1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * folio_lock 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 #include <linux/oom.h> 79 80 #include <asm/tlbflush.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/tlb.h> 84 #include <trace/events/migrate.h> 85 86 #include "internal.h" 87 88 static struct kmem_cache *anon_vma_cachep; 89 static struct kmem_cache *anon_vma_chain_cachep; 90 91 static inline struct anon_vma *anon_vma_alloc(void) 92 { 93 struct anon_vma *anon_vma; 94 95 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 96 if (anon_vma) { 97 atomic_set(&anon_vma->refcount, 1); 98 anon_vma->num_children = 0; 99 anon_vma->num_active_vmas = 0; 100 anon_vma->parent = anon_vma; 101 /* 102 * Initialise the anon_vma root to point to itself. If called 103 * from fork, the root will be reset to the parents anon_vma. 104 */ 105 anon_vma->root = anon_vma; 106 } 107 108 return anon_vma; 109 } 110 111 static inline void anon_vma_free(struct anon_vma *anon_vma) 112 { 113 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 114 115 /* 116 * Synchronize against folio_lock_anon_vma_read() such that 117 * we can safely hold the lock without the anon_vma getting 118 * freed. 119 * 120 * Relies on the full mb implied by the atomic_dec_and_test() from 121 * put_anon_vma() against the acquire barrier implied by 122 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 123 * 124 * folio_lock_anon_vma_read() VS put_anon_vma() 125 * down_read_trylock() atomic_dec_and_test() 126 * LOCK MB 127 * atomic_read() rwsem_is_locked() 128 * 129 * LOCK should suffice since the actual taking of the lock must 130 * happen _before_ what follows. 131 */ 132 might_sleep(); 133 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 134 anon_vma_lock_write(anon_vma); 135 anon_vma_unlock_write(anon_vma); 136 } 137 138 kmem_cache_free(anon_vma_cachep, anon_vma); 139 } 140 141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 142 { 143 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 144 } 145 146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 147 { 148 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 149 } 150 151 static void anon_vma_chain_link(struct vm_area_struct *vma, 152 struct anon_vma_chain *avc, 153 struct anon_vma *anon_vma) 154 { 155 avc->vma = vma; 156 avc->anon_vma = anon_vma; 157 list_add(&avc->same_vma, &vma->anon_vma_chain); 158 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 159 } 160 161 /** 162 * __anon_vma_prepare - attach an anon_vma to a memory region 163 * @vma: the memory region in question 164 * 165 * This makes sure the memory mapping described by 'vma' has 166 * an 'anon_vma' attached to it, so that we can associate the 167 * anonymous pages mapped into it with that anon_vma. 168 * 169 * The common case will be that we already have one, which 170 * is handled inline by anon_vma_prepare(). But if 171 * not we either need to find an adjacent mapping that we 172 * can re-use the anon_vma from (very common when the only 173 * reason for splitting a vma has been mprotect()), or we 174 * allocate a new one. 175 * 176 * Anon-vma allocations are very subtle, because we may have 177 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 178 * and that may actually touch the rwsem even in the newly 179 * allocated vma (it depends on RCU to make sure that the 180 * anon_vma isn't actually destroyed). 181 * 182 * As a result, we need to do proper anon_vma locking even 183 * for the new allocation. At the same time, we do not want 184 * to do any locking for the common case of already having 185 * an anon_vma. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 mmap_assert_locked(mm); 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against folio_remove_rmap_*() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 * 494 * NOTE: the caller should normally hold folio lock when calling this. If 495 * not, the caller needs to double check the anon_vma didn't change after 496 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 497 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 498 * which has already covered that, and comment above remap_pages(). 499 */ 500 struct anon_vma *folio_get_anon_vma(struct folio *folio) 501 { 502 struct anon_vma *anon_vma = NULL; 503 unsigned long anon_mapping; 504 505 rcu_read_lock(); 506 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 507 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 508 goto out; 509 if (!folio_mapped(folio)) 510 goto out; 511 512 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 513 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 514 anon_vma = NULL; 515 goto out; 516 } 517 518 /* 519 * If this folio is still mapped, then its anon_vma cannot have been 520 * freed. But if it has been unmapped, we have no security against the 521 * anon_vma structure being freed and reused (for another anon_vma: 522 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 523 * above cannot corrupt). 524 */ 525 if (!folio_mapped(folio)) { 526 rcu_read_unlock(); 527 put_anon_vma(anon_vma); 528 return NULL; 529 } 530 out: 531 rcu_read_unlock(); 532 533 return anon_vma; 534 } 535 536 /* 537 * Similar to folio_get_anon_vma() except it locks the anon_vma. 538 * 539 * Its a little more complex as it tries to keep the fast path to a single 540 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 541 * reference like with folio_get_anon_vma() and then block on the mutex 542 * on !rwc->try_lock case. 543 */ 544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 545 struct rmap_walk_control *rwc) 546 { 547 struct anon_vma *anon_vma = NULL; 548 struct anon_vma *root_anon_vma; 549 unsigned long anon_mapping; 550 551 retry: 552 rcu_read_lock(); 553 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 554 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 555 goto out; 556 if (!folio_mapped(folio)) 557 goto out; 558 559 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 560 root_anon_vma = READ_ONCE(anon_vma->root); 561 if (down_read_trylock(&root_anon_vma->rwsem)) { 562 /* 563 * folio_move_anon_rmap() might have changed the anon_vma as we 564 * might not hold the folio lock here. 565 */ 566 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 567 anon_mapping)) { 568 up_read(&root_anon_vma->rwsem); 569 rcu_read_unlock(); 570 goto retry; 571 } 572 573 /* 574 * If the folio is still mapped, then this anon_vma is still 575 * its anon_vma, and holding the mutex ensures that it will 576 * not go away, see anon_vma_free(). 577 */ 578 if (!folio_mapped(folio)) { 579 up_read(&root_anon_vma->rwsem); 580 anon_vma = NULL; 581 } 582 goto out; 583 } 584 585 if (rwc && rwc->try_lock) { 586 anon_vma = NULL; 587 rwc->contended = true; 588 goto out; 589 } 590 591 /* trylock failed, we got to sleep */ 592 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 593 anon_vma = NULL; 594 goto out; 595 } 596 597 if (!folio_mapped(folio)) { 598 rcu_read_unlock(); 599 put_anon_vma(anon_vma); 600 return NULL; 601 } 602 603 /* we pinned the anon_vma, its safe to sleep */ 604 rcu_read_unlock(); 605 anon_vma_lock_read(anon_vma); 606 607 /* 608 * folio_move_anon_rmap() might have changed the anon_vma as we might 609 * not hold the folio lock here. 610 */ 611 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 612 anon_mapping)) { 613 anon_vma_unlock_read(anon_vma); 614 put_anon_vma(anon_vma); 615 anon_vma = NULL; 616 goto retry; 617 } 618 619 if (atomic_dec_and_test(&anon_vma->refcount)) { 620 /* 621 * Oops, we held the last refcount, release the lock 622 * and bail -- can't simply use put_anon_vma() because 623 * we'll deadlock on the anon_vma_lock_write() recursion. 624 */ 625 anon_vma_unlock_read(anon_vma); 626 __put_anon_vma(anon_vma); 627 anon_vma = NULL; 628 } 629 630 return anon_vma; 631 632 out: 633 rcu_read_unlock(); 634 return anon_vma; 635 } 636 637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 638 /* 639 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 640 * important if a PTE was dirty when it was unmapped that it's flushed 641 * before any IO is initiated on the page to prevent lost writes. Similarly, 642 * it must be flushed before freeing to prevent data leakage. 643 */ 644 void try_to_unmap_flush(void) 645 { 646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 648 if (!tlb_ubc->flush_required) 649 return; 650 651 arch_tlbbatch_flush(&tlb_ubc->arch); 652 tlb_ubc->flush_required = false; 653 tlb_ubc->writable = false; 654 } 655 656 /* Flush iff there are potentially writable TLB entries that can race with IO */ 657 void try_to_unmap_flush_dirty(void) 658 { 659 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 660 661 if (tlb_ubc->writable) 662 try_to_unmap_flush(); 663 } 664 665 /* 666 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 667 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 668 */ 669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 670 #define TLB_FLUSH_BATCH_PENDING_MASK \ 671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 672 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 673 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 674 675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 676 unsigned long uaddr) 677 { 678 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 679 int batch; 680 bool writable = pte_dirty(pteval); 681 682 if (!pte_accessible(mm, pteval)) 683 return; 684 685 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 686 tlb_ubc->flush_required = true; 687 688 /* 689 * Ensure compiler does not re-order the setting of tlb_flush_batched 690 * before the PTE is cleared. 691 */ 692 barrier(); 693 batch = atomic_read(&mm->tlb_flush_batched); 694 retry: 695 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 696 /* 697 * Prevent `pending' from catching up with `flushed' because of 698 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 699 * `pending' becomes large. 700 */ 701 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 702 goto retry; 703 } else { 704 atomic_inc(&mm->tlb_flush_batched); 705 } 706 707 /* 708 * If the PTE was dirty then it's best to assume it's writable. The 709 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 710 * before the page is queued for IO. 711 */ 712 if (writable) 713 tlb_ubc->writable = true; 714 } 715 716 /* 717 * Returns true if the TLB flush should be deferred to the end of a batch of 718 * unmap operations to reduce IPIs. 719 */ 720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 721 { 722 if (!(flags & TTU_BATCH_FLUSH)) 723 return false; 724 725 return arch_tlbbatch_should_defer(mm); 726 } 727 728 /* 729 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 730 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 731 * operation such as mprotect or munmap to race between reclaim unmapping 732 * the page and flushing the page. If this race occurs, it potentially allows 733 * access to data via a stale TLB entry. Tracking all mm's that have TLB 734 * batching in flight would be expensive during reclaim so instead track 735 * whether TLB batching occurred in the past and if so then do a flush here 736 * if required. This will cost one additional flush per reclaim cycle paid 737 * by the first operation at risk such as mprotect and mumap. 738 * 739 * This must be called under the PTL so that an access to tlb_flush_batched 740 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 741 * via the PTL. 742 */ 743 void flush_tlb_batched_pending(struct mm_struct *mm) 744 { 745 int batch = atomic_read(&mm->tlb_flush_batched); 746 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 747 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 748 749 if (pending != flushed) { 750 arch_flush_tlb_batched_pending(mm); 751 /* 752 * If the new TLB flushing is pending during flushing, leave 753 * mm->tlb_flush_batched as is, to avoid losing flushing. 754 */ 755 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 756 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 757 } 758 } 759 #else 760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 761 unsigned long uaddr) 762 { 763 } 764 765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 766 { 767 return false; 768 } 769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 770 771 /* 772 * At what user virtual address is page expected in vma? 773 * Caller should check the page is actually part of the vma. 774 */ 775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 776 { 777 struct folio *folio = page_folio(page); 778 pgoff_t pgoff; 779 780 if (folio_test_anon(folio)) { 781 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 782 /* 783 * Note: swapoff's unuse_vma() is more efficient with this 784 * check, and needs it to match anon_vma when KSM is active. 785 */ 786 if (!vma->anon_vma || !page__anon_vma || 787 vma->anon_vma->root != page__anon_vma->root) 788 return -EFAULT; 789 } else if (!vma->vm_file) { 790 return -EFAULT; 791 } else if (vma->vm_file->f_mapping != folio->mapping) { 792 return -EFAULT; 793 } 794 795 /* The !page__anon_vma above handles KSM folios */ 796 pgoff = folio->index + folio_page_idx(folio, page); 797 return vma_address(vma, pgoff, 1); 798 } 799 800 /* 801 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 802 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 803 * represents. 804 */ 805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 806 { 807 pgd_t *pgd; 808 p4d_t *p4d; 809 pud_t *pud; 810 pmd_t *pmd = NULL; 811 812 pgd = pgd_offset(mm, address); 813 if (!pgd_present(*pgd)) 814 goto out; 815 816 p4d = p4d_offset(pgd, address); 817 if (!p4d_present(*p4d)) 818 goto out; 819 820 pud = pud_offset(p4d, address); 821 if (!pud_present(*pud)) 822 goto out; 823 824 pmd = pmd_offset(pud, address); 825 out: 826 return pmd; 827 } 828 829 struct folio_referenced_arg { 830 int mapcount; 831 int referenced; 832 unsigned long vm_flags; 833 struct mem_cgroup *memcg; 834 }; 835 836 /* 837 * arg: folio_referenced_arg will be passed 838 */ 839 static bool folio_referenced_one(struct folio *folio, 840 struct vm_area_struct *vma, unsigned long address, void *arg) 841 { 842 struct folio_referenced_arg *pra = arg; 843 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 844 int referenced = 0; 845 unsigned long start = address, ptes = 0; 846 847 while (page_vma_mapped_walk(&pvmw)) { 848 address = pvmw.address; 849 850 if (vma->vm_flags & VM_LOCKED) { 851 if (!folio_test_large(folio) || !pvmw.pte) { 852 /* Restore the mlock which got missed */ 853 mlock_vma_folio(folio, vma); 854 page_vma_mapped_walk_done(&pvmw); 855 pra->vm_flags |= VM_LOCKED; 856 return false; /* To break the loop */ 857 } 858 /* 859 * For large folio fully mapped to VMA, will 860 * be handled after the pvmw loop. 861 * 862 * For large folio cross VMA boundaries, it's 863 * expected to be picked by page reclaim. But 864 * should skip reference of pages which are in 865 * the range of VM_LOCKED vma. As page reclaim 866 * should just count the reference of pages out 867 * the range of VM_LOCKED vma. 868 */ 869 ptes++; 870 pra->mapcount--; 871 continue; 872 } 873 874 /* 875 * Skip the non-shared swapbacked folio mapped solely by 876 * the exiting or OOM-reaped process. This avoids redundant 877 * swap-out followed by an immediate unmap. 878 */ 879 if ((!atomic_read(&vma->vm_mm->mm_users) || 880 check_stable_address_space(vma->vm_mm)) && 881 folio_test_anon(folio) && folio_test_swapbacked(folio) && 882 !folio_likely_mapped_shared(folio)) { 883 pra->referenced = -1; 884 page_vma_mapped_walk_done(&pvmw); 885 return false; 886 } 887 888 if (pvmw.pte) { 889 if (lru_gen_enabled() && 890 pte_young(ptep_get(pvmw.pte))) { 891 lru_gen_look_around(&pvmw); 892 referenced++; 893 } 894 895 if (ptep_clear_flush_young_notify(vma, address, 896 pvmw.pte)) 897 referenced++; 898 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 899 if (pmdp_clear_flush_young_notify(vma, address, 900 pvmw.pmd)) 901 referenced++; 902 } else { 903 /* unexpected pmd-mapped folio? */ 904 WARN_ON_ONCE(1); 905 } 906 907 pra->mapcount--; 908 } 909 910 if ((vma->vm_flags & VM_LOCKED) && 911 folio_test_large(folio) && 912 folio_within_vma(folio, vma)) { 913 unsigned long s_align, e_align; 914 915 s_align = ALIGN_DOWN(start, PMD_SIZE); 916 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 917 918 /* folio doesn't cross page table boundary and fully mapped */ 919 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 920 /* Restore the mlock which got missed */ 921 mlock_vma_folio(folio, vma); 922 pra->vm_flags |= VM_LOCKED; 923 return false; /* To break the loop */ 924 } 925 } 926 927 if (referenced) 928 folio_clear_idle(folio); 929 if (folio_test_clear_young(folio)) 930 referenced++; 931 932 if (referenced) { 933 pra->referenced++; 934 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 935 } 936 937 if (!pra->mapcount) 938 return false; /* To break the loop */ 939 940 return true; 941 } 942 943 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 944 { 945 struct folio_referenced_arg *pra = arg; 946 struct mem_cgroup *memcg = pra->memcg; 947 948 /* 949 * Ignore references from this mapping if it has no recency. If the 950 * folio has been used in another mapping, we will catch it; if this 951 * other mapping is already gone, the unmap path will have set the 952 * referenced flag or activated the folio in zap_pte_range(). 953 */ 954 if (!vma_has_recency(vma)) 955 return true; 956 957 /* 958 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 959 * of references from different cgroups. 960 */ 961 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 962 return true; 963 964 return false; 965 } 966 967 /** 968 * folio_referenced() - Test if the folio was referenced. 969 * @folio: The folio to test. 970 * @is_locked: Caller holds lock on the folio. 971 * @memcg: target memory cgroup 972 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 973 * 974 * Quick test_and_clear_referenced for all mappings of a folio, 975 * 976 * Return: The number of mappings which referenced the folio. Return -1 if 977 * the function bailed out due to rmap lock contention. 978 */ 979 int folio_referenced(struct folio *folio, int is_locked, 980 struct mem_cgroup *memcg, unsigned long *vm_flags) 981 { 982 bool we_locked = false; 983 struct folio_referenced_arg pra = { 984 .mapcount = folio_mapcount(folio), 985 .memcg = memcg, 986 }; 987 struct rmap_walk_control rwc = { 988 .rmap_one = folio_referenced_one, 989 .arg = (void *)&pra, 990 .anon_lock = folio_lock_anon_vma_read, 991 .try_lock = true, 992 .invalid_vma = invalid_folio_referenced_vma, 993 }; 994 995 *vm_flags = 0; 996 if (!pra.mapcount) 997 return 0; 998 999 if (!folio_raw_mapping(folio)) 1000 return 0; 1001 1002 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1003 we_locked = folio_trylock(folio); 1004 if (!we_locked) 1005 return 1; 1006 } 1007 1008 rmap_walk(folio, &rwc); 1009 *vm_flags = pra.vm_flags; 1010 1011 if (we_locked) 1012 folio_unlock(folio); 1013 1014 return rwc.contended ? -1 : pra.referenced; 1015 } 1016 1017 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1018 { 1019 int cleaned = 0; 1020 struct vm_area_struct *vma = pvmw->vma; 1021 struct mmu_notifier_range range; 1022 unsigned long address = pvmw->address; 1023 1024 /* 1025 * We have to assume the worse case ie pmd for invalidation. Note that 1026 * the folio can not be freed from this function. 1027 */ 1028 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1029 vma->vm_mm, address, vma_address_end(pvmw)); 1030 mmu_notifier_invalidate_range_start(&range); 1031 1032 while (page_vma_mapped_walk(pvmw)) { 1033 int ret = 0; 1034 1035 address = pvmw->address; 1036 if (pvmw->pte) { 1037 pte_t *pte = pvmw->pte; 1038 pte_t entry = ptep_get(pte); 1039 1040 if (!pte_dirty(entry) && !pte_write(entry)) 1041 continue; 1042 1043 flush_cache_page(vma, address, pte_pfn(entry)); 1044 entry = ptep_clear_flush(vma, address, pte); 1045 entry = pte_wrprotect(entry); 1046 entry = pte_mkclean(entry); 1047 set_pte_at(vma->vm_mm, address, pte, entry); 1048 ret = 1; 1049 } else { 1050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1051 pmd_t *pmd = pvmw->pmd; 1052 pmd_t entry; 1053 1054 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1055 continue; 1056 1057 flush_cache_range(vma, address, 1058 address + HPAGE_PMD_SIZE); 1059 entry = pmdp_invalidate(vma, address, pmd); 1060 entry = pmd_wrprotect(entry); 1061 entry = pmd_mkclean(entry); 1062 set_pmd_at(vma->vm_mm, address, pmd, entry); 1063 ret = 1; 1064 #else 1065 /* unexpected pmd-mapped folio? */ 1066 WARN_ON_ONCE(1); 1067 #endif 1068 } 1069 1070 if (ret) 1071 cleaned++; 1072 } 1073 1074 mmu_notifier_invalidate_range_end(&range); 1075 1076 return cleaned; 1077 } 1078 1079 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1080 unsigned long address, void *arg) 1081 { 1082 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1083 int *cleaned = arg; 1084 1085 *cleaned += page_vma_mkclean_one(&pvmw); 1086 1087 return true; 1088 } 1089 1090 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1091 { 1092 if (vma->vm_flags & VM_SHARED) 1093 return false; 1094 1095 return true; 1096 } 1097 1098 int folio_mkclean(struct folio *folio) 1099 { 1100 int cleaned = 0; 1101 struct address_space *mapping; 1102 struct rmap_walk_control rwc = { 1103 .arg = (void *)&cleaned, 1104 .rmap_one = page_mkclean_one, 1105 .invalid_vma = invalid_mkclean_vma, 1106 }; 1107 1108 BUG_ON(!folio_test_locked(folio)); 1109 1110 if (!folio_mapped(folio)) 1111 return 0; 1112 1113 mapping = folio_mapping(folio); 1114 if (!mapping) 1115 return 0; 1116 1117 rmap_walk(folio, &rwc); 1118 1119 return cleaned; 1120 } 1121 EXPORT_SYMBOL_GPL(folio_mkclean); 1122 1123 /** 1124 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1125 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1126 * within the @vma of shared mappings. And since clean PTEs 1127 * should also be readonly, write protects them too. 1128 * @pfn: start pfn. 1129 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1130 * @pgoff: page offset that the @pfn mapped with. 1131 * @vma: vma that @pfn mapped within. 1132 * 1133 * Returns the number of cleaned PTEs (including PMDs). 1134 */ 1135 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1136 struct vm_area_struct *vma) 1137 { 1138 struct page_vma_mapped_walk pvmw = { 1139 .pfn = pfn, 1140 .nr_pages = nr_pages, 1141 .pgoff = pgoff, 1142 .vma = vma, 1143 .flags = PVMW_SYNC, 1144 }; 1145 1146 if (invalid_mkclean_vma(vma, NULL)) 1147 return 0; 1148 1149 pvmw.address = vma_address(vma, pgoff, nr_pages); 1150 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1151 1152 return page_vma_mkclean_one(&pvmw); 1153 } 1154 1155 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1156 struct page *page, int nr_pages, enum rmap_level level, 1157 int *nr_pmdmapped) 1158 { 1159 atomic_t *mapped = &folio->_nr_pages_mapped; 1160 const int orig_nr_pages = nr_pages; 1161 int first = 0, nr = 0; 1162 1163 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1164 1165 switch (level) { 1166 case RMAP_LEVEL_PTE: 1167 if (!folio_test_large(folio)) { 1168 nr = atomic_inc_and_test(&folio->_mapcount); 1169 break; 1170 } 1171 1172 do { 1173 first += atomic_inc_and_test(&page->_mapcount); 1174 } while (page++, --nr_pages > 0); 1175 1176 if (first && 1177 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1178 nr = first; 1179 1180 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1181 break; 1182 case RMAP_LEVEL_PMD: 1183 first = atomic_inc_and_test(&folio->_entire_mapcount); 1184 if (first) { 1185 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1186 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1187 *nr_pmdmapped = folio_nr_pages(folio); 1188 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1189 /* Raced ahead of a remove and another add? */ 1190 if (unlikely(nr < 0)) 1191 nr = 0; 1192 } else { 1193 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1194 nr = 0; 1195 } 1196 } 1197 atomic_inc(&folio->_large_mapcount); 1198 break; 1199 } 1200 return nr; 1201 } 1202 1203 /** 1204 * folio_move_anon_rmap - move a folio to our anon_vma 1205 * @folio: The folio to move to our anon_vma 1206 * @vma: The vma the folio belongs to 1207 * 1208 * When a folio belongs exclusively to one process after a COW event, 1209 * that folio can be moved into the anon_vma that belongs to just that 1210 * process, so the rmap code will not search the parent or sibling processes. 1211 */ 1212 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1213 { 1214 void *anon_vma = vma->anon_vma; 1215 1216 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1217 VM_BUG_ON_VMA(!anon_vma, vma); 1218 1219 anon_vma += PAGE_MAPPING_ANON; 1220 /* 1221 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1222 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1223 * folio_test_anon()) will not see one without the other. 1224 */ 1225 WRITE_ONCE(folio->mapping, anon_vma); 1226 } 1227 1228 /** 1229 * __folio_set_anon - set up a new anonymous rmap for a folio 1230 * @folio: The folio to set up the new anonymous rmap for. 1231 * @vma: VM area to add the folio to. 1232 * @address: User virtual address of the mapping 1233 * @exclusive: Whether the folio is exclusive to the process. 1234 */ 1235 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1236 unsigned long address, bool exclusive) 1237 { 1238 struct anon_vma *anon_vma = vma->anon_vma; 1239 1240 BUG_ON(!anon_vma); 1241 1242 /* 1243 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1244 * possible anon_vma for the folio mapping! 1245 */ 1246 if (!exclusive) 1247 anon_vma = anon_vma->root; 1248 1249 /* 1250 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1251 * Make sure the compiler doesn't split the stores of anon_vma and 1252 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1253 * could mistake the mapping for a struct address_space and crash. 1254 */ 1255 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1256 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1257 folio->index = linear_page_index(vma, address); 1258 } 1259 1260 /** 1261 * __page_check_anon_rmap - sanity check anonymous rmap addition 1262 * @folio: The folio containing @page. 1263 * @page: the page to check the mapping of 1264 * @vma: the vm area in which the mapping is added 1265 * @address: the user virtual address mapped 1266 */ 1267 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1268 struct vm_area_struct *vma, unsigned long address) 1269 { 1270 /* 1271 * The page's anon-rmap details (mapping and index) are guaranteed to 1272 * be set up correctly at this point. 1273 * 1274 * We have exclusion against folio_add_anon_rmap_*() because the caller 1275 * always holds the page locked. 1276 * 1277 * We have exclusion against folio_add_new_anon_rmap because those pages 1278 * are initially only visible via the pagetables, and the pte is locked 1279 * over the call to folio_add_new_anon_rmap. 1280 */ 1281 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1282 folio); 1283 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1284 page); 1285 } 1286 1287 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1288 { 1289 int idx; 1290 1291 if (nr) { 1292 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1293 __lruvec_stat_mod_folio(folio, idx, nr); 1294 } 1295 if (nr_pmdmapped) { 1296 if (folio_test_anon(folio)) { 1297 idx = NR_ANON_THPS; 1298 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1299 } else { 1300 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1301 idx = folio_test_swapbacked(folio) ? 1302 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1303 __mod_node_page_state(folio_pgdat(folio), idx, 1304 nr_pmdmapped); 1305 } 1306 } 1307 } 1308 1309 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1310 struct page *page, int nr_pages, struct vm_area_struct *vma, 1311 unsigned long address, rmap_t flags, enum rmap_level level) 1312 { 1313 int i, nr, nr_pmdmapped = 0; 1314 1315 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1316 1317 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1318 1319 if (likely(!folio_test_ksm(folio))) 1320 __page_check_anon_rmap(folio, page, vma, address); 1321 1322 __folio_mod_stat(folio, nr, nr_pmdmapped); 1323 1324 if (flags & RMAP_EXCLUSIVE) { 1325 switch (level) { 1326 case RMAP_LEVEL_PTE: 1327 for (i = 0; i < nr_pages; i++) 1328 SetPageAnonExclusive(page + i); 1329 break; 1330 case RMAP_LEVEL_PMD: 1331 SetPageAnonExclusive(page); 1332 break; 1333 } 1334 } 1335 for (i = 0; i < nr_pages; i++) { 1336 struct page *cur_page = page + i; 1337 1338 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1339 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1340 (folio_test_large(folio) && 1341 folio_entire_mapcount(folio) > 1)) && 1342 PageAnonExclusive(cur_page), folio); 1343 } 1344 1345 /* 1346 * For large folio, only mlock it if it's fully mapped to VMA. It's 1347 * not easy to check whether the large folio is fully mapped to VMA 1348 * here. Only mlock normal 4K folio and leave page reclaim to handle 1349 * large folio. 1350 */ 1351 if (!folio_test_large(folio)) 1352 mlock_vma_folio(folio, vma); 1353 } 1354 1355 /** 1356 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1357 * @folio: The folio to add the mappings to 1358 * @page: The first page to add 1359 * @nr_pages: The number of pages which will be mapped 1360 * @vma: The vm area in which the mappings are added 1361 * @address: The user virtual address of the first page to map 1362 * @flags: The rmap flags 1363 * 1364 * The page range of folio is defined by [first_page, first_page + nr_pages) 1365 * 1366 * The caller needs to hold the page table lock, and the page must be locked in 1367 * the anon_vma case: to serialize mapping,index checking after setting, 1368 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1369 * (but KSM folios are never downgraded). 1370 */ 1371 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1372 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1373 rmap_t flags) 1374 { 1375 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1376 RMAP_LEVEL_PTE); 1377 } 1378 1379 /** 1380 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1381 * @folio: The folio to add the mapping to 1382 * @page: The first page to add 1383 * @vma: The vm area in which the mapping is added 1384 * @address: The user virtual address of the first page to map 1385 * @flags: The rmap flags 1386 * 1387 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1388 * 1389 * The caller needs to hold the page table lock, and the page must be locked in 1390 * the anon_vma case: to serialize mapping,index checking after setting. 1391 */ 1392 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1393 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1394 { 1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1396 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1397 RMAP_LEVEL_PMD); 1398 #else 1399 WARN_ON_ONCE(true); 1400 #endif 1401 } 1402 1403 /** 1404 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1405 * @folio: The folio to add the mapping to. 1406 * @vma: the vm area in which the mapping is added 1407 * @address: the user virtual address mapped 1408 * @flags: The rmap flags 1409 * 1410 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1411 * This means the inc-and-test can be bypassed. 1412 * The folio doesn't necessarily need to be locked while it's exclusive 1413 * unless two threads map it concurrently. However, the folio must be 1414 * locked if it's shared. 1415 * 1416 * If the folio is pmd-mappable, it is accounted as a THP. 1417 */ 1418 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1419 unsigned long address, rmap_t flags) 1420 { 1421 const int nr = folio_nr_pages(folio); 1422 const bool exclusive = flags & RMAP_EXCLUSIVE; 1423 int nr_pmdmapped = 0; 1424 1425 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1426 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1427 VM_BUG_ON_VMA(address < vma->vm_start || 1428 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1429 1430 /* 1431 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1432 * under memory pressure. 1433 */ 1434 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1435 __folio_set_swapbacked(folio); 1436 __folio_set_anon(folio, vma, address, exclusive); 1437 1438 if (likely(!folio_test_large(folio))) { 1439 /* increment count (starts at -1) */ 1440 atomic_set(&folio->_mapcount, 0); 1441 if (exclusive) 1442 SetPageAnonExclusive(&folio->page); 1443 } else if (!folio_test_pmd_mappable(folio)) { 1444 int i; 1445 1446 for (i = 0; i < nr; i++) { 1447 struct page *page = folio_page(folio, i); 1448 1449 /* increment count (starts at -1) */ 1450 atomic_set(&page->_mapcount, 0); 1451 if (exclusive) 1452 SetPageAnonExclusive(page); 1453 } 1454 1455 /* increment count (starts at -1) */ 1456 atomic_set(&folio->_large_mapcount, nr - 1); 1457 atomic_set(&folio->_nr_pages_mapped, nr); 1458 } else { 1459 /* increment count (starts at -1) */ 1460 atomic_set(&folio->_entire_mapcount, 0); 1461 /* increment count (starts at -1) */ 1462 atomic_set(&folio->_large_mapcount, 0); 1463 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1464 if (exclusive) 1465 SetPageAnonExclusive(&folio->page); 1466 nr_pmdmapped = nr; 1467 } 1468 1469 __folio_mod_stat(folio, nr, nr_pmdmapped); 1470 } 1471 1472 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1473 struct page *page, int nr_pages, struct vm_area_struct *vma, 1474 enum rmap_level level) 1475 { 1476 int nr, nr_pmdmapped = 0; 1477 1478 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1479 1480 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1481 __folio_mod_stat(folio, nr, nr_pmdmapped); 1482 1483 /* See comments in folio_add_anon_rmap_*() */ 1484 if (!folio_test_large(folio)) 1485 mlock_vma_folio(folio, vma); 1486 } 1487 1488 /** 1489 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1490 * @folio: The folio to add the mappings to 1491 * @page: The first page to add 1492 * @nr_pages: The number of pages that will be mapped using PTEs 1493 * @vma: The vm area in which the mappings are added 1494 * 1495 * The page range of the folio is defined by [page, page + nr_pages) 1496 * 1497 * The caller needs to hold the page table lock. 1498 */ 1499 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1500 int nr_pages, struct vm_area_struct *vma) 1501 { 1502 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1503 } 1504 1505 /** 1506 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1507 * @folio: The folio to add the mapping to 1508 * @page: The first page to add 1509 * @vma: The vm area in which the mapping is added 1510 * 1511 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1512 * 1513 * The caller needs to hold the page table lock. 1514 */ 1515 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1516 struct vm_area_struct *vma) 1517 { 1518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1519 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1520 #else 1521 WARN_ON_ONCE(true); 1522 #endif 1523 } 1524 1525 static __always_inline void __folio_remove_rmap(struct folio *folio, 1526 struct page *page, int nr_pages, struct vm_area_struct *vma, 1527 enum rmap_level level) 1528 { 1529 atomic_t *mapped = &folio->_nr_pages_mapped; 1530 int last = 0, nr = 0, nr_pmdmapped = 0; 1531 bool partially_mapped = false; 1532 1533 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1534 1535 switch (level) { 1536 case RMAP_LEVEL_PTE: 1537 if (!folio_test_large(folio)) { 1538 nr = atomic_add_negative(-1, &folio->_mapcount); 1539 break; 1540 } 1541 1542 atomic_sub(nr_pages, &folio->_large_mapcount); 1543 do { 1544 last += atomic_add_negative(-1, &page->_mapcount); 1545 } while (page++, --nr_pages > 0); 1546 1547 if (last && 1548 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1549 nr = last; 1550 1551 partially_mapped = nr && atomic_read(mapped); 1552 break; 1553 case RMAP_LEVEL_PMD: 1554 atomic_dec(&folio->_large_mapcount); 1555 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1556 if (last) { 1557 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1558 if (likely(nr < ENTIRELY_MAPPED)) { 1559 nr_pmdmapped = folio_nr_pages(folio); 1560 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1561 /* Raced ahead of another remove and an add? */ 1562 if (unlikely(nr < 0)) 1563 nr = 0; 1564 } else { 1565 /* An add of ENTIRELY_MAPPED raced ahead */ 1566 nr = 0; 1567 } 1568 } 1569 1570 partially_mapped = nr && nr < nr_pmdmapped; 1571 break; 1572 } 1573 1574 /* 1575 * Queue anon large folio for deferred split if at least one page of 1576 * the folio is unmapped and at least one page is still mapped. 1577 * 1578 * Check partially_mapped first to ensure it is a large folio. 1579 */ 1580 if (partially_mapped && folio_test_anon(folio) && 1581 list_empty(&folio->_deferred_list)) 1582 deferred_split_folio(folio); 1583 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1584 1585 /* 1586 * It would be tidy to reset folio_test_anon mapping when fully 1587 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1588 * which increments mapcount after us but sets mapping before us: 1589 * so leave the reset to free_pages_prepare, and remember that 1590 * it's only reliable while mapped. 1591 */ 1592 1593 munlock_vma_folio(folio, vma); 1594 } 1595 1596 /** 1597 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1598 * @folio: The folio to remove the mappings from 1599 * @page: The first page to remove 1600 * @nr_pages: The number of pages that will be removed from the mapping 1601 * @vma: The vm area from which the mappings are removed 1602 * 1603 * The page range of the folio is defined by [page, page + nr_pages) 1604 * 1605 * The caller needs to hold the page table lock. 1606 */ 1607 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1608 int nr_pages, struct vm_area_struct *vma) 1609 { 1610 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1611 } 1612 1613 /** 1614 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1615 * @folio: The folio to remove the mapping from 1616 * @page: The first page to remove 1617 * @vma: The vm area from which the mapping is removed 1618 * 1619 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1620 * 1621 * The caller needs to hold the page table lock. 1622 */ 1623 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1624 struct vm_area_struct *vma) 1625 { 1626 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1627 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1628 #else 1629 WARN_ON_ONCE(true); 1630 #endif 1631 } 1632 1633 /* 1634 * @arg: enum ttu_flags will be passed to this argument 1635 */ 1636 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1637 unsigned long address, void *arg) 1638 { 1639 struct mm_struct *mm = vma->vm_mm; 1640 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1641 pte_t pteval; 1642 struct page *subpage; 1643 bool anon_exclusive, ret = true; 1644 struct mmu_notifier_range range; 1645 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1646 unsigned long pfn; 1647 unsigned long hsz = 0; 1648 1649 /* 1650 * When racing against e.g. zap_pte_range() on another cpu, 1651 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1652 * try_to_unmap() may return before page_mapped() has become false, 1653 * if page table locking is skipped: use TTU_SYNC to wait for that. 1654 */ 1655 if (flags & TTU_SYNC) 1656 pvmw.flags = PVMW_SYNC; 1657 1658 /* 1659 * For THP, we have to assume the worse case ie pmd for invalidation. 1660 * For hugetlb, it could be much worse if we need to do pud 1661 * invalidation in the case of pmd sharing. 1662 * 1663 * Note that the folio can not be freed in this function as call of 1664 * try_to_unmap() must hold a reference on the folio. 1665 */ 1666 range.end = vma_address_end(&pvmw); 1667 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1668 address, range.end); 1669 if (folio_test_hugetlb(folio)) { 1670 /* 1671 * If sharing is possible, start and end will be adjusted 1672 * accordingly. 1673 */ 1674 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1675 &range.end); 1676 1677 /* We need the huge page size for set_huge_pte_at() */ 1678 hsz = huge_page_size(hstate_vma(vma)); 1679 } 1680 mmu_notifier_invalidate_range_start(&range); 1681 1682 while (page_vma_mapped_walk(&pvmw)) { 1683 /* 1684 * If the folio is in an mlock()d vma, we must not swap it out. 1685 */ 1686 if (!(flags & TTU_IGNORE_MLOCK) && 1687 (vma->vm_flags & VM_LOCKED)) { 1688 /* Restore the mlock which got missed */ 1689 if (!folio_test_large(folio)) 1690 mlock_vma_folio(folio, vma); 1691 goto walk_abort; 1692 } 1693 1694 if (!pvmw.pte) { 1695 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, 1696 folio)) 1697 goto walk_done; 1698 1699 if (flags & TTU_SPLIT_HUGE_PMD) { 1700 /* 1701 * We temporarily have to drop the PTL and 1702 * restart so we can process the PTE-mapped THP. 1703 */ 1704 split_huge_pmd_locked(vma, pvmw.address, 1705 pvmw.pmd, false, folio); 1706 flags &= ~TTU_SPLIT_HUGE_PMD; 1707 page_vma_mapped_walk_restart(&pvmw); 1708 continue; 1709 } 1710 } 1711 1712 /* Unexpected PMD-mapped THP? */ 1713 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1714 1715 pfn = pte_pfn(ptep_get(pvmw.pte)); 1716 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1717 address = pvmw.address; 1718 anon_exclusive = folio_test_anon(folio) && 1719 PageAnonExclusive(subpage); 1720 1721 if (folio_test_hugetlb(folio)) { 1722 bool anon = folio_test_anon(folio); 1723 1724 /* 1725 * The try_to_unmap() is only passed a hugetlb page 1726 * in the case where the hugetlb page is poisoned. 1727 */ 1728 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1729 /* 1730 * huge_pmd_unshare may unmap an entire PMD page. 1731 * There is no way of knowing exactly which PMDs may 1732 * be cached for this mm, so we must flush them all. 1733 * start/end were already adjusted above to cover this 1734 * range. 1735 */ 1736 flush_cache_range(vma, range.start, range.end); 1737 1738 /* 1739 * To call huge_pmd_unshare, i_mmap_rwsem must be 1740 * held in write mode. Caller needs to explicitly 1741 * do this outside rmap routines. 1742 * 1743 * We also must hold hugetlb vma_lock in write mode. 1744 * Lock order dictates acquiring vma_lock BEFORE 1745 * i_mmap_rwsem. We can only try lock here and fail 1746 * if unsuccessful. 1747 */ 1748 if (!anon) { 1749 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1750 if (!hugetlb_vma_trylock_write(vma)) 1751 goto walk_abort; 1752 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1753 hugetlb_vma_unlock_write(vma); 1754 flush_tlb_range(vma, 1755 range.start, range.end); 1756 /* 1757 * The ref count of the PMD page was 1758 * dropped which is part of the way map 1759 * counting is done for shared PMDs. 1760 * Return 'true' here. When there is 1761 * no other sharing, huge_pmd_unshare 1762 * returns false and we will unmap the 1763 * actual page and drop map count 1764 * to zero. 1765 */ 1766 goto walk_done; 1767 } 1768 hugetlb_vma_unlock_write(vma); 1769 } 1770 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1771 } else { 1772 flush_cache_page(vma, address, pfn); 1773 /* Nuke the page table entry. */ 1774 if (should_defer_flush(mm, flags)) { 1775 /* 1776 * We clear the PTE but do not flush so potentially 1777 * a remote CPU could still be writing to the folio. 1778 * If the entry was previously clean then the 1779 * architecture must guarantee that a clear->dirty 1780 * transition on a cached TLB entry is written through 1781 * and traps if the PTE is unmapped. 1782 */ 1783 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1784 1785 set_tlb_ubc_flush_pending(mm, pteval, address); 1786 } else { 1787 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1788 } 1789 } 1790 1791 /* 1792 * Now the pte is cleared. If this pte was uffd-wp armed, 1793 * we may want to replace a none pte with a marker pte if 1794 * it's file-backed, so we don't lose the tracking info. 1795 */ 1796 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1797 1798 /* Set the dirty flag on the folio now the pte is gone. */ 1799 if (pte_dirty(pteval)) 1800 folio_mark_dirty(folio); 1801 1802 /* Update high watermark before we lower rss */ 1803 update_hiwater_rss(mm); 1804 1805 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1806 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1807 if (folio_test_hugetlb(folio)) { 1808 hugetlb_count_sub(folio_nr_pages(folio), mm); 1809 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1810 hsz); 1811 } else { 1812 dec_mm_counter(mm, mm_counter(folio)); 1813 set_pte_at(mm, address, pvmw.pte, pteval); 1814 } 1815 1816 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1817 /* 1818 * The guest indicated that the page content is of no 1819 * interest anymore. Simply discard the pte, vmscan 1820 * will take care of the rest. 1821 * A future reference will then fault in a new zero 1822 * page. When userfaultfd is active, we must not drop 1823 * this page though, as its main user (postcopy 1824 * migration) will not expect userfaults on already 1825 * copied pages. 1826 */ 1827 dec_mm_counter(mm, mm_counter(folio)); 1828 } else if (folio_test_anon(folio)) { 1829 swp_entry_t entry = page_swap_entry(subpage); 1830 pte_t swp_pte; 1831 /* 1832 * Store the swap location in the pte. 1833 * See handle_pte_fault() ... 1834 */ 1835 if (unlikely(folio_test_swapbacked(folio) != 1836 folio_test_swapcache(folio))) { 1837 WARN_ON_ONCE(1); 1838 goto walk_abort; 1839 } 1840 1841 /* MADV_FREE page check */ 1842 if (!folio_test_swapbacked(folio)) { 1843 int ref_count, map_count; 1844 1845 /* 1846 * Synchronize with gup_pte_range(): 1847 * - clear PTE; barrier; read refcount 1848 * - inc refcount; barrier; read PTE 1849 */ 1850 smp_mb(); 1851 1852 ref_count = folio_ref_count(folio); 1853 map_count = folio_mapcount(folio); 1854 1855 /* 1856 * Order reads for page refcount and dirty flag 1857 * (see comments in __remove_mapping()). 1858 */ 1859 smp_rmb(); 1860 1861 /* 1862 * The only page refs must be one from isolation 1863 * plus the rmap(s) (dropped by discard:). 1864 */ 1865 if (ref_count == 1 + map_count && 1866 (!folio_test_dirty(folio) || 1867 /* 1868 * Unlike MADV_FREE mappings, VM_DROPPABLE 1869 * ones can be dropped even if they've 1870 * been dirtied. 1871 */ 1872 (vma->vm_flags & VM_DROPPABLE))) { 1873 dec_mm_counter(mm, MM_ANONPAGES); 1874 goto discard; 1875 } 1876 1877 /* 1878 * If the folio was redirtied, it cannot be 1879 * discarded. Remap the page to page table. 1880 */ 1881 set_pte_at(mm, address, pvmw.pte, pteval); 1882 /* 1883 * Unlike MADV_FREE mappings, VM_DROPPABLE ones 1884 * never get swap backed on failure to drop. 1885 */ 1886 if (!(vma->vm_flags & VM_DROPPABLE)) 1887 folio_set_swapbacked(folio); 1888 goto walk_abort; 1889 } 1890 1891 if (swap_duplicate(entry) < 0) { 1892 set_pte_at(mm, address, pvmw.pte, pteval); 1893 goto walk_abort; 1894 } 1895 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1896 swap_free(entry); 1897 set_pte_at(mm, address, pvmw.pte, pteval); 1898 goto walk_abort; 1899 } 1900 1901 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1902 if (anon_exclusive && 1903 folio_try_share_anon_rmap_pte(folio, subpage)) { 1904 swap_free(entry); 1905 set_pte_at(mm, address, pvmw.pte, pteval); 1906 goto walk_abort; 1907 } 1908 if (list_empty(&mm->mmlist)) { 1909 spin_lock(&mmlist_lock); 1910 if (list_empty(&mm->mmlist)) 1911 list_add(&mm->mmlist, &init_mm.mmlist); 1912 spin_unlock(&mmlist_lock); 1913 } 1914 dec_mm_counter(mm, MM_ANONPAGES); 1915 inc_mm_counter(mm, MM_SWAPENTS); 1916 swp_pte = swp_entry_to_pte(entry); 1917 if (anon_exclusive) 1918 swp_pte = pte_swp_mkexclusive(swp_pte); 1919 if (pte_soft_dirty(pteval)) 1920 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1921 if (pte_uffd_wp(pteval)) 1922 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1923 set_pte_at(mm, address, pvmw.pte, swp_pte); 1924 } else { 1925 /* 1926 * This is a locked file-backed folio, 1927 * so it cannot be removed from the page 1928 * cache and replaced by a new folio before 1929 * mmu_notifier_invalidate_range_end, so no 1930 * concurrent thread might update its page table 1931 * to point at a new folio while a device is 1932 * still using this folio. 1933 * 1934 * See Documentation/mm/mmu_notifier.rst 1935 */ 1936 dec_mm_counter(mm, mm_counter_file(folio)); 1937 } 1938 discard: 1939 if (unlikely(folio_test_hugetlb(folio))) 1940 hugetlb_remove_rmap(folio); 1941 else 1942 folio_remove_rmap_pte(folio, subpage, vma); 1943 if (vma->vm_flags & VM_LOCKED) 1944 mlock_drain_local(); 1945 folio_put(folio); 1946 continue; 1947 walk_abort: 1948 ret = false; 1949 walk_done: 1950 page_vma_mapped_walk_done(&pvmw); 1951 break; 1952 } 1953 1954 mmu_notifier_invalidate_range_end(&range); 1955 1956 return ret; 1957 } 1958 1959 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1960 { 1961 return vma_is_temporary_stack(vma); 1962 } 1963 1964 static int folio_not_mapped(struct folio *folio) 1965 { 1966 return !folio_mapped(folio); 1967 } 1968 1969 /** 1970 * try_to_unmap - Try to remove all page table mappings to a folio. 1971 * @folio: The folio to unmap. 1972 * @flags: action and flags 1973 * 1974 * Tries to remove all the page table entries which are mapping this 1975 * folio. It is the caller's responsibility to check if the folio is 1976 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1977 * 1978 * Context: Caller must hold the folio lock. 1979 */ 1980 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1981 { 1982 struct rmap_walk_control rwc = { 1983 .rmap_one = try_to_unmap_one, 1984 .arg = (void *)flags, 1985 .done = folio_not_mapped, 1986 .anon_lock = folio_lock_anon_vma_read, 1987 }; 1988 1989 if (flags & TTU_RMAP_LOCKED) 1990 rmap_walk_locked(folio, &rwc); 1991 else 1992 rmap_walk(folio, &rwc); 1993 } 1994 1995 /* 1996 * @arg: enum ttu_flags will be passed to this argument. 1997 * 1998 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1999 * containing migration entries. 2000 */ 2001 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2002 unsigned long address, void *arg) 2003 { 2004 struct mm_struct *mm = vma->vm_mm; 2005 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2006 pte_t pteval; 2007 struct page *subpage; 2008 bool anon_exclusive, ret = true; 2009 struct mmu_notifier_range range; 2010 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2011 unsigned long pfn; 2012 unsigned long hsz = 0; 2013 2014 /* 2015 * When racing against e.g. zap_pte_range() on another cpu, 2016 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2017 * try_to_migrate() may return before page_mapped() has become false, 2018 * if page table locking is skipped: use TTU_SYNC to wait for that. 2019 */ 2020 if (flags & TTU_SYNC) 2021 pvmw.flags = PVMW_SYNC; 2022 2023 /* 2024 * unmap_page() in mm/huge_memory.c is the only user of migration with 2025 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2026 */ 2027 if (flags & TTU_SPLIT_HUGE_PMD) 2028 split_huge_pmd_address(vma, address, true, folio); 2029 2030 /* 2031 * For THP, we have to assume the worse case ie pmd for invalidation. 2032 * For hugetlb, it could be much worse if we need to do pud 2033 * invalidation in the case of pmd sharing. 2034 * 2035 * Note that the page can not be free in this function as call of 2036 * try_to_unmap() must hold a reference on the page. 2037 */ 2038 range.end = vma_address_end(&pvmw); 2039 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2040 address, range.end); 2041 if (folio_test_hugetlb(folio)) { 2042 /* 2043 * If sharing is possible, start and end will be adjusted 2044 * accordingly. 2045 */ 2046 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2047 &range.end); 2048 2049 /* We need the huge page size for set_huge_pte_at() */ 2050 hsz = huge_page_size(hstate_vma(vma)); 2051 } 2052 mmu_notifier_invalidate_range_start(&range); 2053 2054 while (page_vma_mapped_walk(&pvmw)) { 2055 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2056 /* PMD-mapped THP migration entry */ 2057 if (!pvmw.pte) { 2058 subpage = folio_page(folio, 2059 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2060 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2061 !folio_test_pmd_mappable(folio), folio); 2062 2063 if (set_pmd_migration_entry(&pvmw, subpage)) { 2064 ret = false; 2065 page_vma_mapped_walk_done(&pvmw); 2066 break; 2067 } 2068 continue; 2069 } 2070 #endif 2071 2072 /* Unexpected PMD-mapped THP? */ 2073 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2074 2075 pfn = pte_pfn(ptep_get(pvmw.pte)); 2076 2077 if (folio_is_zone_device(folio)) { 2078 /* 2079 * Our PTE is a non-present device exclusive entry and 2080 * calculating the subpage as for the common case would 2081 * result in an invalid pointer. 2082 * 2083 * Since only PAGE_SIZE pages can currently be 2084 * migrated, just set it to page. This will need to be 2085 * changed when hugepage migrations to device private 2086 * memory are supported. 2087 */ 2088 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2089 subpage = &folio->page; 2090 } else { 2091 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2092 } 2093 address = pvmw.address; 2094 anon_exclusive = folio_test_anon(folio) && 2095 PageAnonExclusive(subpage); 2096 2097 if (folio_test_hugetlb(folio)) { 2098 bool anon = folio_test_anon(folio); 2099 2100 /* 2101 * huge_pmd_unshare may unmap an entire PMD page. 2102 * There is no way of knowing exactly which PMDs may 2103 * be cached for this mm, so we must flush them all. 2104 * start/end were already adjusted above to cover this 2105 * range. 2106 */ 2107 flush_cache_range(vma, range.start, range.end); 2108 2109 /* 2110 * To call huge_pmd_unshare, i_mmap_rwsem must be 2111 * held in write mode. Caller needs to explicitly 2112 * do this outside rmap routines. 2113 * 2114 * We also must hold hugetlb vma_lock in write mode. 2115 * Lock order dictates acquiring vma_lock BEFORE 2116 * i_mmap_rwsem. We can only try lock here and 2117 * fail if unsuccessful. 2118 */ 2119 if (!anon) { 2120 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2121 if (!hugetlb_vma_trylock_write(vma)) { 2122 page_vma_mapped_walk_done(&pvmw); 2123 ret = false; 2124 break; 2125 } 2126 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2127 hugetlb_vma_unlock_write(vma); 2128 flush_tlb_range(vma, 2129 range.start, range.end); 2130 2131 /* 2132 * The ref count of the PMD page was 2133 * dropped which is part of the way map 2134 * counting is done for shared PMDs. 2135 * Return 'true' here. When there is 2136 * no other sharing, huge_pmd_unshare 2137 * returns false and we will unmap the 2138 * actual page and drop map count 2139 * to zero. 2140 */ 2141 page_vma_mapped_walk_done(&pvmw); 2142 break; 2143 } 2144 hugetlb_vma_unlock_write(vma); 2145 } 2146 /* Nuke the hugetlb page table entry */ 2147 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2148 } else { 2149 flush_cache_page(vma, address, pfn); 2150 /* Nuke the page table entry. */ 2151 if (should_defer_flush(mm, flags)) { 2152 /* 2153 * We clear the PTE but do not flush so potentially 2154 * a remote CPU could still be writing to the folio. 2155 * If the entry was previously clean then the 2156 * architecture must guarantee that a clear->dirty 2157 * transition on a cached TLB entry is written through 2158 * and traps if the PTE is unmapped. 2159 */ 2160 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2161 2162 set_tlb_ubc_flush_pending(mm, pteval, address); 2163 } else { 2164 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2165 } 2166 } 2167 2168 /* Set the dirty flag on the folio now the pte is gone. */ 2169 if (pte_dirty(pteval)) 2170 folio_mark_dirty(folio); 2171 2172 /* Update high watermark before we lower rss */ 2173 update_hiwater_rss(mm); 2174 2175 if (folio_is_device_private(folio)) { 2176 unsigned long pfn = folio_pfn(folio); 2177 swp_entry_t entry; 2178 pte_t swp_pte; 2179 2180 if (anon_exclusive) 2181 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2182 subpage)); 2183 2184 /* 2185 * Store the pfn of the page in a special migration 2186 * pte. do_swap_page() will wait until the migration 2187 * pte is removed and then restart fault handling. 2188 */ 2189 entry = pte_to_swp_entry(pteval); 2190 if (is_writable_device_private_entry(entry)) 2191 entry = make_writable_migration_entry(pfn); 2192 else if (anon_exclusive) 2193 entry = make_readable_exclusive_migration_entry(pfn); 2194 else 2195 entry = make_readable_migration_entry(pfn); 2196 swp_pte = swp_entry_to_pte(entry); 2197 2198 /* 2199 * pteval maps a zone device page and is therefore 2200 * a swap pte. 2201 */ 2202 if (pte_swp_soft_dirty(pteval)) 2203 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2204 if (pte_swp_uffd_wp(pteval)) 2205 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2206 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2207 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2208 folio_order(folio)); 2209 /* 2210 * No need to invalidate here it will synchronize on 2211 * against the special swap migration pte. 2212 */ 2213 } else if (PageHWPoison(subpage)) { 2214 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2215 if (folio_test_hugetlb(folio)) { 2216 hugetlb_count_sub(folio_nr_pages(folio), mm); 2217 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2218 hsz); 2219 } else { 2220 dec_mm_counter(mm, mm_counter(folio)); 2221 set_pte_at(mm, address, pvmw.pte, pteval); 2222 } 2223 2224 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2225 /* 2226 * The guest indicated that the page content is of no 2227 * interest anymore. Simply discard the pte, vmscan 2228 * will take care of the rest. 2229 * A future reference will then fault in a new zero 2230 * page. When userfaultfd is active, we must not drop 2231 * this page though, as its main user (postcopy 2232 * migration) will not expect userfaults on already 2233 * copied pages. 2234 */ 2235 dec_mm_counter(mm, mm_counter(folio)); 2236 } else { 2237 swp_entry_t entry; 2238 pte_t swp_pte; 2239 2240 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2241 if (folio_test_hugetlb(folio)) 2242 set_huge_pte_at(mm, address, pvmw.pte, 2243 pteval, hsz); 2244 else 2245 set_pte_at(mm, address, pvmw.pte, pteval); 2246 ret = false; 2247 page_vma_mapped_walk_done(&pvmw); 2248 break; 2249 } 2250 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2251 !anon_exclusive, subpage); 2252 2253 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2254 if (folio_test_hugetlb(folio)) { 2255 if (anon_exclusive && 2256 hugetlb_try_share_anon_rmap(folio)) { 2257 set_huge_pte_at(mm, address, pvmw.pte, 2258 pteval, hsz); 2259 ret = false; 2260 page_vma_mapped_walk_done(&pvmw); 2261 break; 2262 } 2263 } else if (anon_exclusive && 2264 folio_try_share_anon_rmap_pte(folio, subpage)) { 2265 set_pte_at(mm, address, pvmw.pte, pteval); 2266 ret = false; 2267 page_vma_mapped_walk_done(&pvmw); 2268 break; 2269 } 2270 2271 /* 2272 * Store the pfn of the page in a special migration 2273 * pte. do_swap_page() will wait until the migration 2274 * pte is removed and then restart fault handling. 2275 */ 2276 if (pte_write(pteval)) 2277 entry = make_writable_migration_entry( 2278 page_to_pfn(subpage)); 2279 else if (anon_exclusive) 2280 entry = make_readable_exclusive_migration_entry( 2281 page_to_pfn(subpage)); 2282 else 2283 entry = make_readable_migration_entry( 2284 page_to_pfn(subpage)); 2285 if (pte_young(pteval)) 2286 entry = make_migration_entry_young(entry); 2287 if (pte_dirty(pteval)) 2288 entry = make_migration_entry_dirty(entry); 2289 swp_pte = swp_entry_to_pte(entry); 2290 if (pte_soft_dirty(pteval)) 2291 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2292 if (pte_uffd_wp(pteval)) 2293 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2294 if (folio_test_hugetlb(folio)) 2295 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2296 hsz); 2297 else 2298 set_pte_at(mm, address, pvmw.pte, swp_pte); 2299 trace_set_migration_pte(address, pte_val(swp_pte), 2300 folio_order(folio)); 2301 /* 2302 * No need to invalidate here it will synchronize on 2303 * against the special swap migration pte. 2304 */ 2305 } 2306 2307 if (unlikely(folio_test_hugetlb(folio))) 2308 hugetlb_remove_rmap(folio); 2309 else 2310 folio_remove_rmap_pte(folio, subpage, vma); 2311 if (vma->vm_flags & VM_LOCKED) 2312 mlock_drain_local(); 2313 folio_put(folio); 2314 } 2315 2316 mmu_notifier_invalidate_range_end(&range); 2317 2318 return ret; 2319 } 2320 2321 /** 2322 * try_to_migrate - try to replace all page table mappings with swap entries 2323 * @folio: the folio to replace page table entries for 2324 * @flags: action and flags 2325 * 2326 * Tries to remove all the page table entries which are mapping this folio and 2327 * replace them with special swap entries. Caller must hold the folio lock. 2328 */ 2329 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2330 { 2331 struct rmap_walk_control rwc = { 2332 .rmap_one = try_to_migrate_one, 2333 .arg = (void *)flags, 2334 .done = folio_not_mapped, 2335 .anon_lock = folio_lock_anon_vma_read, 2336 }; 2337 2338 /* 2339 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2340 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2341 */ 2342 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2343 TTU_SYNC | TTU_BATCH_FLUSH))) 2344 return; 2345 2346 if (folio_is_zone_device(folio) && 2347 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2348 return; 2349 2350 /* 2351 * During exec, a temporary VMA is setup and later moved. 2352 * The VMA is moved under the anon_vma lock but not the 2353 * page tables leading to a race where migration cannot 2354 * find the migration ptes. Rather than increasing the 2355 * locking requirements of exec(), migration skips 2356 * temporary VMAs until after exec() completes. 2357 */ 2358 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2359 rwc.invalid_vma = invalid_migration_vma; 2360 2361 if (flags & TTU_RMAP_LOCKED) 2362 rmap_walk_locked(folio, &rwc); 2363 else 2364 rmap_walk(folio, &rwc); 2365 } 2366 2367 #ifdef CONFIG_DEVICE_PRIVATE 2368 struct make_exclusive_args { 2369 struct mm_struct *mm; 2370 unsigned long address; 2371 void *owner; 2372 bool valid; 2373 }; 2374 2375 static bool page_make_device_exclusive_one(struct folio *folio, 2376 struct vm_area_struct *vma, unsigned long address, void *priv) 2377 { 2378 struct mm_struct *mm = vma->vm_mm; 2379 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2380 struct make_exclusive_args *args = priv; 2381 pte_t pteval; 2382 struct page *subpage; 2383 bool ret = true; 2384 struct mmu_notifier_range range; 2385 swp_entry_t entry; 2386 pte_t swp_pte; 2387 pte_t ptent; 2388 2389 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2390 vma->vm_mm, address, min(vma->vm_end, 2391 address + folio_size(folio)), 2392 args->owner); 2393 mmu_notifier_invalidate_range_start(&range); 2394 2395 while (page_vma_mapped_walk(&pvmw)) { 2396 /* Unexpected PMD-mapped THP? */ 2397 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2398 2399 ptent = ptep_get(pvmw.pte); 2400 if (!pte_present(ptent)) { 2401 ret = false; 2402 page_vma_mapped_walk_done(&pvmw); 2403 break; 2404 } 2405 2406 subpage = folio_page(folio, 2407 pte_pfn(ptent) - folio_pfn(folio)); 2408 address = pvmw.address; 2409 2410 /* Nuke the page table entry. */ 2411 flush_cache_page(vma, address, pte_pfn(ptent)); 2412 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2413 2414 /* Set the dirty flag on the folio now the pte is gone. */ 2415 if (pte_dirty(pteval)) 2416 folio_mark_dirty(folio); 2417 2418 /* 2419 * Check that our target page is still mapped at the expected 2420 * address. 2421 */ 2422 if (args->mm == mm && args->address == address && 2423 pte_write(pteval)) 2424 args->valid = true; 2425 2426 /* 2427 * Store the pfn of the page in a special migration 2428 * pte. do_swap_page() will wait until the migration 2429 * pte is removed and then restart fault handling. 2430 */ 2431 if (pte_write(pteval)) 2432 entry = make_writable_device_exclusive_entry( 2433 page_to_pfn(subpage)); 2434 else 2435 entry = make_readable_device_exclusive_entry( 2436 page_to_pfn(subpage)); 2437 swp_pte = swp_entry_to_pte(entry); 2438 if (pte_soft_dirty(pteval)) 2439 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2440 if (pte_uffd_wp(pteval)) 2441 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2442 2443 set_pte_at(mm, address, pvmw.pte, swp_pte); 2444 2445 /* 2446 * There is a reference on the page for the swap entry which has 2447 * been removed, so shouldn't take another. 2448 */ 2449 folio_remove_rmap_pte(folio, subpage, vma); 2450 } 2451 2452 mmu_notifier_invalidate_range_end(&range); 2453 2454 return ret; 2455 } 2456 2457 /** 2458 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2459 * @folio: The folio to replace page table entries for. 2460 * @mm: The mm_struct where the folio is expected to be mapped. 2461 * @address: Address where the folio is expected to be mapped. 2462 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2463 * 2464 * Tries to remove all the page table entries which are mapping this 2465 * folio and replace them with special device exclusive swap entries to 2466 * grant a device exclusive access to the folio. 2467 * 2468 * Context: Caller must hold the folio lock. 2469 * Return: false if the page is still mapped, or if it could not be unmapped 2470 * from the expected address. Otherwise returns true (success). 2471 */ 2472 static bool folio_make_device_exclusive(struct folio *folio, 2473 struct mm_struct *mm, unsigned long address, void *owner) 2474 { 2475 struct make_exclusive_args args = { 2476 .mm = mm, 2477 .address = address, 2478 .owner = owner, 2479 .valid = false, 2480 }; 2481 struct rmap_walk_control rwc = { 2482 .rmap_one = page_make_device_exclusive_one, 2483 .done = folio_not_mapped, 2484 .anon_lock = folio_lock_anon_vma_read, 2485 .arg = &args, 2486 }; 2487 2488 /* 2489 * Restrict to anonymous folios for now to avoid potential writeback 2490 * issues. 2491 */ 2492 if (!folio_test_anon(folio)) 2493 return false; 2494 2495 rmap_walk(folio, &rwc); 2496 2497 return args.valid && !folio_mapcount(folio); 2498 } 2499 2500 /** 2501 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2502 * @mm: mm_struct of associated target process 2503 * @start: start of the region to mark for exclusive device access 2504 * @end: end address of region 2505 * @pages: returns the pages which were successfully marked for exclusive access 2506 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2507 * 2508 * Returns: number of pages found in the range by GUP. A page is marked for 2509 * exclusive access only if the page pointer is non-NULL. 2510 * 2511 * This function finds ptes mapping page(s) to the given address range, locks 2512 * them and replaces mappings with special swap entries preventing userspace CPU 2513 * access. On fault these entries are replaced with the original mapping after 2514 * calling MMU notifiers. 2515 * 2516 * A driver using this to program access from a device must use a mmu notifier 2517 * critical section to hold a device specific lock during programming. Once 2518 * programming is complete it should drop the page lock and reference after 2519 * which point CPU access to the page will revoke the exclusive access. 2520 */ 2521 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2522 unsigned long end, struct page **pages, 2523 void *owner) 2524 { 2525 long npages = (end - start) >> PAGE_SHIFT; 2526 long i; 2527 2528 npages = get_user_pages_remote(mm, start, npages, 2529 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2530 pages, NULL); 2531 if (npages < 0) 2532 return npages; 2533 2534 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2535 struct folio *folio = page_folio(pages[i]); 2536 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2537 folio_put(folio); 2538 pages[i] = NULL; 2539 continue; 2540 } 2541 2542 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2543 folio_unlock(folio); 2544 folio_put(folio); 2545 pages[i] = NULL; 2546 } 2547 } 2548 2549 return npages; 2550 } 2551 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2552 #endif 2553 2554 void __put_anon_vma(struct anon_vma *anon_vma) 2555 { 2556 struct anon_vma *root = anon_vma->root; 2557 2558 anon_vma_free(anon_vma); 2559 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2560 anon_vma_free(root); 2561 } 2562 2563 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2564 struct rmap_walk_control *rwc) 2565 { 2566 struct anon_vma *anon_vma; 2567 2568 if (rwc->anon_lock) 2569 return rwc->anon_lock(folio, rwc); 2570 2571 /* 2572 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2573 * because that depends on page_mapped(); but not all its usages 2574 * are holding mmap_lock. Users without mmap_lock are required to 2575 * take a reference count to prevent the anon_vma disappearing 2576 */ 2577 anon_vma = folio_anon_vma(folio); 2578 if (!anon_vma) 2579 return NULL; 2580 2581 if (anon_vma_trylock_read(anon_vma)) 2582 goto out; 2583 2584 if (rwc->try_lock) { 2585 anon_vma = NULL; 2586 rwc->contended = true; 2587 goto out; 2588 } 2589 2590 anon_vma_lock_read(anon_vma); 2591 out: 2592 return anon_vma; 2593 } 2594 2595 /* 2596 * rmap_walk_anon - do something to anonymous page using the object-based 2597 * rmap method 2598 * @folio: the folio to be handled 2599 * @rwc: control variable according to each walk type 2600 * @locked: caller holds relevant rmap lock 2601 * 2602 * Find all the mappings of a folio using the mapping pointer and the vma 2603 * chains contained in the anon_vma struct it points to. 2604 */ 2605 static void rmap_walk_anon(struct folio *folio, 2606 struct rmap_walk_control *rwc, bool locked) 2607 { 2608 struct anon_vma *anon_vma; 2609 pgoff_t pgoff_start, pgoff_end; 2610 struct anon_vma_chain *avc; 2611 2612 if (locked) { 2613 anon_vma = folio_anon_vma(folio); 2614 /* anon_vma disappear under us? */ 2615 VM_BUG_ON_FOLIO(!anon_vma, folio); 2616 } else { 2617 anon_vma = rmap_walk_anon_lock(folio, rwc); 2618 } 2619 if (!anon_vma) 2620 return; 2621 2622 pgoff_start = folio_pgoff(folio); 2623 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2624 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2625 pgoff_start, pgoff_end) { 2626 struct vm_area_struct *vma = avc->vma; 2627 unsigned long address = vma_address(vma, pgoff_start, 2628 folio_nr_pages(folio)); 2629 2630 VM_BUG_ON_VMA(address == -EFAULT, vma); 2631 cond_resched(); 2632 2633 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2634 continue; 2635 2636 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2637 break; 2638 if (rwc->done && rwc->done(folio)) 2639 break; 2640 } 2641 2642 if (!locked) 2643 anon_vma_unlock_read(anon_vma); 2644 } 2645 2646 /* 2647 * rmap_walk_file - do something to file page using the object-based rmap method 2648 * @folio: the folio to be handled 2649 * @rwc: control variable according to each walk type 2650 * @locked: caller holds relevant rmap lock 2651 * 2652 * Find all the mappings of a folio using the mapping pointer and the vma chains 2653 * contained in the address_space struct it points to. 2654 */ 2655 static void rmap_walk_file(struct folio *folio, 2656 struct rmap_walk_control *rwc, bool locked) 2657 { 2658 struct address_space *mapping = folio_mapping(folio); 2659 pgoff_t pgoff_start, pgoff_end; 2660 struct vm_area_struct *vma; 2661 2662 /* 2663 * The page lock not only makes sure that page->mapping cannot 2664 * suddenly be NULLified by truncation, it makes sure that the 2665 * structure at mapping cannot be freed and reused yet, 2666 * so we can safely take mapping->i_mmap_rwsem. 2667 */ 2668 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2669 2670 if (!mapping) 2671 return; 2672 2673 pgoff_start = folio_pgoff(folio); 2674 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2675 if (!locked) { 2676 if (i_mmap_trylock_read(mapping)) 2677 goto lookup; 2678 2679 if (rwc->try_lock) { 2680 rwc->contended = true; 2681 return; 2682 } 2683 2684 i_mmap_lock_read(mapping); 2685 } 2686 lookup: 2687 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2688 pgoff_start, pgoff_end) { 2689 unsigned long address = vma_address(vma, pgoff_start, 2690 folio_nr_pages(folio)); 2691 2692 VM_BUG_ON_VMA(address == -EFAULT, vma); 2693 cond_resched(); 2694 2695 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2696 continue; 2697 2698 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2699 goto done; 2700 if (rwc->done && rwc->done(folio)) 2701 goto done; 2702 } 2703 2704 done: 2705 if (!locked) 2706 i_mmap_unlock_read(mapping); 2707 } 2708 2709 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2710 { 2711 if (unlikely(folio_test_ksm(folio))) 2712 rmap_walk_ksm(folio, rwc); 2713 else if (folio_test_anon(folio)) 2714 rmap_walk_anon(folio, rwc, false); 2715 else 2716 rmap_walk_file(folio, rwc, false); 2717 } 2718 2719 /* Like rmap_walk, but caller holds relevant rmap lock */ 2720 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2721 { 2722 /* no ksm support for now */ 2723 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2724 if (folio_test_anon(folio)) 2725 rmap_walk_anon(folio, rwc, true); 2726 else 2727 rmap_walk_file(folio, rwc, true); 2728 } 2729 2730 #ifdef CONFIG_HUGETLB_PAGE 2731 /* 2732 * The following two functions are for anonymous (private mapped) hugepages. 2733 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2734 * and no lru code, because we handle hugepages differently from common pages. 2735 */ 2736 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2737 unsigned long address, rmap_t flags) 2738 { 2739 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2740 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2741 2742 atomic_inc(&folio->_entire_mapcount); 2743 atomic_inc(&folio->_large_mapcount); 2744 if (flags & RMAP_EXCLUSIVE) 2745 SetPageAnonExclusive(&folio->page); 2746 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2747 PageAnonExclusive(&folio->page), folio); 2748 } 2749 2750 void hugetlb_add_new_anon_rmap(struct folio *folio, 2751 struct vm_area_struct *vma, unsigned long address) 2752 { 2753 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2754 2755 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2756 /* increment count (starts at -1) */ 2757 atomic_set(&folio->_entire_mapcount, 0); 2758 atomic_set(&folio->_large_mapcount, 0); 2759 folio_clear_hugetlb_restore_reserve(folio); 2760 __folio_set_anon(folio, vma, address, true); 2761 SetPageAnonExclusive(&folio->page); 2762 } 2763 #endif /* CONFIG_HUGETLB_PAGE */ 2764