*pte));
648 		entry = ptep_clear_flush_notify(vma, address, pte);
649 		entry = pte_wrprotect(entry);
650 		entry = pte_mkclean(entry);
651 		set_pte_at(mm, address, pte, entry);
652 		ret = 1;
653 	}
654 
655 	pte_unmap_unlock(pte, ptl);
656 out:
657 	return ret;
658 }
659 
660 static int page_mkclean_file(struct address_space *mapping, struct page *page)
661 {
662 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
663 	struct vm_area_struct *vma;
664 	struct prio_tree_iter iter;
665 	int ret = 0;
666 
667 	BUG_ON(PageAnon(page));
668 
669 	spin_lock(&mapping->i_mmap_lock);
670 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
671 		if (vma->vm_flags & VM_SHARED) {
672 			unsigned long address = vma_address(page, vma);
673 			if (address == -EFAULT)
674 				continue;
675 			ret += page_mkclean_one(page, vma, address);
676 		}
677 	}
678 	spin_unlock(&mapping->i_mmap_lock);
679 	return ret;
680 }
681 
682 int page_mkclean(struct page *page)
683 {
684 	int ret = 0;
685 
686 	BUG_ON(!PageLocked(page));
687 
688 	if (page_mapped(page)) {
689 		struct address_space *mapping = page_mapping(page);
690 		if (mapping) {
691 			ret = page_mkclean_file(mapping, page);
692 			if (page_test_dirty(page)) {
693 				page_clear_dirty(page);
694 				ret = 1;
695 			}
696 		}
697 	}
698 
699 	return ret;
700 }
701 EXPORT_SYMBOL_GPL(page_mkclean);
702 
703 /**
704  * page_move_anon_rmap - move a page to our anon_vma
705  * @page:	the page to move to our anon_vma
706  * @vma:	the vma the page belongs to
707  * @address:	the user virtual address mapped
708  *
709  * When a page belongs exclusively to one process after a COW event,
710  * that page can be moved into the anon_vma that belongs to just that
711  * process, so the rmap code will not search the parent or sibling
712  * processes.
713  */
714 void page_move_anon_rmap(struct page *page,
715 	struct vm_area_struct *vma, unsigned long address)
716 {
717 	struct anon_vma *anon_vma = vma->anon_vma;
718 
719 	VM_BUG_ON(!PageLocked(page));
720 	VM_BUG_ON(!anon_vma);
721 	VM_BUG_ON(page->index != linear_page_index(vma, address));
722 
723 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
724 	page->mapping = (struct address_space *) anon_vma;
725 }
726 
727 /**
728  * __page_set_anon_rmap - setup new anonymous rmap
729  * @page:	the page to add the mapping to
730  * @vma:	the vm area in which the mapping is added
731  * @address:	the user virtual address mapped
732  */
733 static void __page_set_anon_rmap(struct page *page,
734 	struct vm_area_struct *vma, unsigned long address)
735 {
736 	struct anon_vma *anon_vma = vma->anon_vma;
737 
738 	BUG_ON(!anon_vma);
739 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
740 	page->mapping = (struct address_space *) anon_vma;
741 	page->index = linear_page_index(vma, address);
742 }
743 
744 /**
745  * __page_check_anon_rmap - sanity check anonymous rmap addition
746  * @page:	the page to add the mapping to
747  * @vma:	the vm area in which the mapping is added
748  * @address:	the user virtual address mapped
749  */
750 static void __page_check_anon_rmap(struct page *page,
751 	struct vm_area_struct *vma, unsigned long address)
752 {
753 #ifdef CONFIG_DEBUG_VM
754 	/*
755 	 * The page's anon-rmap details (mapping and index) are guaranteed to
756 	 * be set up correctly at this point.
757 	 *
758 	 * We have exclusion against page_add_anon_rmap because the caller
759 	 * always holds the page locked, except if called from page_dup_rmap,
760 	 * in which case the page is already known to be setup.
761 	 *
762 	 * We have exclusion against page_add_new_anon_rmap because those pages
763 	 * are initially only visible via the pagetables, and the pte is locked
764 	 * over the call to page_add_new_anon_rmap.
765 	 */
766 	BUG_ON(page->index != linear_page_index(vma, address));
767 #endif
768 }
769 
770 /**
771  * page_add_anon_rmap - add pte mapping to an anonymous page
772  * @page:	the page to add the mapping to
773  * @vma:	the vm area in which the mapping is added
774  * @address:	the user virtual address mapped
775  *
776  * The caller needs to hold the pte lock, and the page must be locked in
777  * the anon_vma case: to serialize mapping,index checking after setting,
778  * and to ensure that PageAnon is not being upgraded racily to PageKsm
779  * (but PageKsm is never downgraded to PageAnon).
780  */
781 void page_add_anon_rmap(struct page *page,
782 	struct vm_area_struct *vma, unsigned long address)
783 {
784 	int first = atomic_inc_and_test(&page->_mapcount);
785 	if (first)
786 		__inc_zone_page_state(page, NR_ANON_PAGES);
787 	if (unlikely(PageKsm(page)))
788 		return;
789 
790 	VM_BUG_ON(!PageLocked(page));
791 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
792 	if (first)
793 		__page_set_anon_rmap(page, vma, address);
794 	else
795 		__page_check_anon_rmap(page, vma, address);
796 }
797 
798 /**
799  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
800  * @page:	the page to add the mapping to
801  * @vma:	the vm area in which the mapping is added
802  * @address:	the user virtual address mapped
803  *
804  * Same as page_add_anon_rmap but must only be called on *new* pages.
805  * This means the inc-and-test can be bypassed.
806  * Page does not have to be locked.
807  */
808 void page_add_new_anon_rmap(struct page *page,
809 	struct vm_area_struct *vma, unsigned long address)
810 {
811 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
812 	SetPageSwapBacked(page);
813 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
814 	__inc_zone_page_state(page, NR_ANON_PAGES);
815 	__page_set_anon_rmap(page, vma, address);
816 	if (page_evictable(page, vma))
817 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
818 	else
819 		add_page_to_unevictable_list(page);
820 }
821 
822 /**
823  * page_add_file_rmap - add pte mapping to a file page
824  * @page: the page to add the mapping to
825  *
826  * The caller needs to hold the pte lock.
827  */
828 void page_add_file_rmap(struct page *page)
829 {
830 	if (atomic_inc_and_test(&page->_mapcount)) {
831 		__inc_zone_page_state(page, NR_FILE_MAPPED);
832 		mem_cgroup_update_file_mapped(page, 1);
833 	}
834 }
835 
836 /**
837  * page_remove_rmap - take down pte mapping from a page
838  * @page: page to remove mapping from
839  *
840  * The caller needs to hold the pte lock.
841  */
842 void page_remove_rmap(struct page *page)
843 {
844 	/* page still mapped by someone else? */
845 	if (!atomic_add_negative(-1, &page->_mapcount))
846 		return;
847 
848 	/*
849 	 * Now that the last pte has gone, s390 must transfer dirty
850 	 * flag from storage key to struct page.  We can usually skip
851 	 * this if the page is anon, so about to be freed; but perhaps
852 	 * not if it's in swapcache - there might be another pte slot
853 	 * containing the swap entry, but page not yet written to swap.
854 	 */
855 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
856 		page_clear_dirty(page);
857 		set_page_dirty(page);
858 	}
859 	if (PageAnon(page)) {
860 		mem_cgroup_uncharge_page(page);
861 		__dec_zone_page_state(page, NR_ANON_PAGES);
862 	} else {
863 		__dec_zone_page_state(page, NR_FILE_MAPPED);
864 		mem_cgroup_update_file_mapped(page, -1);
865 	}
866 	/*
867 	 * It would be tidy to reset the PageAnon mapping here,
868 	 * but that might overwrite a racing page_add_anon_rmap
869 	 * which increments mapcount after us but sets mapping
870 	 * before us: so leave the reset to free_hot_cold_page,
871 	 * and remember that it's only reliable while mapped.
872 	 * Leaving it set also helps swapoff to reinstate ptes
873 	 * faster for those pages still in swapcache.
874 	 */
875 }
876 
877 /*
878  * Subfunctions of try_to_unmap: try_to_unmap_one called
879  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
880  */
881 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
882 		     unsigned long address, enum ttu_flags flags)
883 {
884 	struct mm_struct *mm = vma->vm_mm;
885 	pte_t *pte;
886 	pte_t pteval;
887 	spinlock_t *ptl;
888 	int ret = SWAP_AGAIN;
889 
890 	pte = page_check_address(page, mm, address, &ptl, 0);
891 	if (!pte)
892 		goto out;
893 
894 	/*
895 	 * If the page is mlock()d, we cannot swap it out.
896 	 * If it's recently referenced (perhaps page_referenced
897 	 * skipped over this mm) then we should reactivate it.
898 	 */
899 	if (!(flags & TTU_IGNORE_MLOCK)) {
900 		if (vma->vm_flags & VM_LOCKED)
901 			goto out_mlock;
902 
903 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
904 			goto out_unmap;
905 	}
906 	if (!(flags & TTU_IGNORE_ACCESS)) {
907 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
908 			ret = SWAP_FAIL;
909 			goto out_unmap;
910 		}
911   	}
912 
913 	/* Nuke the page table entry. */
914 	flush_cache_page(vma, address, page_to_pfn(page));
915 	pteval = ptep_clear_flush_notify(vma, address, pte);
916 
917 	/* Move the dirty bit to the physical page now the pte is gone. */
918 	if (pte_dirty(pteval))
919 		set_page_dirty(page);
920 
921 	/* Update high watermark before we lower rss */
922 	update_hiwater_rss(mm);
923 
924 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
925 		if (PageAnon(page))
926 			dec_mm_counter(mm, MM_ANONPAGES);
927 		else
928 			dec_mm_counter(mm, MM_FILEPAGES);
929 		set_pte_at(mm, address, pte,
930 				swp_entry_to_pte(make_hwpoison_entry(page)));
931 	} else if (PageAnon(page)) {
932 		swp_entry_t entry = { .val = page_private(page) };
933 
934 		if (PageSwapCache(page)) {
935 			/*
936 			 * Store the swap location in the pte.
937 			 * See handle_pte_fault() ...
938 			 */
939 			if (swap_duplicate(entry) < 0) {
940 				set_pte_at(mm, address, pte, pteval);
941 				ret = SWAP_FAIL;
942 				goto out_unmap;
943 			}
944 			if (list_empty(&mm->mmlist)) {
945 				spin_lock(&mmlist_lock);
946 				if (list_empty(&mm->mmlist))
947 					list_add(&mm->mmlist, &init_mm.mmlist);
948 				spin_unlock(&mmlist_lock);
949 			}
950 			dec_mm_counter(mm, MM_ANONPAGES);
951 			inc_mm_counter(mm, MM_SWAPENTS);
952 		} else if (PAGE_MIGRATION) {
953 			/*
954 			 * Store the pfn of the page in a special migration
955 			 * pte. do_swap_page() will wait until the migration
956 			 * pte is removed and then restart fault handling.
957 			 */
958 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
959 			entry = make_migration_entry(page, pte_write(pteval));
960 		}
961 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
962 		BUG_ON(pte_file(*pte));
963 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
964 		/* Establish migration entry for a file page */
965 		swp_entry_t entry;
966 		entry = make_migration_entry(page, pte_write(pteval));
967 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
968 	} else
969 		dec_mm_counter(mm, MM_FILEPAGES);
970 
971 	page_remove_rmap(page);
972 	page_cache_release(page);
973 
974 out_unmap:
975 	pte_unmap_unlock(pte, ptl);
976 out:
977 	return ret;
978 
979 out_mlock:
980 	pte_unmap_unlock(pte, ptl);
981 
982 
983 	/*
984 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
985 	 * unstable result and race. Plus, We can't wait here because
986 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
987 	 * if trylock failed, the page remain in evictable lru and later
988 	 * vmscan could retry to move the page to unevictable lru if the
989 	 * page is actually mlocked.
990 	 */
991 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
992 		if (vma->vm_flags & VM_LOCKED) {
993 			mlock_vma_page(page);
994 			ret = SWAP_MLOCK;
995 		}
996 		up_read(&vma->vm_mm->mmap_sem);
997 	}
998 	return ret;
999 }
1000 
1001 /*
1002  * objrmap doesn't work for nonlinear VMAs because the assumption that
1003  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1004  * Consequently, given a particular page and its ->index, we cannot locate the
1005  * ptes which are mapping that page without an exhaustive linear search.
1006  *
1007  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1008  * maps the file to which the target page belongs.  The ->vm_private_data field
1009  * holds the current cursor into that scan.  Successive searches will circulate
1010  * around the vma's virtual address space.
1011  *
1012  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1013  * more scanning pressure is placed against them as well.   Eventually pages
1014  * will become fully unmapped and are eligible for eviction.
1015  *
1016  * For very sparsely populated VMAs this is a little inefficient - chances are
1017  * there there won't be many ptes located within the scan cluster.  In this case
1018  * maybe we could scan further - to the end of the pte page, perhaps.
1019  *
1020  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1021  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1022  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1023  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1024  */
1025 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1026 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1027 
1028 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1029 		struct vm_area_struct *vma, struct page *check_page)
1030 {
1031 	struct mm_struct *mm = vma->vm_mm;
1032 	pgd_t *pgd;
1033 	pud_t *pud;
1034 	pmd_t *pmd;
1035 	pte_t *pte;
1036 	pte_t pteval;
1037 	spinlock_t *ptl;
1038 	struct page *page;
1039 	unsigned long address;
1040 	unsigned long end;
1041 	int ret = SWAP_AGAIN;
1042 	int locked_vma = 0;
1043 
1044 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1045 	end = address + CLUSTER_SIZE;
1046 	if (address < vma->vm_start)
1047 		address = vma->vm_start;
1048 	if (end > vma->vm_end)
1049 		end = vma->vm_end;
1050 
1051 	pgd = pgd_offset(mm, address);
1052 	if (!pgd_present(*pgd))
1053 		return ret;
1054 
1055 	pud = pud_offset(pgd, address);
1056 	if (!pud_present(*pud))
1057 		return ret;
1058 
1059 	pmd = pmd_offset(pud, address);
1060 	if (!pmd_present(*pmd))
1061 		return ret;
1062 
1063 	/*
1064 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1065 	 * keep the sem while scanning the cluster for mlocking pages.
1066 	 */
1067 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1068 		locked_vma = (vma->vm_flags & VM_LOCKED);
1069 		if (!locked_vma)
1070 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1071 	}
1072 
1073 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1074 
1075 	/* Update high watermark before we lower rss */
1076 	update_hiwater_rss(mm);
1077 
1078 	for (; address < end; pte++, address += PAGE_SIZE) {
1079 		if (!pte_present(*pte))
1080 			continue;
1081 		page = vm_normal_page(vma, address, *pte);
1082 		BUG_ON(!page || PageAnon(page));
1083 
1084 		if (locked_vma) {
1085 			mlock_vma_page(page);   /* no-op if already mlocked */
1086 			if (page == check_page)
1087 				ret = SWAP_MLOCK;
1088 			continue;	/* don't unmap */
1089 		}
1090 
1091 		if (ptep_clear_flush_young_notify(vma, address, pte))
1092 			continue;
1093 
1094 		/* Nuke the page table entry. */
1095 		flush_cache_page(vma, address, pte_pfn(*pte));
1096 		pteval = ptep_clear_flush_notify(vma, address, pte);
1097 
1098 		/* If nonlinear, store the file page offset in the pte. */
1099 		if (page->index != linear_page_index(vma, address))
1100 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1101 
1102 		/* Move the dirty bit to the physical page now the pte is gone. */
1103 		if (pte_dirty(pteval))
1104 			set_page_dirty(page);
1105 
1106 		page_remove_rmap(page);
1107 		page_cache_release(page);
1108 		dec_mm_counter(mm, MM_FILEPAGES);
1109 		(*mapcount)--;
1110 	}
1111 	pte_unmap_unlock(pte - 1, ptl);
1112 	if (locked_vma)
1113 		up_read(&vma->vm_mm->mmap_sem);
1114 	return ret;
1115 }
1116 
1117 /**
1118  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1119  * rmap method
1120  * @page: the page to unmap/unlock
1121  * @flags: action and flags
1122  *
1123  * Find all the mappings of a page using the mapping pointer and the vma chains
1124  * contained in the anon_vma struct it points to.
1125  *
1126  * This function is only called from try_to_unmap/try_to_munlock for
1127  * anonymous pages.
1128  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1129  * where the page was found will be held for write.  So, we won't recheck
1130  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1131  * 'LOCKED.
1132  */
1133 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1134 {
1135 	struct anon_vma *anon_vma;
1136 	struct anon_vma_chain *avc;
1137 	int ret = SWAP_AGAIN;
1138 
1139 	anon_vma = page_lock_anon_vma(page);
1140 	if (!anon_vma)
1141 		return ret;
1142 
1143 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1144 		struct vm_area_struct *vma = avc->vma;
1145 		unsigned long address = vma_address(page, vma);
1146 		if (address == -EFAULT)
1147 			continue;
1148 		ret = try_to_unmap_one(page, vma, address, flags);
1149 		if (ret != SWAP_AGAIN || !page_mapped(page))
1150 			break;
1151 	}
1152 
1153 	page_unlock_anon_vma(anon_vma);
1154 	return ret;
1155 }
1156 
1157 /**
1158  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1159  * @page: the page to unmap/unlock
1160  * @flags: action and flags
1161  *
1162  * Find all the mappings of a page using the mapping pointer and the vma chains
1163  * contained in the address_space struct it points to.
1164  *
1165  * This function is only called from try_to_unmap/try_to_munlock for
1166  * object-based pages.
1167  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1168  * where the page was found will be held for write.  So, we won't recheck
1169  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1170  * 'LOCKED.
1171  */
1172 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1173 {
1174 	struct address_space *mapping = page->mapping;
1175 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1176 	struct vm_area_struct *vma;
1177 	struct prio_tree_iter iter;
1178 	int ret = SWAP_AGAIN;
1179 	unsigned long cursor;
1180 	unsigned long max_nl_cursor = 0;
1181 	unsigned long max_nl_size = 0;
1182 	unsigned int mapcount;
1183 
1184 	spin_lock(&mapping->i_mmap_lock);
1185 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1186 		unsigned long address = vma_address(page, vma);
1187 		if (address == -EFAULT)
1188 			continue;
1189 		ret = try_to_unmap_one(page, vma, address, flags);
1190 		if (ret != SWAP_AGAIN || !page_mapped(page))
1191 			goto out;
1192 	}
1193 
1194 	if (list_empty(&mapping->i_mmap_nonlinear))
1195 		goto out;
1196 
1197 	/*
1198 	 * We don't bother to try to find the munlocked page in nonlinears.
1199 	 * It's costly. Instead, later, page reclaim logic may call
1200 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1201 	 */
1202 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1203 		goto out;
1204 
1205 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1206 						shared.vm_set.list) {
1207 		cursor = (unsigned long) vma->vm_private_data;
1208 		if (cursor > max_nl_cursor)
1209 			max_nl_cursor = cursor;
1210 		cursor = vma->vm_end - vma->vm_start;
1211 		if (cursor > max_nl_size)
1212 			max_nl_size = cursor;
1213 	}
1214 
1215 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1216 		ret = SWAP_FAIL;
1217 		goto out;
1218 	}
1219 
1220 	/*
1221 	 * We don't try to search for this page in the nonlinear vmas,
1222 	 * and page_referenced wouldn't have found it anyway.  Instead
1223 	 * just walk the nonlinear vmas trying to age and unmap some.
1224 	 * The mapcount of the page we came in with is irrelevant,
1225 	 * but even so use it as a guide to how hard we should try?
1226 	 */
1227 	mapcount = page_mapcount(page);
1228 	if (!mapcount)
1229 		goto out;
1230 	cond_resched_lock(&mapping->i_mmap_lock);
1231 
1232 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1233 	if (max_nl_cursor == 0)
1234 		max_nl_cursor = CLUSTER_SIZE;
1235 
1236 	do {
1237 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1238 						shared.vm_set.list) {
1239 			cursor = (unsigned long) vma->vm_private_data;
1240 			while ( cursor < max_nl_cursor &&
1241 				cursor < vma->vm_end - vma->vm_start) {
1242 				if (try_to_unmap_cluster(cursor, &mapcount,
1243 						vma, page) == SWAP_MLOCK)
1244 					ret = SWAP_MLOCK;
1245 				cursor += CLUSTER_SIZE;
1246 				vma->vm_private_data = (void *) cursor;
1247 				if ((int)mapcount <= 0)
1248 					goto out;
1249 			}
1250 			vma->vm_private_data = (void *) max_nl_cursor;
1251 		}
1252 		cond_resched_lock(&mapping->i_mmap_lock);
1253 		max_nl_cursor += CLUSTER_SIZE;
1254 	} while (max_nl_cursor <= max_nl_size);
1255 
1256 	/*
1257 	 * Don't loop forever (perhaps all the remaining pages are
1258 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1259 	 * vmas, now forgetting on which ones it had fallen behind.
1260 	 */
1261 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1262 		vma->vm_private_data = NULL;
1263 out:
1264 	spin_unlock(&mapping->i_mmap_lock);
1265 	return ret;
1266 }
1267 
1268 /**
1269  * try_to_unmap - try to remove all page table mappings to a page
1270  * @page: the page to get unmapped
1271  * @flags: action and flags
1272  *
1273  * Tries to remove all the page table entries which are mapping this
1274  * page, used in the pageout path.  Caller must hold the page lock.
1275  * Return values are:
1276  *
1277  * SWAP_SUCCESS	- we succeeded in removing all mappings
1278  * SWAP_AGAIN	- we missed a mapping, try again later
1279  * SWAP_FAIL	- the page is unswappable
1280  * SWAP_MLOCK	- page is mlocked.
1281  */
1282 int try_to_unmap(struct page *page, enum ttu_flags flags)
1283 {
1284 	int ret;
1285 
1286 	BUG_ON(!PageLocked(page));
1287 
1288 	if (unlikely(PageKsm(page)))
1289 		ret = try_to_unmap_ksm(page, flags);
1290 	else if (PageAnon(page))
1291 		ret = try_to_unmap_anon(page, flags);
1292 	else
1293 		ret = try_to_unmap_file(page, flags);
1294 	if (ret != SWAP_MLOCK && !page_mapped(page))
1295 		ret = SWAP_SUCCESS;
1296 	return ret;
1297 }
1298 
1299 /**
1300  * try_to_munlock - try to munlock a page
1301  * @page: the page to be munlocked
1302  *
1303  * Called from munlock code.  Checks all of the VMAs mapping the page
1304  * to make sure nobody else has this page mlocked. The page will be
1305  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1306  *
1307  * Return values are:
1308  *
1309  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1310  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1311  * SWAP_FAIL	- page cannot be located at present
1312  * SWAP_MLOCK	- page is now mlocked.
1313  */
1314 int try_to_munlock(struct page *page)
1315 {
1316 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1317 
1318 	if (unlikely(PageKsm(page)))
1319 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1320 	else if (PageAnon(page))
1321 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1322 	else
1323 		return try_to_unmap_file(page, TTU_MUNLOCK);
1324 }
1325 
1326 #ifdef CONFIG_MIGRATION
1327 /*
1328  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1329  * Called by migrate.c to remove migration ptes, but might be used more later.
1330  */
1331 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1332 		struct vm_area_struct *, unsigned long, void *), void *arg)
1333 {
1334 	struct anon_vma *anon_vma;
1335 	struct anon_vma_chain *avc;
1336 	int ret = SWAP_AGAIN;
1337 
1338 	/*
1339 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1340 	 * because that depends on page_mapped(); but not all its usages
1341 	 * are holding mmap_sem, which also gave the necessary guarantee
1342 	 * (that this anon_vma's slab has not already been destroyed).
1343 	 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1344 	 * is risky, and currently limits the usefulness of rmap_walk().
1345 	 */
1346 	anon_vma = page_anon_vma(page);
1347 	if (!anon_vma)
1348 		return ret;
1349 	spin_lock(&anon_vma->lock);
1350 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1351 		struct vm_area_struct *vma = avc->vma;
1352 		unsigned long address = vma_address(page, vma);
1353 		if (address == -EFAULT)
1354 			continue;
1355 		ret = rmap_one(page, vma, address, arg);
1356 		if (ret != SWAP_AGAIN)
1357 			break;
1358 	}
1359 	spin_unlock(&anon_vma->lock);
1360 	return ret;
1361 }
1362 
1363 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1364 		struct vm_area_struct *, unsigned long, void *), void *arg)
1365 {
1366 	struct address_space *mapping = page->mapping;
1367 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1368 	struct vm_area_struct *vma;
1369 	struct prio_tree_iter iter;
1370 	int ret = SWAP_AGAIN;
1371 
1372 	if (!mapping)
1373 		return ret;
1374 	spin_lock(&mapping->i_mmap_lock);
1375 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1376 		unsigned long address = vma_address(page, vma);
1377 		if (address == -EFAULT)
1378 			continue;
1379 		ret = rmap_one(page, vma, address, arg);
1380 		if (ret != SWAP_AGAIN)
1381 			break;
1382 	}
1383 	/*
1384 	 * No nonlinear handling: being always shared, nonlinear vmas
1385 	 * never contain migration ptes.  Decide what to do about this
1386 	 * limitation to linear when we need rmap_walk() on nonlinear.
1387 	 */
1388 	spin_unlock(&mapping->i_mmap_lock);
1389 	return ret;
1390 }
1391 
1392 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1393 		struct vm_area_struct *, unsigned long, void *), void *arg)
1394 {
1395 	VM_BUG_ON(!PageLocked(page));
1396 
1397 	if (unlikely(PageKsm(page)))
1398 		return rmap_walk_ksm(page, rmap_one, arg);
1399 	else if (PageAnon(page))
1400 		return rmap_walk_anon(page, rmap_one, arg);
1401 	else
1402 		return rmap_walk_file(page, rmap_one, arg);
1403 }
1404 #endif /* CONFIG_MIGRATION */
1405