xref: /linux/mm/rmap.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 	kmem_cache_free(anon_vma_cachep, anon_vma);
89 }
90 
91 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
92 {
93 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
94 }
95 
96 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
97 {
98 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
99 }
100 
101 /**
102  * anon_vma_prepare - attach an anon_vma to a memory region
103  * @vma: the memory region in question
104  *
105  * This makes sure the memory mapping described by 'vma' has
106  * an 'anon_vma' attached to it, so that we can associate the
107  * anonymous pages mapped into it with that anon_vma.
108  *
109  * The common case will be that we already have one, but if
110  * not we either need to find an adjacent mapping that we
111  * can re-use the anon_vma from (very common when the only
112  * reason for splitting a vma has been mprotect()), or we
113  * allocate a new one.
114  *
115  * Anon-vma allocations are very subtle, because we may have
116  * optimistically looked up an anon_vma in page_lock_anon_vma()
117  * and that may actually touch the spinlock even in the newly
118  * allocated vma (it depends on RCU to make sure that the
119  * anon_vma isn't actually destroyed).
120  *
121  * As a result, we need to do proper anon_vma locking even
122  * for the new allocation. At the same time, we do not want
123  * to do any locking for the common case of already having
124  * an anon_vma.
125  *
126  * This must be called with the mmap_sem held for reading.
127  */
128 int anon_vma_prepare(struct vm_area_struct *vma)
129 {
130 	struct anon_vma *anon_vma = vma->anon_vma;
131 	struct anon_vma_chain *avc;
132 
133 	might_sleep();
134 	if (unlikely(!anon_vma)) {
135 		struct mm_struct *mm = vma->vm_mm;
136 		struct anon_vma *allocated;
137 
138 		avc = anon_vma_chain_alloc();
139 		if (!avc)
140 			goto out_enomem;
141 
142 		anon_vma = find_mergeable_anon_vma(vma);
143 		allocated = NULL;
144 		if (!anon_vma) {
145 			anon_vma = anon_vma_alloc();
146 			if (unlikely(!anon_vma))
147 				goto out_enomem_free_avc;
148 			allocated = anon_vma;
149 		}
150 
151 		anon_vma_lock(anon_vma);
152 		/* page_table_lock to protect against threads */
153 		spin_lock(&mm->page_table_lock);
154 		if (likely(!vma->anon_vma)) {
155 			vma->anon_vma = anon_vma;
156 			avc->anon_vma = anon_vma;
157 			avc->vma = vma;
158 			list_add(&avc->same_vma, &vma->anon_vma_chain);
159 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
160 			allocated = NULL;
161 			avc = NULL;
162 		}
163 		spin_unlock(&mm->page_table_lock);
164 		anon_vma_unlock(anon_vma);
165 
166 		if (unlikely(allocated))
167 			put_anon_vma(allocated);
168 		if (unlikely(avc))
169 			anon_vma_chain_free(avc);
170 	}
171 	return 0;
172 
173  out_enomem_free_avc:
174 	anon_vma_chain_free(avc);
175  out_enomem:
176 	return -ENOMEM;
177 }
178 
179 static void anon_vma_chain_link(struct vm_area_struct *vma,
180 				struct anon_vma_chain *avc,
181 				struct anon_vma *anon_vma)
182 {
183 	avc->vma = vma;
184 	avc->anon_vma = anon_vma;
185 	list_add(&avc->same_vma, &vma->anon_vma_chain);
186 
187 	anon_vma_lock(anon_vma);
188 	/*
189 	 * It's critical to add new vmas to the tail of the anon_vma,
190 	 * see comment in huge_memory.c:__split_huge_page().
191 	 */
192 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
193 	anon_vma_unlock(anon_vma);
194 }
195 
196 /*
197  * Attach the anon_vmas from src to dst.
198  * Returns 0 on success, -ENOMEM on failure.
199  */
200 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
201 {
202 	struct anon_vma_chain *avc, *pavc;
203 
204 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
205 		avc = anon_vma_chain_alloc();
206 		if (!avc)
207 			goto enomem_failure;
208 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
209 	}
210 	return 0;
211 
212  enomem_failure:
213 	unlink_anon_vmas(dst);
214 	return -ENOMEM;
215 }
216 
217 /*
218  * Attach vma to its own anon_vma, as well as to the anon_vmas that
219  * the corresponding VMA in the parent process is attached to.
220  * Returns 0 on success, non-zero on failure.
221  */
222 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
223 {
224 	struct anon_vma_chain *avc;
225 	struct anon_vma *anon_vma;
226 
227 	/* Don't bother if the parent process has no anon_vma here. */
228 	if (!pvma->anon_vma)
229 		return 0;
230 
231 	/*
232 	 * First, attach the new VMA to the parent VMA's anon_vmas,
233 	 * so rmap can find non-COWed pages in child processes.
234 	 */
235 	if (anon_vma_clone(vma, pvma))
236 		return -ENOMEM;
237 
238 	/* Then add our own anon_vma. */
239 	anon_vma = anon_vma_alloc();
240 	if (!anon_vma)
241 		goto out_error;
242 	avc = anon_vma_chain_alloc();
243 	if (!avc)
244 		goto out_error_free_anon_vma;
245 
246 	/*
247 	 * The root anon_vma's spinlock is the lock actually used when we
248 	 * lock any of the anon_vmas in this anon_vma tree.
249 	 */
250 	anon_vma->root = pvma->anon_vma->root;
251 	/*
252 	 * With refcounts, an anon_vma can stay around longer than the
253 	 * process it belongs to. The root anon_vma needs to be pinned until
254 	 * this anon_vma is freed, because the lock lives in the root.
255 	 */
256 	get_anon_vma(anon_vma->root);
257 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
258 	vma->anon_vma = anon_vma;
259 	anon_vma_chain_link(vma, avc, anon_vma);
260 
261 	return 0;
262 
263  out_error_free_anon_vma:
264 	put_anon_vma(anon_vma);
265  out_error:
266 	unlink_anon_vmas(vma);
267 	return -ENOMEM;
268 }
269 
270 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
271 {
272 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
273 	int empty;
274 
275 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
276 	if (!anon_vma)
277 		return;
278 
279 	anon_vma_lock(anon_vma);
280 	list_del(&anon_vma_chain->same_anon_vma);
281 
282 	/* We must garbage collect the anon_vma if it's empty */
283 	empty = list_empty(&anon_vma->head);
284 	anon_vma_unlock(anon_vma);
285 
286 	if (empty)
287 		put_anon_vma(anon_vma);
288 }
289 
290 void unlink_anon_vmas(struct vm_area_struct *vma)
291 {
292 	struct anon_vma_chain *avc, *next;
293 
294 	/*
295 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
296 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
297 	 */
298 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
299 		anon_vma_unlink(avc);
300 		list_del(&avc->same_vma);
301 		anon_vma_chain_free(avc);
302 	}
303 }
304 
305 static void anon_vma_ctor(void *data)
306 {
307 	struct anon_vma *anon_vma = data;
308 
309 	spin_lock_init(&anon_vma->lock);
310 	atomic_set(&anon_vma->refcount, 0);
311 	INIT_LIST_HEAD(&anon_vma->head);
312 }
313 
314 void __init anon_vma_init(void)
315 {
316 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
317 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
318 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
319 }
320 
321 /*
322  * Getting a lock on a stable anon_vma from a page off the LRU is
323  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
324  */
325 struct anon_vma *__page_lock_anon_vma(struct page *page)
326 {
327 	struct anon_vma *anon_vma, *root_anon_vma;
328 	unsigned long anon_mapping;
329 
330 	rcu_read_lock();
331 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
332 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
333 		goto out;
334 	if (!page_mapped(page))
335 		goto out;
336 
337 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
338 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
339 	spin_lock(&root_anon_vma->lock);
340 
341 	/*
342 	 * If this page is still mapped, then its anon_vma cannot have been
343 	 * freed.  But if it has been unmapped, we have no security against
344 	 * the anon_vma structure being freed and reused (for another anon_vma:
345 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
346 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
347 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
348 	 */
349 	if (page_mapped(page))
350 		return anon_vma;
351 
352 	spin_unlock(&root_anon_vma->lock);
353 out:
354 	rcu_read_unlock();
355 	return NULL;
356 }
357 
358 void page_unlock_anon_vma(struct anon_vma *anon_vma)
359 	__releases(&anon_vma->root->lock)
360 	__releases(RCU)
361 {
362 	anon_vma_unlock(anon_vma);
363 	rcu_read_unlock();
364 }
365 
366 /*
367  * At what user virtual address is page expected in @vma?
368  * Returns virtual address or -EFAULT if page's index/offset is not
369  * within the range mapped the @vma.
370  */
371 inline unsigned long
372 vma_address(struct page *page, struct vm_area_struct *vma)
373 {
374 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
375 	unsigned long address;
376 
377 	if (unlikely(is_vm_hugetlb_page(vma)))
378 		pgoff = page->index << huge_page_order(page_hstate(page));
379 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
380 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
381 		/* page should be within @vma mapping range */
382 		return -EFAULT;
383 	}
384 	return address;
385 }
386 
387 /*
388  * At what user virtual address is page expected in vma?
389  * Caller should check the page is actually part of the vma.
390  */
391 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
392 {
393 	if (PageAnon(page)) {
394 		struct anon_vma *page__anon_vma = page_anon_vma(page);
395 		/*
396 		 * Note: swapoff's unuse_vma() is more efficient with this
397 		 * check, and needs it to match anon_vma when KSM is active.
398 		 */
399 		if (!vma->anon_vma || !page__anon_vma ||
400 		    vma->anon_vma->root != page__anon_vma->root)
401 			return -EFAULT;
402 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
403 		if (!vma->vm_file ||
404 		    vma->vm_file->f_mapping != page->mapping)
405 			return -EFAULT;
406 	} else
407 		return -EFAULT;
408 	return vma_address(page, vma);
409 }
410 
411 /*
412  * Check that @page is mapped at @address into @mm.
413  *
414  * If @sync is false, page_check_address may perform a racy check to avoid
415  * the page table lock when the pte is not present (helpful when reclaiming
416  * highly shared pages).
417  *
418  * On success returns with pte mapped and locked.
419  */
420 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
421 			  unsigned long address, spinlock_t **ptlp, int sync)
422 {
423 	pgd_t *pgd;
424 	pud_t *pud;
425 	pmd_t *pmd;
426 	pte_t *pte;
427 	spinlock_t *ptl;
428 
429 	if (unlikely(PageHuge(page))) {
430 		pte = huge_pte_offset(mm, address);
431 		ptl = &mm->page_table_lock;
432 		goto check;
433 	}
434 
435 	pgd = pgd_offset(mm, address);
436 	if (!pgd_present(*pgd))
437 		return NULL;
438 
439 	pud = pud_offset(pgd, address);
440 	if (!pud_present(*pud))
441 		return NULL;
442 
443 	pmd = pmd_offset(pud, address);
444 	if (!pmd_present(*pmd))
445 		return NULL;
446 	if (pmd_trans_huge(*pmd))
447 		return NULL;
448 
449 	pte = pte_offset_map(pmd, address);
450 	/* Make a quick check before getting the lock */
451 	if (!sync && !pte_present(*pte)) {
452 		pte_unmap(pte);
453 		return NULL;
454 	}
455 
456 	ptl = pte_lockptr(mm, pmd);
457 check:
458 	spin_lock(ptl);
459 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
460 		*ptlp = ptl;
461 		return pte;
462 	}
463 	pte_unmap_unlock(pte, ptl);
464 	return NULL;
465 }
466 
467 /**
468  * page_mapped_in_vma - check whether a page is really mapped in a VMA
469  * @page: the page to test
470  * @vma: the VMA to test
471  *
472  * Returns 1 if the page is mapped into the page tables of the VMA, 0
473  * if the page is not mapped into the page tables of this VMA.  Only
474  * valid for normal file or anonymous VMAs.
475  */
476 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
477 {
478 	unsigned long address;
479 	pte_t *pte;
480 	spinlock_t *ptl;
481 
482 	address = vma_address(page, vma);
483 	if (address == -EFAULT)		/* out of vma range */
484 		return 0;
485 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
486 	if (!pte)			/* the page is not in this mm */
487 		return 0;
488 	pte_unmap_unlock(pte, ptl);
489 
490 	return 1;
491 }
492 
493 /*
494  * Subfunctions of page_referenced: page_referenced_one called
495  * repeatedly from either page_referenced_anon or page_referenced_file.
496  */
497 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
498 			unsigned long address, unsigned int *mapcount,
499 			unsigned long *vm_flags)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	int referenced = 0;
503 
504 	if (unlikely(PageTransHuge(page))) {
505 		pmd_t *pmd;
506 
507 		spin_lock(&mm->page_table_lock);
508 		/*
509 		 * rmap might return false positives; we must filter
510 		 * these out using page_check_address_pmd().
511 		 */
512 		pmd = page_check_address_pmd(page, mm, address,
513 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
514 		if (!pmd) {
515 			spin_unlock(&mm->page_table_lock);
516 			goto out;
517 		}
518 
519 		if (vma->vm_flags & VM_LOCKED) {
520 			spin_unlock(&mm->page_table_lock);
521 			*mapcount = 0;	/* break early from loop */
522 			*vm_flags |= VM_LOCKED;
523 			goto out;
524 		}
525 
526 		/* go ahead even if the pmd is pmd_trans_splitting() */
527 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
528 			referenced++;
529 		spin_unlock(&mm->page_table_lock);
530 	} else {
531 		pte_t *pte;
532 		spinlock_t *ptl;
533 
534 		/*
535 		 * rmap might return false positives; we must filter
536 		 * these out using page_check_address().
537 		 */
538 		pte = page_check_address(page, mm, address, &ptl, 0);
539 		if (!pte)
540 			goto out;
541 
542 		if (vma->vm_flags & VM_LOCKED) {
543 			pte_unmap_unlock(pte, ptl);
544 			*mapcount = 0;	/* break early from loop */
545 			*vm_flags |= VM_LOCKED;
546 			goto out;
547 		}
548 
549 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
550 			/*
551 			 * Don't treat a reference through a sequentially read
552 			 * mapping as such.  If the page has been used in
553 			 * another mapping, we will catch it; if this other
554 			 * mapping is already gone, the unmap path will have
555 			 * set PG_referenced or activated the page.
556 			 */
557 			if (likely(!VM_SequentialReadHint(vma)))
558 				referenced++;
559 		}
560 		pte_unmap_unlock(pte, ptl);
561 	}
562 
563 	/* Pretend the page is referenced if the task has the
564 	   swap token and is in the middle of a page fault. */
565 	if (mm != current->mm && has_swap_token(mm) &&
566 			rwsem_is_locked(&mm->mmap_sem))
567 		referenced++;
568 
569 	(*mapcount)--;
570 
571 	if (referenced)
572 		*vm_flags |= vma->vm_flags;
573 out:
574 	return referenced;
575 }
576 
577 static int page_referenced_anon(struct page *page,
578 				struct mem_cgroup *mem_cont,
579 				unsigned long *vm_flags)
580 {
581 	unsigned int mapcount;
582 	struct anon_vma *anon_vma;
583 	struct anon_vma_chain *avc;
584 	int referenced = 0;
585 
586 	anon_vma = page_lock_anon_vma(page);
587 	if (!anon_vma)
588 		return referenced;
589 
590 	mapcount = page_mapcount(page);
591 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
592 		struct vm_area_struct *vma = avc->vma;
593 		unsigned long address = vma_address(page, vma);
594 		if (address == -EFAULT)
595 			continue;
596 		/*
597 		 * If we are reclaiming on behalf of a cgroup, skip
598 		 * counting on behalf of references from different
599 		 * cgroups
600 		 */
601 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
602 			continue;
603 		referenced += page_referenced_one(page, vma, address,
604 						  &mapcount, vm_flags);
605 		if (!mapcount)
606 			break;
607 	}
608 
609 	page_unlock_anon_vma(anon_vma);
610 	return referenced;
611 }
612 
613 /**
614  * page_referenced_file - referenced check for object-based rmap
615  * @page: the page we're checking references on.
616  * @mem_cont: target memory controller
617  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618  *
619  * For an object-based mapped page, find all the places it is mapped and
620  * check/clear the referenced flag.  This is done by following the page->mapping
621  * pointer, then walking the chain of vmas it holds.  It returns the number
622  * of references it found.
623  *
624  * This function is only called from page_referenced for object-based pages.
625  */
626 static int page_referenced_file(struct page *page,
627 				struct mem_cgroup *mem_cont,
628 				unsigned long *vm_flags)
629 {
630 	unsigned int mapcount;
631 	struct address_space *mapping = page->mapping;
632 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
633 	struct vm_area_struct *vma;
634 	struct prio_tree_iter iter;
635 	int referenced = 0;
636 
637 	/*
638 	 * The caller's checks on page->mapping and !PageAnon have made
639 	 * sure that this is a file page: the check for page->mapping
640 	 * excludes the case just before it gets set on an anon page.
641 	 */
642 	BUG_ON(PageAnon(page));
643 
644 	/*
645 	 * The page lock not only makes sure that page->mapping cannot
646 	 * suddenly be NULLified by truncation, it makes sure that the
647 	 * structure at mapping cannot be freed and reused yet,
648 	 * so we can safely take mapping->i_mmap_lock.
649 	 */
650 	BUG_ON(!PageLocked(page));
651 
652 	spin_lock(&mapping->i_mmap_lock);
653 
654 	/*
655 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
656 	 * is more likely to be accurate if we note it after spinning.
657 	 */
658 	mapcount = page_mapcount(page);
659 
660 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
661 		unsigned long address = vma_address(page, vma);
662 		if (address == -EFAULT)
663 			continue;
664 		/*
665 		 * If we are reclaiming on behalf of a cgroup, skip
666 		 * counting on behalf of references from different
667 		 * cgroups
668 		 */
669 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
670 			continue;
671 		referenced += page_referenced_one(page, vma, address,
672 						  &mapcount, vm_flags);
673 		if (!mapcount)
674 			break;
675 	}
676 
677 	spin_unlock(&mapping->i_mmap_lock);
678 	return referenced;
679 }
680 
681 /**
682  * page_referenced - test if the page was referenced
683  * @page: the page to test
684  * @is_locked: caller holds lock on the page
685  * @mem_cont: target memory controller
686  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
687  *
688  * Quick test_and_clear_referenced for all mappings to a page,
689  * returns the number of ptes which referenced the page.
690  */
691 int page_referenced(struct page *page,
692 		    int is_locked,
693 		    struct mem_cgroup *mem_cont,
694 		    unsigned long *vm_flags)
695 {
696 	int referenced = 0;
697 	int we_locked = 0;
698 
699 	*vm_flags = 0;
700 	if (page_mapped(page) && page_rmapping(page)) {
701 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
702 			we_locked = trylock_page(page);
703 			if (!we_locked) {
704 				referenced++;
705 				goto out;
706 			}
707 		}
708 		if (unlikely(PageKsm(page)))
709 			referenced += page_referenced_ksm(page, mem_cont,
710 								vm_flags);
711 		else if (PageAnon(page))
712 			referenced += page_referenced_anon(page, mem_cont,
713 								vm_flags);
714 		else if (page->mapping)
715 			referenced += page_referenced_file(page, mem_cont,
716 								vm_flags);
717 		if (we_locked)
718 			unlock_page(page);
719 	}
720 out:
721 	if (page_test_and_clear_young(page))
722 		referenced++;
723 
724 	return referenced;
725 }
726 
727 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
728 			    unsigned long address)
729 {
730 	struct mm_struct *mm = vma->vm_mm;
731 	pte_t *pte;
732 	spinlock_t *ptl;
733 	int ret = 0;
734 
735 	pte = page_check_address(page, mm, address, &ptl, 1);
736 	if (!pte)
737 		goto out;
738 
739 	if (pte_dirty(*pte) || pte_write(*pte)) {
740 		pte_t entry;
741 
742 		flush_cache_page(vma, address, pte_pfn(*pte));
743 		entry = ptep_clear_flush_notify(vma, address, pte);
744 		entry = pte_wrprotect(entry);
745 		entry = pte_mkclean(entry);
746 		set_pte_at(mm, address, pte, entry);
747 		ret = 1;
748 	}
749 
750 	pte_unmap_unlock(pte, ptl);
751 out:
752 	return ret;
753 }
754 
755 static int page_mkclean_file(struct address_space *mapping, struct page *page)
756 {
757 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
758 	struct vm_area_struct *vma;
759 	struct prio_tree_iter iter;
760 	int ret = 0;
761 
762 	BUG_ON(PageAnon(page));
763 
764 	spin_lock(&mapping->i_mmap_lock);
765 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
766 		if (vma->vm_flags & VM_SHARED) {
767 			unsigned long address = vma_address(page, vma);
768 			if (address == -EFAULT)
769 				continue;
770 			ret += page_mkclean_one(page, vma, address);
771 		}
772 	}
773 	spin_unlock(&mapping->i_mmap_lock);
774 	return ret;
775 }
776 
777 int page_mkclean(struct page *page)
778 {
779 	int ret = 0;
780 
781 	BUG_ON(!PageLocked(page));
782 
783 	if (page_mapped(page)) {
784 		struct address_space *mapping = page_mapping(page);
785 		if (mapping) {
786 			ret = page_mkclean_file(mapping, page);
787 			if (page_test_dirty(page)) {
788 				page_clear_dirty(page, 1);
789 				ret = 1;
790 			}
791 		}
792 	}
793 
794 	return ret;
795 }
796 EXPORT_SYMBOL_GPL(page_mkclean);
797 
798 /**
799  * page_move_anon_rmap - move a page to our anon_vma
800  * @page:	the page to move to our anon_vma
801  * @vma:	the vma the page belongs to
802  * @address:	the user virtual address mapped
803  *
804  * When a page belongs exclusively to one process after a COW event,
805  * that page can be moved into the anon_vma that belongs to just that
806  * process, so the rmap code will not search the parent or sibling
807  * processes.
808  */
809 void page_move_anon_rmap(struct page *page,
810 	struct vm_area_struct *vma, unsigned long address)
811 {
812 	struct anon_vma *anon_vma = vma->anon_vma;
813 
814 	VM_BUG_ON(!PageLocked(page));
815 	VM_BUG_ON(!anon_vma);
816 	VM_BUG_ON(page->index != linear_page_index(vma, address));
817 
818 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
819 	page->mapping = (struct address_space *) anon_vma;
820 }
821 
822 /**
823  * __page_set_anon_rmap - set up new anonymous rmap
824  * @page:	Page to add to rmap
825  * @vma:	VM area to add page to.
826  * @address:	User virtual address of the mapping
827  * @exclusive:	the page is exclusively owned by the current process
828  */
829 static void __page_set_anon_rmap(struct page *page,
830 	struct vm_area_struct *vma, unsigned long address, int exclusive)
831 {
832 	struct anon_vma *anon_vma = vma->anon_vma;
833 
834 	BUG_ON(!anon_vma);
835 
836 	if (PageAnon(page))
837 		return;
838 
839 	/*
840 	 * If the page isn't exclusively mapped into this vma,
841 	 * we must use the _oldest_ possible anon_vma for the
842 	 * page mapping!
843 	 */
844 	if (!exclusive)
845 		anon_vma = anon_vma->root;
846 
847 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
848 	page->mapping = (struct address_space *) anon_vma;
849 	page->index = linear_page_index(vma, address);
850 }
851 
852 /**
853  * __page_check_anon_rmap - sanity check anonymous rmap addition
854  * @page:	the page to add the mapping to
855  * @vma:	the vm area in which the mapping is added
856  * @address:	the user virtual address mapped
857  */
858 static void __page_check_anon_rmap(struct page *page,
859 	struct vm_area_struct *vma, unsigned long address)
860 {
861 #ifdef CONFIG_DEBUG_VM
862 	/*
863 	 * The page's anon-rmap details (mapping and index) are guaranteed to
864 	 * be set up correctly at this point.
865 	 *
866 	 * We have exclusion against page_add_anon_rmap because the caller
867 	 * always holds the page locked, except if called from page_dup_rmap,
868 	 * in which case the page is already known to be setup.
869 	 *
870 	 * We have exclusion against page_add_new_anon_rmap because those pages
871 	 * are initially only visible via the pagetables, and the pte is locked
872 	 * over the call to page_add_new_anon_rmap.
873 	 */
874 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
875 	BUG_ON(page->index != linear_page_index(vma, address));
876 #endif
877 }
878 
879 /**
880  * page_add_anon_rmap - add pte mapping to an anonymous page
881  * @page:	the page to add the mapping to
882  * @vma:	the vm area in which the mapping is added
883  * @address:	the user virtual address mapped
884  *
885  * The caller needs to hold the pte lock, and the page must be locked in
886  * the anon_vma case: to serialize mapping,index checking after setting,
887  * and to ensure that PageAnon is not being upgraded racily to PageKsm
888  * (but PageKsm is never downgraded to PageAnon).
889  */
890 void page_add_anon_rmap(struct page *page,
891 	struct vm_area_struct *vma, unsigned long address)
892 {
893 	do_page_add_anon_rmap(page, vma, address, 0);
894 }
895 
896 /*
897  * Special version of the above for do_swap_page, which often runs
898  * into pages that are exclusively owned by the current process.
899  * Everybody else should continue to use page_add_anon_rmap above.
900  */
901 void do_page_add_anon_rmap(struct page *page,
902 	struct vm_area_struct *vma, unsigned long address, int exclusive)
903 {
904 	int first = atomic_inc_and_test(&page->_mapcount);
905 	if (first) {
906 		if (!PageTransHuge(page))
907 			__inc_zone_page_state(page, NR_ANON_PAGES);
908 		else
909 			__inc_zone_page_state(page,
910 					      NR_ANON_TRANSPARENT_HUGEPAGES);
911 	}
912 	if (unlikely(PageKsm(page)))
913 		return;
914 
915 	VM_BUG_ON(!PageLocked(page));
916 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
917 	if (first)
918 		__page_set_anon_rmap(page, vma, address, exclusive);
919 	else
920 		__page_check_anon_rmap(page, vma, address);
921 }
922 
923 /**
924  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
925  * @page:	the page to add the mapping to
926  * @vma:	the vm area in which the mapping is added
927  * @address:	the user virtual address mapped
928  *
929  * Same as page_add_anon_rmap but must only be called on *new* pages.
930  * This means the inc-and-test can be bypassed.
931  * Page does not have to be locked.
932  */
933 void page_add_new_anon_rmap(struct page *page,
934 	struct vm_area_struct *vma, unsigned long address)
935 {
936 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
937 	SetPageSwapBacked(page);
938 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
939 	if (!PageTransHuge(page))
940 		__inc_zone_page_state(page, NR_ANON_PAGES);
941 	else
942 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
943 	__page_set_anon_rmap(page, vma, address, 1);
944 	if (page_evictable(page, vma))
945 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
946 	else
947 		add_page_to_unevictable_list(page);
948 }
949 
950 /**
951  * page_add_file_rmap - add pte mapping to a file page
952  * @page: the page to add the mapping to
953  *
954  * The caller needs to hold the pte lock.
955  */
956 void page_add_file_rmap(struct page *page)
957 {
958 	if (atomic_inc_and_test(&page->_mapcount)) {
959 		__inc_zone_page_state(page, NR_FILE_MAPPED);
960 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
961 	}
962 }
963 
964 /**
965  * page_remove_rmap - take down pte mapping from a page
966  * @page: page to remove mapping from
967  *
968  * The caller needs to hold the pte lock.
969  */
970 void page_remove_rmap(struct page *page)
971 {
972 	/* page still mapped by someone else? */
973 	if (!atomic_add_negative(-1, &page->_mapcount))
974 		return;
975 
976 	/*
977 	 * Now that the last pte has gone, s390 must transfer dirty
978 	 * flag from storage key to struct page.  We can usually skip
979 	 * this if the page is anon, so about to be freed; but perhaps
980 	 * not if it's in swapcache - there might be another pte slot
981 	 * containing the swap entry, but page not yet written to swap.
982 	 */
983 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
984 		page_clear_dirty(page, 1);
985 		set_page_dirty(page);
986 	}
987 	/*
988 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
989 	 * and not charged by memcg for now.
990 	 */
991 	if (unlikely(PageHuge(page)))
992 		return;
993 	if (PageAnon(page)) {
994 		mem_cgroup_uncharge_page(page);
995 		if (!PageTransHuge(page))
996 			__dec_zone_page_state(page, NR_ANON_PAGES);
997 		else
998 			__dec_zone_page_state(page,
999 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1000 	} else {
1001 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1002 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1003 	}
1004 	/*
1005 	 * It would be tidy to reset the PageAnon mapping here,
1006 	 * but that might overwrite a racing page_add_anon_rmap
1007 	 * which increments mapcount after us but sets mapping
1008 	 * before us: so leave the reset to free_hot_cold_page,
1009 	 * and remember that it's only reliable while mapped.
1010 	 * Leaving it set also helps swapoff to reinstate ptes
1011 	 * faster for those pages still in swapcache.
1012 	 */
1013 }
1014 
1015 /*
1016  * Subfunctions of try_to_unmap: try_to_unmap_one called
1017  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1018  */
1019 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1020 		     unsigned long address, enum ttu_flags flags)
1021 {
1022 	struct mm_struct *mm = vma->vm_mm;
1023 	pte_t *pte;
1024 	pte_t pteval;
1025 	spinlock_t *ptl;
1026 	int ret = SWAP_AGAIN;
1027 
1028 	pte = page_check_address(page, mm, address, &ptl, 0);
1029 	if (!pte)
1030 		goto out;
1031 
1032 	/*
1033 	 * If the page is mlock()d, we cannot swap it out.
1034 	 * If it's recently referenced (perhaps page_referenced
1035 	 * skipped over this mm) then we should reactivate it.
1036 	 */
1037 	if (!(flags & TTU_IGNORE_MLOCK)) {
1038 		if (vma->vm_flags & VM_LOCKED)
1039 			goto out_mlock;
1040 
1041 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1042 			goto out_unmap;
1043 	}
1044 	if (!(flags & TTU_IGNORE_ACCESS)) {
1045 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1046 			ret = SWAP_FAIL;
1047 			goto out_unmap;
1048 		}
1049   	}
1050 
1051 	/* Nuke the page table entry. */
1052 	flush_cache_page(vma, address, page_to_pfn(page));
1053 	pteval = ptep_clear_flush_notify(vma, address, pte);
1054 
1055 	/* Move the dirty bit to the physical page now the pte is gone. */
1056 	if (pte_dirty(pteval))
1057 		set_page_dirty(page);
1058 
1059 	/* Update high watermark before we lower rss */
1060 	update_hiwater_rss(mm);
1061 
1062 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1063 		if (PageAnon(page))
1064 			dec_mm_counter(mm, MM_ANONPAGES);
1065 		else
1066 			dec_mm_counter(mm, MM_FILEPAGES);
1067 		set_pte_at(mm, address, pte,
1068 				swp_entry_to_pte(make_hwpoison_entry(page)));
1069 	} else if (PageAnon(page)) {
1070 		swp_entry_t entry = { .val = page_private(page) };
1071 
1072 		if (PageSwapCache(page)) {
1073 			/*
1074 			 * Store the swap location in the pte.
1075 			 * See handle_pte_fault() ...
1076 			 */
1077 			if (swap_duplicate(entry) < 0) {
1078 				set_pte_at(mm, address, pte, pteval);
1079 				ret = SWAP_FAIL;
1080 				goto out_unmap;
1081 			}
1082 			if (list_empty(&mm->mmlist)) {
1083 				spin_lock(&mmlist_lock);
1084 				if (list_empty(&mm->mmlist))
1085 					list_add(&mm->mmlist, &init_mm.mmlist);
1086 				spin_unlock(&mmlist_lock);
1087 			}
1088 			dec_mm_counter(mm, MM_ANONPAGES);
1089 			inc_mm_counter(mm, MM_SWAPENTS);
1090 		} else if (PAGE_MIGRATION) {
1091 			/*
1092 			 * Store the pfn of the page in a special migration
1093 			 * pte. do_swap_page() will wait until the migration
1094 			 * pte is removed and then restart fault handling.
1095 			 */
1096 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1097 			entry = make_migration_entry(page, pte_write(pteval));
1098 		}
1099 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1100 		BUG_ON(pte_file(*pte));
1101 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1102 		/* Establish migration entry for a file page */
1103 		swp_entry_t entry;
1104 		entry = make_migration_entry(page, pte_write(pteval));
1105 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1106 	} else
1107 		dec_mm_counter(mm, MM_FILEPAGES);
1108 
1109 	page_remove_rmap(page);
1110 	page_cache_release(page);
1111 
1112 out_unmap:
1113 	pte_unmap_unlock(pte, ptl);
1114 out:
1115 	return ret;
1116 
1117 out_mlock:
1118 	pte_unmap_unlock(pte, ptl);
1119 
1120 
1121 	/*
1122 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1123 	 * unstable result and race. Plus, We can't wait here because
1124 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1125 	 * if trylock failed, the page remain in evictable lru and later
1126 	 * vmscan could retry to move the page to unevictable lru if the
1127 	 * page is actually mlocked.
1128 	 */
1129 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1130 		if (vma->vm_flags & VM_LOCKED) {
1131 			mlock_vma_page(page);
1132 			ret = SWAP_MLOCK;
1133 		}
1134 		up_read(&vma->vm_mm->mmap_sem);
1135 	}
1136 	return ret;
1137 }
1138 
1139 /*
1140  * objrmap doesn't work for nonlinear VMAs because the assumption that
1141  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1142  * Consequently, given a particular page and its ->index, we cannot locate the
1143  * ptes which are mapping that page without an exhaustive linear search.
1144  *
1145  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1146  * maps the file to which the target page belongs.  The ->vm_private_data field
1147  * holds the current cursor into that scan.  Successive searches will circulate
1148  * around the vma's virtual address space.
1149  *
1150  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1151  * more scanning pressure is placed against them as well.   Eventually pages
1152  * will become fully unmapped and are eligible for eviction.
1153  *
1154  * For very sparsely populated VMAs this is a little inefficient - chances are
1155  * there there won't be many ptes located within the scan cluster.  In this case
1156  * maybe we could scan further - to the end of the pte page, perhaps.
1157  *
1158  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1159  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1160  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1161  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1162  */
1163 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1164 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1165 
1166 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1167 		struct vm_area_struct *vma, struct page *check_page)
1168 {
1169 	struct mm_struct *mm = vma->vm_mm;
1170 	pgd_t *pgd;
1171 	pud_t *pud;
1172 	pmd_t *pmd;
1173 	pte_t *pte;
1174 	pte_t pteval;
1175 	spinlock_t *ptl;
1176 	struct page *page;
1177 	unsigned long address;
1178 	unsigned long end;
1179 	int ret = SWAP_AGAIN;
1180 	int locked_vma = 0;
1181 
1182 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1183 	end = address + CLUSTER_SIZE;
1184 	if (address < vma->vm_start)
1185 		address = vma->vm_start;
1186 	if (end > vma->vm_end)
1187 		end = vma->vm_end;
1188 
1189 	pgd = pgd_offset(mm, address);
1190 	if (!pgd_present(*pgd))
1191 		return ret;
1192 
1193 	pud = pud_offset(pgd, address);
1194 	if (!pud_present(*pud))
1195 		return ret;
1196 
1197 	pmd = pmd_offset(pud, address);
1198 	if (!pmd_present(*pmd))
1199 		return ret;
1200 
1201 	/*
1202 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1203 	 * keep the sem while scanning the cluster for mlocking pages.
1204 	 */
1205 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1206 		locked_vma = (vma->vm_flags & VM_LOCKED);
1207 		if (!locked_vma)
1208 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1209 	}
1210 
1211 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1212 
1213 	/* Update high watermark before we lower rss */
1214 	update_hiwater_rss(mm);
1215 
1216 	for (; address < end; pte++, address += PAGE_SIZE) {
1217 		if (!pte_present(*pte))
1218 			continue;
1219 		page = vm_normal_page(vma, address, *pte);
1220 		BUG_ON(!page || PageAnon(page));
1221 
1222 		if (locked_vma) {
1223 			mlock_vma_page(page);   /* no-op if already mlocked */
1224 			if (page == check_page)
1225 				ret = SWAP_MLOCK;
1226 			continue;	/* don't unmap */
1227 		}
1228 
1229 		if (ptep_clear_flush_young_notify(vma, address, pte))
1230 			continue;
1231 
1232 		/* Nuke the page table entry. */
1233 		flush_cache_page(vma, address, pte_pfn(*pte));
1234 		pteval = ptep_clear_flush_notify(vma, address, pte);
1235 
1236 		/* If nonlinear, store the file page offset in the pte. */
1237 		if (page->index != linear_page_index(vma, address))
1238 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1239 
1240 		/* Move the dirty bit to the physical page now the pte is gone. */
1241 		if (pte_dirty(pteval))
1242 			set_page_dirty(page);
1243 
1244 		page_remove_rmap(page);
1245 		page_cache_release(page);
1246 		dec_mm_counter(mm, MM_FILEPAGES);
1247 		(*mapcount)--;
1248 	}
1249 	pte_unmap_unlock(pte - 1, ptl);
1250 	if (locked_vma)
1251 		up_read(&vma->vm_mm->mmap_sem);
1252 	return ret;
1253 }
1254 
1255 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1256 {
1257 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1258 
1259 	if (!maybe_stack)
1260 		return false;
1261 
1262 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1263 						VM_STACK_INCOMPLETE_SETUP)
1264 		return true;
1265 
1266 	return false;
1267 }
1268 
1269 /**
1270  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1271  * rmap method
1272  * @page: the page to unmap/unlock
1273  * @flags: action and flags
1274  *
1275  * Find all the mappings of a page using the mapping pointer and the vma chains
1276  * contained in the anon_vma struct it points to.
1277  *
1278  * This function is only called from try_to_unmap/try_to_munlock for
1279  * anonymous pages.
1280  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1281  * where the page was found will be held for write.  So, we won't recheck
1282  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1283  * 'LOCKED.
1284  */
1285 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1286 {
1287 	struct anon_vma *anon_vma;
1288 	struct anon_vma_chain *avc;
1289 	int ret = SWAP_AGAIN;
1290 
1291 	anon_vma = page_lock_anon_vma(page);
1292 	if (!anon_vma)
1293 		return ret;
1294 
1295 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1296 		struct vm_area_struct *vma = avc->vma;
1297 		unsigned long address;
1298 
1299 		/*
1300 		 * During exec, a temporary VMA is setup and later moved.
1301 		 * The VMA is moved under the anon_vma lock but not the
1302 		 * page tables leading to a race where migration cannot
1303 		 * find the migration ptes. Rather than increasing the
1304 		 * locking requirements of exec(), migration skips
1305 		 * temporary VMAs until after exec() completes.
1306 		 */
1307 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1308 				is_vma_temporary_stack(vma))
1309 			continue;
1310 
1311 		address = vma_address(page, vma);
1312 		if (address == -EFAULT)
1313 			continue;
1314 		ret = try_to_unmap_one(page, vma, address, flags);
1315 		if (ret != SWAP_AGAIN || !page_mapped(page))
1316 			break;
1317 	}
1318 
1319 	page_unlock_anon_vma(anon_vma);
1320 	return ret;
1321 }
1322 
1323 /**
1324  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1325  * @page: the page to unmap/unlock
1326  * @flags: action and flags
1327  *
1328  * Find all the mappings of a page using the mapping pointer and the vma chains
1329  * contained in the address_space struct it points to.
1330  *
1331  * This function is only called from try_to_unmap/try_to_munlock for
1332  * object-based pages.
1333  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1334  * where the page was found will be held for write.  So, we won't recheck
1335  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1336  * 'LOCKED.
1337  */
1338 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1339 {
1340 	struct address_space *mapping = page->mapping;
1341 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1342 	struct vm_area_struct *vma;
1343 	struct prio_tree_iter iter;
1344 	int ret = SWAP_AGAIN;
1345 	unsigned long cursor;
1346 	unsigned long max_nl_cursor = 0;
1347 	unsigned long max_nl_size = 0;
1348 	unsigned int mapcount;
1349 
1350 	spin_lock(&mapping->i_mmap_lock);
1351 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1352 		unsigned long address = vma_address(page, vma);
1353 		if (address == -EFAULT)
1354 			continue;
1355 		ret = try_to_unmap_one(page, vma, address, flags);
1356 		if (ret != SWAP_AGAIN || !page_mapped(page))
1357 			goto out;
1358 	}
1359 
1360 	if (list_empty(&mapping->i_mmap_nonlinear))
1361 		goto out;
1362 
1363 	/*
1364 	 * We don't bother to try to find the munlocked page in nonlinears.
1365 	 * It's costly. Instead, later, page reclaim logic may call
1366 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1367 	 */
1368 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1369 		goto out;
1370 
1371 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1372 						shared.vm_set.list) {
1373 		cursor = (unsigned long) vma->vm_private_data;
1374 		if (cursor > max_nl_cursor)
1375 			max_nl_cursor = cursor;
1376 		cursor = vma->vm_end - vma->vm_start;
1377 		if (cursor > max_nl_size)
1378 			max_nl_size = cursor;
1379 	}
1380 
1381 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1382 		ret = SWAP_FAIL;
1383 		goto out;
1384 	}
1385 
1386 	/*
1387 	 * We don't try to search for this page in the nonlinear vmas,
1388 	 * and page_referenced wouldn't have found it anyway.  Instead
1389 	 * just walk the nonlinear vmas trying to age and unmap some.
1390 	 * The mapcount of the page we came in with is irrelevant,
1391 	 * but even so use it as a guide to how hard we should try?
1392 	 */
1393 	mapcount = page_mapcount(page);
1394 	if (!mapcount)
1395 		goto out;
1396 	cond_resched_lock(&mapping->i_mmap_lock);
1397 
1398 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1399 	if (max_nl_cursor == 0)
1400 		max_nl_cursor = CLUSTER_SIZE;
1401 
1402 	do {
1403 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1404 						shared.vm_set.list) {
1405 			cursor = (unsigned long) vma->vm_private_data;
1406 			while ( cursor < max_nl_cursor &&
1407 				cursor < vma->vm_end - vma->vm_start) {
1408 				if (try_to_unmap_cluster(cursor, &mapcount,
1409 						vma, page) == SWAP_MLOCK)
1410 					ret = SWAP_MLOCK;
1411 				cursor += CLUSTER_SIZE;
1412 				vma->vm_private_data = (void *) cursor;
1413 				if ((int)mapcount <= 0)
1414 					goto out;
1415 			}
1416 			vma->vm_private_data = (void *) max_nl_cursor;
1417 		}
1418 		cond_resched_lock(&mapping->i_mmap_lock);
1419 		max_nl_cursor += CLUSTER_SIZE;
1420 	} while (max_nl_cursor <= max_nl_size);
1421 
1422 	/*
1423 	 * Don't loop forever (perhaps all the remaining pages are
1424 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1425 	 * vmas, now forgetting on which ones it had fallen behind.
1426 	 */
1427 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1428 		vma->vm_private_data = NULL;
1429 out:
1430 	spin_unlock(&mapping->i_mmap_lock);
1431 	return ret;
1432 }
1433 
1434 /**
1435  * try_to_unmap - try to remove all page table mappings to a page
1436  * @page: the page to get unmapped
1437  * @flags: action and flags
1438  *
1439  * Tries to remove all the page table entries which are mapping this
1440  * page, used in the pageout path.  Caller must hold the page lock.
1441  * Return values are:
1442  *
1443  * SWAP_SUCCESS	- we succeeded in removing all mappings
1444  * SWAP_AGAIN	- we missed a mapping, try again later
1445  * SWAP_FAIL	- the page is unswappable
1446  * SWAP_MLOCK	- page is mlocked.
1447  */
1448 int try_to_unmap(struct page *page, enum ttu_flags flags)
1449 {
1450 	int ret;
1451 
1452 	BUG_ON(!PageLocked(page));
1453 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1454 
1455 	if (unlikely(PageKsm(page)))
1456 		ret = try_to_unmap_ksm(page, flags);
1457 	else if (PageAnon(page))
1458 		ret = try_to_unmap_anon(page, flags);
1459 	else
1460 		ret = try_to_unmap_file(page, flags);
1461 	if (ret != SWAP_MLOCK && !page_mapped(page))
1462 		ret = SWAP_SUCCESS;
1463 	return ret;
1464 }
1465 
1466 /**
1467  * try_to_munlock - try to munlock a page
1468  * @page: the page to be munlocked
1469  *
1470  * Called from munlock code.  Checks all of the VMAs mapping the page
1471  * to make sure nobody else has this page mlocked. The page will be
1472  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1473  *
1474  * Return values are:
1475  *
1476  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1477  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1478  * SWAP_FAIL	- page cannot be located at present
1479  * SWAP_MLOCK	- page is now mlocked.
1480  */
1481 int try_to_munlock(struct page *page)
1482 {
1483 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1484 
1485 	if (unlikely(PageKsm(page)))
1486 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1487 	else if (PageAnon(page))
1488 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1489 	else
1490 		return try_to_unmap_file(page, TTU_MUNLOCK);
1491 }
1492 
1493 void __put_anon_vma(struct anon_vma *anon_vma)
1494 {
1495 	struct anon_vma *root = anon_vma->root;
1496 
1497 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1498 		anon_vma_free(root);
1499 
1500 	anon_vma_free(anon_vma);
1501 }
1502 
1503 #ifdef CONFIG_MIGRATION
1504 /*
1505  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1506  * Called by migrate.c to remove migration ptes, but might be used more later.
1507  */
1508 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1509 		struct vm_area_struct *, unsigned long, void *), void *arg)
1510 {
1511 	struct anon_vma *anon_vma;
1512 	struct anon_vma_chain *avc;
1513 	int ret = SWAP_AGAIN;
1514 
1515 	/*
1516 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1517 	 * because that depends on page_mapped(); but not all its usages
1518 	 * are holding mmap_sem. Users without mmap_sem are required to
1519 	 * take a reference count to prevent the anon_vma disappearing
1520 	 */
1521 	anon_vma = page_anon_vma(page);
1522 	if (!anon_vma)
1523 		return ret;
1524 	anon_vma_lock(anon_vma);
1525 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1526 		struct vm_area_struct *vma = avc->vma;
1527 		unsigned long address = vma_address(page, vma);
1528 		if (address == -EFAULT)
1529 			continue;
1530 		ret = rmap_one(page, vma, address, arg);
1531 		if (ret != SWAP_AGAIN)
1532 			break;
1533 	}
1534 	anon_vma_unlock(anon_vma);
1535 	return ret;
1536 }
1537 
1538 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1539 		struct vm_area_struct *, unsigned long, void *), void *arg)
1540 {
1541 	struct address_space *mapping = page->mapping;
1542 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1543 	struct vm_area_struct *vma;
1544 	struct prio_tree_iter iter;
1545 	int ret = SWAP_AGAIN;
1546 
1547 	if (!mapping)
1548 		return ret;
1549 	spin_lock(&mapping->i_mmap_lock);
1550 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1551 		unsigned long address = vma_address(page, vma);
1552 		if (address == -EFAULT)
1553 			continue;
1554 		ret = rmap_one(page, vma, address, arg);
1555 		if (ret != SWAP_AGAIN)
1556 			break;
1557 	}
1558 	/*
1559 	 * No nonlinear handling: being always shared, nonlinear vmas
1560 	 * never contain migration ptes.  Decide what to do about this
1561 	 * limitation to linear when we need rmap_walk() on nonlinear.
1562 	 */
1563 	spin_unlock(&mapping->i_mmap_lock);
1564 	return ret;
1565 }
1566 
1567 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1568 		struct vm_area_struct *, unsigned long, void *), void *arg)
1569 {
1570 	VM_BUG_ON(!PageLocked(page));
1571 
1572 	if (unlikely(PageKsm(page)))
1573 		return rmap_walk_ksm(page, rmap_one, arg);
1574 	else if (PageAnon(page))
1575 		return rmap_walk_anon(page, rmap_one, arg);
1576 	else
1577 		return rmap_walk_file(page, rmap_one, arg);
1578 }
1579 #endif /* CONFIG_MIGRATION */
1580 
1581 #ifdef CONFIG_HUGETLB_PAGE
1582 /*
1583  * The following three functions are for anonymous (private mapped) hugepages.
1584  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1585  * and no lru code, because we handle hugepages differently from common pages.
1586  */
1587 static void __hugepage_set_anon_rmap(struct page *page,
1588 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1589 {
1590 	struct anon_vma *anon_vma = vma->anon_vma;
1591 
1592 	BUG_ON(!anon_vma);
1593 
1594 	if (PageAnon(page))
1595 		return;
1596 	if (!exclusive)
1597 		anon_vma = anon_vma->root;
1598 
1599 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1600 	page->mapping = (struct address_space *) anon_vma;
1601 	page->index = linear_page_index(vma, address);
1602 }
1603 
1604 void hugepage_add_anon_rmap(struct page *page,
1605 			    struct vm_area_struct *vma, unsigned long address)
1606 {
1607 	struct anon_vma *anon_vma = vma->anon_vma;
1608 	int first;
1609 
1610 	BUG_ON(!PageLocked(page));
1611 	BUG_ON(!anon_vma);
1612 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1613 	first = atomic_inc_and_test(&page->_mapcount);
1614 	if (first)
1615 		__hugepage_set_anon_rmap(page, vma, address, 0);
1616 }
1617 
1618 void hugepage_add_new_anon_rmap(struct page *page,
1619 			struct vm_area_struct *vma, unsigned long address)
1620 {
1621 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1622 	atomic_set(&page->_mapcount, 0);
1623 	__hugepage_set_anon_rmap(page, vma, address, 1);
1624 }
1625 #endif /* CONFIG_HUGETLB_PAGE */
1626