1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 kmem_cache_free(anon_vma_cachep, anon_vma); 89 } 90 91 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 92 { 93 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 94 } 95 96 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 97 { 98 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 99 } 100 101 /** 102 * anon_vma_prepare - attach an anon_vma to a memory region 103 * @vma: the memory region in question 104 * 105 * This makes sure the memory mapping described by 'vma' has 106 * an 'anon_vma' attached to it, so that we can associate the 107 * anonymous pages mapped into it with that anon_vma. 108 * 109 * The common case will be that we already have one, but if 110 * not we either need to find an adjacent mapping that we 111 * can re-use the anon_vma from (very common when the only 112 * reason for splitting a vma has been mprotect()), or we 113 * allocate a new one. 114 * 115 * Anon-vma allocations are very subtle, because we may have 116 * optimistically looked up an anon_vma in page_lock_anon_vma() 117 * and that may actually touch the spinlock even in the newly 118 * allocated vma (it depends on RCU to make sure that the 119 * anon_vma isn't actually destroyed). 120 * 121 * As a result, we need to do proper anon_vma locking even 122 * for the new allocation. At the same time, we do not want 123 * to do any locking for the common case of already having 124 * an anon_vma. 125 * 126 * This must be called with the mmap_sem held for reading. 127 */ 128 int anon_vma_prepare(struct vm_area_struct *vma) 129 { 130 struct anon_vma *anon_vma = vma->anon_vma; 131 struct anon_vma_chain *avc; 132 133 might_sleep(); 134 if (unlikely(!anon_vma)) { 135 struct mm_struct *mm = vma->vm_mm; 136 struct anon_vma *allocated; 137 138 avc = anon_vma_chain_alloc(); 139 if (!avc) 140 goto out_enomem; 141 142 anon_vma = find_mergeable_anon_vma(vma); 143 allocated = NULL; 144 if (!anon_vma) { 145 anon_vma = anon_vma_alloc(); 146 if (unlikely(!anon_vma)) 147 goto out_enomem_free_avc; 148 allocated = anon_vma; 149 } 150 151 anon_vma_lock(anon_vma); 152 /* page_table_lock to protect against threads */ 153 spin_lock(&mm->page_table_lock); 154 if (likely(!vma->anon_vma)) { 155 vma->anon_vma = anon_vma; 156 avc->anon_vma = anon_vma; 157 avc->vma = vma; 158 list_add(&avc->same_vma, &vma->anon_vma_chain); 159 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 160 allocated = NULL; 161 avc = NULL; 162 } 163 spin_unlock(&mm->page_table_lock); 164 anon_vma_unlock(anon_vma); 165 166 if (unlikely(allocated)) 167 put_anon_vma(allocated); 168 if (unlikely(avc)) 169 anon_vma_chain_free(avc); 170 } 171 return 0; 172 173 out_enomem_free_avc: 174 anon_vma_chain_free(avc); 175 out_enomem: 176 return -ENOMEM; 177 } 178 179 static void anon_vma_chain_link(struct vm_area_struct *vma, 180 struct anon_vma_chain *avc, 181 struct anon_vma *anon_vma) 182 { 183 avc->vma = vma; 184 avc->anon_vma = anon_vma; 185 list_add(&avc->same_vma, &vma->anon_vma_chain); 186 187 anon_vma_lock(anon_vma); 188 /* 189 * It's critical to add new vmas to the tail of the anon_vma, 190 * see comment in huge_memory.c:__split_huge_page(). 191 */ 192 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 193 anon_vma_unlock(anon_vma); 194 } 195 196 /* 197 * Attach the anon_vmas from src to dst. 198 * Returns 0 on success, -ENOMEM on failure. 199 */ 200 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 201 { 202 struct anon_vma_chain *avc, *pavc; 203 204 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 205 avc = anon_vma_chain_alloc(); 206 if (!avc) 207 goto enomem_failure; 208 anon_vma_chain_link(dst, avc, pavc->anon_vma); 209 } 210 return 0; 211 212 enomem_failure: 213 unlink_anon_vmas(dst); 214 return -ENOMEM; 215 } 216 217 /* 218 * Attach vma to its own anon_vma, as well as to the anon_vmas that 219 * the corresponding VMA in the parent process is attached to. 220 * Returns 0 on success, non-zero on failure. 221 */ 222 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 223 { 224 struct anon_vma_chain *avc; 225 struct anon_vma *anon_vma; 226 227 /* Don't bother if the parent process has no anon_vma here. */ 228 if (!pvma->anon_vma) 229 return 0; 230 231 /* 232 * First, attach the new VMA to the parent VMA's anon_vmas, 233 * so rmap can find non-COWed pages in child processes. 234 */ 235 if (anon_vma_clone(vma, pvma)) 236 return -ENOMEM; 237 238 /* Then add our own anon_vma. */ 239 anon_vma = anon_vma_alloc(); 240 if (!anon_vma) 241 goto out_error; 242 avc = anon_vma_chain_alloc(); 243 if (!avc) 244 goto out_error_free_anon_vma; 245 246 /* 247 * The root anon_vma's spinlock is the lock actually used when we 248 * lock any of the anon_vmas in this anon_vma tree. 249 */ 250 anon_vma->root = pvma->anon_vma->root; 251 /* 252 * With refcounts, an anon_vma can stay around longer than the 253 * process it belongs to. The root anon_vma needs to be pinned until 254 * this anon_vma is freed, because the lock lives in the root. 255 */ 256 get_anon_vma(anon_vma->root); 257 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 258 vma->anon_vma = anon_vma; 259 anon_vma_chain_link(vma, avc, anon_vma); 260 261 return 0; 262 263 out_error_free_anon_vma: 264 put_anon_vma(anon_vma); 265 out_error: 266 unlink_anon_vmas(vma); 267 return -ENOMEM; 268 } 269 270 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 271 { 272 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 273 int empty; 274 275 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 276 if (!anon_vma) 277 return; 278 279 anon_vma_lock(anon_vma); 280 list_del(&anon_vma_chain->same_anon_vma); 281 282 /* We must garbage collect the anon_vma if it's empty */ 283 empty = list_empty(&anon_vma->head); 284 anon_vma_unlock(anon_vma); 285 286 if (empty) 287 put_anon_vma(anon_vma); 288 } 289 290 void unlink_anon_vmas(struct vm_area_struct *vma) 291 { 292 struct anon_vma_chain *avc, *next; 293 294 /* 295 * Unlink each anon_vma chained to the VMA. This list is ordered 296 * from newest to oldest, ensuring the root anon_vma gets freed last. 297 */ 298 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 299 anon_vma_unlink(avc); 300 list_del(&avc->same_vma); 301 anon_vma_chain_free(avc); 302 } 303 } 304 305 static void anon_vma_ctor(void *data) 306 { 307 struct anon_vma *anon_vma = data; 308 309 spin_lock_init(&anon_vma->lock); 310 atomic_set(&anon_vma->refcount, 0); 311 INIT_LIST_HEAD(&anon_vma->head); 312 } 313 314 void __init anon_vma_init(void) 315 { 316 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 317 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 318 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 319 } 320 321 /* 322 * Getting a lock on a stable anon_vma from a page off the LRU is 323 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 324 */ 325 struct anon_vma *__page_lock_anon_vma(struct page *page) 326 { 327 struct anon_vma *anon_vma, *root_anon_vma; 328 unsigned long anon_mapping; 329 330 rcu_read_lock(); 331 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 332 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 333 goto out; 334 if (!page_mapped(page)) 335 goto out; 336 337 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 338 root_anon_vma = ACCESS_ONCE(anon_vma->root); 339 spin_lock(&root_anon_vma->lock); 340 341 /* 342 * If this page is still mapped, then its anon_vma cannot have been 343 * freed. But if it has been unmapped, we have no security against 344 * the anon_vma structure being freed and reused (for another anon_vma: 345 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot 346 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting 347 * anon_vma->root before page_unlock_anon_vma() is called to unlock. 348 */ 349 if (page_mapped(page)) 350 return anon_vma; 351 352 spin_unlock(&root_anon_vma->lock); 353 out: 354 rcu_read_unlock(); 355 return NULL; 356 } 357 358 void page_unlock_anon_vma(struct anon_vma *anon_vma) 359 __releases(&anon_vma->root->lock) 360 __releases(RCU) 361 { 362 anon_vma_unlock(anon_vma); 363 rcu_read_unlock(); 364 } 365 366 /* 367 * At what user virtual address is page expected in @vma? 368 * Returns virtual address or -EFAULT if page's index/offset is not 369 * within the range mapped the @vma. 370 */ 371 inline unsigned long 372 vma_address(struct page *page, struct vm_area_struct *vma) 373 { 374 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 375 unsigned long address; 376 377 if (unlikely(is_vm_hugetlb_page(vma))) 378 pgoff = page->index << huge_page_order(page_hstate(page)); 379 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 380 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 381 /* page should be within @vma mapping range */ 382 return -EFAULT; 383 } 384 return address; 385 } 386 387 /* 388 * At what user virtual address is page expected in vma? 389 * Caller should check the page is actually part of the vma. 390 */ 391 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 392 { 393 if (PageAnon(page)) { 394 struct anon_vma *page__anon_vma = page_anon_vma(page); 395 /* 396 * Note: swapoff's unuse_vma() is more efficient with this 397 * check, and needs it to match anon_vma when KSM is active. 398 */ 399 if (!vma->anon_vma || !page__anon_vma || 400 vma->anon_vma->root != page__anon_vma->root) 401 return -EFAULT; 402 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 403 if (!vma->vm_file || 404 vma->vm_file->f_mapping != page->mapping) 405 return -EFAULT; 406 } else 407 return -EFAULT; 408 return vma_address(page, vma); 409 } 410 411 /* 412 * Check that @page is mapped at @address into @mm. 413 * 414 * If @sync is false, page_check_address may perform a racy check to avoid 415 * the page table lock when the pte is not present (helpful when reclaiming 416 * highly shared pages). 417 * 418 * On success returns with pte mapped and locked. 419 */ 420 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 421 unsigned long address, spinlock_t **ptlp, int sync) 422 { 423 pgd_t *pgd; 424 pud_t *pud; 425 pmd_t *pmd; 426 pte_t *pte; 427 spinlock_t *ptl; 428 429 if (unlikely(PageHuge(page))) { 430 pte = huge_pte_offset(mm, address); 431 ptl = &mm->page_table_lock; 432 goto check; 433 } 434 435 pgd = pgd_offset(mm, address); 436 if (!pgd_present(*pgd)) 437 return NULL; 438 439 pud = pud_offset(pgd, address); 440 if (!pud_present(*pud)) 441 return NULL; 442 443 pmd = pmd_offset(pud, address); 444 if (!pmd_present(*pmd)) 445 return NULL; 446 if (pmd_trans_huge(*pmd)) 447 return NULL; 448 449 pte = pte_offset_map(pmd, address); 450 /* Make a quick check before getting the lock */ 451 if (!sync && !pte_present(*pte)) { 452 pte_unmap(pte); 453 return NULL; 454 } 455 456 ptl = pte_lockptr(mm, pmd); 457 check: 458 spin_lock(ptl); 459 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 460 *ptlp = ptl; 461 return pte; 462 } 463 pte_unmap_unlock(pte, ptl); 464 return NULL; 465 } 466 467 /** 468 * page_mapped_in_vma - check whether a page is really mapped in a VMA 469 * @page: the page to test 470 * @vma: the VMA to test 471 * 472 * Returns 1 if the page is mapped into the page tables of the VMA, 0 473 * if the page is not mapped into the page tables of this VMA. Only 474 * valid for normal file or anonymous VMAs. 475 */ 476 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 477 { 478 unsigned long address; 479 pte_t *pte; 480 spinlock_t *ptl; 481 482 address = vma_address(page, vma); 483 if (address == -EFAULT) /* out of vma range */ 484 return 0; 485 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 486 if (!pte) /* the page is not in this mm */ 487 return 0; 488 pte_unmap_unlock(pte, ptl); 489 490 return 1; 491 } 492 493 /* 494 * Subfunctions of page_referenced: page_referenced_one called 495 * repeatedly from either page_referenced_anon or page_referenced_file. 496 */ 497 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 498 unsigned long address, unsigned int *mapcount, 499 unsigned long *vm_flags) 500 { 501 struct mm_struct *mm = vma->vm_mm; 502 int referenced = 0; 503 504 if (unlikely(PageTransHuge(page))) { 505 pmd_t *pmd; 506 507 spin_lock(&mm->page_table_lock); 508 /* 509 * rmap might return false positives; we must filter 510 * these out using page_check_address_pmd(). 511 */ 512 pmd = page_check_address_pmd(page, mm, address, 513 PAGE_CHECK_ADDRESS_PMD_FLAG); 514 if (!pmd) { 515 spin_unlock(&mm->page_table_lock); 516 goto out; 517 } 518 519 if (vma->vm_flags & VM_LOCKED) { 520 spin_unlock(&mm->page_table_lock); 521 *mapcount = 0; /* break early from loop */ 522 *vm_flags |= VM_LOCKED; 523 goto out; 524 } 525 526 /* go ahead even if the pmd is pmd_trans_splitting() */ 527 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 528 referenced++; 529 spin_unlock(&mm->page_table_lock); 530 } else { 531 pte_t *pte; 532 spinlock_t *ptl; 533 534 /* 535 * rmap might return false positives; we must filter 536 * these out using page_check_address(). 537 */ 538 pte = page_check_address(page, mm, address, &ptl, 0); 539 if (!pte) 540 goto out; 541 542 if (vma->vm_flags & VM_LOCKED) { 543 pte_unmap_unlock(pte, ptl); 544 *mapcount = 0; /* break early from loop */ 545 *vm_flags |= VM_LOCKED; 546 goto out; 547 } 548 549 if (ptep_clear_flush_young_notify(vma, address, pte)) { 550 /* 551 * Don't treat a reference through a sequentially read 552 * mapping as such. If the page has been used in 553 * another mapping, we will catch it; if this other 554 * mapping is already gone, the unmap path will have 555 * set PG_referenced or activated the page. 556 */ 557 if (likely(!VM_SequentialReadHint(vma))) 558 referenced++; 559 } 560 pte_unmap_unlock(pte, ptl); 561 } 562 563 /* Pretend the page is referenced if the task has the 564 swap token and is in the middle of a page fault. */ 565 if (mm != current->mm && has_swap_token(mm) && 566 rwsem_is_locked(&mm->mmap_sem)) 567 referenced++; 568 569 (*mapcount)--; 570 571 if (referenced) 572 *vm_flags |= vma->vm_flags; 573 out: 574 return referenced; 575 } 576 577 static int page_referenced_anon(struct page *page, 578 struct mem_cgroup *mem_cont, 579 unsigned long *vm_flags) 580 { 581 unsigned int mapcount; 582 struct anon_vma *anon_vma; 583 struct anon_vma_chain *avc; 584 int referenced = 0; 585 586 anon_vma = page_lock_anon_vma(page); 587 if (!anon_vma) 588 return referenced; 589 590 mapcount = page_mapcount(page); 591 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 592 struct vm_area_struct *vma = avc->vma; 593 unsigned long address = vma_address(page, vma); 594 if (address == -EFAULT) 595 continue; 596 /* 597 * If we are reclaiming on behalf of a cgroup, skip 598 * counting on behalf of references from different 599 * cgroups 600 */ 601 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 602 continue; 603 referenced += page_referenced_one(page, vma, address, 604 &mapcount, vm_flags); 605 if (!mapcount) 606 break; 607 } 608 609 page_unlock_anon_vma(anon_vma); 610 return referenced; 611 } 612 613 /** 614 * page_referenced_file - referenced check for object-based rmap 615 * @page: the page we're checking references on. 616 * @mem_cont: target memory controller 617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 618 * 619 * For an object-based mapped page, find all the places it is mapped and 620 * check/clear the referenced flag. This is done by following the page->mapping 621 * pointer, then walking the chain of vmas it holds. It returns the number 622 * of references it found. 623 * 624 * This function is only called from page_referenced for object-based pages. 625 */ 626 static int page_referenced_file(struct page *page, 627 struct mem_cgroup *mem_cont, 628 unsigned long *vm_flags) 629 { 630 unsigned int mapcount; 631 struct address_space *mapping = page->mapping; 632 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 633 struct vm_area_struct *vma; 634 struct prio_tree_iter iter; 635 int referenced = 0; 636 637 /* 638 * The caller's checks on page->mapping and !PageAnon have made 639 * sure that this is a file page: the check for page->mapping 640 * excludes the case just before it gets set on an anon page. 641 */ 642 BUG_ON(PageAnon(page)); 643 644 /* 645 * The page lock not only makes sure that page->mapping cannot 646 * suddenly be NULLified by truncation, it makes sure that the 647 * structure at mapping cannot be freed and reused yet, 648 * so we can safely take mapping->i_mmap_lock. 649 */ 650 BUG_ON(!PageLocked(page)); 651 652 spin_lock(&mapping->i_mmap_lock); 653 654 /* 655 * i_mmap_lock does not stabilize mapcount at all, but mapcount 656 * is more likely to be accurate if we note it after spinning. 657 */ 658 mapcount = page_mapcount(page); 659 660 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 661 unsigned long address = vma_address(page, vma); 662 if (address == -EFAULT) 663 continue; 664 /* 665 * If we are reclaiming on behalf of a cgroup, skip 666 * counting on behalf of references from different 667 * cgroups 668 */ 669 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 670 continue; 671 referenced += page_referenced_one(page, vma, address, 672 &mapcount, vm_flags); 673 if (!mapcount) 674 break; 675 } 676 677 spin_unlock(&mapping->i_mmap_lock); 678 return referenced; 679 } 680 681 /** 682 * page_referenced - test if the page was referenced 683 * @page: the page to test 684 * @is_locked: caller holds lock on the page 685 * @mem_cont: target memory controller 686 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 687 * 688 * Quick test_and_clear_referenced for all mappings to a page, 689 * returns the number of ptes which referenced the page. 690 */ 691 int page_referenced(struct page *page, 692 int is_locked, 693 struct mem_cgroup *mem_cont, 694 unsigned long *vm_flags) 695 { 696 int referenced = 0; 697 int we_locked = 0; 698 699 *vm_flags = 0; 700 if (page_mapped(page) && page_rmapping(page)) { 701 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 702 we_locked = trylock_page(page); 703 if (!we_locked) { 704 referenced++; 705 goto out; 706 } 707 } 708 if (unlikely(PageKsm(page))) 709 referenced += page_referenced_ksm(page, mem_cont, 710 vm_flags); 711 else if (PageAnon(page)) 712 referenced += page_referenced_anon(page, mem_cont, 713 vm_flags); 714 else if (page->mapping) 715 referenced += page_referenced_file(page, mem_cont, 716 vm_flags); 717 if (we_locked) 718 unlock_page(page); 719 } 720 out: 721 if (page_test_and_clear_young(page)) 722 referenced++; 723 724 return referenced; 725 } 726 727 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 728 unsigned long address) 729 { 730 struct mm_struct *mm = vma->vm_mm; 731 pte_t *pte; 732 spinlock_t *ptl; 733 int ret = 0; 734 735 pte = page_check_address(page, mm, address, &ptl, 1); 736 if (!pte) 737 goto out; 738 739 if (pte_dirty(*pte) || pte_write(*pte)) { 740 pte_t entry; 741 742 flush_cache_page(vma, address, pte_pfn(*pte)); 743 entry = ptep_clear_flush_notify(vma, address, pte); 744 entry = pte_wrprotect(entry); 745 entry = pte_mkclean(entry); 746 set_pte_at(mm, address, pte, entry); 747 ret = 1; 748 } 749 750 pte_unmap_unlock(pte, ptl); 751 out: 752 return ret; 753 } 754 755 static int page_mkclean_file(struct address_space *mapping, struct page *page) 756 { 757 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 758 struct vm_area_struct *vma; 759 struct prio_tree_iter iter; 760 int ret = 0; 761 762 BUG_ON(PageAnon(page)); 763 764 spin_lock(&mapping->i_mmap_lock); 765 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 766 if (vma->vm_flags & VM_SHARED) { 767 unsigned long address = vma_address(page, vma); 768 if (address == -EFAULT) 769 continue; 770 ret += page_mkclean_one(page, vma, address); 771 } 772 } 773 spin_unlock(&mapping->i_mmap_lock); 774 return ret; 775 } 776 777 int page_mkclean(struct page *page) 778 { 779 int ret = 0; 780 781 BUG_ON(!PageLocked(page)); 782 783 if (page_mapped(page)) { 784 struct address_space *mapping = page_mapping(page); 785 if (mapping) { 786 ret = page_mkclean_file(mapping, page); 787 if (page_test_dirty(page)) { 788 page_clear_dirty(page, 1); 789 ret = 1; 790 } 791 } 792 } 793 794 return ret; 795 } 796 EXPORT_SYMBOL_GPL(page_mkclean); 797 798 /** 799 * page_move_anon_rmap - move a page to our anon_vma 800 * @page: the page to move to our anon_vma 801 * @vma: the vma the page belongs to 802 * @address: the user virtual address mapped 803 * 804 * When a page belongs exclusively to one process after a COW event, 805 * that page can be moved into the anon_vma that belongs to just that 806 * process, so the rmap code will not search the parent or sibling 807 * processes. 808 */ 809 void page_move_anon_rmap(struct page *page, 810 struct vm_area_struct *vma, unsigned long address) 811 { 812 struct anon_vma *anon_vma = vma->anon_vma; 813 814 VM_BUG_ON(!PageLocked(page)); 815 VM_BUG_ON(!anon_vma); 816 VM_BUG_ON(page->index != linear_page_index(vma, address)); 817 818 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 819 page->mapping = (struct address_space *) anon_vma; 820 } 821 822 /** 823 * __page_set_anon_rmap - set up new anonymous rmap 824 * @page: Page to add to rmap 825 * @vma: VM area to add page to. 826 * @address: User virtual address of the mapping 827 * @exclusive: the page is exclusively owned by the current process 828 */ 829 static void __page_set_anon_rmap(struct page *page, 830 struct vm_area_struct *vma, unsigned long address, int exclusive) 831 { 832 struct anon_vma *anon_vma = vma->anon_vma; 833 834 BUG_ON(!anon_vma); 835 836 if (PageAnon(page)) 837 return; 838 839 /* 840 * If the page isn't exclusively mapped into this vma, 841 * we must use the _oldest_ possible anon_vma for the 842 * page mapping! 843 */ 844 if (!exclusive) 845 anon_vma = anon_vma->root; 846 847 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 848 page->mapping = (struct address_space *) anon_vma; 849 page->index = linear_page_index(vma, address); 850 } 851 852 /** 853 * __page_check_anon_rmap - sanity check anonymous rmap addition 854 * @page: the page to add the mapping to 855 * @vma: the vm area in which the mapping is added 856 * @address: the user virtual address mapped 857 */ 858 static void __page_check_anon_rmap(struct page *page, 859 struct vm_area_struct *vma, unsigned long address) 860 { 861 #ifdef CONFIG_DEBUG_VM 862 /* 863 * The page's anon-rmap details (mapping and index) are guaranteed to 864 * be set up correctly at this point. 865 * 866 * We have exclusion against page_add_anon_rmap because the caller 867 * always holds the page locked, except if called from page_dup_rmap, 868 * in which case the page is already known to be setup. 869 * 870 * We have exclusion against page_add_new_anon_rmap because those pages 871 * are initially only visible via the pagetables, and the pte is locked 872 * over the call to page_add_new_anon_rmap. 873 */ 874 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 875 BUG_ON(page->index != linear_page_index(vma, address)); 876 #endif 877 } 878 879 /** 880 * page_add_anon_rmap - add pte mapping to an anonymous page 881 * @page: the page to add the mapping to 882 * @vma: the vm area in which the mapping is added 883 * @address: the user virtual address mapped 884 * 885 * The caller needs to hold the pte lock, and the page must be locked in 886 * the anon_vma case: to serialize mapping,index checking after setting, 887 * and to ensure that PageAnon is not being upgraded racily to PageKsm 888 * (but PageKsm is never downgraded to PageAnon). 889 */ 890 void page_add_anon_rmap(struct page *page, 891 struct vm_area_struct *vma, unsigned long address) 892 { 893 do_page_add_anon_rmap(page, vma, address, 0); 894 } 895 896 /* 897 * Special version of the above for do_swap_page, which often runs 898 * into pages that are exclusively owned by the current process. 899 * Everybody else should continue to use page_add_anon_rmap above. 900 */ 901 void do_page_add_anon_rmap(struct page *page, 902 struct vm_area_struct *vma, unsigned long address, int exclusive) 903 { 904 int first = atomic_inc_and_test(&page->_mapcount); 905 if (first) { 906 if (!PageTransHuge(page)) 907 __inc_zone_page_state(page, NR_ANON_PAGES); 908 else 909 __inc_zone_page_state(page, 910 NR_ANON_TRANSPARENT_HUGEPAGES); 911 } 912 if (unlikely(PageKsm(page))) 913 return; 914 915 VM_BUG_ON(!PageLocked(page)); 916 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 917 if (first) 918 __page_set_anon_rmap(page, vma, address, exclusive); 919 else 920 __page_check_anon_rmap(page, vma, address); 921 } 922 923 /** 924 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 925 * @page: the page to add the mapping to 926 * @vma: the vm area in which the mapping is added 927 * @address: the user virtual address mapped 928 * 929 * Same as page_add_anon_rmap but must only be called on *new* pages. 930 * This means the inc-and-test can be bypassed. 931 * Page does not have to be locked. 932 */ 933 void page_add_new_anon_rmap(struct page *page, 934 struct vm_area_struct *vma, unsigned long address) 935 { 936 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 937 SetPageSwapBacked(page); 938 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 939 if (!PageTransHuge(page)) 940 __inc_zone_page_state(page, NR_ANON_PAGES); 941 else 942 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 943 __page_set_anon_rmap(page, vma, address, 1); 944 if (page_evictable(page, vma)) 945 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 946 else 947 add_page_to_unevictable_list(page); 948 } 949 950 /** 951 * page_add_file_rmap - add pte mapping to a file page 952 * @page: the page to add the mapping to 953 * 954 * The caller needs to hold the pte lock. 955 */ 956 void page_add_file_rmap(struct page *page) 957 { 958 if (atomic_inc_and_test(&page->_mapcount)) { 959 __inc_zone_page_state(page, NR_FILE_MAPPED); 960 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 961 } 962 } 963 964 /** 965 * page_remove_rmap - take down pte mapping from a page 966 * @page: page to remove mapping from 967 * 968 * The caller needs to hold the pte lock. 969 */ 970 void page_remove_rmap(struct page *page) 971 { 972 /* page still mapped by someone else? */ 973 if (!atomic_add_negative(-1, &page->_mapcount)) 974 return; 975 976 /* 977 * Now that the last pte has gone, s390 must transfer dirty 978 * flag from storage key to struct page. We can usually skip 979 * this if the page is anon, so about to be freed; but perhaps 980 * not if it's in swapcache - there might be another pte slot 981 * containing the swap entry, but page not yet written to swap. 982 */ 983 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 984 page_clear_dirty(page, 1); 985 set_page_dirty(page); 986 } 987 /* 988 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 989 * and not charged by memcg for now. 990 */ 991 if (unlikely(PageHuge(page))) 992 return; 993 if (PageAnon(page)) { 994 mem_cgroup_uncharge_page(page); 995 if (!PageTransHuge(page)) 996 __dec_zone_page_state(page, NR_ANON_PAGES); 997 else 998 __dec_zone_page_state(page, 999 NR_ANON_TRANSPARENT_HUGEPAGES); 1000 } else { 1001 __dec_zone_page_state(page, NR_FILE_MAPPED); 1002 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1003 } 1004 /* 1005 * It would be tidy to reset the PageAnon mapping here, 1006 * but that might overwrite a racing page_add_anon_rmap 1007 * which increments mapcount after us but sets mapping 1008 * before us: so leave the reset to free_hot_cold_page, 1009 * and remember that it's only reliable while mapped. 1010 * Leaving it set also helps swapoff to reinstate ptes 1011 * faster for those pages still in swapcache. 1012 */ 1013 } 1014 1015 /* 1016 * Subfunctions of try_to_unmap: try_to_unmap_one called 1017 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1018 */ 1019 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1020 unsigned long address, enum ttu_flags flags) 1021 { 1022 struct mm_struct *mm = vma->vm_mm; 1023 pte_t *pte; 1024 pte_t pteval; 1025 spinlock_t *ptl; 1026 int ret = SWAP_AGAIN; 1027 1028 pte = page_check_address(page, mm, address, &ptl, 0); 1029 if (!pte) 1030 goto out; 1031 1032 /* 1033 * If the page is mlock()d, we cannot swap it out. 1034 * If it's recently referenced (perhaps page_referenced 1035 * skipped over this mm) then we should reactivate it. 1036 */ 1037 if (!(flags & TTU_IGNORE_MLOCK)) { 1038 if (vma->vm_flags & VM_LOCKED) 1039 goto out_mlock; 1040 1041 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1042 goto out_unmap; 1043 } 1044 if (!(flags & TTU_IGNORE_ACCESS)) { 1045 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1046 ret = SWAP_FAIL; 1047 goto out_unmap; 1048 } 1049 } 1050 1051 /* Nuke the page table entry. */ 1052 flush_cache_page(vma, address, page_to_pfn(page)); 1053 pteval = ptep_clear_flush_notify(vma, address, pte); 1054 1055 /* Move the dirty bit to the physical page now the pte is gone. */ 1056 if (pte_dirty(pteval)) 1057 set_page_dirty(page); 1058 1059 /* Update high watermark before we lower rss */ 1060 update_hiwater_rss(mm); 1061 1062 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1063 if (PageAnon(page)) 1064 dec_mm_counter(mm, MM_ANONPAGES); 1065 else 1066 dec_mm_counter(mm, MM_FILEPAGES); 1067 set_pte_at(mm, address, pte, 1068 swp_entry_to_pte(make_hwpoison_entry(page))); 1069 } else if (PageAnon(page)) { 1070 swp_entry_t entry = { .val = page_private(page) }; 1071 1072 if (PageSwapCache(page)) { 1073 /* 1074 * Store the swap location in the pte. 1075 * See handle_pte_fault() ... 1076 */ 1077 if (swap_duplicate(entry) < 0) { 1078 set_pte_at(mm, address, pte, pteval); 1079 ret = SWAP_FAIL; 1080 goto out_unmap; 1081 } 1082 if (list_empty(&mm->mmlist)) { 1083 spin_lock(&mmlist_lock); 1084 if (list_empty(&mm->mmlist)) 1085 list_add(&mm->mmlist, &init_mm.mmlist); 1086 spin_unlock(&mmlist_lock); 1087 } 1088 dec_mm_counter(mm, MM_ANONPAGES); 1089 inc_mm_counter(mm, MM_SWAPENTS); 1090 } else if (PAGE_MIGRATION) { 1091 /* 1092 * Store the pfn of the page in a special migration 1093 * pte. do_swap_page() will wait until the migration 1094 * pte is removed and then restart fault handling. 1095 */ 1096 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1097 entry = make_migration_entry(page, pte_write(pteval)); 1098 } 1099 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1100 BUG_ON(pte_file(*pte)); 1101 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1102 /* Establish migration entry for a file page */ 1103 swp_entry_t entry; 1104 entry = make_migration_entry(page, pte_write(pteval)); 1105 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1106 } else 1107 dec_mm_counter(mm, MM_FILEPAGES); 1108 1109 page_remove_rmap(page); 1110 page_cache_release(page); 1111 1112 out_unmap: 1113 pte_unmap_unlock(pte, ptl); 1114 out: 1115 return ret; 1116 1117 out_mlock: 1118 pte_unmap_unlock(pte, ptl); 1119 1120 1121 /* 1122 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1123 * unstable result and race. Plus, We can't wait here because 1124 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1125 * if trylock failed, the page remain in evictable lru and later 1126 * vmscan could retry to move the page to unevictable lru if the 1127 * page is actually mlocked. 1128 */ 1129 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1130 if (vma->vm_flags & VM_LOCKED) { 1131 mlock_vma_page(page); 1132 ret = SWAP_MLOCK; 1133 } 1134 up_read(&vma->vm_mm->mmap_sem); 1135 } 1136 return ret; 1137 } 1138 1139 /* 1140 * objrmap doesn't work for nonlinear VMAs because the assumption that 1141 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1142 * Consequently, given a particular page and its ->index, we cannot locate the 1143 * ptes which are mapping that page without an exhaustive linear search. 1144 * 1145 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1146 * maps the file to which the target page belongs. The ->vm_private_data field 1147 * holds the current cursor into that scan. Successive searches will circulate 1148 * around the vma's virtual address space. 1149 * 1150 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1151 * more scanning pressure is placed against them as well. Eventually pages 1152 * will become fully unmapped and are eligible for eviction. 1153 * 1154 * For very sparsely populated VMAs this is a little inefficient - chances are 1155 * there there won't be many ptes located within the scan cluster. In this case 1156 * maybe we could scan further - to the end of the pte page, perhaps. 1157 * 1158 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1159 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1160 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1161 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1162 */ 1163 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1164 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1165 1166 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1167 struct vm_area_struct *vma, struct page *check_page) 1168 { 1169 struct mm_struct *mm = vma->vm_mm; 1170 pgd_t *pgd; 1171 pud_t *pud; 1172 pmd_t *pmd; 1173 pte_t *pte; 1174 pte_t pteval; 1175 spinlock_t *ptl; 1176 struct page *page; 1177 unsigned long address; 1178 unsigned long end; 1179 int ret = SWAP_AGAIN; 1180 int locked_vma = 0; 1181 1182 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1183 end = address + CLUSTER_SIZE; 1184 if (address < vma->vm_start) 1185 address = vma->vm_start; 1186 if (end > vma->vm_end) 1187 end = vma->vm_end; 1188 1189 pgd = pgd_offset(mm, address); 1190 if (!pgd_present(*pgd)) 1191 return ret; 1192 1193 pud = pud_offset(pgd, address); 1194 if (!pud_present(*pud)) 1195 return ret; 1196 1197 pmd = pmd_offset(pud, address); 1198 if (!pmd_present(*pmd)) 1199 return ret; 1200 1201 /* 1202 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1203 * keep the sem while scanning the cluster for mlocking pages. 1204 */ 1205 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1206 locked_vma = (vma->vm_flags & VM_LOCKED); 1207 if (!locked_vma) 1208 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1209 } 1210 1211 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1212 1213 /* Update high watermark before we lower rss */ 1214 update_hiwater_rss(mm); 1215 1216 for (; address < end; pte++, address += PAGE_SIZE) { 1217 if (!pte_present(*pte)) 1218 continue; 1219 page = vm_normal_page(vma, address, *pte); 1220 BUG_ON(!page || PageAnon(page)); 1221 1222 if (locked_vma) { 1223 mlock_vma_page(page); /* no-op if already mlocked */ 1224 if (page == check_page) 1225 ret = SWAP_MLOCK; 1226 continue; /* don't unmap */ 1227 } 1228 1229 if (ptep_clear_flush_young_notify(vma, address, pte)) 1230 continue; 1231 1232 /* Nuke the page table entry. */ 1233 flush_cache_page(vma, address, pte_pfn(*pte)); 1234 pteval = ptep_clear_flush_notify(vma, address, pte); 1235 1236 /* If nonlinear, store the file page offset in the pte. */ 1237 if (page->index != linear_page_index(vma, address)) 1238 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1239 1240 /* Move the dirty bit to the physical page now the pte is gone. */ 1241 if (pte_dirty(pteval)) 1242 set_page_dirty(page); 1243 1244 page_remove_rmap(page); 1245 page_cache_release(page); 1246 dec_mm_counter(mm, MM_FILEPAGES); 1247 (*mapcount)--; 1248 } 1249 pte_unmap_unlock(pte - 1, ptl); 1250 if (locked_vma) 1251 up_read(&vma->vm_mm->mmap_sem); 1252 return ret; 1253 } 1254 1255 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1256 { 1257 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1258 1259 if (!maybe_stack) 1260 return false; 1261 1262 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1263 VM_STACK_INCOMPLETE_SETUP) 1264 return true; 1265 1266 return false; 1267 } 1268 1269 /** 1270 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1271 * rmap method 1272 * @page: the page to unmap/unlock 1273 * @flags: action and flags 1274 * 1275 * Find all the mappings of a page using the mapping pointer and the vma chains 1276 * contained in the anon_vma struct it points to. 1277 * 1278 * This function is only called from try_to_unmap/try_to_munlock for 1279 * anonymous pages. 1280 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1281 * where the page was found will be held for write. So, we won't recheck 1282 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1283 * 'LOCKED. 1284 */ 1285 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1286 { 1287 struct anon_vma *anon_vma; 1288 struct anon_vma_chain *avc; 1289 int ret = SWAP_AGAIN; 1290 1291 anon_vma = page_lock_anon_vma(page); 1292 if (!anon_vma) 1293 return ret; 1294 1295 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1296 struct vm_area_struct *vma = avc->vma; 1297 unsigned long address; 1298 1299 /* 1300 * During exec, a temporary VMA is setup and later moved. 1301 * The VMA is moved under the anon_vma lock but not the 1302 * page tables leading to a race where migration cannot 1303 * find the migration ptes. Rather than increasing the 1304 * locking requirements of exec(), migration skips 1305 * temporary VMAs until after exec() completes. 1306 */ 1307 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1308 is_vma_temporary_stack(vma)) 1309 continue; 1310 1311 address = vma_address(page, vma); 1312 if (address == -EFAULT) 1313 continue; 1314 ret = try_to_unmap_one(page, vma, address, flags); 1315 if (ret != SWAP_AGAIN || !page_mapped(page)) 1316 break; 1317 } 1318 1319 page_unlock_anon_vma(anon_vma); 1320 return ret; 1321 } 1322 1323 /** 1324 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1325 * @page: the page to unmap/unlock 1326 * @flags: action and flags 1327 * 1328 * Find all the mappings of a page using the mapping pointer and the vma chains 1329 * contained in the address_space struct it points to. 1330 * 1331 * This function is only called from try_to_unmap/try_to_munlock for 1332 * object-based pages. 1333 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1334 * where the page was found will be held for write. So, we won't recheck 1335 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1336 * 'LOCKED. 1337 */ 1338 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1339 { 1340 struct address_space *mapping = page->mapping; 1341 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1342 struct vm_area_struct *vma; 1343 struct prio_tree_iter iter; 1344 int ret = SWAP_AGAIN; 1345 unsigned long cursor; 1346 unsigned long max_nl_cursor = 0; 1347 unsigned long max_nl_size = 0; 1348 unsigned int mapcount; 1349 1350 spin_lock(&mapping->i_mmap_lock); 1351 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1352 unsigned long address = vma_address(page, vma); 1353 if (address == -EFAULT) 1354 continue; 1355 ret = try_to_unmap_one(page, vma, address, flags); 1356 if (ret != SWAP_AGAIN || !page_mapped(page)) 1357 goto out; 1358 } 1359 1360 if (list_empty(&mapping->i_mmap_nonlinear)) 1361 goto out; 1362 1363 /* 1364 * We don't bother to try to find the munlocked page in nonlinears. 1365 * It's costly. Instead, later, page reclaim logic may call 1366 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1367 */ 1368 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1369 goto out; 1370 1371 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1372 shared.vm_set.list) { 1373 cursor = (unsigned long) vma->vm_private_data; 1374 if (cursor > max_nl_cursor) 1375 max_nl_cursor = cursor; 1376 cursor = vma->vm_end - vma->vm_start; 1377 if (cursor > max_nl_size) 1378 max_nl_size = cursor; 1379 } 1380 1381 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1382 ret = SWAP_FAIL; 1383 goto out; 1384 } 1385 1386 /* 1387 * We don't try to search for this page in the nonlinear vmas, 1388 * and page_referenced wouldn't have found it anyway. Instead 1389 * just walk the nonlinear vmas trying to age and unmap some. 1390 * The mapcount of the page we came in with is irrelevant, 1391 * but even so use it as a guide to how hard we should try? 1392 */ 1393 mapcount = page_mapcount(page); 1394 if (!mapcount) 1395 goto out; 1396 cond_resched_lock(&mapping->i_mmap_lock); 1397 1398 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1399 if (max_nl_cursor == 0) 1400 max_nl_cursor = CLUSTER_SIZE; 1401 1402 do { 1403 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1404 shared.vm_set.list) { 1405 cursor = (unsigned long) vma->vm_private_data; 1406 while ( cursor < max_nl_cursor && 1407 cursor < vma->vm_end - vma->vm_start) { 1408 if (try_to_unmap_cluster(cursor, &mapcount, 1409 vma, page) == SWAP_MLOCK) 1410 ret = SWAP_MLOCK; 1411 cursor += CLUSTER_SIZE; 1412 vma->vm_private_data = (void *) cursor; 1413 if ((int)mapcount <= 0) 1414 goto out; 1415 } 1416 vma->vm_private_data = (void *) max_nl_cursor; 1417 } 1418 cond_resched_lock(&mapping->i_mmap_lock); 1419 max_nl_cursor += CLUSTER_SIZE; 1420 } while (max_nl_cursor <= max_nl_size); 1421 1422 /* 1423 * Don't loop forever (perhaps all the remaining pages are 1424 * in locked vmas). Reset cursor on all unreserved nonlinear 1425 * vmas, now forgetting on which ones it had fallen behind. 1426 */ 1427 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1428 vma->vm_private_data = NULL; 1429 out: 1430 spin_unlock(&mapping->i_mmap_lock); 1431 return ret; 1432 } 1433 1434 /** 1435 * try_to_unmap - try to remove all page table mappings to a page 1436 * @page: the page to get unmapped 1437 * @flags: action and flags 1438 * 1439 * Tries to remove all the page table entries which are mapping this 1440 * page, used in the pageout path. Caller must hold the page lock. 1441 * Return values are: 1442 * 1443 * SWAP_SUCCESS - we succeeded in removing all mappings 1444 * SWAP_AGAIN - we missed a mapping, try again later 1445 * SWAP_FAIL - the page is unswappable 1446 * SWAP_MLOCK - page is mlocked. 1447 */ 1448 int try_to_unmap(struct page *page, enum ttu_flags flags) 1449 { 1450 int ret; 1451 1452 BUG_ON(!PageLocked(page)); 1453 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1454 1455 if (unlikely(PageKsm(page))) 1456 ret = try_to_unmap_ksm(page, flags); 1457 else if (PageAnon(page)) 1458 ret = try_to_unmap_anon(page, flags); 1459 else 1460 ret = try_to_unmap_file(page, flags); 1461 if (ret != SWAP_MLOCK && !page_mapped(page)) 1462 ret = SWAP_SUCCESS; 1463 return ret; 1464 } 1465 1466 /** 1467 * try_to_munlock - try to munlock a page 1468 * @page: the page to be munlocked 1469 * 1470 * Called from munlock code. Checks all of the VMAs mapping the page 1471 * to make sure nobody else has this page mlocked. The page will be 1472 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1473 * 1474 * Return values are: 1475 * 1476 * SWAP_AGAIN - no vma is holding page mlocked, or, 1477 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1478 * SWAP_FAIL - page cannot be located at present 1479 * SWAP_MLOCK - page is now mlocked. 1480 */ 1481 int try_to_munlock(struct page *page) 1482 { 1483 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1484 1485 if (unlikely(PageKsm(page))) 1486 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1487 else if (PageAnon(page)) 1488 return try_to_unmap_anon(page, TTU_MUNLOCK); 1489 else 1490 return try_to_unmap_file(page, TTU_MUNLOCK); 1491 } 1492 1493 void __put_anon_vma(struct anon_vma *anon_vma) 1494 { 1495 struct anon_vma *root = anon_vma->root; 1496 1497 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1498 anon_vma_free(root); 1499 1500 anon_vma_free(anon_vma); 1501 } 1502 1503 #ifdef CONFIG_MIGRATION 1504 /* 1505 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1506 * Called by migrate.c to remove migration ptes, but might be used more later. 1507 */ 1508 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1509 struct vm_area_struct *, unsigned long, void *), void *arg) 1510 { 1511 struct anon_vma *anon_vma; 1512 struct anon_vma_chain *avc; 1513 int ret = SWAP_AGAIN; 1514 1515 /* 1516 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1517 * because that depends on page_mapped(); but not all its usages 1518 * are holding mmap_sem. Users without mmap_sem are required to 1519 * take a reference count to prevent the anon_vma disappearing 1520 */ 1521 anon_vma = page_anon_vma(page); 1522 if (!anon_vma) 1523 return ret; 1524 anon_vma_lock(anon_vma); 1525 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1526 struct vm_area_struct *vma = avc->vma; 1527 unsigned long address = vma_address(page, vma); 1528 if (address == -EFAULT) 1529 continue; 1530 ret = rmap_one(page, vma, address, arg); 1531 if (ret != SWAP_AGAIN) 1532 break; 1533 } 1534 anon_vma_unlock(anon_vma); 1535 return ret; 1536 } 1537 1538 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1539 struct vm_area_struct *, unsigned long, void *), void *arg) 1540 { 1541 struct address_space *mapping = page->mapping; 1542 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1543 struct vm_area_struct *vma; 1544 struct prio_tree_iter iter; 1545 int ret = SWAP_AGAIN; 1546 1547 if (!mapping) 1548 return ret; 1549 spin_lock(&mapping->i_mmap_lock); 1550 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1551 unsigned long address = vma_address(page, vma); 1552 if (address == -EFAULT) 1553 continue; 1554 ret = rmap_one(page, vma, address, arg); 1555 if (ret != SWAP_AGAIN) 1556 break; 1557 } 1558 /* 1559 * No nonlinear handling: being always shared, nonlinear vmas 1560 * never contain migration ptes. Decide what to do about this 1561 * limitation to linear when we need rmap_walk() on nonlinear. 1562 */ 1563 spin_unlock(&mapping->i_mmap_lock); 1564 return ret; 1565 } 1566 1567 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1568 struct vm_area_struct *, unsigned long, void *), void *arg) 1569 { 1570 VM_BUG_ON(!PageLocked(page)); 1571 1572 if (unlikely(PageKsm(page))) 1573 return rmap_walk_ksm(page, rmap_one, arg); 1574 else if (PageAnon(page)) 1575 return rmap_walk_anon(page, rmap_one, arg); 1576 else 1577 return rmap_walk_file(page, rmap_one, arg); 1578 } 1579 #endif /* CONFIG_MIGRATION */ 1580 1581 #ifdef CONFIG_HUGETLB_PAGE 1582 /* 1583 * The following three functions are for anonymous (private mapped) hugepages. 1584 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1585 * and no lru code, because we handle hugepages differently from common pages. 1586 */ 1587 static void __hugepage_set_anon_rmap(struct page *page, 1588 struct vm_area_struct *vma, unsigned long address, int exclusive) 1589 { 1590 struct anon_vma *anon_vma = vma->anon_vma; 1591 1592 BUG_ON(!anon_vma); 1593 1594 if (PageAnon(page)) 1595 return; 1596 if (!exclusive) 1597 anon_vma = anon_vma->root; 1598 1599 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1600 page->mapping = (struct address_space *) anon_vma; 1601 page->index = linear_page_index(vma, address); 1602 } 1603 1604 void hugepage_add_anon_rmap(struct page *page, 1605 struct vm_area_struct *vma, unsigned long address) 1606 { 1607 struct anon_vma *anon_vma = vma->anon_vma; 1608 int first; 1609 1610 BUG_ON(!PageLocked(page)); 1611 BUG_ON(!anon_vma); 1612 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1613 first = atomic_inc_and_test(&page->_mapcount); 1614 if (first) 1615 __hugepage_set_anon_rmap(page, vma, address, 0); 1616 } 1617 1618 void hugepage_add_new_anon_rmap(struct page *page, 1619 struct vm_area_struct *vma, unsigned long address) 1620 { 1621 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1622 atomic_set(&page->_mapcount, 0); 1623 __hugepage_set_anon_rmap(page, vma, address, 1); 1624 } 1625 #endif /* CONFIG_HUGETLB_PAGE */ 1626