xref: /linux/mm/rmap.c (revision 9a4e47ef98a3041f6d2869ba2cd3401701776275)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         page->flags PG_locked (lock_page)
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against folio_remove_rmap_*()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  *
494  * NOTE: the caller should normally hold folio lock when calling this.  If
495  * not, the caller needs to double check the anon_vma didn't change after
496  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
497  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
498  * which has already covered that, and comment above remap_pages().
499  */
500 struct anon_vma *folio_get_anon_vma(struct folio *folio)
501 {
502 	struct anon_vma *anon_vma = NULL;
503 	unsigned long anon_mapping;
504 
505 	rcu_read_lock();
506 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
507 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
508 		goto out;
509 	if (!folio_mapped(folio))
510 		goto out;
511 
512 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
513 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
514 		anon_vma = NULL;
515 		goto out;
516 	}
517 
518 	/*
519 	 * If this folio is still mapped, then its anon_vma cannot have been
520 	 * freed.  But if it has been unmapped, we have no security against the
521 	 * anon_vma structure being freed and reused (for another anon_vma:
522 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
523 	 * above cannot corrupt).
524 	 */
525 	if (!folio_mapped(folio)) {
526 		rcu_read_unlock();
527 		put_anon_vma(anon_vma);
528 		return NULL;
529 	}
530 out:
531 	rcu_read_unlock();
532 
533 	return anon_vma;
534 }
535 
536 /*
537  * Similar to folio_get_anon_vma() except it locks the anon_vma.
538  *
539  * Its a little more complex as it tries to keep the fast path to a single
540  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
541  * reference like with folio_get_anon_vma() and then block on the mutex
542  * on !rwc->try_lock case.
543  */
544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
545 					  struct rmap_walk_control *rwc)
546 {
547 	struct anon_vma *anon_vma = NULL;
548 	struct anon_vma *root_anon_vma;
549 	unsigned long anon_mapping;
550 
551 retry:
552 	rcu_read_lock();
553 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
554 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
555 		goto out;
556 	if (!folio_mapped(folio))
557 		goto out;
558 
559 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
560 	root_anon_vma = READ_ONCE(anon_vma->root);
561 	if (down_read_trylock(&root_anon_vma->rwsem)) {
562 		/*
563 		 * folio_move_anon_rmap() might have changed the anon_vma as we
564 		 * might not hold the folio lock here.
565 		 */
566 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
567 			     anon_mapping)) {
568 			up_read(&root_anon_vma->rwsem);
569 			rcu_read_unlock();
570 			goto retry;
571 		}
572 
573 		/*
574 		 * If the folio is still mapped, then this anon_vma is still
575 		 * its anon_vma, and holding the mutex ensures that it will
576 		 * not go away, see anon_vma_free().
577 		 */
578 		if (!folio_mapped(folio)) {
579 			up_read(&root_anon_vma->rwsem);
580 			anon_vma = NULL;
581 		}
582 		goto out;
583 	}
584 
585 	if (rwc && rwc->try_lock) {
586 		anon_vma = NULL;
587 		rwc->contended = true;
588 		goto out;
589 	}
590 
591 	/* trylock failed, we got to sleep */
592 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
593 		anon_vma = NULL;
594 		goto out;
595 	}
596 
597 	if (!folio_mapped(folio)) {
598 		rcu_read_unlock();
599 		put_anon_vma(anon_vma);
600 		return NULL;
601 	}
602 
603 	/* we pinned the anon_vma, its safe to sleep */
604 	rcu_read_unlock();
605 	anon_vma_lock_read(anon_vma);
606 
607 	/*
608 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
609 	 * not hold the folio lock here.
610 	 */
611 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
612 		     anon_mapping)) {
613 		anon_vma_unlock_read(anon_vma);
614 		put_anon_vma(anon_vma);
615 		anon_vma = NULL;
616 		goto retry;
617 	}
618 
619 	if (atomic_dec_and_test(&anon_vma->refcount)) {
620 		/*
621 		 * Oops, we held the last refcount, release the lock
622 		 * and bail -- can't simply use put_anon_vma() because
623 		 * we'll deadlock on the anon_vma_lock_write() recursion.
624 		 */
625 		anon_vma_unlock_read(anon_vma);
626 		__put_anon_vma(anon_vma);
627 		anon_vma = NULL;
628 	}
629 
630 	return anon_vma;
631 
632 out:
633 	rcu_read_unlock();
634 	return anon_vma;
635 }
636 
637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
638 /*
639  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
640  * important if a PTE was dirty when it was unmapped that it's flushed
641  * before any IO is initiated on the page to prevent lost writes. Similarly,
642  * it must be flushed before freeing to prevent data leakage.
643  */
644 void try_to_unmap_flush(void)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 
648 	if (!tlb_ubc->flush_required)
649 		return;
650 
651 	arch_tlbbatch_flush(&tlb_ubc->arch);
652 	tlb_ubc->flush_required = false;
653 	tlb_ubc->writable = false;
654 }
655 
656 /* Flush iff there are potentially writable TLB entries that can race with IO */
657 void try_to_unmap_flush_dirty(void)
658 {
659 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
660 
661 	if (tlb_ubc->writable)
662 		try_to_unmap_flush();
663 }
664 
665 /*
666  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
667  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
668  */
669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
670 #define TLB_FLUSH_BATCH_PENDING_MASK			\
671 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
672 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
673 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
674 
675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
676 				      unsigned long uaddr)
677 {
678 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
679 	int batch;
680 	bool writable = pte_dirty(pteval);
681 
682 	if (!pte_accessible(mm, pteval))
683 		return;
684 
685 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
686 	tlb_ubc->flush_required = true;
687 
688 	/*
689 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
690 	 * before the PTE is cleared.
691 	 */
692 	barrier();
693 	batch = atomic_read(&mm->tlb_flush_batched);
694 retry:
695 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
696 		/*
697 		 * Prevent `pending' from catching up with `flushed' because of
698 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
699 		 * `pending' becomes large.
700 		 */
701 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
702 			goto retry;
703 	} else {
704 		atomic_inc(&mm->tlb_flush_batched);
705 	}
706 
707 	/*
708 	 * If the PTE was dirty then it's best to assume it's writable. The
709 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
710 	 * before the page is queued for IO.
711 	 */
712 	if (writable)
713 		tlb_ubc->writable = true;
714 }
715 
716 /*
717  * Returns true if the TLB flush should be deferred to the end of a batch of
718  * unmap operations to reduce IPIs.
719  */
720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
721 {
722 	if (!(flags & TTU_BATCH_FLUSH))
723 		return false;
724 
725 	return arch_tlbbatch_should_defer(mm);
726 }
727 
728 /*
729  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
730  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
731  * operation such as mprotect or munmap to race between reclaim unmapping
732  * the page and flushing the page. If this race occurs, it potentially allows
733  * access to data via a stale TLB entry. Tracking all mm's that have TLB
734  * batching in flight would be expensive during reclaim so instead track
735  * whether TLB batching occurred in the past and if so then do a flush here
736  * if required. This will cost one additional flush per reclaim cycle paid
737  * by the first operation at risk such as mprotect and mumap.
738  *
739  * This must be called under the PTL so that an access to tlb_flush_batched
740  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
741  * via the PTL.
742  */
743 void flush_tlb_batched_pending(struct mm_struct *mm)
744 {
745 	int batch = atomic_read(&mm->tlb_flush_batched);
746 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
747 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
748 
749 	if (pending != flushed) {
750 		arch_flush_tlb_batched_pending(mm);
751 		/*
752 		 * If the new TLB flushing is pending during flushing, leave
753 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
754 		 */
755 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
756 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
757 	}
758 }
759 #else
760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
761 				      unsigned long uaddr)
762 {
763 }
764 
765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
766 {
767 	return false;
768 }
769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
770 
771 /*
772  * At what user virtual address is page expected in vma?
773  * Caller should check the page is actually part of the vma.
774  */
775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
776 {
777 	struct folio *folio = page_folio(page);
778 	if (folio_test_anon(folio)) {
779 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
780 		/*
781 		 * Note: swapoff's unuse_vma() is more efficient with this
782 		 * check, and needs it to match anon_vma when KSM is active.
783 		 */
784 		if (!vma->anon_vma || !page__anon_vma ||
785 		    vma->anon_vma->root != page__anon_vma->root)
786 			return -EFAULT;
787 	} else if (!vma->vm_file) {
788 		return -EFAULT;
789 	} else if (vma->vm_file->f_mapping != folio->mapping) {
790 		return -EFAULT;
791 	}
792 
793 	return vma_address(page, vma);
794 }
795 
796 /*
797  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
798  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
799  * represents.
800  */
801 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
802 {
803 	pgd_t *pgd;
804 	p4d_t *p4d;
805 	pud_t *pud;
806 	pmd_t *pmd = NULL;
807 
808 	pgd = pgd_offset(mm, address);
809 	if (!pgd_present(*pgd))
810 		goto out;
811 
812 	p4d = p4d_offset(pgd, address);
813 	if (!p4d_present(*p4d))
814 		goto out;
815 
816 	pud = pud_offset(p4d, address);
817 	if (!pud_present(*pud))
818 		goto out;
819 
820 	pmd = pmd_offset(pud, address);
821 out:
822 	return pmd;
823 }
824 
825 struct folio_referenced_arg {
826 	int mapcount;
827 	int referenced;
828 	unsigned long vm_flags;
829 	struct mem_cgroup *memcg;
830 };
831 
832 /*
833  * arg: folio_referenced_arg will be passed
834  */
835 static bool folio_referenced_one(struct folio *folio,
836 		struct vm_area_struct *vma, unsigned long address, void *arg)
837 {
838 	struct folio_referenced_arg *pra = arg;
839 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
840 	int referenced = 0;
841 	unsigned long start = address, ptes = 0;
842 
843 	while (page_vma_mapped_walk(&pvmw)) {
844 		address = pvmw.address;
845 
846 		if (vma->vm_flags & VM_LOCKED) {
847 			if (!folio_test_large(folio) || !pvmw.pte) {
848 				/* Restore the mlock which got missed */
849 				mlock_vma_folio(folio, vma);
850 				page_vma_mapped_walk_done(&pvmw);
851 				pra->vm_flags |= VM_LOCKED;
852 				return false; /* To break the loop */
853 			}
854 			/*
855 			 * For large folio fully mapped to VMA, will
856 			 * be handled after the pvmw loop.
857 			 *
858 			 * For large folio cross VMA boundaries, it's
859 			 * expected to be picked  by page reclaim. But
860 			 * should skip reference of pages which are in
861 			 * the range of VM_LOCKED vma. As page reclaim
862 			 * should just count the reference of pages out
863 			 * the range of VM_LOCKED vma.
864 			 */
865 			ptes++;
866 			pra->mapcount--;
867 			continue;
868 		}
869 
870 		if (pvmw.pte) {
871 			if (lru_gen_enabled() &&
872 			    pte_young(ptep_get(pvmw.pte))) {
873 				lru_gen_look_around(&pvmw);
874 				referenced++;
875 			}
876 
877 			if (ptep_clear_flush_young_notify(vma, address,
878 						pvmw.pte))
879 				referenced++;
880 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
881 			if (pmdp_clear_flush_young_notify(vma, address,
882 						pvmw.pmd))
883 				referenced++;
884 		} else {
885 			/* unexpected pmd-mapped folio? */
886 			WARN_ON_ONCE(1);
887 		}
888 
889 		pra->mapcount--;
890 	}
891 
892 	if ((vma->vm_flags & VM_LOCKED) &&
893 			folio_test_large(folio) &&
894 			folio_within_vma(folio, vma)) {
895 		unsigned long s_align, e_align;
896 
897 		s_align = ALIGN_DOWN(start, PMD_SIZE);
898 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
899 
900 		/* folio doesn't cross page table boundary and fully mapped */
901 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
902 			/* Restore the mlock which got missed */
903 			mlock_vma_folio(folio, vma);
904 			pra->vm_flags |= VM_LOCKED;
905 			return false; /* To break the loop */
906 		}
907 	}
908 
909 	if (referenced)
910 		folio_clear_idle(folio);
911 	if (folio_test_clear_young(folio))
912 		referenced++;
913 
914 	if (referenced) {
915 		pra->referenced++;
916 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
917 	}
918 
919 	if (!pra->mapcount)
920 		return false; /* To break the loop */
921 
922 	return true;
923 }
924 
925 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
926 {
927 	struct folio_referenced_arg *pra = arg;
928 	struct mem_cgroup *memcg = pra->memcg;
929 
930 	/*
931 	 * Ignore references from this mapping if it has no recency. If the
932 	 * folio has been used in another mapping, we will catch it; if this
933 	 * other mapping is already gone, the unmap path will have set the
934 	 * referenced flag or activated the folio in zap_pte_range().
935 	 */
936 	if (!vma_has_recency(vma))
937 		return true;
938 
939 	/*
940 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
941 	 * of references from different cgroups.
942 	 */
943 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
944 		return true;
945 
946 	return false;
947 }
948 
949 /**
950  * folio_referenced() - Test if the folio was referenced.
951  * @folio: The folio to test.
952  * @is_locked: Caller holds lock on the folio.
953  * @memcg: target memory cgroup
954  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
955  *
956  * Quick test_and_clear_referenced for all mappings of a folio,
957  *
958  * Return: The number of mappings which referenced the folio. Return -1 if
959  * the function bailed out due to rmap lock contention.
960  */
961 int folio_referenced(struct folio *folio, int is_locked,
962 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
963 {
964 	int we_locked = 0;
965 	struct folio_referenced_arg pra = {
966 		.mapcount = folio_mapcount(folio),
967 		.memcg = memcg,
968 	};
969 	struct rmap_walk_control rwc = {
970 		.rmap_one = folio_referenced_one,
971 		.arg = (void *)&pra,
972 		.anon_lock = folio_lock_anon_vma_read,
973 		.try_lock = true,
974 		.invalid_vma = invalid_folio_referenced_vma,
975 	};
976 
977 	*vm_flags = 0;
978 	if (!pra.mapcount)
979 		return 0;
980 
981 	if (!folio_raw_mapping(folio))
982 		return 0;
983 
984 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
985 		we_locked = folio_trylock(folio);
986 		if (!we_locked)
987 			return 1;
988 	}
989 
990 	rmap_walk(folio, &rwc);
991 	*vm_flags = pra.vm_flags;
992 
993 	if (we_locked)
994 		folio_unlock(folio);
995 
996 	return rwc.contended ? -1 : pra.referenced;
997 }
998 
999 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1000 {
1001 	int cleaned = 0;
1002 	struct vm_area_struct *vma = pvmw->vma;
1003 	struct mmu_notifier_range range;
1004 	unsigned long address = pvmw->address;
1005 
1006 	/*
1007 	 * We have to assume the worse case ie pmd for invalidation. Note that
1008 	 * the folio can not be freed from this function.
1009 	 */
1010 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1011 				vma->vm_mm, address, vma_address_end(pvmw));
1012 	mmu_notifier_invalidate_range_start(&range);
1013 
1014 	while (page_vma_mapped_walk(pvmw)) {
1015 		int ret = 0;
1016 
1017 		address = pvmw->address;
1018 		if (pvmw->pte) {
1019 			pte_t *pte = pvmw->pte;
1020 			pte_t entry = ptep_get(pte);
1021 
1022 			if (!pte_dirty(entry) && !pte_write(entry))
1023 				continue;
1024 
1025 			flush_cache_page(vma, address, pte_pfn(entry));
1026 			entry = ptep_clear_flush(vma, address, pte);
1027 			entry = pte_wrprotect(entry);
1028 			entry = pte_mkclean(entry);
1029 			set_pte_at(vma->vm_mm, address, pte, entry);
1030 			ret = 1;
1031 		} else {
1032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1033 			pmd_t *pmd = pvmw->pmd;
1034 			pmd_t entry;
1035 
1036 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1037 				continue;
1038 
1039 			flush_cache_range(vma, address,
1040 					  address + HPAGE_PMD_SIZE);
1041 			entry = pmdp_invalidate(vma, address, pmd);
1042 			entry = pmd_wrprotect(entry);
1043 			entry = pmd_mkclean(entry);
1044 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1045 			ret = 1;
1046 #else
1047 			/* unexpected pmd-mapped folio? */
1048 			WARN_ON_ONCE(1);
1049 #endif
1050 		}
1051 
1052 		if (ret)
1053 			cleaned++;
1054 	}
1055 
1056 	mmu_notifier_invalidate_range_end(&range);
1057 
1058 	return cleaned;
1059 }
1060 
1061 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1062 			     unsigned long address, void *arg)
1063 {
1064 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1065 	int *cleaned = arg;
1066 
1067 	*cleaned += page_vma_mkclean_one(&pvmw);
1068 
1069 	return true;
1070 }
1071 
1072 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1073 {
1074 	if (vma->vm_flags & VM_SHARED)
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 int folio_mkclean(struct folio *folio)
1081 {
1082 	int cleaned = 0;
1083 	struct address_space *mapping;
1084 	struct rmap_walk_control rwc = {
1085 		.arg = (void *)&cleaned,
1086 		.rmap_one = page_mkclean_one,
1087 		.invalid_vma = invalid_mkclean_vma,
1088 	};
1089 
1090 	BUG_ON(!folio_test_locked(folio));
1091 
1092 	if (!folio_mapped(folio))
1093 		return 0;
1094 
1095 	mapping = folio_mapping(folio);
1096 	if (!mapping)
1097 		return 0;
1098 
1099 	rmap_walk(folio, &rwc);
1100 
1101 	return cleaned;
1102 }
1103 EXPORT_SYMBOL_GPL(folio_mkclean);
1104 
1105 /**
1106  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1107  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1108  *                     within the @vma of shared mappings. And since clean PTEs
1109  *                     should also be readonly, write protects them too.
1110  * @pfn: start pfn.
1111  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1112  * @pgoff: page offset that the @pfn mapped with.
1113  * @vma: vma that @pfn mapped within.
1114  *
1115  * Returns the number of cleaned PTEs (including PMDs).
1116  */
1117 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1118 		      struct vm_area_struct *vma)
1119 {
1120 	struct page_vma_mapped_walk pvmw = {
1121 		.pfn		= pfn,
1122 		.nr_pages	= nr_pages,
1123 		.pgoff		= pgoff,
1124 		.vma		= vma,
1125 		.flags		= PVMW_SYNC,
1126 	};
1127 
1128 	if (invalid_mkclean_vma(vma, NULL))
1129 		return 0;
1130 
1131 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1132 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1133 
1134 	return page_vma_mkclean_one(&pvmw);
1135 }
1136 
1137 int folio_total_mapcount(struct folio *folio)
1138 {
1139 	int mapcount = folio_entire_mapcount(folio);
1140 	int nr_pages;
1141 	int i;
1142 
1143 	/* In the common case, avoid the loop when no pages mapped by PTE */
1144 	if (folio_nr_pages_mapped(folio) == 0)
1145 		return mapcount;
1146 	/*
1147 	 * Add all the PTE mappings of those pages mapped by PTE.
1148 	 * Limit the loop to folio_nr_pages_mapped()?
1149 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1150 	 */
1151 	nr_pages = folio_nr_pages(folio);
1152 	for (i = 0; i < nr_pages; i++)
1153 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1154 
1155 	/* But each of those _mapcounts was based on -1 */
1156 	mapcount += nr_pages;
1157 	return mapcount;
1158 }
1159 
1160 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1161 		struct page *page, int nr_pages, enum rmap_level level,
1162 		int *nr_pmdmapped)
1163 {
1164 	atomic_t *mapped = &folio->_nr_pages_mapped;
1165 	int first, nr = 0;
1166 
1167 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1168 
1169 	switch (level) {
1170 	case RMAP_LEVEL_PTE:
1171 		do {
1172 			first = atomic_inc_and_test(&page->_mapcount);
1173 			if (first && folio_test_large(folio)) {
1174 				first = atomic_inc_return_relaxed(mapped);
1175 				first = (first < ENTIRELY_MAPPED);
1176 			}
1177 
1178 			if (first)
1179 				nr++;
1180 		} while (page++, --nr_pages > 0);
1181 		break;
1182 	case RMAP_LEVEL_PMD:
1183 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1184 		if (first) {
1185 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1186 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1187 				*nr_pmdmapped = folio_nr_pages(folio);
1188 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1189 				/* Raced ahead of a remove and another add? */
1190 				if (unlikely(nr < 0))
1191 					nr = 0;
1192 			} else {
1193 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1194 				nr = 0;
1195 			}
1196 		}
1197 		break;
1198 	}
1199 	return nr;
1200 }
1201 
1202 /**
1203  * folio_move_anon_rmap - move a folio to our anon_vma
1204  * @folio:	The folio to move to our anon_vma
1205  * @vma:	The vma the folio belongs to
1206  *
1207  * When a folio belongs exclusively to one process after a COW event,
1208  * that folio can be moved into the anon_vma that belongs to just that
1209  * process, so the rmap code will not search the parent or sibling processes.
1210  */
1211 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1212 {
1213 	void *anon_vma = vma->anon_vma;
1214 
1215 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1216 	VM_BUG_ON_VMA(!anon_vma, vma);
1217 
1218 	anon_vma += PAGE_MAPPING_ANON;
1219 	/*
1220 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1221 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1222 	 * folio_test_anon()) will not see one without the other.
1223 	 */
1224 	WRITE_ONCE(folio->mapping, anon_vma);
1225 }
1226 
1227 /**
1228  * __folio_set_anon - set up a new anonymous rmap for a folio
1229  * @folio:	The folio to set up the new anonymous rmap for.
1230  * @vma:	VM area to add the folio to.
1231  * @address:	User virtual address of the mapping
1232  * @exclusive:	Whether the folio is exclusive to the process.
1233  */
1234 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1235 			     unsigned long address, bool exclusive)
1236 {
1237 	struct anon_vma *anon_vma = vma->anon_vma;
1238 
1239 	BUG_ON(!anon_vma);
1240 
1241 	/*
1242 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1243 	 * possible anon_vma for the folio mapping!
1244 	 */
1245 	if (!exclusive)
1246 		anon_vma = anon_vma->root;
1247 
1248 	/*
1249 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1250 	 * Make sure the compiler doesn't split the stores of anon_vma and
1251 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1252 	 * could mistake the mapping for a struct address_space and crash.
1253 	 */
1254 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1255 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1256 	folio->index = linear_page_index(vma, address);
1257 }
1258 
1259 /**
1260  * __page_check_anon_rmap - sanity check anonymous rmap addition
1261  * @folio:	The folio containing @page.
1262  * @page:	the page to check the mapping of
1263  * @vma:	the vm area in which the mapping is added
1264  * @address:	the user virtual address mapped
1265  */
1266 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1267 	struct vm_area_struct *vma, unsigned long address)
1268 {
1269 	/*
1270 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1271 	 * be set up correctly at this point.
1272 	 *
1273 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1274 	 * always holds the page locked.
1275 	 *
1276 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1277 	 * are initially only visible via the pagetables, and the pte is locked
1278 	 * over the call to folio_add_new_anon_rmap.
1279 	 */
1280 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1281 			folio);
1282 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1283 		       page);
1284 }
1285 
1286 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1287 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1288 		unsigned long address, rmap_t flags, enum rmap_level level)
1289 {
1290 	int i, nr, nr_pmdmapped = 0;
1291 
1292 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1293 	if (nr_pmdmapped)
1294 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1295 	if (nr)
1296 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1297 
1298 	if (unlikely(!folio_test_anon(folio))) {
1299 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1300 		/*
1301 		 * For a PTE-mapped large folio, we only know that the single
1302 		 * PTE is exclusive. Further, __folio_set_anon() might not get
1303 		 * folio->index right when not given the address of the head
1304 		 * page.
1305 		 */
1306 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1307 				 level != RMAP_LEVEL_PMD, folio);
1308 		__folio_set_anon(folio, vma, address,
1309 				 !!(flags & RMAP_EXCLUSIVE));
1310 	} else if (likely(!folio_test_ksm(folio))) {
1311 		__page_check_anon_rmap(folio, page, vma, address);
1312 	}
1313 
1314 	if (flags & RMAP_EXCLUSIVE) {
1315 		switch (level) {
1316 		case RMAP_LEVEL_PTE:
1317 			for (i = 0; i < nr_pages; i++)
1318 				SetPageAnonExclusive(page + i);
1319 			break;
1320 		case RMAP_LEVEL_PMD:
1321 			SetPageAnonExclusive(page);
1322 			break;
1323 		}
1324 	}
1325 	for (i = 0; i < nr_pages; i++) {
1326 		struct page *cur_page = page + i;
1327 
1328 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1329 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1330 				  (folio_test_large(folio) &&
1331 				   folio_entire_mapcount(folio) > 1)) &&
1332 				 PageAnonExclusive(cur_page), folio);
1333 	}
1334 
1335 	/*
1336 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1337 	 * not easy to check whether the large folio is fully mapped to VMA
1338 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1339 	 * large folio.
1340 	 */
1341 	if (!folio_test_large(folio))
1342 		mlock_vma_folio(folio, vma);
1343 }
1344 
1345 /**
1346  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1347  * @folio:	The folio to add the mappings to
1348  * @page:	The first page to add
1349  * @nr_pages:	The number of pages which will be mapped
1350  * @vma:	The vm area in which the mappings are added
1351  * @address:	The user virtual address of the first page to map
1352  * @flags:	The rmap flags
1353  *
1354  * The page range of folio is defined by [first_page, first_page + nr_pages)
1355  *
1356  * The caller needs to hold the page table lock, and the page must be locked in
1357  * the anon_vma case: to serialize mapping,index checking after setting,
1358  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1359  * (but KSM folios are never downgraded).
1360  */
1361 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1362 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1363 		rmap_t flags)
1364 {
1365 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1366 			      RMAP_LEVEL_PTE);
1367 }
1368 
1369 /**
1370  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1371  * @folio:	The folio to add the mapping to
1372  * @page:	The first page to add
1373  * @vma:	The vm area in which the mapping is added
1374  * @address:	The user virtual address of the first page to map
1375  * @flags:	The rmap flags
1376  *
1377  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1378  *
1379  * The caller needs to hold the page table lock, and the page must be locked in
1380  * the anon_vma case: to serialize mapping,index checking after setting.
1381  */
1382 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1383 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1384 {
1385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1386 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1387 			      RMAP_LEVEL_PMD);
1388 #else
1389 	WARN_ON_ONCE(true);
1390 #endif
1391 }
1392 
1393 /**
1394  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1395  * @folio:	The folio to add the mapping to.
1396  * @vma:	the vm area in which the mapping is added
1397  * @address:	the user virtual address mapped
1398  *
1399  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1400  * This means the inc-and-test can be bypassed.
1401  * The folio does not have to be locked.
1402  *
1403  * If the folio is pmd-mappable, it is accounted as a THP.  As the folio
1404  * is new, it's assumed to be mapped exclusively by a single process.
1405  */
1406 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1407 		unsigned long address)
1408 {
1409 	int nr = folio_nr_pages(folio);
1410 
1411 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1412 	VM_BUG_ON_VMA(address < vma->vm_start ||
1413 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1414 	__folio_set_swapbacked(folio);
1415 	__folio_set_anon(folio, vma, address, true);
1416 
1417 	if (likely(!folio_test_large(folio))) {
1418 		/* increment count (starts at -1) */
1419 		atomic_set(&folio->_mapcount, 0);
1420 		SetPageAnonExclusive(&folio->page);
1421 	} else if (!folio_test_pmd_mappable(folio)) {
1422 		int i;
1423 
1424 		for (i = 0; i < nr; i++) {
1425 			struct page *page = folio_page(folio, i);
1426 
1427 			/* increment count (starts at -1) */
1428 			atomic_set(&page->_mapcount, 0);
1429 			SetPageAnonExclusive(page);
1430 		}
1431 
1432 		atomic_set(&folio->_nr_pages_mapped, nr);
1433 	} else {
1434 		/* increment count (starts at -1) */
1435 		atomic_set(&folio->_entire_mapcount, 0);
1436 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1437 		SetPageAnonExclusive(&folio->page);
1438 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1439 	}
1440 
1441 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1442 }
1443 
1444 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1445 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1446 		enum rmap_level level)
1447 {
1448 	int nr, nr_pmdmapped = 0;
1449 
1450 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1451 
1452 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1453 	if (nr_pmdmapped)
1454 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1455 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1456 	if (nr)
1457 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1458 
1459 	/* See comments in folio_add_anon_rmap_*() */
1460 	if (!folio_test_large(folio))
1461 		mlock_vma_folio(folio, vma);
1462 }
1463 
1464 /**
1465  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1466  * @folio:	The folio to add the mappings to
1467  * @page:	The first page to add
1468  * @nr_pages:	The number of pages that will be mapped using PTEs
1469  * @vma:	The vm area in which the mappings are added
1470  *
1471  * The page range of the folio is defined by [page, page + nr_pages)
1472  *
1473  * The caller needs to hold the page table lock.
1474  */
1475 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1476 		int nr_pages, struct vm_area_struct *vma)
1477 {
1478 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1479 }
1480 
1481 /**
1482  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1483  * @folio:	The folio to add the mapping to
1484  * @page:	The first page to add
1485  * @vma:	The vm area in which the mapping is added
1486  *
1487  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1488  *
1489  * The caller needs to hold the page table lock.
1490  */
1491 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1492 		struct vm_area_struct *vma)
1493 {
1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1496 #else
1497 	WARN_ON_ONCE(true);
1498 #endif
1499 }
1500 
1501 static __always_inline void __folio_remove_rmap(struct folio *folio,
1502 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1503 		enum rmap_level level)
1504 {
1505 	atomic_t *mapped = &folio->_nr_pages_mapped;
1506 	int last, nr = 0, nr_pmdmapped = 0;
1507 	enum node_stat_item idx;
1508 
1509 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1510 
1511 	switch (level) {
1512 	case RMAP_LEVEL_PTE:
1513 		do {
1514 			last = atomic_add_negative(-1, &page->_mapcount);
1515 			if (last && folio_test_large(folio)) {
1516 				last = atomic_dec_return_relaxed(mapped);
1517 				last = (last < ENTIRELY_MAPPED);
1518 			}
1519 
1520 			if (last)
1521 				nr++;
1522 		} while (page++, --nr_pages > 0);
1523 		break;
1524 	case RMAP_LEVEL_PMD:
1525 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1526 		if (last) {
1527 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1528 			if (likely(nr < ENTIRELY_MAPPED)) {
1529 				nr_pmdmapped = folio_nr_pages(folio);
1530 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1531 				/* Raced ahead of another remove and an add? */
1532 				if (unlikely(nr < 0))
1533 					nr = 0;
1534 			} else {
1535 				/* An add of ENTIRELY_MAPPED raced ahead */
1536 				nr = 0;
1537 			}
1538 		}
1539 		break;
1540 	}
1541 
1542 	if (nr_pmdmapped) {
1543 		if (folio_test_anon(folio))
1544 			idx = NR_ANON_THPS;
1545 		else if (folio_test_swapbacked(folio))
1546 			idx = NR_SHMEM_PMDMAPPED;
1547 		else
1548 			idx = NR_FILE_PMDMAPPED;
1549 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1550 	}
1551 	if (nr) {
1552 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1553 		__lruvec_stat_mod_folio(folio, idx, -nr);
1554 
1555 		/*
1556 		 * Queue anon large folio for deferred split if at least one
1557 		 * page of the folio is unmapped and at least one page
1558 		 * is still mapped.
1559 		 */
1560 		if (folio_test_large(folio) && folio_test_anon(folio))
1561 			if (level == RMAP_LEVEL_PTE || nr < nr_pmdmapped)
1562 				deferred_split_folio(folio);
1563 	}
1564 
1565 	/*
1566 	 * It would be tidy to reset folio_test_anon mapping when fully
1567 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1568 	 * which increments mapcount after us but sets mapping before us:
1569 	 * so leave the reset to free_pages_prepare, and remember that
1570 	 * it's only reliable while mapped.
1571 	 */
1572 
1573 	munlock_vma_folio(folio, vma);
1574 }
1575 
1576 /**
1577  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1578  * @folio:	The folio to remove the mappings from
1579  * @page:	The first page to remove
1580  * @nr_pages:	The number of pages that will be removed from the mapping
1581  * @vma:	The vm area from which the mappings are removed
1582  *
1583  * The page range of the folio is defined by [page, page + nr_pages)
1584  *
1585  * The caller needs to hold the page table lock.
1586  */
1587 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1588 		int nr_pages, struct vm_area_struct *vma)
1589 {
1590 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1591 }
1592 
1593 /**
1594  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1595  * @folio:	The folio to remove the mapping from
1596  * @page:	The first page to remove
1597  * @vma:	The vm area from which the mapping is removed
1598  *
1599  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1600  *
1601  * The caller needs to hold the page table lock.
1602  */
1603 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1604 		struct vm_area_struct *vma)
1605 {
1606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1607 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1608 #else
1609 	WARN_ON_ONCE(true);
1610 #endif
1611 }
1612 
1613 /*
1614  * @arg: enum ttu_flags will be passed to this argument
1615  */
1616 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1617 		     unsigned long address, void *arg)
1618 {
1619 	struct mm_struct *mm = vma->vm_mm;
1620 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1621 	pte_t pteval;
1622 	struct page *subpage;
1623 	bool anon_exclusive, ret = true;
1624 	struct mmu_notifier_range range;
1625 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1626 	unsigned long pfn;
1627 	unsigned long hsz = 0;
1628 
1629 	/*
1630 	 * When racing against e.g. zap_pte_range() on another cpu,
1631 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1632 	 * try_to_unmap() may return before page_mapped() has become false,
1633 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1634 	 */
1635 	if (flags & TTU_SYNC)
1636 		pvmw.flags = PVMW_SYNC;
1637 
1638 	if (flags & TTU_SPLIT_HUGE_PMD)
1639 		split_huge_pmd_address(vma, address, false, folio);
1640 
1641 	/*
1642 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1643 	 * For hugetlb, it could be much worse if we need to do pud
1644 	 * invalidation in the case of pmd sharing.
1645 	 *
1646 	 * Note that the folio can not be freed in this function as call of
1647 	 * try_to_unmap() must hold a reference on the folio.
1648 	 */
1649 	range.end = vma_address_end(&pvmw);
1650 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1651 				address, range.end);
1652 	if (folio_test_hugetlb(folio)) {
1653 		/*
1654 		 * If sharing is possible, start and end will be adjusted
1655 		 * accordingly.
1656 		 */
1657 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1658 						     &range.end);
1659 
1660 		/* We need the huge page size for set_huge_pte_at() */
1661 		hsz = huge_page_size(hstate_vma(vma));
1662 	}
1663 	mmu_notifier_invalidate_range_start(&range);
1664 
1665 	while (page_vma_mapped_walk(&pvmw)) {
1666 		/* Unexpected PMD-mapped THP? */
1667 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1668 
1669 		/*
1670 		 * If the folio is in an mlock()d vma, we must not swap it out.
1671 		 */
1672 		if (!(flags & TTU_IGNORE_MLOCK) &&
1673 		    (vma->vm_flags & VM_LOCKED)) {
1674 			/* Restore the mlock which got missed */
1675 			if (!folio_test_large(folio))
1676 				mlock_vma_folio(folio, vma);
1677 			page_vma_mapped_walk_done(&pvmw);
1678 			ret = false;
1679 			break;
1680 		}
1681 
1682 		pfn = pte_pfn(ptep_get(pvmw.pte));
1683 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1684 		address = pvmw.address;
1685 		anon_exclusive = folio_test_anon(folio) &&
1686 				 PageAnonExclusive(subpage);
1687 
1688 		if (folio_test_hugetlb(folio)) {
1689 			bool anon = folio_test_anon(folio);
1690 
1691 			/*
1692 			 * The try_to_unmap() is only passed a hugetlb page
1693 			 * in the case where the hugetlb page is poisoned.
1694 			 */
1695 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1696 			/*
1697 			 * huge_pmd_unshare may unmap an entire PMD page.
1698 			 * There is no way of knowing exactly which PMDs may
1699 			 * be cached for this mm, so we must flush them all.
1700 			 * start/end were already adjusted above to cover this
1701 			 * range.
1702 			 */
1703 			flush_cache_range(vma, range.start, range.end);
1704 
1705 			/*
1706 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1707 			 * held in write mode.  Caller needs to explicitly
1708 			 * do this outside rmap routines.
1709 			 *
1710 			 * We also must hold hugetlb vma_lock in write mode.
1711 			 * Lock order dictates acquiring vma_lock BEFORE
1712 			 * i_mmap_rwsem.  We can only try lock here and fail
1713 			 * if unsuccessful.
1714 			 */
1715 			if (!anon) {
1716 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1717 				if (!hugetlb_vma_trylock_write(vma)) {
1718 					page_vma_mapped_walk_done(&pvmw);
1719 					ret = false;
1720 					break;
1721 				}
1722 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1723 					hugetlb_vma_unlock_write(vma);
1724 					flush_tlb_range(vma,
1725 						range.start, range.end);
1726 					/*
1727 					 * The ref count of the PMD page was
1728 					 * dropped which is part of the way map
1729 					 * counting is done for shared PMDs.
1730 					 * Return 'true' here.  When there is
1731 					 * no other sharing, huge_pmd_unshare
1732 					 * returns false and we will unmap the
1733 					 * actual page and drop map count
1734 					 * to zero.
1735 					 */
1736 					page_vma_mapped_walk_done(&pvmw);
1737 					break;
1738 				}
1739 				hugetlb_vma_unlock_write(vma);
1740 			}
1741 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1742 		} else {
1743 			flush_cache_page(vma, address, pfn);
1744 			/* Nuke the page table entry. */
1745 			if (should_defer_flush(mm, flags)) {
1746 				/*
1747 				 * We clear the PTE but do not flush so potentially
1748 				 * a remote CPU could still be writing to the folio.
1749 				 * If the entry was previously clean then the
1750 				 * architecture must guarantee that a clear->dirty
1751 				 * transition on a cached TLB entry is written through
1752 				 * and traps if the PTE is unmapped.
1753 				 */
1754 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1755 
1756 				set_tlb_ubc_flush_pending(mm, pteval, address);
1757 			} else {
1758 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1759 			}
1760 		}
1761 
1762 		/*
1763 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1764 		 * we may want to replace a none pte with a marker pte if
1765 		 * it's file-backed, so we don't lose the tracking info.
1766 		 */
1767 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1768 
1769 		/* Set the dirty flag on the folio now the pte is gone. */
1770 		if (pte_dirty(pteval))
1771 			folio_mark_dirty(folio);
1772 
1773 		/* Update high watermark before we lower rss */
1774 		update_hiwater_rss(mm);
1775 
1776 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1777 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1778 			if (folio_test_hugetlb(folio)) {
1779 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1780 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1781 						hsz);
1782 			} else {
1783 				dec_mm_counter(mm, mm_counter(&folio->page));
1784 				set_pte_at(mm, address, pvmw.pte, pteval);
1785 			}
1786 
1787 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1788 			/*
1789 			 * The guest indicated that the page content is of no
1790 			 * interest anymore. Simply discard the pte, vmscan
1791 			 * will take care of the rest.
1792 			 * A future reference will then fault in a new zero
1793 			 * page. When userfaultfd is active, we must not drop
1794 			 * this page though, as its main user (postcopy
1795 			 * migration) will not expect userfaults on already
1796 			 * copied pages.
1797 			 */
1798 			dec_mm_counter(mm, mm_counter(&folio->page));
1799 		} else if (folio_test_anon(folio)) {
1800 			swp_entry_t entry = page_swap_entry(subpage);
1801 			pte_t swp_pte;
1802 			/*
1803 			 * Store the swap location in the pte.
1804 			 * See handle_pte_fault() ...
1805 			 */
1806 			if (unlikely(folio_test_swapbacked(folio) !=
1807 					folio_test_swapcache(folio))) {
1808 				WARN_ON_ONCE(1);
1809 				ret = false;
1810 				page_vma_mapped_walk_done(&pvmw);
1811 				break;
1812 			}
1813 
1814 			/* MADV_FREE page check */
1815 			if (!folio_test_swapbacked(folio)) {
1816 				int ref_count, map_count;
1817 
1818 				/*
1819 				 * Synchronize with gup_pte_range():
1820 				 * - clear PTE; barrier; read refcount
1821 				 * - inc refcount; barrier; read PTE
1822 				 */
1823 				smp_mb();
1824 
1825 				ref_count = folio_ref_count(folio);
1826 				map_count = folio_mapcount(folio);
1827 
1828 				/*
1829 				 * Order reads for page refcount and dirty flag
1830 				 * (see comments in __remove_mapping()).
1831 				 */
1832 				smp_rmb();
1833 
1834 				/*
1835 				 * The only page refs must be one from isolation
1836 				 * plus the rmap(s) (dropped by discard:).
1837 				 */
1838 				if (ref_count == 1 + map_count &&
1839 				    !folio_test_dirty(folio)) {
1840 					dec_mm_counter(mm, MM_ANONPAGES);
1841 					goto discard;
1842 				}
1843 
1844 				/*
1845 				 * If the folio was redirtied, it cannot be
1846 				 * discarded. Remap the page to page table.
1847 				 */
1848 				set_pte_at(mm, address, pvmw.pte, pteval);
1849 				folio_set_swapbacked(folio);
1850 				ret = false;
1851 				page_vma_mapped_walk_done(&pvmw);
1852 				break;
1853 			}
1854 
1855 			if (swap_duplicate(entry) < 0) {
1856 				set_pte_at(mm, address, pvmw.pte, pteval);
1857 				ret = false;
1858 				page_vma_mapped_walk_done(&pvmw);
1859 				break;
1860 			}
1861 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1862 				swap_free(entry);
1863 				set_pte_at(mm, address, pvmw.pte, pteval);
1864 				ret = false;
1865 				page_vma_mapped_walk_done(&pvmw);
1866 				break;
1867 			}
1868 
1869 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1870 			if (anon_exclusive &&
1871 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1872 				swap_free(entry);
1873 				set_pte_at(mm, address, pvmw.pte, pteval);
1874 				ret = false;
1875 				page_vma_mapped_walk_done(&pvmw);
1876 				break;
1877 			}
1878 			if (list_empty(&mm->mmlist)) {
1879 				spin_lock(&mmlist_lock);
1880 				if (list_empty(&mm->mmlist))
1881 					list_add(&mm->mmlist, &init_mm.mmlist);
1882 				spin_unlock(&mmlist_lock);
1883 			}
1884 			dec_mm_counter(mm, MM_ANONPAGES);
1885 			inc_mm_counter(mm, MM_SWAPENTS);
1886 			swp_pte = swp_entry_to_pte(entry);
1887 			if (anon_exclusive)
1888 				swp_pte = pte_swp_mkexclusive(swp_pte);
1889 			if (pte_soft_dirty(pteval))
1890 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1891 			if (pte_uffd_wp(pteval))
1892 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1893 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1894 		} else {
1895 			/*
1896 			 * This is a locked file-backed folio,
1897 			 * so it cannot be removed from the page
1898 			 * cache and replaced by a new folio before
1899 			 * mmu_notifier_invalidate_range_end, so no
1900 			 * concurrent thread might update its page table
1901 			 * to point at a new folio while a device is
1902 			 * still using this folio.
1903 			 *
1904 			 * See Documentation/mm/mmu_notifier.rst
1905 			 */
1906 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1907 		}
1908 discard:
1909 		if (unlikely(folio_test_hugetlb(folio)))
1910 			hugetlb_remove_rmap(folio);
1911 		else
1912 			folio_remove_rmap_pte(folio, subpage, vma);
1913 		if (vma->vm_flags & VM_LOCKED)
1914 			mlock_drain_local();
1915 		folio_put(folio);
1916 	}
1917 
1918 	mmu_notifier_invalidate_range_end(&range);
1919 
1920 	return ret;
1921 }
1922 
1923 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1924 {
1925 	return vma_is_temporary_stack(vma);
1926 }
1927 
1928 static int folio_not_mapped(struct folio *folio)
1929 {
1930 	return !folio_mapped(folio);
1931 }
1932 
1933 /**
1934  * try_to_unmap - Try to remove all page table mappings to a folio.
1935  * @folio: The folio to unmap.
1936  * @flags: action and flags
1937  *
1938  * Tries to remove all the page table entries which are mapping this
1939  * folio.  It is the caller's responsibility to check if the folio is
1940  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1941  *
1942  * Context: Caller must hold the folio lock.
1943  */
1944 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1945 {
1946 	struct rmap_walk_control rwc = {
1947 		.rmap_one = try_to_unmap_one,
1948 		.arg = (void *)flags,
1949 		.done = folio_not_mapped,
1950 		.anon_lock = folio_lock_anon_vma_read,
1951 	};
1952 
1953 	if (flags & TTU_RMAP_LOCKED)
1954 		rmap_walk_locked(folio, &rwc);
1955 	else
1956 		rmap_walk(folio, &rwc);
1957 }
1958 
1959 /*
1960  * @arg: enum ttu_flags will be passed to this argument.
1961  *
1962  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1963  * containing migration entries.
1964  */
1965 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1966 		     unsigned long address, void *arg)
1967 {
1968 	struct mm_struct *mm = vma->vm_mm;
1969 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1970 	pte_t pteval;
1971 	struct page *subpage;
1972 	bool anon_exclusive, ret = true;
1973 	struct mmu_notifier_range range;
1974 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1975 	unsigned long pfn;
1976 	unsigned long hsz = 0;
1977 
1978 	/*
1979 	 * When racing against e.g. zap_pte_range() on another cpu,
1980 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1981 	 * try_to_migrate() may return before page_mapped() has become false,
1982 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1983 	 */
1984 	if (flags & TTU_SYNC)
1985 		pvmw.flags = PVMW_SYNC;
1986 
1987 	/*
1988 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1989 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1990 	 */
1991 	if (flags & TTU_SPLIT_HUGE_PMD)
1992 		split_huge_pmd_address(vma, address, true, folio);
1993 
1994 	/*
1995 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1996 	 * For hugetlb, it could be much worse if we need to do pud
1997 	 * invalidation in the case of pmd sharing.
1998 	 *
1999 	 * Note that the page can not be free in this function as call of
2000 	 * try_to_unmap() must hold a reference on the page.
2001 	 */
2002 	range.end = vma_address_end(&pvmw);
2003 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2004 				address, range.end);
2005 	if (folio_test_hugetlb(folio)) {
2006 		/*
2007 		 * If sharing is possible, start and end will be adjusted
2008 		 * accordingly.
2009 		 */
2010 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2011 						     &range.end);
2012 
2013 		/* We need the huge page size for set_huge_pte_at() */
2014 		hsz = huge_page_size(hstate_vma(vma));
2015 	}
2016 	mmu_notifier_invalidate_range_start(&range);
2017 
2018 	while (page_vma_mapped_walk(&pvmw)) {
2019 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2020 		/* PMD-mapped THP migration entry */
2021 		if (!pvmw.pte) {
2022 			subpage = folio_page(folio,
2023 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2024 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2025 					!folio_test_pmd_mappable(folio), folio);
2026 
2027 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2028 				ret = false;
2029 				page_vma_mapped_walk_done(&pvmw);
2030 				break;
2031 			}
2032 			continue;
2033 		}
2034 #endif
2035 
2036 		/* Unexpected PMD-mapped THP? */
2037 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2038 
2039 		pfn = pte_pfn(ptep_get(pvmw.pte));
2040 
2041 		if (folio_is_zone_device(folio)) {
2042 			/*
2043 			 * Our PTE is a non-present device exclusive entry and
2044 			 * calculating the subpage as for the common case would
2045 			 * result in an invalid pointer.
2046 			 *
2047 			 * Since only PAGE_SIZE pages can currently be
2048 			 * migrated, just set it to page. This will need to be
2049 			 * changed when hugepage migrations to device private
2050 			 * memory are supported.
2051 			 */
2052 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2053 			subpage = &folio->page;
2054 		} else {
2055 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2056 		}
2057 		address = pvmw.address;
2058 		anon_exclusive = folio_test_anon(folio) &&
2059 				 PageAnonExclusive(subpage);
2060 
2061 		if (folio_test_hugetlb(folio)) {
2062 			bool anon = folio_test_anon(folio);
2063 
2064 			/*
2065 			 * huge_pmd_unshare may unmap an entire PMD page.
2066 			 * There is no way of knowing exactly which PMDs may
2067 			 * be cached for this mm, so we must flush them all.
2068 			 * start/end were already adjusted above to cover this
2069 			 * range.
2070 			 */
2071 			flush_cache_range(vma, range.start, range.end);
2072 
2073 			/*
2074 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2075 			 * held in write mode.  Caller needs to explicitly
2076 			 * do this outside rmap routines.
2077 			 *
2078 			 * We also must hold hugetlb vma_lock in write mode.
2079 			 * Lock order dictates acquiring vma_lock BEFORE
2080 			 * i_mmap_rwsem.  We can only try lock here and
2081 			 * fail if unsuccessful.
2082 			 */
2083 			if (!anon) {
2084 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2085 				if (!hugetlb_vma_trylock_write(vma)) {
2086 					page_vma_mapped_walk_done(&pvmw);
2087 					ret = false;
2088 					break;
2089 				}
2090 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2091 					hugetlb_vma_unlock_write(vma);
2092 					flush_tlb_range(vma,
2093 						range.start, range.end);
2094 
2095 					/*
2096 					 * The ref count of the PMD page was
2097 					 * dropped which is part of the way map
2098 					 * counting is done for shared PMDs.
2099 					 * Return 'true' here.  When there is
2100 					 * no other sharing, huge_pmd_unshare
2101 					 * returns false and we will unmap the
2102 					 * actual page and drop map count
2103 					 * to zero.
2104 					 */
2105 					page_vma_mapped_walk_done(&pvmw);
2106 					break;
2107 				}
2108 				hugetlb_vma_unlock_write(vma);
2109 			}
2110 			/* Nuke the hugetlb page table entry */
2111 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2112 		} else {
2113 			flush_cache_page(vma, address, pfn);
2114 			/* Nuke the page table entry. */
2115 			if (should_defer_flush(mm, flags)) {
2116 				/*
2117 				 * We clear the PTE but do not flush so potentially
2118 				 * a remote CPU could still be writing to the folio.
2119 				 * If the entry was previously clean then the
2120 				 * architecture must guarantee that a clear->dirty
2121 				 * transition on a cached TLB entry is written through
2122 				 * and traps if the PTE is unmapped.
2123 				 */
2124 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2125 
2126 				set_tlb_ubc_flush_pending(mm, pteval, address);
2127 			} else {
2128 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2129 			}
2130 		}
2131 
2132 		/* Set the dirty flag on the folio now the pte is gone. */
2133 		if (pte_dirty(pteval))
2134 			folio_mark_dirty(folio);
2135 
2136 		/* Update high watermark before we lower rss */
2137 		update_hiwater_rss(mm);
2138 
2139 		if (folio_is_device_private(folio)) {
2140 			unsigned long pfn = folio_pfn(folio);
2141 			swp_entry_t entry;
2142 			pte_t swp_pte;
2143 
2144 			if (anon_exclusive)
2145 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2146 									   subpage));
2147 
2148 			/*
2149 			 * Store the pfn of the page in a special migration
2150 			 * pte. do_swap_page() will wait until the migration
2151 			 * pte is removed and then restart fault handling.
2152 			 */
2153 			entry = pte_to_swp_entry(pteval);
2154 			if (is_writable_device_private_entry(entry))
2155 				entry = make_writable_migration_entry(pfn);
2156 			else if (anon_exclusive)
2157 				entry = make_readable_exclusive_migration_entry(pfn);
2158 			else
2159 				entry = make_readable_migration_entry(pfn);
2160 			swp_pte = swp_entry_to_pte(entry);
2161 
2162 			/*
2163 			 * pteval maps a zone device page and is therefore
2164 			 * a swap pte.
2165 			 */
2166 			if (pte_swp_soft_dirty(pteval))
2167 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2168 			if (pte_swp_uffd_wp(pteval))
2169 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2170 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2171 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2172 						compound_order(&folio->page));
2173 			/*
2174 			 * No need to invalidate here it will synchronize on
2175 			 * against the special swap migration pte.
2176 			 */
2177 		} else if (PageHWPoison(subpage)) {
2178 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2179 			if (folio_test_hugetlb(folio)) {
2180 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2181 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2182 						hsz);
2183 			} else {
2184 				dec_mm_counter(mm, mm_counter(&folio->page));
2185 				set_pte_at(mm, address, pvmw.pte, pteval);
2186 			}
2187 
2188 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2189 			/*
2190 			 * The guest indicated that the page content is of no
2191 			 * interest anymore. Simply discard the pte, vmscan
2192 			 * will take care of the rest.
2193 			 * A future reference will then fault in a new zero
2194 			 * page. When userfaultfd is active, we must not drop
2195 			 * this page though, as its main user (postcopy
2196 			 * migration) will not expect userfaults on already
2197 			 * copied pages.
2198 			 */
2199 			dec_mm_counter(mm, mm_counter(&folio->page));
2200 		} else {
2201 			swp_entry_t entry;
2202 			pte_t swp_pte;
2203 
2204 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2205 				if (folio_test_hugetlb(folio))
2206 					set_huge_pte_at(mm, address, pvmw.pte,
2207 							pteval, hsz);
2208 				else
2209 					set_pte_at(mm, address, pvmw.pte, pteval);
2210 				ret = false;
2211 				page_vma_mapped_walk_done(&pvmw);
2212 				break;
2213 			}
2214 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2215 				       !anon_exclusive, subpage);
2216 
2217 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2218 			if (folio_test_hugetlb(folio)) {
2219 				if (anon_exclusive &&
2220 				    hugetlb_try_share_anon_rmap(folio)) {
2221 					set_huge_pte_at(mm, address, pvmw.pte,
2222 							pteval, hsz);
2223 					ret = false;
2224 					page_vma_mapped_walk_done(&pvmw);
2225 					break;
2226 				}
2227 			} else if (anon_exclusive &&
2228 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2229 				set_pte_at(mm, address, pvmw.pte, pteval);
2230 				ret = false;
2231 				page_vma_mapped_walk_done(&pvmw);
2232 				break;
2233 			}
2234 
2235 			/*
2236 			 * Store the pfn of the page in a special migration
2237 			 * pte. do_swap_page() will wait until the migration
2238 			 * pte is removed and then restart fault handling.
2239 			 */
2240 			if (pte_write(pteval))
2241 				entry = make_writable_migration_entry(
2242 							page_to_pfn(subpage));
2243 			else if (anon_exclusive)
2244 				entry = make_readable_exclusive_migration_entry(
2245 							page_to_pfn(subpage));
2246 			else
2247 				entry = make_readable_migration_entry(
2248 							page_to_pfn(subpage));
2249 			if (pte_young(pteval))
2250 				entry = make_migration_entry_young(entry);
2251 			if (pte_dirty(pteval))
2252 				entry = make_migration_entry_dirty(entry);
2253 			swp_pte = swp_entry_to_pte(entry);
2254 			if (pte_soft_dirty(pteval))
2255 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2256 			if (pte_uffd_wp(pteval))
2257 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2258 			if (folio_test_hugetlb(folio))
2259 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2260 						hsz);
2261 			else
2262 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2263 			trace_set_migration_pte(address, pte_val(swp_pte),
2264 						compound_order(&folio->page));
2265 			/*
2266 			 * No need to invalidate here it will synchronize on
2267 			 * against the special swap migration pte.
2268 			 */
2269 		}
2270 
2271 		if (unlikely(folio_test_hugetlb(folio)))
2272 			hugetlb_remove_rmap(folio);
2273 		else
2274 			folio_remove_rmap_pte(folio, subpage, vma);
2275 		if (vma->vm_flags & VM_LOCKED)
2276 			mlock_drain_local();
2277 		folio_put(folio);
2278 	}
2279 
2280 	mmu_notifier_invalidate_range_end(&range);
2281 
2282 	return ret;
2283 }
2284 
2285 /**
2286  * try_to_migrate - try to replace all page table mappings with swap entries
2287  * @folio: the folio to replace page table entries for
2288  * @flags: action and flags
2289  *
2290  * Tries to remove all the page table entries which are mapping this folio and
2291  * replace them with special swap entries. Caller must hold the folio lock.
2292  */
2293 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2294 {
2295 	struct rmap_walk_control rwc = {
2296 		.rmap_one = try_to_migrate_one,
2297 		.arg = (void *)flags,
2298 		.done = folio_not_mapped,
2299 		.anon_lock = folio_lock_anon_vma_read,
2300 	};
2301 
2302 	/*
2303 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2304 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2305 	 */
2306 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2307 					TTU_SYNC | TTU_BATCH_FLUSH)))
2308 		return;
2309 
2310 	if (folio_is_zone_device(folio) &&
2311 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2312 		return;
2313 
2314 	/*
2315 	 * During exec, a temporary VMA is setup and later moved.
2316 	 * The VMA is moved under the anon_vma lock but not the
2317 	 * page tables leading to a race where migration cannot
2318 	 * find the migration ptes. Rather than increasing the
2319 	 * locking requirements of exec(), migration skips
2320 	 * temporary VMAs until after exec() completes.
2321 	 */
2322 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2323 		rwc.invalid_vma = invalid_migration_vma;
2324 
2325 	if (flags & TTU_RMAP_LOCKED)
2326 		rmap_walk_locked(folio, &rwc);
2327 	else
2328 		rmap_walk(folio, &rwc);
2329 }
2330 
2331 #ifdef CONFIG_DEVICE_PRIVATE
2332 struct make_exclusive_args {
2333 	struct mm_struct *mm;
2334 	unsigned long address;
2335 	void *owner;
2336 	bool valid;
2337 };
2338 
2339 static bool page_make_device_exclusive_one(struct folio *folio,
2340 		struct vm_area_struct *vma, unsigned long address, void *priv)
2341 {
2342 	struct mm_struct *mm = vma->vm_mm;
2343 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2344 	struct make_exclusive_args *args = priv;
2345 	pte_t pteval;
2346 	struct page *subpage;
2347 	bool ret = true;
2348 	struct mmu_notifier_range range;
2349 	swp_entry_t entry;
2350 	pte_t swp_pte;
2351 	pte_t ptent;
2352 
2353 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2354 				      vma->vm_mm, address, min(vma->vm_end,
2355 				      address + folio_size(folio)),
2356 				      args->owner);
2357 	mmu_notifier_invalidate_range_start(&range);
2358 
2359 	while (page_vma_mapped_walk(&pvmw)) {
2360 		/* Unexpected PMD-mapped THP? */
2361 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2362 
2363 		ptent = ptep_get(pvmw.pte);
2364 		if (!pte_present(ptent)) {
2365 			ret = false;
2366 			page_vma_mapped_walk_done(&pvmw);
2367 			break;
2368 		}
2369 
2370 		subpage = folio_page(folio,
2371 				pte_pfn(ptent) - folio_pfn(folio));
2372 		address = pvmw.address;
2373 
2374 		/* Nuke the page table entry. */
2375 		flush_cache_page(vma, address, pte_pfn(ptent));
2376 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2377 
2378 		/* Set the dirty flag on the folio now the pte is gone. */
2379 		if (pte_dirty(pteval))
2380 			folio_mark_dirty(folio);
2381 
2382 		/*
2383 		 * Check that our target page is still mapped at the expected
2384 		 * address.
2385 		 */
2386 		if (args->mm == mm && args->address == address &&
2387 		    pte_write(pteval))
2388 			args->valid = true;
2389 
2390 		/*
2391 		 * Store the pfn of the page in a special migration
2392 		 * pte. do_swap_page() will wait until the migration
2393 		 * pte is removed and then restart fault handling.
2394 		 */
2395 		if (pte_write(pteval))
2396 			entry = make_writable_device_exclusive_entry(
2397 							page_to_pfn(subpage));
2398 		else
2399 			entry = make_readable_device_exclusive_entry(
2400 							page_to_pfn(subpage));
2401 		swp_pte = swp_entry_to_pte(entry);
2402 		if (pte_soft_dirty(pteval))
2403 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2404 		if (pte_uffd_wp(pteval))
2405 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2406 
2407 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2408 
2409 		/*
2410 		 * There is a reference on the page for the swap entry which has
2411 		 * been removed, so shouldn't take another.
2412 		 */
2413 		folio_remove_rmap_pte(folio, subpage, vma);
2414 	}
2415 
2416 	mmu_notifier_invalidate_range_end(&range);
2417 
2418 	return ret;
2419 }
2420 
2421 /**
2422  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2423  * @folio: The folio to replace page table entries for.
2424  * @mm: The mm_struct where the folio is expected to be mapped.
2425  * @address: Address where the folio is expected to be mapped.
2426  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2427  *
2428  * Tries to remove all the page table entries which are mapping this
2429  * folio and replace them with special device exclusive swap entries to
2430  * grant a device exclusive access to the folio.
2431  *
2432  * Context: Caller must hold the folio lock.
2433  * Return: false if the page is still mapped, or if it could not be unmapped
2434  * from the expected address. Otherwise returns true (success).
2435  */
2436 static bool folio_make_device_exclusive(struct folio *folio,
2437 		struct mm_struct *mm, unsigned long address, void *owner)
2438 {
2439 	struct make_exclusive_args args = {
2440 		.mm = mm,
2441 		.address = address,
2442 		.owner = owner,
2443 		.valid = false,
2444 	};
2445 	struct rmap_walk_control rwc = {
2446 		.rmap_one = page_make_device_exclusive_one,
2447 		.done = folio_not_mapped,
2448 		.anon_lock = folio_lock_anon_vma_read,
2449 		.arg = &args,
2450 	};
2451 
2452 	/*
2453 	 * Restrict to anonymous folios for now to avoid potential writeback
2454 	 * issues.
2455 	 */
2456 	if (!folio_test_anon(folio))
2457 		return false;
2458 
2459 	rmap_walk(folio, &rwc);
2460 
2461 	return args.valid && !folio_mapcount(folio);
2462 }
2463 
2464 /**
2465  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2466  * @mm: mm_struct of associated target process
2467  * @start: start of the region to mark for exclusive device access
2468  * @end: end address of region
2469  * @pages: returns the pages which were successfully marked for exclusive access
2470  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2471  *
2472  * Returns: number of pages found in the range by GUP. A page is marked for
2473  * exclusive access only if the page pointer is non-NULL.
2474  *
2475  * This function finds ptes mapping page(s) to the given address range, locks
2476  * them and replaces mappings with special swap entries preventing userspace CPU
2477  * access. On fault these entries are replaced with the original mapping after
2478  * calling MMU notifiers.
2479  *
2480  * A driver using this to program access from a device must use a mmu notifier
2481  * critical section to hold a device specific lock during programming. Once
2482  * programming is complete it should drop the page lock and reference after
2483  * which point CPU access to the page will revoke the exclusive access.
2484  */
2485 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2486 				unsigned long end, struct page **pages,
2487 				void *owner)
2488 {
2489 	long npages = (end - start) >> PAGE_SHIFT;
2490 	long i;
2491 
2492 	npages = get_user_pages_remote(mm, start, npages,
2493 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2494 				       pages, NULL);
2495 	if (npages < 0)
2496 		return npages;
2497 
2498 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2499 		struct folio *folio = page_folio(pages[i]);
2500 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2501 			folio_put(folio);
2502 			pages[i] = NULL;
2503 			continue;
2504 		}
2505 
2506 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2507 			folio_unlock(folio);
2508 			folio_put(folio);
2509 			pages[i] = NULL;
2510 		}
2511 	}
2512 
2513 	return npages;
2514 }
2515 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2516 #endif
2517 
2518 void __put_anon_vma(struct anon_vma *anon_vma)
2519 {
2520 	struct anon_vma *root = anon_vma->root;
2521 
2522 	anon_vma_free(anon_vma);
2523 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2524 		anon_vma_free(root);
2525 }
2526 
2527 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2528 					    struct rmap_walk_control *rwc)
2529 {
2530 	struct anon_vma *anon_vma;
2531 
2532 	if (rwc->anon_lock)
2533 		return rwc->anon_lock(folio, rwc);
2534 
2535 	/*
2536 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2537 	 * because that depends on page_mapped(); but not all its usages
2538 	 * are holding mmap_lock. Users without mmap_lock are required to
2539 	 * take a reference count to prevent the anon_vma disappearing
2540 	 */
2541 	anon_vma = folio_anon_vma(folio);
2542 	if (!anon_vma)
2543 		return NULL;
2544 
2545 	if (anon_vma_trylock_read(anon_vma))
2546 		goto out;
2547 
2548 	if (rwc->try_lock) {
2549 		anon_vma = NULL;
2550 		rwc->contended = true;
2551 		goto out;
2552 	}
2553 
2554 	anon_vma_lock_read(anon_vma);
2555 out:
2556 	return anon_vma;
2557 }
2558 
2559 /*
2560  * rmap_walk_anon - do something to anonymous page using the object-based
2561  * rmap method
2562  * @folio: the folio to be handled
2563  * @rwc: control variable according to each walk type
2564  * @locked: caller holds relevant rmap lock
2565  *
2566  * Find all the mappings of a folio using the mapping pointer and the vma
2567  * chains contained in the anon_vma struct it points to.
2568  */
2569 static void rmap_walk_anon(struct folio *folio,
2570 		struct rmap_walk_control *rwc, bool locked)
2571 {
2572 	struct anon_vma *anon_vma;
2573 	pgoff_t pgoff_start, pgoff_end;
2574 	struct anon_vma_chain *avc;
2575 
2576 	if (locked) {
2577 		anon_vma = folio_anon_vma(folio);
2578 		/* anon_vma disappear under us? */
2579 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2580 	} else {
2581 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2582 	}
2583 	if (!anon_vma)
2584 		return;
2585 
2586 	pgoff_start = folio_pgoff(folio);
2587 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2588 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2589 			pgoff_start, pgoff_end) {
2590 		struct vm_area_struct *vma = avc->vma;
2591 		unsigned long address = vma_address(&folio->page, vma);
2592 
2593 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2594 		cond_resched();
2595 
2596 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2597 			continue;
2598 
2599 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2600 			break;
2601 		if (rwc->done && rwc->done(folio))
2602 			break;
2603 	}
2604 
2605 	if (!locked)
2606 		anon_vma_unlock_read(anon_vma);
2607 }
2608 
2609 /*
2610  * rmap_walk_file - do something to file page using the object-based rmap method
2611  * @folio: the folio to be handled
2612  * @rwc: control variable according to each walk type
2613  * @locked: caller holds relevant rmap lock
2614  *
2615  * Find all the mappings of a folio using the mapping pointer and the vma chains
2616  * contained in the address_space struct it points to.
2617  */
2618 static void rmap_walk_file(struct folio *folio,
2619 		struct rmap_walk_control *rwc, bool locked)
2620 {
2621 	struct address_space *mapping = folio_mapping(folio);
2622 	pgoff_t pgoff_start, pgoff_end;
2623 	struct vm_area_struct *vma;
2624 
2625 	/*
2626 	 * The page lock not only makes sure that page->mapping cannot
2627 	 * suddenly be NULLified by truncation, it makes sure that the
2628 	 * structure at mapping cannot be freed and reused yet,
2629 	 * so we can safely take mapping->i_mmap_rwsem.
2630 	 */
2631 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2632 
2633 	if (!mapping)
2634 		return;
2635 
2636 	pgoff_start = folio_pgoff(folio);
2637 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2638 	if (!locked) {
2639 		if (i_mmap_trylock_read(mapping))
2640 			goto lookup;
2641 
2642 		if (rwc->try_lock) {
2643 			rwc->contended = true;
2644 			return;
2645 		}
2646 
2647 		i_mmap_lock_read(mapping);
2648 	}
2649 lookup:
2650 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2651 			pgoff_start, pgoff_end) {
2652 		unsigned long address = vma_address(&folio->page, vma);
2653 
2654 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2655 		cond_resched();
2656 
2657 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2658 			continue;
2659 
2660 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2661 			goto done;
2662 		if (rwc->done && rwc->done(folio))
2663 			goto done;
2664 	}
2665 
2666 done:
2667 	if (!locked)
2668 		i_mmap_unlock_read(mapping);
2669 }
2670 
2671 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2672 {
2673 	if (unlikely(folio_test_ksm(folio)))
2674 		rmap_walk_ksm(folio, rwc);
2675 	else if (folio_test_anon(folio))
2676 		rmap_walk_anon(folio, rwc, false);
2677 	else
2678 		rmap_walk_file(folio, rwc, false);
2679 }
2680 
2681 /* Like rmap_walk, but caller holds relevant rmap lock */
2682 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2683 {
2684 	/* no ksm support for now */
2685 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2686 	if (folio_test_anon(folio))
2687 		rmap_walk_anon(folio, rwc, true);
2688 	else
2689 		rmap_walk_file(folio, rwc, true);
2690 }
2691 
2692 #ifdef CONFIG_HUGETLB_PAGE
2693 /*
2694  * The following two functions are for anonymous (private mapped) hugepages.
2695  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2696  * and no lru code, because we handle hugepages differently from common pages.
2697  */
2698 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2699 		unsigned long address, rmap_t flags)
2700 {
2701 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2702 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2703 
2704 	atomic_inc(&folio->_entire_mapcount);
2705 	if (flags & RMAP_EXCLUSIVE)
2706 		SetPageAnonExclusive(&folio->page);
2707 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2708 			 PageAnonExclusive(&folio->page), folio);
2709 }
2710 
2711 void hugetlb_add_new_anon_rmap(struct folio *folio,
2712 		struct vm_area_struct *vma, unsigned long address)
2713 {
2714 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2715 
2716 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2717 	/* increment count (starts at -1) */
2718 	atomic_set(&folio->_entire_mapcount, 0);
2719 	folio_clear_hugetlb_restore_reserve(folio);
2720 	__folio_set_anon(folio, vma, address, true);
2721 	SetPageAnonExclusive(&folio->page);
2722 }
2723 #endif /* CONFIG_HUGETLB_PAGE */
2724