1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 mmap_assert_locked(mm); 192 might_sleep(); 193 194 avc = anon_vma_chain_alloc(GFP_KERNEL); 195 if (!avc) 196 goto out_enomem; 197 198 anon_vma = find_mergeable_anon_vma(vma); 199 allocated = NULL; 200 if (!anon_vma) { 201 anon_vma = anon_vma_alloc(); 202 if (unlikely(!anon_vma)) 203 goto out_enomem_free_avc; 204 anon_vma->num_children++; /* self-parent link for new root */ 205 allocated = anon_vma; 206 } 207 208 anon_vma_lock_write(anon_vma); 209 /* page_table_lock to protect against threads */ 210 spin_lock(&mm->page_table_lock); 211 if (likely(!vma->anon_vma)) { 212 vma->anon_vma = anon_vma; 213 anon_vma_chain_link(vma, avc, anon_vma); 214 anon_vma->num_active_vmas++; 215 allocated = NULL; 216 avc = NULL; 217 } 218 spin_unlock(&mm->page_table_lock); 219 anon_vma_unlock_write(anon_vma); 220 221 if (unlikely(allocated)) 222 put_anon_vma(allocated); 223 if (unlikely(avc)) 224 anon_vma_chain_free(avc); 225 226 return 0; 227 228 out_enomem_free_avc: 229 anon_vma_chain_free(avc); 230 out_enomem: 231 return -ENOMEM; 232 } 233 234 /* 235 * This is a useful helper function for locking the anon_vma root as 236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 237 * have the same vma. 238 * 239 * Such anon_vma's should have the same root, so you'd expect to see 240 * just a single mutex_lock for the whole traversal. 241 */ 242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 243 { 244 struct anon_vma *new_root = anon_vma->root; 245 if (new_root != root) { 246 if (WARN_ON_ONCE(root)) 247 up_write(&root->rwsem); 248 root = new_root; 249 down_write(&root->rwsem); 250 } 251 return root; 252 } 253 254 static inline void unlock_anon_vma_root(struct anon_vma *root) 255 { 256 if (root) 257 up_write(&root->rwsem); 258 } 259 260 /* 261 * Attach the anon_vmas from src to dst. 262 * Returns 0 on success, -ENOMEM on failure. 263 * 264 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 265 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 266 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 267 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 268 * call, we can identify this case by checking (!dst->anon_vma && 269 * src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 319 * be incorrectly decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against folio_remove_rmap_*() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 * 492 * NOTE: the caller should normally hold folio lock when calling this. If 493 * not, the caller needs to double check the anon_vma didn't change after 494 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 495 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 496 * which has already covered that, and comment above remap_pages(). 497 */ 498 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 499 { 500 struct anon_vma *anon_vma = NULL; 501 unsigned long anon_mapping; 502 503 rcu_read_lock(); 504 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 505 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 506 goto out; 507 if (!folio_mapped(folio)) 508 goto out; 509 510 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 511 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 512 anon_vma = NULL; 513 goto out; 514 } 515 516 /* 517 * If this folio is still mapped, then its anon_vma cannot have been 518 * freed. But if it has been unmapped, we have no security against the 519 * anon_vma structure being freed and reused (for another anon_vma: 520 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 521 * above cannot corrupt). 522 */ 523 if (!folio_mapped(folio)) { 524 rcu_read_unlock(); 525 put_anon_vma(anon_vma); 526 return NULL; 527 } 528 out: 529 rcu_read_unlock(); 530 531 return anon_vma; 532 } 533 534 /* 535 * Similar to folio_get_anon_vma() except it locks the anon_vma. 536 * 537 * Its a little more complex as it tries to keep the fast path to a single 538 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 539 * reference like with folio_get_anon_vma() and then block on the mutex 540 * on !rwc->try_lock case. 541 */ 542 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 543 struct rmap_walk_control *rwc) 544 { 545 struct anon_vma *anon_vma = NULL; 546 struct anon_vma *root_anon_vma; 547 unsigned long anon_mapping; 548 549 retry: 550 rcu_read_lock(); 551 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 552 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 553 goto out; 554 if (!folio_mapped(folio)) 555 goto out; 556 557 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 558 root_anon_vma = READ_ONCE(anon_vma->root); 559 if (down_read_trylock(&root_anon_vma->rwsem)) { 560 /* 561 * folio_move_anon_rmap() might have changed the anon_vma as we 562 * might not hold the folio lock here. 563 */ 564 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 565 anon_mapping)) { 566 up_read(&root_anon_vma->rwsem); 567 rcu_read_unlock(); 568 goto retry; 569 } 570 571 /* 572 * If the folio is still mapped, then this anon_vma is still 573 * its anon_vma, and holding the mutex ensures that it will 574 * not go away, see anon_vma_free(). 575 */ 576 if (!folio_mapped(folio)) { 577 up_read(&root_anon_vma->rwsem); 578 anon_vma = NULL; 579 } 580 goto out; 581 } 582 583 if (rwc && rwc->try_lock) { 584 anon_vma = NULL; 585 rwc->contended = true; 586 goto out; 587 } 588 589 /* trylock failed, we got to sleep */ 590 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 591 anon_vma = NULL; 592 goto out; 593 } 594 595 if (!folio_mapped(folio)) { 596 rcu_read_unlock(); 597 put_anon_vma(anon_vma); 598 return NULL; 599 } 600 601 /* we pinned the anon_vma, its safe to sleep */ 602 rcu_read_unlock(); 603 anon_vma_lock_read(anon_vma); 604 605 /* 606 * folio_move_anon_rmap() might have changed the anon_vma as we might 607 * not hold the folio lock here. 608 */ 609 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 610 anon_mapping)) { 611 anon_vma_unlock_read(anon_vma); 612 put_anon_vma(anon_vma); 613 anon_vma = NULL; 614 goto retry; 615 } 616 617 if (atomic_dec_and_test(&anon_vma->refcount)) { 618 /* 619 * Oops, we held the last refcount, release the lock 620 * and bail -- can't simply use put_anon_vma() because 621 * we'll deadlock on the anon_vma_lock_write() recursion. 622 */ 623 anon_vma_unlock_read(anon_vma); 624 __put_anon_vma(anon_vma); 625 anon_vma = NULL; 626 } 627 628 return anon_vma; 629 630 out: 631 rcu_read_unlock(); 632 return anon_vma; 633 } 634 635 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 636 /* 637 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 638 * important if a PTE was dirty when it was unmapped that it's flushed 639 * before any IO is initiated on the page to prevent lost writes. Similarly, 640 * it must be flushed before freeing to prevent data leakage. 641 */ 642 void try_to_unmap_flush(void) 643 { 644 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 645 646 if (!tlb_ubc->flush_required) 647 return; 648 649 arch_tlbbatch_flush(&tlb_ubc->arch); 650 tlb_ubc->flush_required = false; 651 tlb_ubc->writable = false; 652 } 653 654 /* Flush iff there are potentially writable TLB entries that can race with IO */ 655 void try_to_unmap_flush_dirty(void) 656 { 657 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 658 659 if (tlb_ubc->writable) 660 try_to_unmap_flush(); 661 } 662 663 /* 664 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 665 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 666 */ 667 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 668 #define TLB_FLUSH_BATCH_PENDING_MASK \ 669 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 670 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 671 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 672 673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 674 unsigned long start, unsigned long end) 675 { 676 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 677 int batch; 678 bool writable = pte_dirty(pteval); 679 680 if (!pte_accessible(mm, pteval)) 681 return; 682 683 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 684 tlb_ubc->flush_required = true; 685 686 /* 687 * Ensure compiler does not re-order the setting of tlb_flush_batched 688 * before the PTE is cleared. 689 */ 690 barrier(); 691 batch = atomic_read(&mm->tlb_flush_batched); 692 retry: 693 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 694 /* 695 * Prevent `pending' from catching up with `flushed' because of 696 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 697 * `pending' becomes large. 698 */ 699 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 700 goto retry; 701 } else { 702 atomic_inc(&mm->tlb_flush_batched); 703 } 704 705 /* 706 * If the PTE was dirty then it's best to assume it's writable. The 707 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 708 * before the page is queued for IO. 709 */ 710 if (writable) 711 tlb_ubc->writable = true; 712 } 713 714 /* 715 * Returns true if the TLB flush should be deferred to the end of a batch of 716 * unmap operations to reduce IPIs. 717 */ 718 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 719 { 720 if (!(flags & TTU_BATCH_FLUSH)) 721 return false; 722 723 return arch_tlbbatch_should_defer(mm); 724 } 725 726 /* 727 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 728 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 729 * operation such as mprotect or munmap to race between reclaim unmapping 730 * the page and flushing the page. If this race occurs, it potentially allows 731 * access to data via a stale TLB entry. Tracking all mm's that have TLB 732 * batching in flight would be expensive during reclaim so instead track 733 * whether TLB batching occurred in the past and if so then do a flush here 734 * if required. This will cost one additional flush per reclaim cycle paid 735 * by the first operation at risk such as mprotect and mumap. 736 * 737 * This must be called under the PTL so that an access to tlb_flush_batched 738 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 739 * via the PTL. 740 */ 741 void flush_tlb_batched_pending(struct mm_struct *mm) 742 { 743 int batch = atomic_read(&mm->tlb_flush_batched); 744 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 745 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 746 747 if (pending != flushed) { 748 flush_tlb_mm(mm); 749 /* 750 * If the new TLB flushing is pending during flushing, leave 751 * mm->tlb_flush_batched as is, to avoid losing flushing. 752 */ 753 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 754 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 755 } 756 } 757 #else 758 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 759 unsigned long start, unsigned long end) 760 { 761 } 762 763 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 764 { 765 return false; 766 } 767 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 768 769 /** 770 * page_address_in_vma - The virtual address of a page in this VMA. 771 * @folio: The folio containing the page. 772 * @page: The page within the folio. 773 * @vma: The VMA we need to know the address in. 774 * 775 * Calculates the user virtual address of this page in the specified VMA. 776 * It is the caller's responsibility to check the page is actually 777 * within the VMA. There may not currently be a PTE pointing at this 778 * page, but if a page fault occurs at this address, this is the page 779 * which will be accessed. 780 * 781 * Context: Caller should hold a reference to the folio. Caller should 782 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 783 * VMA from being altered. 784 * 785 * Return: The virtual address corresponding to this page in the VMA. 786 */ 787 unsigned long page_address_in_vma(const struct folio *folio, 788 const struct page *page, const struct vm_area_struct *vma) 789 { 790 if (folio_test_anon(folio)) { 791 struct anon_vma *anon_vma = folio_anon_vma(folio); 792 /* 793 * Note: swapoff's unuse_vma() is more efficient with this 794 * check, and needs it to match anon_vma when KSM is active. 795 */ 796 if (!vma->anon_vma || !anon_vma || 797 vma->anon_vma->root != anon_vma->root) 798 return -EFAULT; 799 } else if (!vma->vm_file) { 800 return -EFAULT; 801 } else if (vma->vm_file->f_mapping != folio->mapping) { 802 return -EFAULT; 803 } 804 805 /* KSM folios don't reach here because of the !anon_vma check */ 806 return vma_address(vma, page_pgoff(folio, page), 1); 807 } 808 809 /* 810 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 811 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 812 * represents. 813 */ 814 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 815 { 816 pgd_t *pgd; 817 p4d_t *p4d; 818 pud_t *pud; 819 pmd_t *pmd = NULL; 820 821 pgd = pgd_offset(mm, address); 822 if (!pgd_present(*pgd)) 823 goto out; 824 825 p4d = p4d_offset(pgd, address); 826 if (!p4d_present(*p4d)) 827 goto out; 828 829 pud = pud_offset(p4d, address); 830 if (!pud_present(*pud)) 831 goto out; 832 833 pmd = pmd_offset(pud, address); 834 out: 835 return pmd; 836 } 837 838 struct folio_referenced_arg { 839 int mapcount; 840 int referenced; 841 vm_flags_t vm_flags; 842 struct mem_cgroup *memcg; 843 }; 844 845 /* 846 * arg: folio_referenced_arg will be passed 847 */ 848 static bool folio_referenced_one(struct folio *folio, 849 struct vm_area_struct *vma, unsigned long address, void *arg) 850 { 851 struct folio_referenced_arg *pra = arg; 852 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 853 int referenced = 0; 854 unsigned long start = address, ptes = 0; 855 856 while (page_vma_mapped_walk(&pvmw)) { 857 address = pvmw.address; 858 859 if (vma->vm_flags & VM_LOCKED) { 860 if (!folio_test_large(folio) || !pvmw.pte) { 861 /* Restore the mlock which got missed */ 862 mlock_vma_folio(folio, vma); 863 page_vma_mapped_walk_done(&pvmw); 864 pra->vm_flags |= VM_LOCKED; 865 return false; /* To break the loop */ 866 } 867 /* 868 * For large folio fully mapped to VMA, will 869 * be handled after the pvmw loop. 870 * 871 * For large folio cross VMA boundaries, it's 872 * expected to be picked by page reclaim. But 873 * should skip reference of pages which are in 874 * the range of VM_LOCKED vma. As page reclaim 875 * should just count the reference of pages out 876 * the range of VM_LOCKED vma. 877 */ 878 ptes++; 879 pra->mapcount--; 880 continue; 881 } 882 883 /* 884 * Skip the non-shared swapbacked folio mapped solely by 885 * the exiting or OOM-reaped process. This avoids redundant 886 * swap-out followed by an immediate unmap. 887 */ 888 if ((!atomic_read(&vma->vm_mm->mm_users) || 889 check_stable_address_space(vma->vm_mm)) && 890 folio_test_anon(folio) && folio_test_swapbacked(folio) && 891 !folio_maybe_mapped_shared(folio)) { 892 pra->referenced = -1; 893 page_vma_mapped_walk_done(&pvmw); 894 return false; 895 } 896 897 if (lru_gen_enabled() && pvmw.pte) { 898 if (lru_gen_look_around(&pvmw)) 899 referenced++; 900 } else if (pvmw.pte) { 901 if (ptep_clear_flush_young_notify(vma, address, 902 pvmw.pte)) 903 referenced++; 904 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 905 if (pmdp_clear_flush_young_notify(vma, address, 906 pvmw.pmd)) 907 referenced++; 908 } else { 909 /* unexpected pmd-mapped folio? */ 910 WARN_ON_ONCE(1); 911 } 912 913 pra->mapcount--; 914 } 915 916 if ((vma->vm_flags & VM_LOCKED) && 917 folio_test_large(folio) && 918 folio_within_vma(folio, vma)) { 919 unsigned long s_align, e_align; 920 921 s_align = ALIGN_DOWN(start, PMD_SIZE); 922 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 923 924 /* folio doesn't cross page table boundary and fully mapped */ 925 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 926 /* Restore the mlock which got missed */ 927 mlock_vma_folio(folio, vma); 928 pra->vm_flags |= VM_LOCKED; 929 return false; /* To break the loop */ 930 } 931 } 932 933 if (referenced) 934 folio_clear_idle(folio); 935 if (folio_test_clear_young(folio)) 936 referenced++; 937 938 if (referenced) { 939 pra->referenced++; 940 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 941 } 942 943 if (!pra->mapcount) 944 return false; /* To break the loop */ 945 946 return true; 947 } 948 949 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 950 { 951 struct folio_referenced_arg *pra = arg; 952 struct mem_cgroup *memcg = pra->memcg; 953 954 /* 955 * Ignore references from this mapping if it has no recency. If the 956 * folio has been used in another mapping, we will catch it; if this 957 * other mapping is already gone, the unmap path will have set the 958 * referenced flag or activated the folio in zap_pte_range(). 959 */ 960 if (!vma_has_recency(vma)) 961 return true; 962 963 /* 964 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 965 * of references from different cgroups. 966 */ 967 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 968 return true; 969 970 return false; 971 } 972 973 /** 974 * folio_referenced() - Test if the folio was referenced. 975 * @folio: The folio to test. 976 * @is_locked: Caller holds lock on the folio. 977 * @memcg: target memory cgroup 978 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 979 * 980 * Quick test_and_clear_referenced for all mappings of a folio, 981 * 982 * Return: The number of mappings which referenced the folio. Return -1 if 983 * the function bailed out due to rmap lock contention. 984 */ 985 int folio_referenced(struct folio *folio, int is_locked, 986 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 987 { 988 bool we_locked = false; 989 struct folio_referenced_arg pra = { 990 .mapcount = folio_mapcount(folio), 991 .memcg = memcg, 992 }; 993 struct rmap_walk_control rwc = { 994 .rmap_one = folio_referenced_one, 995 .arg = (void *)&pra, 996 .anon_lock = folio_lock_anon_vma_read, 997 .try_lock = true, 998 .invalid_vma = invalid_folio_referenced_vma, 999 }; 1000 1001 *vm_flags = 0; 1002 if (!pra.mapcount) 1003 return 0; 1004 1005 if (!folio_raw_mapping(folio)) 1006 return 0; 1007 1008 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1009 we_locked = folio_trylock(folio); 1010 if (!we_locked) 1011 return 1; 1012 } 1013 1014 rmap_walk(folio, &rwc); 1015 *vm_flags = pra.vm_flags; 1016 1017 if (we_locked) 1018 folio_unlock(folio); 1019 1020 return rwc.contended ? -1 : pra.referenced; 1021 } 1022 1023 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1024 { 1025 int cleaned = 0; 1026 struct vm_area_struct *vma = pvmw->vma; 1027 struct mmu_notifier_range range; 1028 unsigned long address = pvmw->address; 1029 1030 /* 1031 * We have to assume the worse case ie pmd for invalidation. Note that 1032 * the folio can not be freed from this function. 1033 */ 1034 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1035 vma->vm_mm, address, vma_address_end(pvmw)); 1036 mmu_notifier_invalidate_range_start(&range); 1037 1038 while (page_vma_mapped_walk(pvmw)) { 1039 int ret = 0; 1040 1041 address = pvmw->address; 1042 if (pvmw->pte) { 1043 pte_t *pte = pvmw->pte; 1044 pte_t entry = ptep_get(pte); 1045 1046 /* 1047 * PFN swap PTEs, such as device-exclusive ones, that 1048 * actually map pages are clean and not writable from a 1049 * CPU perspective. The MMU notifier takes care of any 1050 * device aspects. 1051 */ 1052 if (!pte_present(entry)) 1053 continue; 1054 if (!pte_dirty(entry) && !pte_write(entry)) 1055 continue; 1056 1057 flush_cache_page(vma, address, pte_pfn(entry)); 1058 entry = ptep_clear_flush(vma, address, pte); 1059 entry = pte_wrprotect(entry); 1060 entry = pte_mkclean(entry); 1061 set_pte_at(vma->vm_mm, address, pte, entry); 1062 ret = 1; 1063 } else { 1064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1065 pmd_t *pmd = pvmw->pmd; 1066 pmd_t entry; 1067 1068 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1069 continue; 1070 1071 flush_cache_range(vma, address, 1072 address + HPAGE_PMD_SIZE); 1073 entry = pmdp_invalidate(vma, address, pmd); 1074 entry = pmd_wrprotect(entry); 1075 entry = pmd_mkclean(entry); 1076 set_pmd_at(vma->vm_mm, address, pmd, entry); 1077 ret = 1; 1078 #else 1079 /* unexpected pmd-mapped folio? */ 1080 WARN_ON_ONCE(1); 1081 #endif 1082 } 1083 1084 if (ret) 1085 cleaned++; 1086 } 1087 1088 mmu_notifier_invalidate_range_end(&range); 1089 1090 return cleaned; 1091 } 1092 1093 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1094 unsigned long address, void *arg) 1095 { 1096 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1097 int *cleaned = arg; 1098 1099 *cleaned += page_vma_mkclean_one(&pvmw); 1100 1101 return true; 1102 } 1103 1104 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1105 { 1106 if (vma->vm_flags & VM_SHARED) 1107 return false; 1108 1109 return true; 1110 } 1111 1112 int folio_mkclean(struct folio *folio) 1113 { 1114 int cleaned = 0; 1115 struct address_space *mapping; 1116 struct rmap_walk_control rwc = { 1117 .arg = (void *)&cleaned, 1118 .rmap_one = page_mkclean_one, 1119 .invalid_vma = invalid_mkclean_vma, 1120 }; 1121 1122 BUG_ON(!folio_test_locked(folio)); 1123 1124 if (!folio_mapped(folio)) 1125 return 0; 1126 1127 mapping = folio_mapping(folio); 1128 if (!mapping) 1129 return 0; 1130 1131 rmap_walk(folio, &rwc); 1132 1133 return cleaned; 1134 } 1135 EXPORT_SYMBOL_GPL(folio_mkclean); 1136 1137 struct wrprotect_file_state { 1138 int cleaned; 1139 pgoff_t pgoff; 1140 unsigned long pfn; 1141 unsigned long nr_pages; 1142 }; 1143 1144 static bool mapping_wrprotect_range_one(struct folio *folio, 1145 struct vm_area_struct *vma, unsigned long address, void *arg) 1146 { 1147 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1148 struct page_vma_mapped_walk pvmw = { 1149 .pfn = state->pfn, 1150 .nr_pages = state->nr_pages, 1151 .pgoff = state->pgoff, 1152 .vma = vma, 1153 .address = address, 1154 .flags = PVMW_SYNC, 1155 }; 1156 1157 state->cleaned += page_vma_mkclean_one(&pvmw); 1158 1159 return true; 1160 } 1161 1162 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1163 pgoff_t pgoff_start, unsigned long nr_pages, 1164 struct rmap_walk_control *rwc, bool locked); 1165 1166 /** 1167 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1168 * 1169 * @mapping: The mapping whose reverse mapping should be traversed. 1170 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1171 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1172 * @nr_pages: The number of physically contiguous base pages spanned. 1173 * 1174 * Traverses the reverse mapping, finding all VMAs which contain a shared 1175 * mapping of the pages in the specified range in @mapping, and write-protects 1176 * them (that is, updates the page tables to mark the mappings read-only such 1177 * that a write protection fault arises when the mappings are written to). 1178 * 1179 * The @pfn value need not refer to a folio, but rather can reference a kernel 1180 * allocation which is mapped into userland. We therefore do not require that 1181 * the page maps to a folio with a valid mapping or index field, rather the 1182 * caller specifies these in @mapping and @pgoff. 1183 * 1184 * Return: the number of write-protected PTEs, or an error. 1185 */ 1186 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1187 unsigned long pfn, unsigned long nr_pages) 1188 { 1189 struct wrprotect_file_state state = { 1190 .cleaned = 0, 1191 .pgoff = pgoff, 1192 .pfn = pfn, 1193 .nr_pages = nr_pages, 1194 }; 1195 struct rmap_walk_control rwc = { 1196 .arg = (void *)&state, 1197 .rmap_one = mapping_wrprotect_range_one, 1198 .invalid_vma = invalid_mkclean_vma, 1199 }; 1200 1201 if (!mapping) 1202 return 0; 1203 1204 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1205 /* locked = */false); 1206 1207 return state.cleaned; 1208 } 1209 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1210 1211 /** 1212 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1213 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1214 * within the @vma of shared mappings. And since clean PTEs 1215 * should also be readonly, write protects them too. 1216 * @pfn: start pfn. 1217 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1218 * @pgoff: page offset that the @pfn mapped with. 1219 * @vma: vma that @pfn mapped within. 1220 * 1221 * Returns the number of cleaned PTEs (including PMDs). 1222 */ 1223 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1224 struct vm_area_struct *vma) 1225 { 1226 struct page_vma_mapped_walk pvmw = { 1227 .pfn = pfn, 1228 .nr_pages = nr_pages, 1229 .pgoff = pgoff, 1230 .vma = vma, 1231 .flags = PVMW_SYNC, 1232 }; 1233 1234 if (invalid_mkclean_vma(vma, NULL)) 1235 return 0; 1236 1237 pvmw.address = vma_address(vma, pgoff, nr_pages); 1238 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1239 1240 return page_vma_mkclean_one(&pvmw); 1241 } 1242 1243 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1244 { 1245 int idx; 1246 1247 if (nr) { 1248 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1249 __lruvec_stat_mod_folio(folio, idx, nr); 1250 } 1251 if (nr_pmdmapped) { 1252 if (folio_test_anon(folio)) { 1253 idx = NR_ANON_THPS; 1254 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1255 } else { 1256 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1257 idx = folio_test_swapbacked(folio) ? 1258 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1259 __mod_node_page_state(folio_pgdat(folio), idx, 1260 nr_pmdmapped); 1261 } 1262 } 1263 } 1264 1265 static __always_inline void __folio_add_rmap(struct folio *folio, 1266 struct page *page, int nr_pages, struct vm_area_struct *vma, 1267 enum pgtable_level level) 1268 { 1269 atomic_t *mapped = &folio->_nr_pages_mapped; 1270 const int orig_nr_pages = nr_pages; 1271 int first = 0, nr = 0, nr_pmdmapped = 0; 1272 1273 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1274 1275 switch (level) { 1276 case PGTABLE_LEVEL_PTE: 1277 if (!folio_test_large(folio)) { 1278 nr = atomic_inc_and_test(&folio->_mapcount); 1279 break; 1280 } 1281 1282 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1283 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1284 if (nr == orig_nr_pages) 1285 /* Was completely unmapped. */ 1286 nr = folio_large_nr_pages(folio); 1287 else 1288 nr = 0; 1289 break; 1290 } 1291 1292 do { 1293 first += atomic_inc_and_test(&page->_mapcount); 1294 } while (page++, --nr_pages > 0); 1295 1296 if (first && 1297 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1298 nr = first; 1299 1300 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1301 break; 1302 case PGTABLE_LEVEL_PMD: 1303 case PGTABLE_LEVEL_PUD: 1304 first = atomic_inc_and_test(&folio->_entire_mapcount); 1305 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1306 if (level == PGTABLE_LEVEL_PMD && first) 1307 nr_pmdmapped = folio_large_nr_pages(folio); 1308 nr = folio_inc_return_large_mapcount(folio, vma); 1309 if (nr == 1) 1310 /* Was completely unmapped. */ 1311 nr = folio_large_nr_pages(folio); 1312 else 1313 nr = 0; 1314 break; 1315 } 1316 1317 if (first) { 1318 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1319 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1320 nr_pages = folio_large_nr_pages(folio); 1321 /* 1322 * We only track PMD mappings of PMD-sized 1323 * folios separately. 1324 */ 1325 if (level == PGTABLE_LEVEL_PMD) 1326 nr_pmdmapped = nr_pages; 1327 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1328 /* Raced ahead of a remove and another add? */ 1329 if (unlikely(nr < 0)) 1330 nr = 0; 1331 } else { 1332 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1333 nr = 0; 1334 } 1335 } 1336 folio_inc_large_mapcount(folio, vma); 1337 break; 1338 default: 1339 BUILD_BUG(); 1340 } 1341 __folio_mod_stat(folio, nr, nr_pmdmapped); 1342 } 1343 1344 /** 1345 * folio_move_anon_rmap - move a folio to our anon_vma 1346 * @folio: The folio to move to our anon_vma 1347 * @vma: The vma the folio belongs to 1348 * 1349 * When a folio belongs exclusively to one process after a COW event, 1350 * that folio can be moved into the anon_vma that belongs to just that 1351 * process, so the rmap code will not search the parent or sibling processes. 1352 */ 1353 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1354 { 1355 void *anon_vma = vma->anon_vma; 1356 1357 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1358 VM_BUG_ON_VMA(!anon_vma, vma); 1359 1360 anon_vma += FOLIO_MAPPING_ANON; 1361 /* 1362 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1363 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1364 * folio_test_anon()) will not see one without the other. 1365 */ 1366 WRITE_ONCE(folio->mapping, anon_vma); 1367 } 1368 1369 /** 1370 * __folio_set_anon - set up a new anonymous rmap for a folio 1371 * @folio: The folio to set up the new anonymous rmap for. 1372 * @vma: VM area to add the folio to. 1373 * @address: User virtual address of the mapping 1374 * @exclusive: Whether the folio is exclusive to the process. 1375 */ 1376 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1377 unsigned long address, bool exclusive) 1378 { 1379 struct anon_vma *anon_vma = vma->anon_vma; 1380 1381 BUG_ON(!anon_vma); 1382 1383 /* 1384 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1385 * possible anon_vma for the folio mapping! 1386 */ 1387 if (!exclusive) 1388 anon_vma = anon_vma->root; 1389 1390 /* 1391 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1392 * Make sure the compiler doesn't split the stores of anon_vma and 1393 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1394 * could mistake the mapping for a struct address_space and crash. 1395 */ 1396 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1397 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1398 folio->index = linear_page_index(vma, address); 1399 } 1400 1401 /** 1402 * __page_check_anon_rmap - sanity check anonymous rmap addition 1403 * @folio: The folio containing @page. 1404 * @page: the page to check the mapping of 1405 * @vma: the vm area in which the mapping is added 1406 * @address: the user virtual address mapped 1407 */ 1408 static void __page_check_anon_rmap(const struct folio *folio, 1409 const struct page *page, struct vm_area_struct *vma, 1410 unsigned long address) 1411 { 1412 /* 1413 * The page's anon-rmap details (mapping and index) are guaranteed to 1414 * be set up correctly at this point. 1415 * 1416 * We have exclusion against folio_add_anon_rmap_*() because the caller 1417 * always holds the page locked. 1418 * 1419 * We have exclusion against folio_add_new_anon_rmap because those pages 1420 * are initially only visible via the pagetables, and the pte is locked 1421 * over the call to folio_add_new_anon_rmap. 1422 */ 1423 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1424 folio); 1425 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1426 page); 1427 } 1428 1429 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1430 struct page *page, int nr_pages, struct vm_area_struct *vma, 1431 unsigned long address, rmap_t flags, enum pgtable_level level) 1432 { 1433 int i; 1434 1435 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1436 1437 __folio_add_rmap(folio, page, nr_pages, vma, level); 1438 1439 if (likely(!folio_test_ksm(folio))) 1440 __page_check_anon_rmap(folio, page, vma, address); 1441 1442 if (flags & RMAP_EXCLUSIVE) { 1443 switch (level) { 1444 case PGTABLE_LEVEL_PTE: 1445 for (i = 0; i < nr_pages; i++) 1446 SetPageAnonExclusive(page + i); 1447 break; 1448 case PGTABLE_LEVEL_PMD: 1449 SetPageAnonExclusive(page); 1450 break; 1451 case PGTABLE_LEVEL_PUD: 1452 /* 1453 * Keep the compiler happy, we don't support anonymous 1454 * PUD mappings. 1455 */ 1456 WARN_ON_ONCE(1); 1457 break; 1458 default: 1459 BUILD_BUG(); 1460 } 1461 } 1462 1463 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1464 atomic_read(&folio->_mapcount) > 0, folio); 1465 for (i = 0; i < nr_pages; i++) { 1466 struct page *cur_page = page + i; 1467 1468 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1469 folio_entire_mapcount(folio) > 1 && 1470 PageAnonExclusive(cur_page), folio); 1471 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1472 continue; 1473 1474 /* 1475 * While PTE-mapping a THP we have a PMD and a PTE 1476 * mapping. 1477 */ 1478 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1479 PageAnonExclusive(cur_page), folio); 1480 } 1481 1482 /* 1483 * For large folio, only mlock it if it's fully mapped to VMA. It's 1484 * not easy to check whether the large folio is fully mapped to VMA 1485 * here. Only mlock normal 4K folio and leave page reclaim to handle 1486 * large folio. 1487 */ 1488 if (!folio_test_large(folio)) 1489 mlock_vma_folio(folio, vma); 1490 } 1491 1492 /** 1493 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1494 * @folio: The folio to add the mappings to 1495 * @page: The first page to add 1496 * @nr_pages: The number of pages which will be mapped 1497 * @vma: The vm area in which the mappings are added 1498 * @address: The user virtual address of the first page to map 1499 * @flags: The rmap flags 1500 * 1501 * The page range of folio is defined by [first_page, first_page + nr_pages) 1502 * 1503 * The caller needs to hold the page table lock, and the page must be locked in 1504 * the anon_vma case: to serialize mapping,index checking after setting, 1505 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1506 * (but KSM folios are never downgraded). 1507 */ 1508 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1509 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1510 rmap_t flags) 1511 { 1512 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1513 PGTABLE_LEVEL_PTE); 1514 } 1515 1516 /** 1517 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1518 * @folio: The folio to add the mapping to 1519 * @page: The first page to add 1520 * @vma: The vm area in which the mapping is added 1521 * @address: The user virtual address of the first page to map 1522 * @flags: The rmap flags 1523 * 1524 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1525 * 1526 * The caller needs to hold the page table lock, and the page must be locked in 1527 * the anon_vma case: to serialize mapping,index checking after setting. 1528 */ 1529 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1530 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1531 { 1532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1533 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1534 PGTABLE_LEVEL_PMD); 1535 #else 1536 WARN_ON_ONCE(true); 1537 #endif 1538 } 1539 1540 /** 1541 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1542 * @folio: The folio to add the mapping to. 1543 * @vma: the vm area in which the mapping is added 1544 * @address: the user virtual address mapped 1545 * @flags: The rmap flags 1546 * 1547 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1548 * This means the inc-and-test can be bypassed. 1549 * The folio doesn't necessarily need to be locked while it's exclusive 1550 * unless two threads map it concurrently. However, the folio must be 1551 * locked if it's shared. 1552 * 1553 * If the folio is pmd-mappable, it is accounted as a THP. 1554 */ 1555 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1556 unsigned long address, rmap_t flags) 1557 { 1558 const bool exclusive = flags & RMAP_EXCLUSIVE; 1559 int nr = 1, nr_pmdmapped = 0; 1560 1561 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1562 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1563 1564 /* 1565 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1566 * under memory pressure. 1567 */ 1568 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1569 __folio_set_swapbacked(folio); 1570 __folio_set_anon(folio, vma, address, exclusive); 1571 1572 if (likely(!folio_test_large(folio))) { 1573 /* increment count (starts at -1) */ 1574 atomic_set(&folio->_mapcount, 0); 1575 if (exclusive) 1576 SetPageAnonExclusive(&folio->page); 1577 } else if (!folio_test_pmd_mappable(folio)) { 1578 int i; 1579 1580 nr = folio_large_nr_pages(folio); 1581 for (i = 0; i < nr; i++) { 1582 struct page *page = folio_page(folio, i); 1583 1584 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1585 /* increment count (starts at -1) */ 1586 atomic_set(&page->_mapcount, 0); 1587 if (exclusive) 1588 SetPageAnonExclusive(page); 1589 } 1590 1591 folio_set_large_mapcount(folio, nr, vma); 1592 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1593 atomic_set(&folio->_nr_pages_mapped, nr); 1594 } else { 1595 nr = folio_large_nr_pages(folio); 1596 /* increment count (starts at -1) */ 1597 atomic_set(&folio->_entire_mapcount, 0); 1598 folio_set_large_mapcount(folio, 1, vma); 1599 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1600 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1601 if (exclusive) 1602 SetPageAnonExclusive(&folio->page); 1603 nr_pmdmapped = nr; 1604 } 1605 1606 VM_WARN_ON_ONCE(address < vma->vm_start || 1607 address + (nr << PAGE_SHIFT) > vma->vm_end); 1608 1609 __folio_mod_stat(folio, nr, nr_pmdmapped); 1610 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1611 } 1612 1613 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1614 struct page *page, int nr_pages, struct vm_area_struct *vma, 1615 enum pgtable_level level) 1616 { 1617 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1618 1619 __folio_add_rmap(folio, page, nr_pages, vma, level); 1620 1621 /* See comments in folio_add_anon_rmap_*() */ 1622 if (!folio_test_large(folio)) 1623 mlock_vma_folio(folio, vma); 1624 } 1625 1626 /** 1627 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1628 * @folio: The folio to add the mappings to 1629 * @page: The first page to add 1630 * @nr_pages: The number of pages that will be mapped using PTEs 1631 * @vma: The vm area in which the mappings are added 1632 * 1633 * The page range of the folio is defined by [page, page + nr_pages) 1634 * 1635 * The caller needs to hold the page table lock. 1636 */ 1637 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1638 int nr_pages, struct vm_area_struct *vma) 1639 { 1640 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1641 } 1642 1643 /** 1644 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1645 * @folio: The folio to add the mapping to 1646 * @page: The first page to add 1647 * @vma: The vm area in which the mapping is added 1648 * 1649 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1650 * 1651 * The caller needs to hold the page table lock. 1652 */ 1653 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1654 struct vm_area_struct *vma) 1655 { 1656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1657 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1658 #else 1659 WARN_ON_ONCE(true); 1660 #endif 1661 } 1662 1663 /** 1664 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1665 * @folio: The folio to add the mapping to 1666 * @page: The first page to add 1667 * @vma: The vm area in which the mapping is added 1668 * 1669 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1670 * 1671 * The caller needs to hold the page table lock. 1672 */ 1673 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1674 struct vm_area_struct *vma) 1675 { 1676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1677 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1678 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1679 #else 1680 WARN_ON_ONCE(true); 1681 #endif 1682 } 1683 1684 static __always_inline void __folio_remove_rmap(struct folio *folio, 1685 struct page *page, int nr_pages, struct vm_area_struct *vma, 1686 enum pgtable_level level) 1687 { 1688 atomic_t *mapped = &folio->_nr_pages_mapped; 1689 int last = 0, nr = 0, nr_pmdmapped = 0; 1690 bool partially_mapped = false; 1691 1692 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1693 1694 switch (level) { 1695 case PGTABLE_LEVEL_PTE: 1696 if (!folio_test_large(folio)) { 1697 nr = atomic_add_negative(-1, &folio->_mapcount); 1698 break; 1699 } 1700 1701 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1702 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1703 if (!nr) { 1704 /* Now completely unmapped. */ 1705 nr = folio_large_nr_pages(folio); 1706 } else { 1707 partially_mapped = nr < folio_large_nr_pages(folio) && 1708 !folio_entire_mapcount(folio); 1709 nr = 0; 1710 } 1711 break; 1712 } 1713 1714 folio_sub_large_mapcount(folio, nr_pages, vma); 1715 do { 1716 last += atomic_add_negative(-1, &page->_mapcount); 1717 } while (page++, --nr_pages > 0); 1718 1719 if (last && 1720 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1721 nr = last; 1722 1723 partially_mapped = nr && atomic_read(mapped); 1724 break; 1725 case PGTABLE_LEVEL_PMD: 1726 case PGTABLE_LEVEL_PUD: 1727 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1728 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1729 if (level == PGTABLE_LEVEL_PMD && last) 1730 nr_pmdmapped = folio_large_nr_pages(folio); 1731 nr = folio_dec_return_large_mapcount(folio, vma); 1732 if (!nr) { 1733 /* Now completely unmapped. */ 1734 nr = folio_large_nr_pages(folio); 1735 } else { 1736 partially_mapped = last && 1737 nr < folio_large_nr_pages(folio); 1738 nr = 0; 1739 } 1740 break; 1741 } 1742 1743 folio_dec_large_mapcount(folio, vma); 1744 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1745 if (last) { 1746 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1747 if (likely(nr < ENTIRELY_MAPPED)) { 1748 nr_pages = folio_large_nr_pages(folio); 1749 if (level == PGTABLE_LEVEL_PMD) 1750 nr_pmdmapped = nr_pages; 1751 nr = nr_pages - nr; 1752 /* Raced ahead of another remove and an add? */ 1753 if (unlikely(nr < 0)) 1754 nr = 0; 1755 } else { 1756 /* An add of ENTIRELY_MAPPED raced ahead */ 1757 nr = 0; 1758 } 1759 } 1760 1761 partially_mapped = nr && nr < nr_pmdmapped; 1762 break; 1763 default: 1764 BUILD_BUG(); 1765 } 1766 1767 /* 1768 * Queue anon large folio for deferred split if at least one page of 1769 * the folio is unmapped and at least one page is still mapped. 1770 * 1771 * Check partially_mapped first to ensure it is a large folio. 1772 */ 1773 if (partially_mapped && folio_test_anon(folio) && 1774 !folio_test_partially_mapped(folio)) 1775 deferred_split_folio(folio, true); 1776 1777 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1778 1779 /* 1780 * It would be tidy to reset folio_test_anon mapping when fully 1781 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1782 * which increments mapcount after us but sets mapping before us: 1783 * so leave the reset to free_pages_prepare, and remember that 1784 * it's only reliable while mapped. 1785 */ 1786 1787 munlock_vma_folio(folio, vma); 1788 } 1789 1790 /** 1791 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1792 * @folio: The folio to remove the mappings from 1793 * @page: The first page to remove 1794 * @nr_pages: The number of pages that will be removed from the mapping 1795 * @vma: The vm area from which the mappings are removed 1796 * 1797 * The page range of the folio is defined by [page, page + nr_pages) 1798 * 1799 * The caller needs to hold the page table lock. 1800 */ 1801 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1802 int nr_pages, struct vm_area_struct *vma) 1803 { 1804 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1805 } 1806 1807 /** 1808 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1809 * @folio: The folio to remove the mapping from 1810 * @page: The first page to remove 1811 * @vma: The vm area from which the mapping is removed 1812 * 1813 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1814 * 1815 * The caller needs to hold the page table lock. 1816 */ 1817 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1818 struct vm_area_struct *vma) 1819 { 1820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1821 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1822 #else 1823 WARN_ON_ONCE(true); 1824 #endif 1825 } 1826 1827 /** 1828 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1829 * @folio: The folio to remove the mapping from 1830 * @page: The first page to remove 1831 * @vma: The vm area from which the mapping is removed 1832 * 1833 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1834 * 1835 * The caller needs to hold the page table lock. 1836 */ 1837 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1838 struct vm_area_struct *vma) 1839 { 1840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1841 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1842 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1843 #else 1844 WARN_ON_ONCE(true); 1845 #endif 1846 } 1847 1848 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1849 struct page_vma_mapped_walk *pvmw, 1850 enum ttu_flags flags, pte_t pte) 1851 { 1852 unsigned long end_addr, addr = pvmw->address; 1853 struct vm_area_struct *vma = pvmw->vma; 1854 unsigned int max_nr; 1855 1856 if (flags & TTU_HWPOISON) 1857 return 1; 1858 if (!folio_test_large(folio)) 1859 return 1; 1860 1861 /* We may only batch within a single VMA and a single page table. */ 1862 end_addr = pmd_addr_end(addr, vma->vm_end); 1863 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1864 1865 /* We only support lazyfree batching for now ... */ 1866 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1867 return 1; 1868 if (pte_unused(pte)) 1869 return 1; 1870 1871 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1872 } 1873 1874 /* 1875 * @arg: enum ttu_flags will be passed to this argument 1876 */ 1877 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1878 unsigned long address, void *arg) 1879 { 1880 struct mm_struct *mm = vma->vm_mm; 1881 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1882 bool anon_exclusive, ret = true; 1883 pte_t pteval; 1884 struct page *subpage; 1885 struct mmu_notifier_range range; 1886 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1887 unsigned long nr_pages = 1, end_addr; 1888 unsigned long pfn; 1889 unsigned long hsz = 0; 1890 1891 /* 1892 * When racing against e.g. zap_pte_range() on another cpu, 1893 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1894 * try_to_unmap() may return before page_mapped() has become false, 1895 * if page table locking is skipped: use TTU_SYNC to wait for that. 1896 */ 1897 if (flags & TTU_SYNC) 1898 pvmw.flags = PVMW_SYNC; 1899 1900 /* 1901 * For THP, we have to assume the worse case ie pmd for invalidation. 1902 * For hugetlb, it could be much worse if we need to do pud 1903 * invalidation in the case of pmd sharing. 1904 * 1905 * Note that the folio can not be freed in this function as call of 1906 * try_to_unmap() must hold a reference on the folio. 1907 */ 1908 range.end = vma_address_end(&pvmw); 1909 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1910 address, range.end); 1911 if (folio_test_hugetlb(folio)) { 1912 /* 1913 * If sharing is possible, start and end will be adjusted 1914 * accordingly. 1915 */ 1916 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1917 &range.end); 1918 1919 /* We need the huge page size for set_huge_pte_at() */ 1920 hsz = huge_page_size(hstate_vma(vma)); 1921 } 1922 mmu_notifier_invalidate_range_start(&range); 1923 1924 while (page_vma_mapped_walk(&pvmw)) { 1925 /* 1926 * If the folio is in an mlock()d vma, we must not swap it out. 1927 */ 1928 if (!(flags & TTU_IGNORE_MLOCK) && 1929 (vma->vm_flags & VM_LOCKED)) { 1930 /* Restore the mlock which got missed */ 1931 if (!folio_test_large(folio)) 1932 mlock_vma_folio(folio, vma); 1933 goto walk_abort; 1934 } 1935 1936 if (!pvmw.pte) { 1937 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1938 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1939 goto walk_done; 1940 /* 1941 * unmap_huge_pmd_locked has either already marked 1942 * the folio as swap-backed or decided to retain it 1943 * due to GUP or speculative references. 1944 */ 1945 goto walk_abort; 1946 } 1947 1948 if (flags & TTU_SPLIT_HUGE_PMD) { 1949 /* 1950 * We temporarily have to drop the PTL and 1951 * restart so we can process the PTE-mapped THP. 1952 */ 1953 split_huge_pmd_locked(vma, pvmw.address, 1954 pvmw.pmd, false); 1955 flags &= ~TTU_SPLIT_HUGE_PMD; 1956 page_vma_mapped_walk_restart(&pvmw); 1957 continue; 1958 } 1959 } 1960 1961 /* Unexpected PMD-mapped THP? */ 1962 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1963 1964 /* 1965 * Handle PFN swap PTEs, such as device-exclusive ones, that 1966 * actually map pages. 1967 */ 1968 pteval = ptep_get(pvmw.pte); 1969 if (likely(pte_present(pteval))) { 1970 pfn = pte_pfn(pteval); 1971 } else { 1972 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1973 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1974 } 1975 1976 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1977 address = pvmw.address; 1978 anon_exclusive = folio_test_anon(folio) && 1979 PageAnonExclusive(subpage); 1980 1981 if (folio_test_hugetlb(folio)) { 1982 bool anon = folio_test_anon(folio); 1983 1984 /* 1985 * The try_to_unmap() is only passed a hugetlb page 1986 * in the case where the hugetlb page is poisoned. 1987 */ 1988 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1989 /* 1990 * huge_pmd_unshare may unmap an entire PMD page. 1991 * There is no way of knowing exactly which PMDs may 1992 * be cached for this mm, so we must flush them all. 1993 * start/end were already adjusted above to cover this 1994 * range. 1995 */ 1996 flush_cache_range(vma, range.start, range.end); 1997 1998 /* 1999 * To call huge_pmd_unshare, i_mmap_rwsem must be 2000 * held in write mode. Caller needs to explicitly 2001 * do this outside rmap routines. 2002 * 2003 * We also must hold hugetlb vma_lock in write mode. 2004 * Lock order dictates acquiring vma_lock BEFORE 2005 * i_mmap_rwsem. We can only try lock here and fail 2006 * if unsuccessful. 2007 */ 2008 if (!anon) { 2009 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2010 if (!hugetlb_vma_trylock_write(vma)) 2011 goto walk_abort; 2012 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2013 hugetlb_vma_unlock_write(vma); 2014 flush_tlb_range(vma, 2015 range.start, range.end); 2016 /* 2017 * The ref count of the PMD page was 2018 * dropped which is part of the way map 2019 * counting is done for shared PMDs. 2020 * Return 'true' here. When there is 2021 * no other sharing, huge_pmd_unshare 2022 * returns false and we will unmap the 2023 * actual page and drop map count 2024 * to zero. 2025 */ 2026 goto walk_done; 2027 } 2028 hugetlb_vma_unlock_write(vma); 2029 } 2030 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2031 if (pte_dirty(pteval)) 2032 folio_mark_dirty(folio); 2033 } else if (likely(pte_present(pteval))) { 2034 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2035 end_addr = address + nr_pages * PAGE_SIZE; 2036 flush_cache_range(vma, address, end_addr); 2037 2038 /* Nuke the page table entry. */ 2039 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); 2040 /* 2041 * We clear the PTE but do not flush so potentially 2042 * a remote CPU could still be writing to the folio. 2043 * If the entry was previously clean then the 2044 * architecture must guarantee that a clear->dirty 2045 * transition on a cached TLB entry is written through 2046 * and traps if the PTE is unmapped. 2047 */ 2048 if (should_defer_flush(mm, flags)) 2049 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2050 else 2051 flush_tlb_range(vma, address, end_addr); 2052 if (pte_dirty(pteval)) 2053 folio_mark_dirty(folio); 2054 } else { 2055 pte_clear(mm, address, pvmw.pte); 2056 } 2057 2058 /* 2059 * Now the pte is cleared. If this pte was uffd-wp armed, 2060 * we may want to replace a none pte with a marker pte if 2061 * it's file-backed, so we don't lose the tracking info. 2062 */ 2063 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2064 2065 /* Update high watermark before we lower rss */ 2066 update_hiwater_rss(mm); 2067 2068 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2069 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2070 if (folio_test_hugetlb(folio)) { 2071 hugetlb_count_sub(folio_nr_pages(folio), mm); 2072 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2073 hsz); 2074 } else { 2075 dec_mm_counter(mm, mm_counter(folio)); 2076 set_pte_at(mm, address, pvmw.pte, pteval); 2077 } 2078 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2079 !userfaultfd_armed(vma)) { 2080 /* 2081 * The guest indicated that the page content is of no 2082 * interest anymore. Simply discard the pte, vmscan 2083 * will take care of the rest. 2084 * A future reference will then fault in a new zero 2085 * page. When userfaultfd is active, we must not drop 2086 * this page though, as its main user (postcopy 2087 * migration) will not expect userfaults on already 2088 * copied pages. 2089 */ 2090 dec_mm_counter(mm, mm_counter(folio)); 2091 } else if (folio_test_anon(folio)) { 2092 swp_entry_t entry = page_swap_entry(subpage); 2093 pte_t swp_pte; 2094 /* 2095 * Store the swap location in the pte. 2096 * See handle_pte_fault() ... 2097 */ 2098 if (unlikely(folio_test_swapbacked(folio) != 2099 folio_test_swapcache(folio))) { 2100 WARN_ON_ONCE(1); 2101 goto walk_abort; 2102 } 2103 2104 /* MADV_FREE page check */ 2105 if (!folio_test_swapbacked(folio)) { 2106 int ref_count, map_count; 2107 2108 /* 2109 * Synchronize with gup_pte_range(): 2110 * - clear PTE; barrier; read refcount 2111 * - inc refcount; barrier; read PTE 2112 */ 2113 smp_mb(); 2114 2115 ref_count = folio_ref_count(folio); 2116 map_count = folio_mapcount(folio); 2117 2118 /* 2119 * Order reads for page refcount and dirty flag 2120 * (see comments in __remove_mapping()). 2121 */ 2122 smp_rmb(); 2123 2124 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2125 /* 2126 * redirtied either using the page table or a previously 2127 * obtained GUP reference. 2128 */ 2129 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2130 folio_set_swapbacked(folio); 2131 goto walk_abort; 2132 } else if (ref_count != 1 + map_count) { 2133 /* 2134 * Additional reference. Could be a GUP reference or any 2135 * speculative reference. GUP users must mark the folio 2136 * dirty if there was a modification. This folio cannot be 2137 * reclaimed right now either way, so act just like nothing 2138 * happened. 2139 * We'll come back here later and detect if the folio was 2140 * dirtied when the additional reference is gone. 2141 */ 2142 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2143 goto walk_abort; 2144 } 2145 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2146 goto discard; 2147 } 2148 2149 if (swap_duplicate(entry) < 0) { 2150 set_pte_at(mm, address, pvmw.pte, pteval); 2151 goto walk_abort; 2152 } 2153 2154 /* 2155 * arch_unmap_one() is expected to be a NOP on 2156 * architectures where we could have PFN swap PTEs, 2157 * so we'll not check/care. 2158 */ 2159 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2160 swap_free(entry); 2161 set_pte_at(mm, address, pvmw.pte, pteval); 2162 goto walk_abort; 2163 } 2164 2165 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2166 if (anon_exclusive && 2167 folio_try_share_anon_rmap_pte(folio, subpage)) { 2168 swap_free(entry); 2169 set_pte_at(mm, address, pvmw.pte, pteval); 2170 goto walk_abort; 2171 } 2172 if (list_empty(&mm->mmlist)) { 2173 spin_lock(&mmlist_lock); 2174 if (list_empty(&mm->mmlist)) 2175 list_add(&mm->mmlist, &init_mm.mmlist); 2176 spin_unlock(&mmlist_lock); 2177 } 2178 dec_mm_counter(mm, MM_ANONPAGES); 2179 inc_mm_counter(mm, MM_SWAPENTS); 2180 swp_pte = swp_entry_to_pte(entry); 2181 if (anon_exclusive) 2182 swp_pte = pte_swp_mkexclusive(swp_pte); 2183 if (likely(pte_present(pteval))) { 2184 if (pte_soft_dirty(pteval)) 2185 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2186 if (pte_uffd_wp(pteval)) 2187 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2188 } else { 2189 if (pte_swp_soft_dirty(pteval)) 2190 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2191 if (pte_swp_uffd_wp(pteval)) 2192 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2193 } 2194 set_pte_at(mm, address, pvmw.pte, swp_pte); 2195 } else { 2196 /* 2197 * This is a locked file-backed folio, 2198 * so it cannot be removed from the page 2199 * cache and replaced by a new folio before 2200 * mmu_notifier_invalidate_range_end, so no 2201 * concurrent thread might update its page table 2202 * to point at a new folio while a device is 2203 * still using this folio. 2204 * 2205 * See Documentation/mm/mmu_notifier.rst 2206 */ 2207 dec_mm_counter(mm, mm_counter_file(folio)); 2208 } 2209 discard: 2210 if (unlikely(folio_test_hugetlb(folio))) { 2211 hugetlb_remove_rmap(folio); 2212 } else { 2213 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2214 } 2215 if (vma->vm_flags & VM_LOCKED) 2216 mlock_drain_local(); 2217 folio_put_refs(folio, nr_pages); 2218 2219 /* 2220 * If we are sure that we batched the entire folio and cleared 2221 * all PTEs, we can just optimize and stop right here. 2222 */ 2223 if (nr_pages == folio_nr_pages(folio)) 2224 goto walk_done; 2225 continue; 2226 walk_abort: 2227 ret = false; 2228 walk_done: 2229 page_vma_mapped_walk_done(&pvmw); 2230 break; 2231 } 2232 2233 mmu_notifier_invalidate_range_end(&range); 2234 2235 return ret; 2236 } 2237 2238 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2239 { 2240 return vma_is_temporary_stack(vma); 2241 } 2242 2243 static int folio_not_mapped(struct folio *folio) 2244 { 2245 return !folio_mapped(folio); 2246 } 2247 2248 /** 2249 * try_to_unmap - Try to remove all page table mappings to a folio. 2250 * @folio: The folio to unmap. 2251 * @flags: action and flags 2252 * 2253 * Tries to remove all the page table entries which are mapping this 2254 * folio. It is the caller's responsibility to check if the folio is 2255 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2256 * 2257 * Context: Caller must hold the folio lock. 2258 */ 2259 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2260 { 2261 struct rmap_walk_control rwc = { 2262 .rmap_one = try_to_unmap_one, 2263 .arg = (void *)flags, 2264 .done = folio_not_mapped, 2265 .anon_lock = folio_lock_anon_vma_read, 2266 }; 2267 2268 if (flags & TTU_RMAP_LOCKED) 2269 rmap_walk_locked(folio, &rwc); 2270 else 2271 rmap_walk(folio, &rwc); 2272 } 2273 2274 /* 2275 * @arg: enum ttu_flags will be passed to this argument. 2276 * 2277 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2278 * containing migration entries. 2279 */ 2280 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2281 unsigned long address, void *arg) 2282 { 2283 struct mm_struct *mm = vma->vm_mm; 2284 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2285 bool anon_exclusive, writable, ret = true; 2286 pte_t pteval; 2287 struct page *subpage; 2288 struct mmu_notifier_range range; 2289 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2290 unsigned long pfn; 2291 unsigned long hsz = 0; 2292 2293 /* 2294 * When racing against e.g. zap_pte_range() on another cpu, 2295 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2296 * try_to_migrate() may return before page_mapped() has become false, 2297 * if page table locking is skipped: use TTU_SYNC to wait for that. 2298 */ 2299 if (flags & TTU_SYNC) 2300 pvmw.flags = PVMW_SYNC; 2301 2302 /* 2303 * For THP, we have to assume the worse case ie pmd for invalidation. 2304 * For hugetlb, it could be much worse if we need to do pud 2305 * invalidation in the case of pmd sharing. 2306 * 2307 * Note that the page can not be free in this function as call of 2308 * try_to_unmap() must hold a reference on the page. 2309 */ 2310 range.end = vma_address_end(&pvmw); 2311 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2312 address, range.end); 2313 if (folio_test_hugetlb(folio)) { 2314 /* 2315 * If sharing is possible, start and end will be adjusted 2316 * accordingly. 2317 */ 2318 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2319 &range.end); 2320 2321 /* We need the huge page size for set_huge_pte_at() */ 2322 hsz = huge_page_size(hstate_vma(vma)); 2323 } 2324 mmu_notifier_invalidate_range_start(&range); 2325 2326 while (page_vma_mapped_walk(&pvmw)) { 2327 /* PMD-mapped THP migration entry */ 2328 if (!pvmw.pte) { 2329 if (flags & TTU_SPLIT_HUGE_PMD) { 2330 split_huge_pmd_locked(vma, pvmw.address, 2331 pvmw.pmd, true); 2332 ret = false; 2333 page_vma_mapped_walk_done(&pvmw); 2334 break; 2335 } 2336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2337 subpage = folio_page(folio, 2338 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2339 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2340 !folio_test_pmd_mappable(folio), folio); 2341 2342 if (set_pmd_migration_entry(&pvmw, subpage)) { 2343 ret = false; 2344 page_vma_mapped_walk_done(&pvmw); 2345 break; 2346 } 2347 continue; 2348 #endif 2349 } 2350 2351 /* Unexpected PMD-mapped THP? */ 2352 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2353 2354 /* 2355 * Handle PFN swap PTEs, such as device-exclusive ones, that 2356 * actually map pages. 2357 */ 2358 pteval = ptep_get(pvmw.pte); 2359 if (likely(pte_present(pteval))) { 2360 pfn = pte_pfn(pteval); 2361 } else { 2362 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2363 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2364 } 2365 2366 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2367 address = pvmw.address; 2368 anon_exclusive = folio_test_anon(folio) && 2369 PageAnonExclusive(subpage); 2370 2371 if (folio_test_hugetlb(folio)) { 2372 bool anon = folio_test_anon(folio); 2373 2374 /* 2375 * huge_pmd_unshare may unmap an entire PMD page. 2376 * There is no way of knowing exactly which PMDs may 2377 * be cached for this mm, so we must flush them all. 2378 * start/end were already adjusted above to cover this 2379 * range. 2380 */ 2381 flush_cache_range(vma, range.start, range.end); 2382 2383 /* 2384 * To call huge_pmd_unshare, i_mmap_rwsem must be 2385 * held in write mode. Caller needs to explicitly 2386 * do this outside rmap routines. 2387 * 2388 * We also must hold hugetlb vma_lock in write mode. 2389 * Lock order dictates acquiring vma_lock BEFORE 2390 * i_mmap_rwsem. We can only try lock here and 2391 * fail if unsuccessful. 2392 */ 2393 if (!anon) { 2394 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2395 if (!hugetlb_vma_trylock_write(vma)) { 2396 page_vma_mapped_walk_done(&pvmw); 2397 ret = false; 2398 break; 2399 } 2400 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2401 hugetlb_vma_unlock_write(vma); 2402 flush_tlb_range(vma, 2403 range.start, range.end); 2404 2405 /* 2406 * The ref count of the PMD page was 2407 * dropped which is part of the way map 2408 * counting is done for shared PMDs. 2409 * Return 'true' here. When there is 2410 * no other sharing, huge_pmd_unshare 2411 * returns false and we will unmap the 2412 * actual page and drop map count 2413 * to zero. 2414 */ 2415 page_vma_mapped_walk_done(&pvmw); 2416 break; 2417 } 2418 hugetlb_vma_unlock_write(vma); 2419 } 2420 /* Nuke the hugetlb page table entry */ 2421 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2422 if (pte_dirty(pteval)) 2423 folio_mark_dirty(folio); 2424 writable = pte_write(pteval); 2425 } else if (likely(pte_present(pteval))) { 2426 flush_cache_page(vma, address, pfn); 2427 /* Nuke the page table entry. */ 2428 if (should_defer_flush(mm, flags)) { 2429 /* 2430 * We clear the PTE but do not flush so potentially 2431 * a remote CPU could still be writing to the folio. 2432 * If the entry was previously clean then the 2433 * architecture must guarantee that a clear->dirty 2434 * transition on a cached TLB entry is written through 2435 * and traps if the PTE is unmapped. 2436 */ 2437 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2438 2439 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2440 } else { 2441 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2442 } 2443 if (pte_dirty(pteval)) 2444 folio_mark_dirty(folio); 2445 writable = pte_write(pteval); 2446 } else { 2447 pte_clear(mm, address, pvmw.pte); 2448 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2449 } 2450 2451 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2452 !anon_exclusive, folio); 2453 2454 /* Update high watermark before we lower rss */ 2455 update_hiwater_rss(mm); 2456 2457 if (PageHWPoison(subpage)) { 2458 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2459 2460 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2461 if (folio_test_hugetlb(folio)) { 2462 hugetlb_count_sub(folio_nr_pages(folio), mm); 2463 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2464 hsz); 2465 } else { 2466 dec_mm_counter(mm, mm_counter(folio)); 2467 set_pte_at(mm, address, pvmw.pte, pteval); 2468 } 2469 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2470 !userfaultfd_armed(vma)) { 2471 /* 2472 * The guest indicated that the page content is of no 2473 * interest anymore. Simply discard the pte, vmscan 2474 * will take care of the rest. 2475 * A future reference will then fault in a new zero 2476 * page. When userfaultfd is active, we must not drop 2477 * this page though, as its main user (postcopy 2478 * migration) will not expect userfaults on already 2479 * copied pages. 2480 */ 2481 dec_mm_counter(mm, mm_counter(folio)); 2482 } else { 2483 swp_entry_t entry; 2484 pte_t swp_pte; 2485 2486 /* 2487 * arch_unmap_one() is expected to be a NOP on 2488 * architectures where we could have PFN swap PTEs, 2489 * so we'll not check/care. 2490 */ 2491 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2492 if (folio_test_hugetlb(folio)) 2493 set_huge_pte_at(mm, address, pvmw.pte, 2494 pteval, hsz); 2495 else 2496 set_pte_at(mm, address, pvmw.pte, pteval); 2497 ret = false; 2498 page_vma_mapped_walk_done(&pvmw); 2499 break; 2500 } 2501 2502 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2503 if (folio_test_hugetlb(folio)) { 2504 if (anon_exclusive && 2505 hugetlb_try_share_anon_rmap(folio)) { 2506 set_huge_pte_at(mm, address, pvmw.pte, 2507 pteval, hsz); 2508 ret = false; 2509 page_vma_mapped_walk_done(&pvmw); 2510 break; 2511 } 2512 } else if (anon_exclusive && 2513 folio_try_share_anon_rmap_pte(folio, subpage)) { 2514 set_pte_at(mm, address, pvmw.pte, pteval); 2515 ret = false; 2516 page_vma_mapped_walk_done(&pvmw); 2517 break; 2518 } 2519 2520 /* 2521 * Store the pfn of the page in a special migration 2522 * pte. do_swap_page() will wait until the migration 2523 * pte is removed and then restart fault handling. 2524 */ 2525 if (writable) 2526 entry = make_writable_migration_entry( 2527 page_to_pfn(subpage)); 2528 else if (anon_exclusive) 2529 entry = make_readable_exclusive_migration_entry( 2530 page_to_pfn(subpage)); 2531 else 2532 entry = make_readable_migration_entry( 2533 page_to_pfn(subpage)); 2534 if (likely(pte_present(pteval))) { 2535 if (pte_young(pteval)) 2536 entry = make_migration_entry_young(entry); 2537 if (pte_dirty(pteval)) 2538 entry = make_migration_entry_dirty(entry); 2539 swp_pte = swp_entry_to_pte(entry); 2540 if (pte_soft_dirty(pteval)) 2541 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2542 if (pte_uffd_wp(pteval)) 2543 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2544 } else { 2545 swp_pte = swp_entry_to_pte(entry); 2546 if (pte_swp_soft_dirty(pteval)) 2547 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2548 if (pte_swp_uffd_wp(pteval)) 2549 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2550 } 2551 if (folio_test_hugetlb(folio)) 2552 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2553 hsz); 2554 else 2555 set_pte_at(mm, address, pvmw.pte, swp_pte); 2556 trace_set_migration_pte(address, pte_val(swp_pte), 2557 folio_order(folio)); 2558 /* 2559 * No need to invalidate here it will synchronize on 2560 * against the special swap migration pte. 2561 */ 2562 } 2563 2564 if (unlikely(folio_test_hugetlb(folio))) 2565 hugetlb_remove_rmap(folio); 2566 else 2567 folio_remove_rmap_pte(folio, subpage, vma); 2568 if (vma->vm_flags & VM_LOCKED) 2569 mlock_drain_local(); 2570 folio_put(folio); 2571 } 2572 2573 mmu_notifier_invalidate_range_end(&range); 2574 2575 return ret; 2576 } 2577 2578 /** 2579 * try_to_migrate - try to replace all page table mappings with swap entries 2580 * @folio: the folio to replace page table entries for 2581 * @flags: action and flags 2582 * 2583 * Tries to remove all the page table entries which are mapping this folio and 2584 * replace them with special swap entries. Caller must hold the folio lock. 2585 */ 2586 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2587 { 2588 struct rmap_walk_control rwc = { 2589 .rmap_one = try_to_migrate_one, 2590 .arg = (void *)flags, 2591 .done = folio_not_mapped, 2592 .anon_lock = folio_lock_anon_vma_read, 2593 }; 2594 2595 /* 2596 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2597 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2598 */ 2599 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2600 TTU_SYNC | TTU_BATCH_FLUSH))) 2601 return; 2602 2603 if (folio_is_zone_device(folio) && 2604 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2605 return; 2606 2607 /* 2608 * During exec, a temporary VMA is setup and later moved. 2609 * The VMA is moved under the anon_vma lock but not the 2610 * page tables leading to a race where migration cannot 2611 * find the migration ptes. Rather than increasing the 2612 * locking requirements of exec(), migration skips 2613 * temporary VMAs until after exec() completes. 2614 */ 2615 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2616 rwc.invalid_vma = invalid_migration_vma; 2617 2618 if (flags & TTU_RMAP_LOCKED) 2619 rmap_walk_locked(folio, &rwc); 2620 else 2621 rmap_walk(folio, &rwc); 2622 } 2623 2624 #ifdef CONFIG_DEVICE_PRIVATE 2625 /** 2626 * make_device_exclusive() - Mark a page for exclusive use by a device 2627 * @mm: mm_struct of associated target process 2628 * @addr: the virtual address to mark for exclusive device access 2629 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2630 * @foliop: folio pointer will be stored here on success. 2631 * 2632 * This function looks up the page mapped at the given address, grabs a 2633 * folio reference, locks the folio and replaces the PTE with special 2634 * device-exclusive PFN swap entry, preventing access through the process 2635 * page tables. The function will return with the folio locked and referenced. 2636 * 2637 * On fault, the device-exclusive entries are replaced with the original PTE 2638 * under folio lock, after calling MMU notifiers. 2639 * 2640 * Only anonymous non-hugetlb folios are supported and the VMA must have 2641 * write permissions such that we can fault in the anonymous page writable 2642 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2643 * mode. 2644 * 2645 * A driver using this to program access from a device must use a mmu notifier 2646 * critical section to hold a device specific lock during programming. Once 2647 * programming is complete it should drop the folio lock and reference after 2648 * which point CPU access to the page will revoke the exclusive access. 2649 * 2650 * Notes: 2651 * #. This function always operates on individual PTEs mapping individual 2652 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2653 * the conversion happens on a single PTE corresponding to @addr. 2654 * #. While concurrent access through the process page tables is prevented, 2655 * concurrent access through other page references (e.g., earlier GUP 2656 * invocation) is not handled and not supported. 2657 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2658 * Device drivers must update the folio state when informed by MMU 2659 * notifiers. 2660 * 2661 * Returns: pointer to mapped page on success, otherwise a negative error. 2662 */ 2663 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2664 void *owner, struct folio **foliop) 2665 { 2666 struct mmu_notifier_range range; 2667 struct folio *folio, *fw_folio; 2668 struct vm_area_struct *vma; 2669 struct folio_walk fw; 2670 struct page *page; 2671 swp_entry_t entry; 2672 pte_t swp_pte; 2673 int ret; 2674 2675 mmap_assert_locked(mm); 2676 addr = PAGE_ALIGN_DOWN(addr); 2677 2678 /* 2679 * Fault in the page writable and try to lock it; note that if the 2680 * address would already be marked for exclusive use by a device, 2681 * the GUP call would undo that first by triggering a fault. 2682 * 2683 * If any other device would already map this page exclusively, the 2684 * fault will trigger a conversion to an ordinary 2685 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2686 */ 2687 retry: 2688 page = get_user_page_vma_remote(mm, addr, 2689 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2690 &vma); 2691 if (IS_ERR(page)) 2692 return page; 2693 folio = page_folio(page); 2694 2695 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2696 folio_put(folio); 2697 return ERR_PTR(-EOPNOTSUPP); 2698 } 2699 2700 ret = folio_lock_killable(folio); 2701 if (ret) { 2702 folio_put(folio); 2703 return ERR_PTR(ret); 2704 } 2705 2706 /* 2707 * Inform secondary MMUs that we are going to convert this PTE to 2708 * device-exclusive, such that they unmap it now. Note that the 2709 * caller must filter this event out to prevent livelocks. 2710 */ 2711 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2712 mm, addr, addr + PAGE_SIZE, owner); 2713 mmu_notifier_invalidate_range_start(&range); 2714 2715 /* 2716 * Let's do a second walk and make sure we still find the same page 2717 * mapped writable. Note that any page of an anonymous folio can 2718 * only be mapped writable using exactly one PTE ("exclusive"), so 2719 * there cannot be other mappings. 2720 */ 2721 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2722 if (fw_folio != folio || fw.page != page || 2723 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2724 if (fw_folio) 2725 folio_walk_end(&fw, vma); 2726 mmu_notifier_invalidate_range_end(&range); 2727 folio_unlock(folio); 2728 folio_put(folio); 2729 goto retry; 2730 } 2731 2732 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2733 flush_cache_page(vma, addr, page_to_pfn(page)); 2734 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2735 2736 /* Set the dirty flag on the folio now the PTE is gone. */ 2737 if (pte_dirty(fw.pte)) 2738 folio_mark_dirty(folio); 2739 2740 /* 2741 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2742 * do_swap_page() will trigger the conversion back while holding the 2743 * folio lock. 2744 */ 2745 entry = make_device_exclusive_entry(page_to_pfn(page)); 2746 swp_pte = swp_entry_to_pte(entry); 2747 if (pte_soft_dirty(fw.pte)) 2748 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2749 /* The pte is writable, uffd-wp does not apply. */ 2750 set_pte_at(mm, addr, fw.ptep, swp_pte); 2751 2752 folio_walk_end(&fw, vma); 2753 mmu_notifier_invalidate_range_end(&range); 2754 *foliop = folio; 2755 return page; 2756 } 2757 EXPORT_SYMBOL_GPL(make_device_exclusive); 2758 #endif 2759 2760 void __put_anon_vma(struct anon_vma *anon_vma) 2761 { 2762 struct anon_vma *root = anon_vma->root; 2763 2764 anon_vma_free(anon_vma); 2765 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2766 anon_vma_free(root); 2767 } 2768 2769 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2770 struct rmap_walk_control *rwc) 2771 { 2772 struct anon_vma *anon_vma; 2773 2774 if (rwc->anon_lock) 2775 return rwc->anon_lock(folio, rwc); 2776 2777 /* 2778 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2779 * because that depends on page_mapped(); but not all its usages 2780 * are holding mmap_lock. Users without mmap_lock are required to 2781 * take a reference count to prevent the anon_vma disappearing 2782 */ 2783 anon_vma = folio_anon_vma(folio); 2784 if (!anon_vma) 2785 return NULL; 2786 2787 if (anon_vma_trylock_read(anon_vma)) 2788 goto out; 2789 2790 if (rwc->try_lock) { 2791 anon_vma = NULL; 2792 rwc->contended = true; 2793 goto out; 2794 } 2795 2796 anon_vma_lock_read(anon_vma); 2797 out: 2798 return anon_vma; 2799 } 2800 2801 /* 2802 * rmap_walk_anon - do something to anonymous page using the object-based 2803 * rmap method 2804 * @folio: the folio to be handled 2805 * @rwc: control variable according to each walk type 2806 * @locked: caller holds relevant rmap lock 2807 * 2808 * Find all the mappings of a folio using the mapping pointer and the vma 2809 * chains contained in the anon_vma struct it points to. 2810 */ 2811 static void rmap_walk_anon(struct folio *folio, 2812 struct rmap_walk_control *rwc, bool locked) 2813 { 2814 struct anon_vma *anon_vma; 2815 pgoff_t pgoff_start, pgoff_end; 2816 struct anon_vma_chain *avc; 2817 2818 if (locked) { 2819 anon_vma = folio_anon_vma(folio); 2820 /* anon_vma disappear under us? */ 2821 VM_BUG_ON_FOLIO(!anon_vma, folio); 2822 } else { 2823 anon_vma = rmap_walk_anon_lock(folio, rwc); 2824 } 2825 if (!anon_vma) 2826 return; 2827 2828 pgoff_start = folio_pgoff(folio); 2829 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2830 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2831 pgoff_start, pgoff_end) { 2832 struct vm_area_struct *vma = avc->vma; 2833 unsigned long address = vma_address(vma, pgoff_start, 2834 folio_nr_pages(folio)); 2835 2836 VM_BUG_ON_VMA(address == -EFAULT, vma); 2837 cond_resched(); 2838 2839 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2840 continue; 2841 2842 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2843 break; 2844 if (rwc->done && rwc->done(folio)) 2845 break; 2846 } 2847 2848 if (!locked) 2849 anon_vma_unlock_read(anon_vma); 2850 } 2851 2852 /** 2853 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2854 * of a page mapped within a specified page cache object at a specified offset. 2855 * 2856 * @folio: Either the folio whose mappings to traverse, or if NULL, 2857 * the callbacks specified in @rwc will be configured such 2858 * as to be able to look up mappings correctly. 2859 * @mapping: The page cache object whose mapping VMAs we intend to 2860 * traverse. If @folio is non-NULL, this should be equal to 2861 * folio_mapping(folio). 2862 * @pgoff_start: The offset within @mapping of the page which we are 2863 * looking up. If @folio is non-NULL, this should be equal 2864 * to folio_pgoff(folio). 2865 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2866 * non-NULL, this should be equal to folio_nr_pages(folio). 2867 * @rwc: The reverse mapping walk control object describing how 2868 * the traversal should proceed. 2869 * @locked: Is the @mapping already locked? If not, we acquire the 2870 * lock. 2871 */ 2872 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2873 pgoff_t pgoff_start, unsigned long nr_pages, 2874 struct rmap_walk_control *rwc, bool locked) 2875 { 2876 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2877 struct vm_area_struct *vma; 2878 2879 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2880 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2881 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2882 2883 if (!locked) { 2884 if (i_mmap_trylock_read(mapping)) 2885 goto lookup; 2886 2887 if (rwc->try_lock) { 2888 rwc->contended = true; 2889 return; 2890 } 2891 2892 i_mmap_lock_read(mapping); 2893 } 2894 lookup: 2895 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2896 pgoff_start, pgoff_end) { 2897 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2898 2899 VM_BUG_ON_VMA(address == -EFAULT, vma); 2900 cond_resched(); 2901 2902 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2903 continue; 2904 2905 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2906 goto done; 2907 if (rwc->done && rwc->done(folio)) 2908 goto done; 2909 } 2910 done: 2911 if (!locked) 2912 i_mmap_unlock_read(mapping); 2913 } 2914 2915 /* 2916 * rmap_walk_file - do something to file page using the object-based rmap method 2917 * @folio: the folio to be handled 2918 * @rwc: control variable according to each walk type 2919 * @locked: caller holds relevant rmap lock 2920 * 2921 * Find all the mappings of a folio using the mapping pointer and the vma chains 2922 * contained in the address_space struct it points to. 2923 */ 2924 static void rmap_walk_file(struct folio *folio, 2925 struct rmap_walk_control *rwc, bool locked) 2926 { 2927 /* 2928 * The folio lock not only makes sure that folio->mapping cannot 2929 * suddenly be NULLified by truncation, it makes sure that the structure 2930 * at mapping cannot be freed and reused yet, so we can safely take 2931 * mapping->i_mmap_rwsem. 2932 */ 2933 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2934 2935 if (!folio->mapping) 2936 return; 2937 2938 __rmap_walk_file(folio, folio->mapping, folio->index, 2939 folio_nr_pages(folio), rwc, locked); 2940 } 2941 2942 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2943 { 2944 if (unlikely(folio_test_ksm(folio))) 2945 rmap_walk_ksm(folio, rwc); 2946 else if (folio_test_anon(folio)) 2947 rmap_walk_anon(folio, rwc, false); 2948 else 2949 rmap_walk_file(folio, rwc, false); 2950 } 2951 2952 /* Like rmap_walk, but caller holds relevant rmap lock */ 2953 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2954 { 2955 /* no ksm support for now */ 2956 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2957 if (folio_test_anon(folio)) 2958 rmap_walk_anon(folio, rwc, true); 2959 else 2960 rmap_walk_file(folio, rwc, true); 2961 } 2962 2963 #ifdef CONFIG_HUGETLB_PAGE 2964 /* 2965 * The following two functions are for anonymous (private mapped) hugepages. 2966 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2967 * and no lru code, because we handle hugepages differently from common pages. 2968 */ 2969 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2970 unsigned long address, rmap_t flags) 2971 { 2972 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2973 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2974 2975 atomic_inc(&folio->_entire_mapcount); 2976 atomic_inc(&folio->_large_mapcount); 2977 if (flags & RMAP_EXCLUSIVE) 2978 SetPageAnonExclusive(&folio->page); 2979 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2980 PageAnonExclusive(&folio->page), folio); 2981 } 2982 2983 void hugetlb_add_new_anon_rmap(struct folio *folio, 2984 struct vm_area_struct *vma, unsigned long address) 2985 { 2986 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2987 2988 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2989 /* increment count (starts at -1) */ 2990 atomic_set(&folio->_entire_mapcount, 0); 2991 atomic_set(&folio->_large_mapcount, 0); 2992 folio_clear_hugetlb_restore_reserve(folio); 2993 __folio_set_anon(folio, vma, address, true); 2994 SetPageAnonExclusive(&folio->page); 2995 } 2996 #endif /* CONFIG_HUGETLB_PAGE */ 2997