xref: /linux/mm/rmap.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include "internal.h"
57 
58 static struct kmem_cache *anon_vma_cachep;
59 
60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64 
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 	kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69 
70 /**
71  * anon_vma_prepare - attach an anon_vma to a memory region
72  * @vma: the memory region in question
73  *
74  * This makes sure the memory mapping described by 'vma' has
75  * an 'anon_vma' attached to it, so that we can associate the
76  * anonymous pages mapped into it with that anon_vma.
77  *
78  * The common case will be that we already have one, but if
79  * if not we either need to find an adjacent mapping that we
80  * can re-use the anon_vma from (very common when the only
81  * reason for splitting a vma has been mprotect()), or we
82  * allocate a new one.
83  *
84  * Anon-vma allocations are very subtle, because we may have
85  * optimistically looked up an anon_vma in page_lock_anon_vma()
86  * and that may actually touch the spinlock even in the newly
87  * allocated vma (it depends on RCU to make sure that the
88  * anon_vma isn't actually destroyed).
89  *
90  * As a result, we need to do proper anon_vma locking even
91  * for the new allocation. At the same time, we do not want
92  * to do any locking for the common case of already having
93  * an anon_vma.
94  *
95  * This must be called with the mmap_sem held for reading.
96  */
97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 	struct anon_vma *anon_vma = vma->anon_vma;
100 
101 	might_sleep();
102 	if (unlikely(!anon_vma)) {
103 		struct mm_struct *mm = vma->vm_mm;
104 		struct anon_vma *allocated;
105 
106 		anon_vma = find_mergeable_anon_vma(vma);
107 		allocated = NULL;
108 		if (!anon_vma) {
109 			anon_vma = anon_vma_alloc();
110 			if (unlikely(!anon_vma))
111 				return -ENOMEM;
112 			allocated = anon_vma;
113 		}
114 		spin_lock(&anon_vma->lock);
115 
116 		/* page_table_lock to protect against threads */
117 		spin_lock(&mm->page_table_lock);
118 		if (likely(!vma->anon_vma)) {
119 			vma->anon_vma = anon_vma;
120 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 			allocated = NULL;
122 		}
123 		spin_unlock(&mm->page_table_lock);
124 
125 		spin_unlock(&anon_vma->lock);
126 		if (unlikely(allocated))
127 			anon_vma_free(allocated);
128 	}
129 	return 0;
130 }
131 
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 	BUG_ON(vma->anon_vma != next->anon_vma);
135 	list_del(&next->anon_vma_node);
136 }
137 
138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 	struct anon_vma *anon_vma = vma->anon_vma;
141 
142 	if (anon_vma)
143 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145 
146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 	struct anon_vma *anon_vma = vma->anon_vma;
149 
150 	if (anon_vma) {
151 		spin_lock(&anon_vma->lock);
152 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 		spin_unlock(&anon_vma->lock);
154 	}
155 }
156 
157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 	struct anon_vma *anon_vma = vma->anon_vma;
160 	int empty;
161 
162 	if (!anon_vma)
163 		return;
164 
165 	spin_lock(&anon_vma->lock);
166 	list_del(&vma->anon_vma_node);
167 
168 	/* We must garbage collect the anon_vma if it's empty */
169 	empty = list_empty(&anon_vma->head);
170 	spin_unlock(&anon_vma->lock);
171 
172 	if (empty)
173 		anon_vma_free(anon_vma);
174 }
175 
176 static void anon_vma_ctor(void *data)
177 {
178 	struct anon_vma *anon_vma = data;
179 
180 	spin_lock_init(&anon_vma->lock);
181 	INIT_LIST_HEAD(&anon_vma->head);
182 }
183 
184 void __init anon_vma_init(void)
185 {
186 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189 
190 /*
191  * Getting a lock on a stable anon_vma from a page off the LRU is
192  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193  */
194 struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 	struct anon_vma *anon_vma;
197 	unsigned long anon_mapping;
198 
199 	rcu_read_lock();
200 	anon_mapping = (unsigned long) page->mapping;
201 	if (!(anon_mapping & PAGE_MAPPING_ANON))
202 		goto out;
203 	if (!page_mapped(page))
204 		goto out;
205 
206 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 	spin_lock(&anon_vma->lock);
208 	return anon_vma;
209 out:
210 	rcu_read_unlock();
211 	return NULL;
212 }
213 
214 void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 	spin_unlock(&anon_vma->lock);
217 	rcu_read_unlock();
218 }
219 
220 /*
221  * At what user virtual address is page expected in @vma?
222  * Returns virtual address or -EFAULT if page's index/offset is not
223  * within the range mapped the @vma.
224  */
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 	unsigned long address;
230 
231 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 		/* page should be within @vma mapping range */
234 		return -EFAULT;
235 	}
236 	return address;
237 }
238 
239 /*
240  * At what user virtual address is page expected in vma? checking that the
241  * page matches the vma: currently only used on anon pages, by unuse_vma;
242  */
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 	if (PageAnon(page)) {
246 		if ((void *)vma->anon_vma !=
247 		    (void *)page->mapping - PAGE_MAPPING_ANON)
248 			return -EFAULT;
249 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 		if (!vma->vm_file ||
251 		    vma->vm_file->f_mapping != page->mapping)
252 			return -EFAULT;
253 	} else
254 		return -EFAULT;
255 	return vma_address(page, vma);
256 }
257 
258 /*
259  * Check that @page is mapped at @address into @mm.
260  *
261  * If @sync is false, page_check_address may perform a racy check to avoid
262  * the page table lock when the pte is not present (helpful when reclaiming
263  * highly shared pages).
264  *
265  * On success returns with pte mapped and locked.
266  */
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 			  unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 	pgd_t *pgd;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	spinlock_t *ptl;
275 
276 	pgd = pgd_offset(mm, address);
277 	if (!pgd_present(*pgd))
278 		return NULL;
279 
280 	pud = pud_offset(pgd, address);
281 	if (!pud_present(*pud))
282 		return NULL;
283 
284 	pmd = pmd_offset(pud, address);
285 	if (!pmd_present(*pmd))
286 		return NULL;
287 
288 	pte = pte_offset_map(pmd, address);
289 	/* Make a quick check before getting the lock */
290 	if (!sync && !pte_present(*pte)) {
291 		pte_unmap(pte);
292 		return NULL;
293 	}
294 
295 	ptl = pte_lockptr(mm, pmd);
296 	spin_lock(ptl);
297 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 		*ptlp = ptl;
299 		return pte;
300 	}
301 	pte_unmap_unlock(pte, ptl);
302 	return NULL;
303 }
304 
305 /**
306  * page_mapped_in_vma - check whether a page is really mapped in a VMA
307  * @page: the page to test
308  * @vma: the VMA to test
309  *
310  * Returns 1 if the page is mapped into the page tables of the VMA, 0
311  * if the page is not mapped into the page tables of this VMA.  Only
312  * valid for normal file or anonymous VMAs.
313  */
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 	unsigned long address;
317 	pte_t *pte;
318 	spinlock_t *ptl;
319 
320 	address = vma_address(page, vma);
321 	if (address == -EFAULT)		/* out of vma range */
322 		return 0;
323 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 	if (!pte)			/* the page is not in this mm */
325 		return 0;
326 	pte_unmap_unlock(pte, ptl);
327 
328 	return 1;
329 }
330 
331 /*
332  * Subfunctions of page_referenced: page_referenced_one called
333  * repeatedly from either page_referenced_anon or page_referenced_file.
334  */
335 static int page_referenced_one(struct page *page,
336 	struct vm_area_struct *vma, unsigned int *mapcount)
337 {
338 	struct mm_struct *mm = vma->vm_mm;
339 	unsigned long address;
340 	pte_t *pte;
341 	spinlock_t *ptl;
342 	int referenced = 0;
343 
344 	address = vma_address(page, vma);
345 	if (address == -EFAULT)
346 		goto out;
347 
348 	pte = page_check_address(page, mm, address, &ptl, 0);
349 	if (!pte)
350 		goto out;
351 
352 	/*
353 	 * Don't want to elevate referenced for mlocked page that gets this far,
354 	 * in order that it progresses to try_to_unmap and is moved to the
355 	 * unevictable list.
356 	 */
357 	if (vma->vm_flags & VM_LOCKED) {
358 		*mapcount = 1;	/* break early from loop */
359 		goto out_unmap;
360 	}
361 
362 	if (ptep_clear_flush_young_notify(vma, address, pte))
363 		referenced++;
364 
365 	/* Pretend the page is referenced if the task has the
366 	   swap token and is in the middle of a page fault. */
367 	if (mm != current->mm && has_swap_token(mm) &&
368 			rwsem_is_locked(&mm->mmap_sem))
369 		referenced++;
370 
371 out_unmap:
372 	(*mapcount)--;
373 	pte_unmap_unlock(pte, ptl);
374 out:
375 	return referenced;
376 }
377 
378 static int page_referenced_anon(struct page *page,
379 				struct mem_cgroup *mem_cont)
380 {
381 	unsigned int mapcount;
382 	struct anon_vma *anon_vma;
383 	struct vm_area_struct *vma;
384 	int referenced = 0;
385 
386 	anon_vma = page_lock_anon_vma(page);
387 	if (!anon_vma)
388 		return referenced;
389 
390 	mapcount = page_mapcount(page);
391 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
392 		/*
393 		 * If we are reclaiming on behalf of a cgroup, skip
394 		 * counting on behalf of references from different
395 		 * cgroups
396 		 */
397 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
398 			continue;
399 		referenced += page_referenced_one(page, vma, &mapcount);
400 		if (!mapcount)
401 			break;
402 	}
403 
404 	page_unlock_anon_vma(anon_vma);
405 	return referenced;
406 }
407 
408 /**
409  * page_referenced_file - referenced check for object-based rmap
410  * @page: the page we're checking references on.
411  * @mem_cont: target memory controller
412  *
413  * For an object-based mapped page, find all the places it is mapped and
414  * check/clear the referenced flag.  This is done by following the page->mapping
415  * pointer, then walking the chain of vmas it holds.  It returns the number
416  * of references it found.
417  *
418  * This function is only called from page_referenced for object-based pages.
419  */
420 static int page_referenced_file(struct page *page,
421 				struct mem_cgroup *mem_cont)
422 {
423 	unsigned int mapcount;
424 	struct address_space *mapping = page->mapping;
425 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
426 	struct vm_area_struct *vma;
427 	struct prio_tree_iter iter;
428 	int referenced = 0;
429 
430 	/*
431 	 * The caller's checks on page->mapping and !PageAnon have made
432 	 * sure that this is a file page: the check for page->mapping
433 	 * excludes the case just before it gets set on an anon page.
434 	 */
435 	BUG_ON(PageAnon(page));
436 
437 	/*
438 	 * The page lock not only makes sure that page->mapping cannot
439 	 * suddenly be NULLified by truncation, it makes sure that the
440 	 * structure at mapping cannot be freed and reused yet,
441 	 * so we can safely take mapping->i_mmap_lock.
442 	 */
443 	BUG_ON(!PageLocked(page));
444 
445 	spin_lock(&mapping->i_mmap_lock);
446 
447 	/*
448 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
449 	 * is more likely to be accurate if we note it after spinning.
450 	 */
451 	mapcount = page_mapcount(page);
452 
453 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
454 		/*
455 		 * If we are reclaiming on behalf of a cgroup, skip
456 		 * counting on behalf of references from different
457 		 * cgroups
458 		 */
459 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
460 			continue;
461 		referenced += page_referenced_one(page, vma, &mapcount);
462 		if (!mapcount)
463 			break;
464 	}
465 
466 	spin_unlock(&mapping->i_mmap_lock);
467 	return referenced;
468 }
469 
470 /**
471  * page_referenced - test if the page was referenced
472  * @page: the page to test
473  * @is_locked: caller holds lock on the page
474  * @mem_cont: target memory controller
475  *
476  * Quick test_and_clear_referenced for all mappings to a page,
477  * returns the number of ptes which referenced the page.
478  */
479 int page_referenced(struct page *page, int is_locked,
480 			struct mem_cgroup *mem_cont)
481 {
482 	int referenced = 0;
483 
484 	if (TestClearPageReferenced(page))
485 		referenced++;
486 
487 	if (page_mapped(page) && page->mapping) {
488 		if (PageAnon(page))
489 			referenced += page_referenced_anon(page, mem_cont);
490 		else if (is_locked)
491 			referenced += page_referenced_file(page, mem_cont);
492 		else if (!trylock_page(page))
493 			referenced++;
494 		else {
495 			if (page->mapping)
496 				referenced +=
497 					page_referenced_file(page, mem_cont);
498 			unlock_page(page);
499 		}
500 	}
501 
502 	if (page_test_and_clear_young(page))
503 		referenced++;
504 
505 	return referenced;
506 }
507 
508 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
509 {
510 	struct mm_struct *mm = vma->vm_mm;
511 	unsigned long address;
512 	pte_t *pte;
513 	spinlock_t *ptl;
514 	int ret = 0;
515 
516 	address = vma_address(page, vma);
517 	if (address == -EFAULT)
518 		goto out;
519 
520 	pte = page_check_address(page, mm, address, &ptl, 1);
521 	if (!pte)
522 		goto out;
523 
524 	if (pte_dirty(*pte) || pte_write(*pte)) {
525 		pte_t entry;
526 
527 		flush_cache_page(vma, address, pte_pfn(*pte));
528 		entry = ptep_clear_flush_notify(vma, address, pte);
529 		entry = pte_wrprotect(entry);
530 		entry = pte_mkclean(entry);
531 		set_pte_at(mm, address, pte, entry);
532 		ret = 1;
533 	}
534 
535 	pte_unmap_unlock(pte, ptl);
536 out:
537 	return ret;
538 }
539 
540 static int page_mkclean_file(struct address_space *mapping, struct page *page)
541 {
542 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
543 	struct vm_area_struct *vma;
544 	struct prio_tree_iter iter;
545 	int ret = 0;
546 
547 	BUG_ON(PageAnon(page));
548 
549 	spin_lock(&mapping->i_mmap_lock);
550 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
551 		if (vma->vm_flags & VM_SHARED)
552 			ret += page_mkclean_one(page, vma);
553 	}
554 	spin_unlock(&mapping->i_mmap_lock);
555 	return ret;
556 }
557 
558 int page_mkclean(struct page *page)
559 {
560 	int ret = 0;
561 
562 	BUG_ON(!PageLocked(page));
563 
564 	if (page_mapped(page)) {
565 		struct address_space *mapping = page_mapping(page);
566 		if (mapping) {
567 			ret = page_mkclean_file(mapping, page);
568 			if (page_test_dirty(page)) {
569 				page_clear_dirty(page);
570 				ret = 1;
571 			}
572 		}
573 	}
574 
575 	return ret;
576 }
577 EXPORT_SYMBOL_GPL(page_mkclean);
578 
579 /**
580  * __page_set_anon_rmap - setup new anonymous rmap
581  * @page:	the page to add the mapping to
582  * @vma:	the vm area in which the mapping is added
583  * @address:	the user virtual address mapped
584  */
585 static void __page_set_anon_rmap(struct page *page,
586 	struct vm_area_struct *vma, unsigned long address)
587 {
588 	struct anon_vma *anon_vma = vma->anon_vma;
589 
590 	BUG_ON(!anon_vma);
591 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
592 	page->mapping = (struct address_space *) anon_vma;
593 
594 	page->index = linear_page_index(vma, address);
595 
596 	/*
597 	 * nr_mapped state can be updated without turning off
598 	 * interrupts because it is not modified via interrupt.
599 	 */
600 	__inc_zone_page_state(page, NR_ANON_PAGES);
601 }
602 
603 /**
604  * __page_check_anon_rmap - sanity check anonymous rmap addition
605  * @page:	the page to add the mapping to
606  * @vma:	the vm area in which the mapping is added
607  * @address:	the user virtual address mapped
608  */
609 static void __page_check_anon_rmap(struct page *page,
610 	struct vm_area_struct *vma, unsigned long address)
611 {
612 #ifdef CONFIG_DEBUG_VM
613 	/*
614 	 * The page's anon-rmap details (mapping and index) are guaranteed to
615 	 * be set up correctly at this point.
616 	 *
617 	 * We have exclusion against page_add_anon_rmap because the caller
618 	 * always holds the page locked, except if called from page_dup_rmap,
619 	 * in which case the page is already known to be setup.
620 	 *
621 	 * We have exclusion against page_add_new_anon_rmap because those pages
622 	 * are initially only visible via the pagetables, and the pte is locked
623 	 * over the call to page_add_new_anon_rmap.
624 	 */
625 	struct anon_vma *anon_vma = vma->anon_vma;
626 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
627 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
628 	BUG_ON(page->index != linear_page_index(vma, address));
629 #endif
630 }
631 
632 /**
633  * page_add_anon_rmap - add pte mapping to an anonymous page
634  * @page:	the page to add the mapping to
635  * @vma:	the vm area in which the mapping is added
636  * @address:	the user virtual address mapped
637  *
638  * The caller needs to hold the pte lock and the page must be locked.
639  */
640 void page_add_anon_rmap(struct page *page,
641 	struct vm_area_struct *vma, unsigned long address)
642 {
643 	VM_BUG_ON(!PageLocked(page));
644 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
645 	if (atomic_inc_and_test(&page->_mapcount))
646 		__page_set_anon_rmap(page, vma, address);
647 	else
648 		__page_check_anon_rmap(page, vma, address);
649 }
650 
651 /**
652  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
653  * @page:	the page to add the mapping to
654  * @vma:	the vm area in which the mapping is added
655  * @address:	the user virtual address mapped
656  *
657  * Same as page_add_anon_rmap but must only be called on *new* pages.
658  * This means the inc-and-test can be bypassed.
659  * Page does not have to be locked.
660  */
661 void page_add_new_anon_rmap(struct page *page,
662 	struct vm_area_struct *vma, unsigned long address)
663 {
664 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
665 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
666 	__page_set_anon_rmap(page, vma, address);
667 }
668 
669 /**
670  * page_add_file_rmap - add pte mapping to a file page
671  * @page: the page to add the mapping to
672  *
673  * The caller needs to hold the pte lock.
674  */
675 void page_add_file_rmap(struct page *page)
676 {
677 	if (atomic_inc_and_test(&page->_mapcount))
678 		__inc_zone_page_state(page, NR_FILE_MAPPED);
679 }
680 
681 #ifdef CONFIG_DEBUG_VM
682 /**
683  * page_dup_rmap - duplicate pte mapping to a page
684  * @page:	the page to add the mapping to
685  * @vma:	the vm area being duplicated
686  * @address:	the user virtual address mapped
687  *
688  * For copy_page_range only: minimal extract from page_add_file_rmap /
689  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
690  * quicker.
691  *
692  * The caller needs to hold the pte lock.
693  */
694 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
695 {
696 	BUG_ON(page_mapcount(page) == 0);
697 	if (PageAnon(page))
698 		__page_check_anon_rmap(page, vma, address);
699 	atomic_inc(&page->_mapcount);
700 }
701 #endif
702 
703 /**
704  * page_remove_rmap - take down pte mapping from a page
705  * @page: page to remove mapping from
706  * @vma: the vm area in which the mapping is removed
707  *
708  * The caller needs to hold the pte lock.
709  */
710 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
711 {
712 	if (atomic_add_negative(-1, &page->_mapcount)) {
713 		if (unlikely(page_mapcount(page) < 0)) {
714 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
715 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
716 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
717 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
718 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
719 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
720 			if (vma->vm_ops) {
721 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
722 			}
723 			if (vma->vm_file && vma->vm_file->f_op)
724 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
725 			BUG();
726 		}
727 
728 		/*
729 		 * Now that the last pte has gone, s390 must transfer dirty
730 		 * flag from storage key to struct page.  We can usually skip
731 		 * this if the page is anon, so about to be freed; but perhaps
732 		 * not if it's in swapcache - there might be another pte slot
733 		 * containing the swap entry, but page not yet written to swap.
734 		 */
735 		if ((!PageAnon(page) || PageSwapCache(page)) &&
736 		    page_test_dirty(page)) {
737 			page_clear_dirty(page);
738 			set_page_dirty(page);
739 		}
740 		if (PageAnon(page))
741 			mem_cgroup_uncharge_page(page);
742 		__dec_zone_page_state(page,
743 			PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
744 		/*
745 		 * It would be tidy to reset the PageAnon mapping here,
746 		 * but that might overwrite a racing page_add_anon_rmap
747 		 * which increments mapcount after us but sets mapping
748 		 * before us: so leave the reset to free_hot_cold_page,
749 		 * and remember that it's only reliable while mapped.
750 		 * Leaving it set also helps swapoff to reinstate ptes
751 		 * faster for those pages still in swapcache.
752 		 */
753 	}
754 }
755 
756 /*
757  * Subfunctions of try_to_unmap: try_to_unmap_one called
758  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
759  */
760 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
761 				int migration)
762 {
763 	struct mm_struct *mm = vma->vm_mm;
764 	unsigned long address;
765 	pte_t *pte;
766 	pte_t pteval;
767 	spinlock_t *ptl;
768 	int ret = SWAP_AGAIN;
769 
770 	address = vma_address(page, vma);
771 	if (address == -EFAULT)
772 		goto out;
773 
774 	pte = page_check_address(page, mm, address, &ptl, 0);
775 	if (!pte)
776 		goto out;
777 
778 	/*
779 	 * If the page is mlock()d, we cannot swap it out.
780 	 * If it's recently referenced (perhaps page_referenced
781 	 * skipped over this mm) then we should reactivate it.
782 	 */
783 	if (!migration) {
784 		if (vma->vm_flags & VM_LOCKED) {
785 			ret = SWAP_MLOCK;
786 			goto out_unmap;
787 		}
788 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
789 			ret = SWAP_FAIL;
790 			goto out_unmap;
791 		}
792   	}
793 
794 	/* Nuke the page table entry. */
795 	flush_cache_page(vma, address, page_to_pfn(page));
796 	pteval = ptep_clear_flush_notify(vma, address, pte);
797 
798 	/* Move the dirty bit to the physical page now the pte is gone. */
799 	if (pte_dirty(pteval))
800 		set_page_dirty(page);
801 
802 	/* Update high watermark before we lower rss */
803 	update_hiwater_rss(mm);
804 
805 	if (PageAnon(page)) {
806 		swp_entry_t entry = { .val = page_private(page) };
807 
808 		if (PageSwapCache(page)) {
809 			/*
810 			 * Store the swap location in the pte.
811 			 * See handle_pte_fault() ...
812 			 */
813 			swap_duplicate(entry);
814 			if (list_empty(&mm->mmlist)) {
815 				spin_lock(&mmlist_lock);
816 				if (list_empty(&mm->mmlist))
817 					list_add(&mm->mmlist, &init_mm.mmlist);
818 				spin_unlock(&mmlist_lock);
819 			}
820 			dec_mm_counter(mm, anon_rss);
821 #ifdef CONFIG_MIGRATION
822 		} else {
823 			/*
824 			 * Store the pfn of the page in a special migration
825 			 * pte. do_swap_page() will wait until the migration
826 			 * pte is removed and then restart fault handling.
827 			 */
828 			BUG_ON(!migration);
829 			entry = make_migration_entry(page, pte_write(pteval));
830 #endif
831 		}
832 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
833 		BUG_ON(pte_file(*pte));
834 	} else
835 #ifdef CONFIG_MIGRATION
836 	if (migration) {
837 		/* Establish migration entry for a file page */
838 		swp_entry_t entry;
839 		entry = make_migration_entry(page, pte_write(pteval));
840 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
841 	} else
842 #endif
843 		dec_mm_counter(mm, file_rss);
844 
845 
846 	page_remove_rmap(page, vma);
847 	page_cache_release(page);
848 
849 out_unmap:
850 	pte_unmap_unlock(pte, ptl);
851 out:
852 	return ret;
853 }
854 
855 /*
856  * objrmap doesn't work for nonlinear VMAs because the assumption that
857  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
858  * Consequently, given a particular page and its ->index, we cannot locate the
859  * ptes which are mapping that page without an exhaustive linear search.
860  *
861  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
862  * maps the file to which the target page belongs.  The ->vm_private_data field
863  * holds the current cursor into that scan.  Successive searches will circulate
864  * around the vma's virtual address space.
865  *
866  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
867  * more scanning pressure is placed against them as well.   Eventually pages
868  * will become fully unmapped and are eligible for eviction.
869  *
870  * For very sparsely populated VMAs this is a little inefficient - chances are
871  * there there won't be many ptes located within the scan cluster.  In this case
872  * maybe we could scan further - to the end of the pte page, perhaps.
873  *
874  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
875  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
876  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
877  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
878  */
879 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
880 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
881 
882 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
883 		struct vm_area_struct *vma, struct page *check_page)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 	pgd_t *pgd;
887 	pud_t *pud;
888 	pmd_t *pmd;
889 	pte_t *pte;
890 	pte_t pteval;
891 	spinlock_t *ptl;
892 	struct page *page;
893 	unsigned long address;
894 	unsigned long end;
895 	int ret = SWAP_AGAIN;
896 	int locked_vma = 0;
897 
898 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
899 	end = address + CLUSTER_SIZE;
900 	if (address < vma->vm_start)
901 		address = vma->vm_start;
902 	if (end > vma->vm_end)
903 		end = vma->vm_end;
904 
905 	pgd = pgd_offset(mm, address);
906 	if (!pgd_present(*pgd))
907 		return ret;
908 
909 	pud = pud_offset(pgd, address);
910 	if (!pud_present(*pud))
911 		return ret;
912 
913 	pmd = pmd_offset(pud, address);
914 	if (!pmd_present(*pmd))
915 		return ret;
916 
917 	/*
918 	 * MLOCK_PAGES => feature is configured.
919 	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
920 	 * keep the sem while scanning the cluster for mlocking pages.
921 	 */
922 	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
923 		locked_vma = (vma->vm_flags & VM_LOCKED);
924 		if (!locked_vma)
925 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
926 	}
927 
928 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
929 
930 	/* Update high watermark before we lower rss */
931 	update_hiwater_rss(mm);
932 
933 	for (; address < end; pte++, address += PAGE_SIZE) {
934 		if (!pte_present(*pte))
935 			continue;
936 		page = vm_normal_page(vma, address, *pte);
937 		BUG_ON(!page || PageAnon(page));
938 
939 		if (locked_vma) {
940 			mlock_vma_page(page);   /* no-op if already mlocked */
941 			if (page == check_page)
942 				ret = SWAP_MLOCK;
943 			continue;	/* don't unmap */
944 		}
945 
946 		if (ptep_clear_flush_young_notify(vma, address, pte))
947 			continue;
948 
949 		/* Nuke the page table entry. */
950 		flush_cache_page(vma, address, pte_pfn(*pte));
951 		pteval = ptep_clear_flush_notify(vma, address, pte);
952 
953 		/* If nonlinear, store the file page offset in the pte. */
954 		if (page->index != linear_page_index(vma, address))
955 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
956 
957 		/* Move the dirty bit to the physical page now the pte is gone. */
958 		if (pte_dirty(pteval))
959 			set_page_dirty(page);
960 
961 		page_remove_rmap(page, vma);
962 		page_cache_release(page);
963 		dec_mm_counter(mm, file_rss);
964 		(*mapcount)--;
965 	}
966 	pte_unmap_unlock(pte - 1, ptl);
967 	if (locked_vma)
968 		up_read(&vma->vm_mm->mmap_sem);
969 	return ret;
970 }
971 
972 /*
973  * common handling for pages mapped in VM_LOCKED vmas
974  */
975 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
976 {
977 	int mlocked = 0;
978 
979 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
980 		if (vma->vm_flags & VM_LOCKED) {
981 			mlock_vma_page(page);
982 			mlocked++;	/* really mlocked the page */
983 		}
984 		up_read(&vma->vm_mm->mmap_sem);
985 	}
986 	return mlocked;
987 }
988 
989 /**
990  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
991  * rmap method
992  * @page: the page to unmap/unlock
993  * @unlock:  request for unlock rather than unmap [unlikely]
994  * @migration:  unmapping for migration - ignored if @unlock
995  *
996  * Find all the mappings of a page using the mapping pointer and the vma chains
997  * contained in the anon_vma struct it points to.
998  *
999  * This function is only called from try_to_unmap/try_to_munlock for
1000  * anonymous pages.
1001  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1002  * where the page was found will be held for write.  So, we won't recheck
1003  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1004  * 'LOCKED.
1005  */
1006 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1007 {
1008 	struct anon_vma *anon_vma;
1009 	struct vm_area_struct *vma;
1010 	unsigned int mlocked = 0;
1011 	int ret = SWAP_AGAIN;
1012 
1013 	if (MLOCK_PAGES && unlikely(unlock))
1014 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1015 
1016 	anon_vma = page_lock_anon_vma(page);
1017 	if (!anon_vma)
1018 		return ret;
1019 
1020 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1021 		if (MLOCK_PAGES && unlikely(unlock)) {
1022 			if (!((vma->vm_flags & VM_LOCKED) &&
1023 			      page_mapped_in_vma(page, vma)))
1024 				continue;  /* must visit all unlocked vmas */
1025 			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1026 		} else {
1027 			ret = try_to_unmap_one(page, vma, migration);
1028 			if (ret == SWAP_FAIL || !page_mapped(page))
1029 				break;
1030 		}
1031 		if (ret == SWAP_MLOCK) {
1032 			mlocked = try_to_mlock_page(page, vma);
1033 			if (mlocked)
1034 				break;	/* stop if actually mlocked page */
1035 		}
1036 	}
1037 
1038 	page_unlock_anon_vma(anon_vma);
1039 
1040 	if (mlocked)
1041 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1042 	else if (ret == SWAP_MLOCK)
1043 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1044 
1045 	return ret;
1046 }
1047 
1048 /**
1049  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1050  * @page: the page to unmap/unlock
1051  * @unlock:  request for unlock rather than unmap [unlikely]
1052  * @migration:  unmapping for migration - ignored if @unlock
1053  *
1054  * Find all the mappings of a page using the mapping pointer and the vma chains
1055  * contained in the address_space struct it points to.
1056  *
1057  * This function is only called from try_to_unmap/try_to_munlock for
1058  * object-based pages.
1059  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1060  * where the page was found will be held for write.  So, we won't recheck
1061  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1062  * 'LOCKED.
1063  */
1064 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1065 {
1066 	struct address_space *mapping = page->mapping;
1067 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1068 	struct vm_area_struct *vma;
1069 	struct prio_tree_iter iter;
1070 	int ret = SWAP_AGAIN;
1071 	unsigned long cursor;
1072 	unsigned long max_nl_cursor = 0;
1073 	unsigned long max_nl_size = 0;
1074 	unsigned int mapcount;
1075 	unsigned int mlocked = 0;
1076 
1077 	if (MLOCK_PAGES && unlikely(unlock))
1078 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1079 
1080 	spin_lock(&mapping->i_mmap_lock);
1081 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1082 		if (MLOCK_PAGES && unlikely(unlock)) {
1083 			if (!(vma->vm_flags & VM_LOCKED))
1084 				continue;	/* must visit all vmas */
1085 			ret = SWAP_MLOCK;
1086 		} else {
1087 			ret = try_to_unmap_one(page, vma, migration);
1088 			if (ret == SWAP_FAIL || !page_mapped(page))
1089 				goto out;
1090 		}
1091 		if (ret == SWAP_MLOCK) {
1092 			mlocked = try_to_mlock_page(page, vma);
1093 			if (mlocked)
1094 				break;  /* stop if actually mlocked page */
1095 		}
1096 	}
1097 
1098 	if (mlocked)
1099 		goto out;
1100 
1101 	if (list_empty(&mapping->i_mmap_nonlinear))
1102 		goto out;
1103 
1104 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1105 						shared.vm_set.list) {
1106 		if (MLOCK_PAGES && unlikely(unlock)) {
1107 			if (!(vma->vm_flags & VM_LOCKED))
1108 				continue;	/* must visit all vmas */
1109 			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1110 			goto out;		/* no need to look further */
1111 		}
1112 		if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1113 			continue;
1114 		cursor = (unsigned long) vma->vm_private_data;
1115 		if (cursor > max_nl_cursor)
1116 			max_nl_cursor = cursor;
1117 		cursor = vma->vm_end - vma->vm_start;
1118 		if (cursor > max_nl_size)
1119 			max_nl_size = cursor;
1120 	}
1121 
1122 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1123 		ret = SWAP_FAIL;
1124 		goto out;
1125 	}
1126 
1127 	/*
1128 	 * We don't try to search for this page in the nonlinear vmas,
1129 	 * and page_referenced wouldn't have found it anyway.  Instead
1130 	 * just walk the nonlinear vmas trying to age and unmap some.
1131 	 * The mapcount of the page we came in with is irrelevant,
1132 	 * but even so use it as a guide to how hard we should try?
1133 	 */
1134 	mapcount = page_mapcount(page);
1135 	if (!mapcount)
1136 		goto out;
1137 	cond_resched_lock(&mapping->i_mmap_lock);
1138 
1139 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1140 	if (max_nl_cursor == 0)
1141 		max_nl_cursor = CLUSTER_SIZE;
1142 
1143 	do {
1144 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1145 						shared.vm_set.list) {
1146 			if (!MLOCK_PAGES && !migration &&
1147 			    (vma->vm_flags & VM_LOCKED))
1148 				continue;
1149 			cursor = (unsigned long) vma->vm_private_data;
1150 			while ( cursor < max_nl_cursor &&
1151 				cursor < vma->vm_end - vma->vm_start) {
1152 				ret = try_to_unmap_cluster(cursor, &mapcount,
1153 								vma, page);
1154 				if (ret == SWAP_MLOCK)
1155 					mlocked = 2;	/* to return below */
1156 				cursor += CLUSTER_SIZE;
1157 				vma->vm_private_data = (void *) cursor;
1158 				if ((int)mapcount <= 0)
1159 					goto out;
1160 			}
1161 			vma->vm_private_data = (void *) max_nl_cursor;
1162 		}
1163 		cond_resched_lock(&mapping->i_mmap_lock);
1164 		max_nl_cursor += CLUSTER_SIZE;
1165 	} while (max_nl_cursor <= max_nl_size);
1166 
1167 	/*
1168 	 * Don't loop forever (perhaps all the remaining pages are
1169 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1170 	 * vmas, now forgetting on which ones it had fallen behind.
1171 	 */
1172 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1173 		vma->vm_private_data = NULL;
1174 out:
1175 	spin_unlock(&mapping->i_mmap_lock);
1176 	if (mlocked)
1177 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1178 	else if (ret == SWAP_MLOCK)
1179 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1180 	return ret;
1181 }
1182 
1183 /**
1184  * try_to_unmap - try to remove all page table mappings to a page
1185  * @page: the page to get unmapped
1186  * @migration: migration flag
1187  *
1188  * Tries to remove all the page table entries which are mapping this
1189  * page, used in the pageout path.  Caller must hold the page lock.
1190  * Return values are:
1191  *
1192  * SWAP_SUCCESS	- we succeeded in removing all mappings
1193  * SWAP_AGAIN	- we missed a mapping, try again later
1194  * SWAP_FAIL	- the page is unswappable
1195  * SWAP_MLOCK	- page is mlocked.
1196  */
1197 int try_to_unmap(struct page *page, int migration)
1198 {
1199 	int ret;
1200 
1201 	BUG_ON(!PageLocked(page));
1202 
1203 	if (PageAnon(page))
1204 		ret = try_to_unmap_anon(page, 0, migration);
1205 	else
1206 		ret = try_to_unmap_file(page, 0, migration);
1207 	if (ret != SWAP_MLOCK && !page_mapped(page))
1208 		ret = SWAP_SUCCESS;
1209 	return ret;
1210 }
1211 
1212 #ifdef CONFIG_UNEVICTABLE_LRU
1213 /**
1214  * try_to_munlock - try to munlock a page
1215  * @page: the page to be munlocked
1216  *
1217  * Called from munlock code.  Checks all of the VMAs mapping the page
1218  * to make sure nobody else has this page mlocked. The page will be
1219  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1220  *
1221  * Return values are:
1222  *
1223  * SWAP_SUCCESS	- no vma's holding page mlocked.
1224  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1225  * SWAP_MLOCK	- page is now mlocked.
1226  */
1227 int try_to_munlock(struct page *page)
1228 {
1229 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1230 
1231 	if (PageAnon(page))
1232 		return try_to_unmap_anon(page, 1, 0);
1233 	else
1234 		return try_to_unmap_file(page, 1, 0);
1235 }
1236 #endif
1237