xref: /linux/mm/rmap.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/module.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 
59 #include <asm/tlbflush.h>
60 
61 #include "internal.h"
62 
63 static struct kmem_cache *anon_vma_cachep;
64 
65 static inline struct anon_vma *anon_vma_alloc(void)
66 {
67 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
68 }
69 
70 static inline void anon_vma_free(struct anon_vma *anon_vma)
71 {
72 	kmem_cache_free(anon_vma_cachep, anon_vma);
73 }
74 
75 /**
76  * anon_vma_prepare - attach an anon_vma to a memory region
77  * @vma: the memory region in question
78  *
79  * This makes sure the memory mapping described by 'vma' has
80  * an 'anon_vma' attached to it, so that we can associate the
81  * anonymous pages mapped into it with that anon_vma.
82  *
83  * The common case will be that we already have one, but if
84  * if not we either need to find an adjacent mapping that we
85  * can re-use the anon_vma from (very common when the only
86  * reason for splitting a vma has been mprotect()), or we
87  * allocate a new one.
88  *
89  * Anon-vma allocations are very subtle, because we may have
90  * optimistically looked up an anon_vma in page_lock_anon_vma()
91  * and that may actually touch the spinlock even in the newly
92  * allocated vma (it depends on RCU to make sure that the
93  * anon_vma isn't actually destroyed).
94  *
95  * As a result, we need to do proper anon_vma locking even
96  * for the new allocation. At the same time, we do not want
97  * to do any locking for the common case of already having
98  * an anon_vma.
99  *
100  * This must be called with the mmap_sem held for reading.
101  */
102 int anon_vma_prepare(struct vm_area_struct *vma)
103 {
104 	struct anon_vma *anon_vma = vma->anon_vma;
105 
106 	might_sleep();
107 	if (unlikely(!anon_vma)) {
108 		struct mm_struct *mm = vma->vm_mm;
109 		struct anon_vma *allocated;
110 
111 		anon_vma = find_mergeable_anon_vma(vma);
112 		allocated = NULL;
113 		if (!anon_vma) {
114 			anon_vma = anon_vma_alloc();
115 			if (unlikely(!anon_vma))
116 				return -ENOMEM;
117 			allocated = anon_vma;
118 		}
119 		spin_lock(&anon_vma->lock);
120 
121 		/* page_table_lock to protect against threads */
122 		spin_lock(&mm->page_table_lock);
123 		if (likely(!vma->anon_vma)) {
124 			vma->anon_vma = anon_vma;
125 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 			allocated = NULL;
127 		}
128 		spin_unlock(&mm->page_table_lock);
129 
130 		spin_unlock(&anon_vma->lock);
131 		if (unlikely(allocated))
132 			anon_vma_free(allocated);
133 	}
134 	return 0;
135 }
136 
137 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
138 {
139 	BUG_ON(vma->anon_vma != next->anon_vma);
140 	list_del(&next->anon_vma_node);
141 }
142 
143 void __anon_vma_link(struct vm_area_struct *vma)
144 {
145 	struct anon_vma *anon_vma = vma->anon_vma;
146 
147 	if (anon_vma)
148 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
149 }
150 
151 void anon_vma_link(struct vm_area_struct *vma)
152 {
153 	struct anon_vma *anon_vma = vma->anon_vma;
154 
155 	if (anon_vma) {
156 		spin_lock(&anon_vma->lock);
157 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
158 		spin_unlock(&anon_vma->lock);
159 	}
160 }
161 
162 void anon_vma_unlink(struct vm_area_struct *vma)
163 {
164 	struct anon_vma *anon_vma = vma->anon_vma;
165 	int empty;
166 
167 	if (!anon_vma)
168 		return;
169 
170 	spin_lock(&anon_vma->lock);
171 	list_del(&vma->anon_vma_node);
172 
173 	/* We must garbage collect the anon_vma if it's empty */
174 	empty = list_empty(&anon_vma->head);
175 	spin_unlock(&anon_vma->lock);
176 
177 	if (empty)
178 		anon_vma_free(anon_vma);
179 }
180 
181 static void anon_vma_ctor(void *data)
182 {
183 	struct anon_vma *anon_vma = data;
184 
185 	spin_lock_init(&anon_vma->lock);
186 	INIT_LIST_HEAD(&anon_vma->head);
187 }
188 
189 void __init anon_vma_init(void)
190 {
191 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
192 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
193 }
194 
195 /*
196  * Getting a lock on a stable anon_vma from a page off the LRU is
197  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
198  */
199 struct anon_vma *page_lock_anon_vma(struct page *page)
200 {
201 	struct anon_vma *anon_vma;
202 	unsigned long anon_mapping;
203 
204 	rcu_read_lock();
205 	anon_mapping = (unsigned long) page->mapping;
206 	if (!(anon_mapping & PAGE_MAPPING_ANON))
207 		goto out;
208 	if (!page_mapped(page))
209 		goto out;
210 
211 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
212 	spin_lock(&anon_vma->lock);
213 	return anon_vma;
214 out:
215 	rcu_read_unlock();
216 	return NULL;
217 }
218 
219 void page_unlock_anon_vma(struct anon_vma *anon_vma)
220 {
221 	spin_unlock(&anon_vma->lock);
222 	rcu_read_unlock();
223 }
224 
225 /*
226  * At what user virtual address is page expected in @vma?
227  * Returns virtual address or -EFAULT if page's index/offset is not
228  * within the range mapped the @vma.
229  */
230 static inline unsigned long
231 vma_address(struct page *page, struct vm_area_struct *vma)
232 {
233 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
234 	unsigned long address;
235 
236 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
237 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
238 		/* page should be within @vma mapping range */
239 		return -EFAULT;
240 	}
241 	return address;
242 }
243 
244 /*
245  * At what user virtual address is page expected in vma?
246  * checking that the page matches the vma.
247  */
248 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
249 {
250 	if (PageAnon(page)) {
251 		if ((void *)vma->anon_vma !=
252 		    (void *)page->mapping - PAGE_MAPPING_ANON)
253 			return -EFAULT;
254 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
255 		if (!vma->vm_file ||
256 		    vma->vm_file->f_mapping != page->mapping)
257 			return -EFAULT;
258 	} else
259 		return -EFAULT;
260 	return vma_address(page, vma);
261 }
262 
263 /*
264  * Check that @page is mapped at @address into @mm.
265  *
266  * If @sync is false, page_check_address may perform a racy check to avoid
267  * the page table lock when the pte is not present (helpful when reclaiming
268  * highly shared pages).
269  *
270  * On success returns with pte mapped and locked.
271  */
272 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
273 			  unsigned long address, spinlock_t **ptlp, int sync)
274 {
275 	pgd_t *pgd;
276 	pud_t *pud;
277 	pmd_t *pmd;
278 	pte_t *pte;
279 	spinlock_t *ptl;
280 
281 	pgd = pgd_offset(mm, address);
282 	if (!pgd_present(*pgd))
283 		return NULL;
284 
285 	pud = pud_offset(pgd, address);
286 	if (!pud_present(*pud))
287 		return NULL;
288 
289 	pmd = pmd_offset(pud, address);
290 	if (!pmd_present(*pmd))
291 		return NULL;
292 
293 	pte = pte_offset_map(pmd, address);
294 	/* Make a quick check before getting the lock */
295 	if (!sync && !pte_present(*pte)) {
296 		pte_unmap(pte);
297 		return NULL;
298 	}
299 
300 	ptl = pte_lockptr(mm, pmd);
301 	spin_lock(ptl);
302 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
303 		*ptlp = ptl;
304 		return pte;
305 	}
306 	pte_unmap_unlock(pte, ptl);
307 	return NULL;
308 }
309 
310 /**
311  * page_mapped_in_vma - check whether a page is really mapped in a VMA
312  * @page: the page to test
313  * @vma: the VMA to test
314  *
315  * Returns 1 if the page is mapped into the page tables of the VMA, 0
316  * if the page is not mapped into the page tables of this VMA.  Only
317  * valid for normal file or anonymous VMAs.
318  */
319 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
320 {
321 	unsigned long address;
322 	pte_t *pte;
323 	spinlock_t *ptl;
324 
325 	address = vma_address(page, vma);
326 	if (address == -EFAULT)		/* out of vma range */
327 		return 0;
328 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
329 	if (!pte)			/* the page is not in this mm */
330 		return 0;
331 	pte_unmap_unlock(pte, ptl);
332 
333 	return 1;
334 }
335 
336 /*
337  * Subfunctions of page_referenced: page_referenced_one called
338  * repeatedly from either page_referenced_anon or page_referenced_file.
339  */
340 static int page_referenced_one(struct page *page,
341 			       struct vm_area_struct *vma,
342 			       unsigned int *mapcount,
343 			       unsigned long *vm_flags)
344 {
345 	struct mm_struct *mm = vma->vm_mm;
346 	unsigned long address;
347 	pte_t *pte;
348 	spinlock_t *ptl;
349 	int referenced = 0;
350 
351 	address = vma_address(page, vma);
352 	if (address == -EFAULT)
353 		goto out;
354 
355 	pte = page_check_address(page, mm, address, &ptl, 0);
356 	if (!pte)
357 		goto out;
358 
359 	/*
360 	 * Don't want to elevate referenced for mlocked page that gets this far,
361 	 * in order that it progresses to try_to_unmap and is moved to the
362 	 * unevictable list.
363 	 */
364 	if (vma->vm_flags & VM_LOCKED) {
365 		*mapcount = 1;	/* break early from loop */
366 		*vm_flags |= VM_LOCKED;
367 		goto out_unmap;
368 	}
369 
370 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
371 		/*
372 		 * Don't treat a reference through a sequentially read
373 		 * mapping as such.  If the page has been used in
374 		 * another mapping, we will catch it; if this other
375 		 * mapping is already gone, the unmap path will have
376 		 * set PG_referenced or activated the page.
377 		 */
378 		if (likely(!VM_SequentialReadHint(vma)))
379 			referenced++;
380 	}
381 
382 	/* Pretend the page is referenced if the task has the
383 	   swap token and is in the middle of a page fault. */
384 	if (mm != current->mm && has_swap_token(mm) &&
385 			rwsem_is_locked(&mm->mmap_sem))
386 		referenced++;
387 
388 out_unmap:
389 	(*mapcount)--;
390 	pte_unmap_unlock(pte, ptl);
391 out:
392 	if (referenced)
393 		*vm_flags |= vma->vm_flags;
394 	return referenced;
395 }
396 
397 static int page_referenced_anon(struct page *page,
398 				struct mem_cgroup *mem_cont,
399 				unsigned long *vm_flags)
400 {
401 	unsigned int mapcount;
402 	struct anon_vma *anon_vma;
403 	struct vm_area_struct *vma;
404 	int referenced = 0;
405 
406 	anon_vma = page_lock_anon_vma(page);
407 	if (!anon_vma)
408 		return referenced;
409 
410 	mapcount = page_mapcount(page);
411 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
412 		/*
413 		 * If we are reclaiming on behalf of a cgroup, skip
414 		 * counting on behalf of references from different
415 		 * cgroups
416 		 */
417 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
418 			continue;
419 		referenced += page_referenced_one(page, vma,
420 						  &mapcount, vm_flags);
421 		if (!mapcount)
422 			break;
423 	}
424 
425 	page_unlock_anon_vma(anon_vma);
426 	return referenced;
427 }
428 
429 /**
430  * page_referenced_file - referenced check for object-based rmap
431  * @page: the page we're checking references on.
432  * @mem_cont: target memory controller
433  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
434  *
435  * For an object-based mapped page, find all the places it is mapped and
436  * check/clear the referenced flag.  This is done by following the page->mapping
437  * pointer, then walking the chain of vmas it holds.  It returns the number
438  * of references it found.
439  *
440  * This function is only called from page_referenced for object-based pages.
441  */
442 static int page_referenced_file(struct page *page,
443 				struct mem_cgroup *mem_cont,
444 				unsigned long *vm_flags)
445 {
446 	unsigned int mapcount;
447 	struct address_space *mapping = page->mapping;
448 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
449 	struct vm_area_struct *vma;
450 	struct prio_tree_iter iter;
451 	int referenced = 0;
452 
453 	/*
454 	 * The caller's checks on page->mapping and !PageAnon have made
455 	 * sure that this is a file page: the check for page->mapping
456 	 * excludes the case just before it gets set on an anon page.
457 	 */
458 	BUG_ON(PageAnon(page));
459 
460 	/*
461 	 * The page lock not only makes sure that page->mapping cannot
462 	 * suddenly be NULLified by truncation, it makes sure that the
463 	 * structure at mapping cannot be freed and reused yet,
464 	 * so we can safely take mapping->i_mmap_lock.
465 	 */
466 	BUG_ON(!PageLocked(page));
467 
468 	spin_lock(&mapping->i_mmap_lock);
469 
470 	/*
471 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
472 	 * is more likely to be accurate if we note it after spinning.
473 	 */
474 	mapcount = page_mapcount(page);
475 
476 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
477 		/*
478 		 * If we are reclaiming on behalf of a cgroup, skip
479 		 * counting on behalf of references from different
480 		 * cgroups
481 		 */
482 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
483 			continue;
484 		referenced += page_referenced_one(page, vma,
485 						  &mapcount, vm_flags);
486 		if (!mapcount)
487 			break;
488 	}
489 
490 	spin_unlock(&mapping->i_mmap_lock);
491 	return referenced;
492 }
493 
494 /**
495  * page_referenced - test if the page was referenced
496  * @page: the page to test
497  * @is_locked: caller holds lock on the page
498  * @mem_cont: target memory controller
499  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
500  *
501  * Quick test_and_clear_referenced for all mappings to a page,
502  * returns the number of ptes which referenced the page.
503  */
504 int page_referenced(struct page *page,
505 		    int is_locked,
506 		    struct mem_cgroup *mem_cont,
507 		    unsigned long *vm_flags)
508 {
509 	int referenced = 0;
510 
511 	if (TestClearPageReferenced(page))
512 		referenced++;
513 
514 	*vm_flags = 0;
515 	if (page_mapped(page) && page->mapping) {
516 		if (PageAnon(page))
517 			referenced += page_referenced_anon(page, mem_cont,
518 								vm_flags);
519 		else if (is_locked)
520 			referenced += page_referenced_file(page, mem_cont,
521 								vm_flags);
522 		else if (!trylock_page(page))
523 			referenced++;
524 		else {
525 			if (page->mapping)
526 				referenced += page_referenced_file(page,
527 							mem_cont, vm_flags);
528 			unlock_page(page);
529 		}
530 	}
531 
532 	if (page_test_and_clear_young(page))
533 		referenced++;
534 
535 	return referenced;
536 }
537 
538 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
539 {
540 	struct mm_struct *mm = vma->vm_mm;
541 	unsigned long address;
542 	pte_t *pte;
543 	spinlock_t *ptl;
544 	int ret = 0;
545 
546 	address = vma_address(page, vma);
547 	if (address == -EFAULT)
548 		goto out;
549 
550 	pte = page_check_address(page, mm, address, &ptl, 1);
551 	if (!pte)
552 		goto out;
553 
554 	if (pte_dirty(*pte) || pte_write(*pte)) {
555 		pte_t entry;
556 
557 		flush_cache_page(vma, address, pte_pfn(*pte));
558 		entry = ptep_clear_flush_notify(vma, address, pte);
559 		entry = pte_wrprotect(entry);
560 		entry = pte_mkclean(entry);
561 		set_pte_at(mm, address, pte, entry);
562 		ret = 1;
563 	}
564 
565 	pte_unmap_unlock(pte, ptl);
566 out:
567 	return ret;
568 }
569 
570 static int page_mkclean_file(struct address_space *mapping, struct page *page)
571 {
572 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573 	struct vm_area_struct *vma;
574 	struct prio_tree_iter iter;
575 	int ret = 0;
576 
577 	BUG_ON(PageAnon(page));
578 
579 	spin_lock(&mapping->i_mmap_lock);
580 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
581 		if (vma->vm_flags & VM_SHARED)
582 			ret += page_mkclean_one(page, vma);
583 	}
584 	spin_unlock(&mapping->i_mmap_lock);
585 	return ret;
586 }
587 
588 int page_mkclean(struct page *page)
589 {
590 	int ret = 0;
591 
592 	BUG_ON(!PageLocked(page));
593 
594 	if (page_mapped(page)) {
595 		struct address_space *mapping = page_mapping(page);
596 		if (mapping) {
597 			ret = page_mkclean_file(mapping, page);
598 			if (page_test_dirty(page)) {
599 				page_clear_dirty(page);
600 				ret = 1;
601 			}
602 		}
603 	}
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL_GPL(page_mkclean);
608 
609 /**
610  * __page_set_anon_rmap - setup new anonymous rmap
611  * @page:	the page to add the mapping to
612  * @vma:	the vm area in which the mapping is added
613  * @address:	the user virtual address mapped
614  */
615 static void __page_set_anon_rmap(struct page *page,
616 	struct vm_area_struct *vma, unsigned long address)
617 {
618 	struct anon_vma *anon_vma = vma->anon_vma;
619 
620 	BUG_ON(!anon_vma);
621 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
622 	page->mapping = (struct address_space *) anon_vma;
623 
624 	page->index = linear_page_index(vma, address);
625 
626 	/*
627 	 * nr_mapped state can be updated without turning off
628 	 * interrupts because it is not modified via interrupt.
629 	 */
630 	__inc_zone_page_state(page, NR_ANON_PAGES);
631 }
632 
633 /**
634  * __page_check_anon_rmap - sanity check anonymous rmap addition
635  * @page:	the page to add the mapping to
636  * @vma:	the vm area in which the mapping is added
637  * @address:	the user virtual address mapped
638  */
639 static void __page_check_anon_rmap(struct page *page,
640 	struct vm_area_struct *vma, unsigned long address)
641 {
642 #ifdef CONFIG_DEBUG_VM
643 	/*
644 	 * The page's anon-rmap details (mapping and index) are guaranteed to
645 	 * be set up correctly at this point.
646 	 *
647 	 * We have exclusion against page_add_anon_rmap because the caller
648 	 * always holds the page locked, except if called from page_dup_rmap,
649 	 * in which case the page is already known to be setup.
650 	 *
651 	 * We have exclusion against page_add_new_anon_rmap because those pages
652 	 * are initially only visible via the pagetables, and the pte is locked
653 	 * over the call to page_add_new_anon_rmap.
654 	 */
655 	struct anon_vma *anon_vma = vma->anon_vma;
656 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
658 	BUG_ON(page->index != linear_page_index(vma, address));
659 #endif
660 }
661 
662 /**
663  * page_add_anon_rmap - add pte mapping to an anonymous page
664  * @page:	the page to add the mapping to
665  * @vma:	the vm area in which the mapping is added
666  * @address:	the user virtual address mapped
667  *
668  * The caller needs to hold the pte lock and the page must be locked.
669  */
670 void page_add_anon_rmap(struct page *page,
671 	struct vm_area_struct *vma, unsigned long address)
672 {
673 	VM_BUG_ON(!PageLocked(page));
674 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
675 	if (atomic_inc_and_test(&page->_mapcount))
676 		__page_set_anon_rmap(page, vma, address);
677 	else
678 		__page_check_anon_rmap(page, vma, address);
679 }
680 
681 /**
682  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
683  * @page:	the page to add the mapping to
684  * @vma:	the vm area in which the mapping is added
685  * @address:	the user virtual address mapped
686  *
687  * Same as page_add_anon_rmap but must only be called on *new* pages.
688  * This means the inc-and-test can be bypassed.
689  * Page does not have to be locked.
690  */
691 void page_add_new_anon_rmap(struct page *page,
692 	struct vm_area_struct *vma, unsigned long address)
693 {
694 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
695 	SetPageSwapBacked(page);
696 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
697 	__page_set_anon_rmap(page, vma, address);
698 	if (page_evictable(page, vma))
699 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
700 	else
701 		add_page_to_unevictable_list(page);
702 }
703 
704 /**
705  * page_add_file_rmap - add pte mapping to a file page
706  * @page: the page to add the mapping to
707  *
708  * The caller needs to hold the pte lock.
709  */
710 void page_add_file_rmap(struct page *page)
711 {
712 	if (atomic_inc_and_test(&page->_mapcount)) {
713 		__inc_zone_page_state(page, NR_FILE_MAPPED);
714 		mem_cgroup_update_mapped_file_stat(page, 1);
715 	}
716 }
717 
718 /**
719  * page_remove_rmap - take down pte mapping from a page
720  * @page: page to remove mapping from
721  *
722  * The caller needs to hold the pte lock.
723  */
724 void page_remove_rmap(struct page *page)
725 {
726 	/* page still mapped by someone else? */
727 	if (!atomic_add_negative(-1, &page->_mapcount))
728 		return;
729 
730 	/*
731 	 * Now that the last pte has gone, s390 must transfer dirty
732 	 * flag from storage key to struct page.  We can usually skip
733 	 * this if the page is anon, so about to be freed; but perhaps
734 	 * not if it's in swapcache - there might be another pte slot
735 	 * containing the swap entry, but page not yet written to swap.
736 	 */
737 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
738 		page_clear_dirty(page);
739 		set_page_dirty(page);
740 	}
741 	if (PageAnon(page)) {
742 		mem_cgroup_uncharge_page(page);
743 		__dec_zone_page_state(page, NR_ANON_PAGES);
744 	} else {
745 		__dec_zone_page_state(page, NR_FILE_MAPPED);
746 	}
747 	mem_cgroup_update_mapped_file_stat(page, -1);
748 	/*
749 	 * It would be tidy to reset the PageAnon mapping here,
750 	 * but that might overwrite a racing page_add_anon_rmap
751 	 * which increments mapcount after us but sets mapping
752 	 * before us: so leave the reset to free_hot_cold_page,
753 	 * and remember that it's only reliable while mapped.
754 	 * Leaving it set also helps swapoff to reinstate ptes
755 	 * faster for those pages still in swapcache.
756 	 */
757 }
758 
759 /*
760  * Subfunctions of try_to_unmap: try_to_unmap_one called
761  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
762  */
763 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
764 				enum ttu_flags flags)
765 {
766 	struct mm_struct *mm = vma->vm_mm;
767 	unsigned long address;
768 	pte_t *pte;
769 	pte_t pteval;
770 	spinlock_t *ptl;
771 	int ret = SWAP_AGAIN;
772 
773 	address = vma_address(page, vma);
774 	if (address == -EFAULT)
775 		goto out;
776 
777 	pte = page_check_address(page, mm, address, &ptl, 0);
778 	if (!pte)
779 		goto out;
780 
781 	/*
782 	 * If the page is mlock()d, we cannot swap it out.
783 	 * If it's recently referenced (perhaps page_referenced
784 	 * skipped over this mm) then we should reactivate it.
785 	 */
786 	if (!(flags & TTU_IGNORE_MLOCK)) {
787 		if (vma->vm_flags & VM_LOCKED) {
788 			ret = SWAP_MLOCK;
789 			goto out_unmap;
790 		}
791 	}
792 	if (!(flags & TTU_IGNORE_ACCESS)) {
793 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
794 			ret = SWAP_FAIL;
795 			goto out_unmap;
796 		}
797   	}
798 
799 	/* Nuke the page table entry. */
800 	flush_cache_page(vma, address, page_to_pfn(page));
801 	pteval = ptep_clear_flush_notify(vma, address, pte);
802 
803 	/* Move the dirty bit to the physical page now the pte is gone. */
804 	if (pte_dirty(pteval))
805 		set_page_dirty(page);
806 
807 	/* Update high watermark before we lower rss */
808 	update_hiwater_rss(mm);
809 
810 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
811 		if (PageAnon(page))
812 			dec_mm_counter(mm, anon_rss);
813 		else
814 			dec_mm_counter(mm, file_rss);
815 		set_pte_at(mm, address, pte,
816 				swp_entry_to_pte(make_hwpoison_entry(page)));
817 	} else if (PageAnon(page)) {
818 		swp_entry_t entry = { .val = page_private(page) };
819 
820 		if (PageSwapCache(page)) {
821 			/*
822 			 * Store the swap location in the pte.
823 			 * See handle_pte_fault() ...
824 			 */
825 			swap_duplicate(entry);
826 			if (list_empty(&mm->mmlist)) {
827 				spin_lock(&mmlist_lock);
828 				if (list_empty(&mm->mmlist))
829 					list_add(&mm->mmlist, &init_mm.mmlist);
830 				spin_unlock(&mmlist_lock);
831 			}
832 			dec_mm_counter(mm, anon_rss);
833 		} else if (PAGE_MIGRATION) {
834 			/*
835 			 * Store the pfn of the page in a special migration
836 			 * pte. do_swap_page() will wait until the migration
837 			 * pte is removed and then restart fault handling.
838 			 */
839 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
840 			entry = make_migration_entry(page, pte_write(pteval));
841 		}
842 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
843 		BUG_ON(pte_file(*pte));
844 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
845 		/* Establish migration entry for a file page */
846 		swp_entry_t entry;
847 		entry = make_migration_entry(page, pte_write(pteval));
848 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
849 	} else
850 		dec_mm_counter(mm, file_rss);
851 
852 
853 	page_remove_rmap(page);
854 	page_cache_release(page);
855 
856 out_unmap:
857 	pte_unmap_unlock(pte, ptl);
858 out:
859 	return ret;
860 }
861 
862 /*
863  * objrmap doesn't work for nonlinear VMAs because the assumption that
864  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
865  * Consequently, given a particular page and its ->index, we cannot locate the
866  * ptes which are mapping that page without an exhaustive linear search.
867  *
868  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
869  * maps the file to which the target page belongs.  The ->vm_private_data field
870  * holds the current cursor into that scan.  Successive searches will circulate
871  * around the vma's virtual address space.
872  *
873  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
874  * more scanning pressure is placed against them as well.   Eventually pages
875  * will become fully unmapped and are eligible for eviction.
876  *
877  * For very sparsely populated VMAs this is a little inefficient - chances are
878  * there there won't be many ptes located within the scan cluster.  In this case
879  * maybe we could scan further - to the end of the pte page, perhaps.
880  *
881  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
882  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
883  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
884  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
885  */
886 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
887 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
888 
889 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
890 		struct vm_area_struct *vma, struct page *check_page)
891 {
892 	struct mm_struct *mm = vma->vm_mm;
893 	pgd_t *pgd;
894 	pud_t *pud;
895 	pmd_t *pmd;
896 	pte_t *pte;
897 	pte_t pteval;
898 	spinlock_t *ptl;
899 	struct page *page;
900 	unsigned long address;
901 	unsigned long end;
902 	int ret = SWAP_AGAIN;
903 	int locked_vma = 0;
904 
905 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
906 	end = address + CLUSTER_SIZE;
907 	if (address < vma->vm_start)
908 		address = vma->vm_start;
909 	if (end > vma->vm_end)
910 		end = vma->vm_end;
911 
912 	pgd = pgd_offset(mm, address);
913 	if (!pgd_present(*pgd))
914 		return ret;
915 
916 	pud = pud_offset(pgd, address);
917 	if (!pud_present(*pud))
918 		return ret;
919 
920 	pmd = pmd_offset(pud, address);
921 	if (!pmd_present(*pmd))
922 		return ret;
923 
924 	/*
925 	 * MLOCK_PAGES => feature is configured.
926 	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
927 	 * keep the sem while scanning the cluster for mlocking pages.
928 	 */
929 	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
930 		locked_vma = (vma->vm_flags & VM_LOCKED);
931 		if (!locked_vma)
932 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
933 	}
934 
935 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
936 
937 	/* Update high watermark before we lower rss */
938 	update_hiwater_rss(mm);
939 
940 	for (; address < end; pte++, address += PAGE_SIZE) {
941 		if (!pte_present(*pte))
942 			continue;
943 		page = vm_normal_page(vma, address, *pte);
944 		BUG_ON(!page || PageAnon(page));
945 
946 		if (locked_vma) {
947 			mlock_vma_page(page);   /* no-op if already mlocked */
948 			if (page == check_page)
949 				ret = SWAP_MLOCK;
950 			continue;	/* don't unmap */
951 		}
952 
953 		if (ptep_clear_flush_young_notify(vma, address, pte))
954 			continue;
955 
956 		/* Nuke the page table entry. */
957 		flush_cache_page(vma, address, pte_pfn(*pte));
958 		pteval = ptep_clear_flush_notify(vma, address, pte);
959 
960 		/* If nonlinear, store the file page offset in the pte. */
961 		if (page->index != linear_page_index(vma, address))
962 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
963 
964 		/* Move the dirty bit to the physical page now the pte is gone. */
965 		if (pte_dirty(pteval))
966 			set_page_dirty(page);
967 
968 		page_remove_rmap(page);
969 		page_cache_release(page);
970 		dec_mm_counter(mm, file_rss);
971 		(*mapcount)--;
972 	}
973 	pte_unmap_unlock(pte - 1, ptl);
974 	if (locked_vma)
975 		up_read(&vma->vm_mm->mmap_sem);
976 	return ret;
977 }
978 
979 /*
980  * common handling for pages mapped in VM_LOCKED vmas
981  */
982 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
983 {
984 	int mlocked = 0;
985 
986 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
987 		if (vma->vm_flags & VM_LOCKED) {
988 			mlock_vma_page(page);
989 			mlocked++;	/* really mlocked the page */
990 		}
991 		up_read(&vma->vm_mm->mmap_sem);
992 	}
993 	return mlocked;
994 }
995 
996 /**
997  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
998  * rmap method
999  * @page: the page to unmap/unlock
1000  * @unlock:  request for unlock rather than unmap [unlikely]
1001  * @migration:  unmapping for migration - ignored if @unlock
1002  *
1003  * Find all the mappings of a page using the mapping pointer and the vma chains
1004  * contained in the anon_vma struct it points to.
1005  *
1006  * This function is only called from try_to_unmap/try_to_munlock for
1007  * anonymous pages.
1008  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1009  * where the page was found will be held for write.  So, we won't recheck
1010  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1011  * 'LOCKED.
1012  */
1013 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1014 {
1015 	struct anon_vma *anon_vma;
1016 	struct vm_area_struct *vma;
1017 	unsigned int mlocked = 0;
1018 	int ret = SWAP_AGAIN;
1019 	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1020 
1021 	if (MLOCK_PAGES && unlikely(unlock))
1022 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1023 
1024 	anon_vma = page_lock_anon_vma(page);
1025 	if (!anon_vma)
1026 		return ret;
1027 
1028 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1029 		if (MLOCK_PAGES && unlikely(unlock)) {
1030 			if (!((vma->vm_flags & VM_LOCKED) &&
1031 			      page_mapped_in_vma(page, vma)))
1032 				continue;  /* must visit all unlocked vmas */
1033 			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1034 		} else {
1035 			ret = try_to_unmap_one(page, vma, flags);
1036 			if (ret == SWAP_FAIL || !page_mapped(page))
1037 				break;
1038 		}
1039 		if (ret == SWAP_MLOCK) {
1040 			mlocked = try_to_mlock_page(page, vma);
1041 			if (mlocked)
1042 				break;	/* stop if actually mlocked page */
1043 		}
1044 	}
1045 
1046 	page_unlock_anon_vma(anon_vma);
1047 
1048 	if (mlocked)
1049 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1050 	else if (ret == SWAP_MLOCK)
1051 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1052 
1053 	return ret;
1054 }
1055 
1056 /**
1057  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1058  * @page: the page to unmap/unlock
1059  * @flags: action and flags
1060  *
1061  * Find all the mappings of a page using the mapping pointer and the vma chains
1062  * contained in the address_space struct it points to.
1063  *
1064  * This function is only called from try_to_unmap/try_to_munlock for
1065  * object-based pages.
1066  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1067  * where the page was found will be held for write.  So, we won't recheck
1068  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1069  * 'LOCKED.
1070  */
1071 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1072 {
1073 	struct address_space *mapping = page->mapping;
1074 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1075 	struct vm_area_struct *vma;
1076 	struct prio_tree_iter iter;
1077 	int ret = SWAP_AGAIN;
1078 	unsigned long cursor;
1079 	unsigned long max_nl_cursor = 0;
1080 	unsigned long max_nl_size = 0;
1081 	unsigned int mapcount;
1082 	unsigned int mlocked = 0;
1083 	int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
1084 
1085 	if (MLOCK_PAGES && unlikely(unlock))
1086 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1087 
1088 	spin_lock(&mapping->i_mmap_lock);
1089 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1090 		if (MLOCK_PAGES && unlikely(unlock)) {
1091 			if (!((vma->vm_flags & VM_LOCKED) &&
1092 						page_mapped_in_vma(page, vma)))
1093 				continue;	/* must visit all vmas */
1094 			ret = SWAP_MLOCK;
1095 		} else {
1096 			ret = try_to_unmap_one(page, vma, flags);
1097 			if (ret == SWAP_FAIL || !page_mapped(page))
1098 				goto out;
1099 		}
1100 		if (ret == SWAP_MLOCK) {
1101 			mlocked = try_to_mlock_page(page, vma);
1102 			if (mlocked)
1103 				break;  /* stop if actually mlocked page */
1104 		}
1105 	}
1106 
1107 	if (mlocked)
1108 		goto out;
1109 
1110 	if (list_empty(&mapping->i_mmap_nonlinear))
1111 		goto out;
1112 
1113 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1114 						shared.vm_set.list) {
1115 		if (MLOCK_PAGES && unlikely(unlock)) {
1116 			if (!(vma->vm_flags & VM_LOCKED))
1117 				continue;	/* must visit all vmas */
1118 			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1119 			goto out;		/* no need to look further */
1120 		}
1121 		if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1122 			(vma->vm_flags & VM_LOCKED))
1123 			continue;
1124 		cursor = (unsigned long) vma->vm_private_data;
1125 		if (cursor > max_nl_cursor)
1126 			max_nl_cursor = cursor;
1127 		cursor = vma->vm_end - vma->vm_start;
1128 		if (cursor > max_nl_size)
1129 			max_nl_size = cursor;
1130 	}
1131 
1132 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1133 		ret = SWAP_FAIL;
1134 		goto out;
1135 	}
1136 
1137 	/*
1138 	 * We don't try to search for this page in the nonlinear vmas,
1139 	 * and page_referenced wouldn't have found it anyway.  Instead
1140 	 * just walk the nonlinear vmas trying to age and unmap some.
1141 	 * The mapcount of the page we came in with is irrelevant,
1142 	 * but even so use it as a guide to how hard we should try?
1143 	 */
1144 	mapcount = page_mapcount(page);
1145 	if (!mapcount)
1146 		goto out;
1147 	cond_resched_lock(&mapping->i_mmap_lock);
1148 
1149 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1150 	if (max_nl_cursor == 0)
1151 		max_nl_cursor = CLUSTER_SIZE;
1152 
1153 	do {
1154 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1155 						shared.vm_set.list) {
1156 			if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1157 			    (vma->vm_flags & VM_LOCKED))
1158 				continue;
1159 			cursor = (unsigned long) vma->vm_private_data;
1160 			while ( cursor < max_nl_cursor &&
1161 				cursor < vma->vm_end - vma->vm_start) {
1162 				ret = try_to_unmap_cluster(cursor, &mapcount,
1163 								vma, page);
1164 				if (ret == SWAP_MLOCK)
1165 					mlocked = 2;	/* to return below */
1166 				cursor += CLUSTER_SIZE;
1167 				vma->vm_private_data = (void *) cursor;
1168 				if ((int)mapcount <= 0)
1169 					goto out;
1170 			}
1171 			vma->vm_private_data = (void *) max_nl_cursor;
1172 		}
1173 		cond_resched_lock(&mapping->i_mmap_lock);
1174 		max_nl_cursor += CLUSTER_SIZE;
1175 	} while (max_nl_cursor <= max_nl_size);
1176 
1177 	/*
1178 	 * Don't loop forever (perhaps all the remaining pages are
1179 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1180 	 * vmas, now forgetting on which ones it had fallen behind.
1181 	 */
1182 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1183 		vma->vm_private_data = NULL;
1184 out:
1185 	spin_unlock(&mapping->i_mmap_lock);
1186 	if (mlocked)
1187 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1188 	else if (ret == SWAP_MLOCK)
1189 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1190 	return ret;
1191 }
1192 
1193 /**
1194  * try_to_unmap - try to remove all page table mappings to a page
1195  * @page: the page to get unmapped
1196  * @flags: action and flags
1197  *
1198  * Tries to remove all the page table entries which are mapping this
1199  * page, used in the pageout path.  Caller must hold the page lock.
1200  * Return values are:
1201  *
1202  * SWAP_SUCCESS	- we succeeded in removing all mappings
1203  * SWAP_AGAIN	- we missed a mapping, try again later
1204  * SWAP_FAIL	- the page is unswappable
1205  * SWAP_MLOCK	- page is mlocked.
1206  */
1207 int try_to_unmap(struct page *page, enum ttu_flags flags)
1208 {
1209 	int ret;
1210 
1211 	BUG_ON(!PageLocked(page));
1212 
1213 	if (PageAnon(page))
1214 		ret = try_to_unmap_anon(page, flags);
1215 	else
1216 		ret = try_to_unmap_file(page, flags);
1217 	if (ret != SWAP_MLOCK && !page_mapped(page))
1218 		ret = SWAP_SUCCESS;
1219 	return ret;
1220 }
1221 
1222 /**
1223  * try_to_munlock - try to munlock a page
1224  * @page: the page to be munlocked
1225  *
1226  * Called from munlock code.  Checks all of the VMAs mapping the page
1227  * to make sure nobody else has this page mlocked. The page will be
1228  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1229  *
1230  * Return values are:
1231  *
1232  * SWAP_SUCCESS	- no vma's holding page mlocked.
1233  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1234  * SWAP_MLOCK	- page is now mlocked.
1235  */
1236 int try_to_munlock(struct page *page)
1237 {
1238 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1239 
1240 	if (PageAnon(page))
1241 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1242 	else
1243 		return try_to_unmap_file(page, TTU_MUNLOCK);
1244 }
1245 
1246