xref: /linux/mm/rmap.c (revision 8ed7cf66f4841bcc8c15a89be0732b933703b51c)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         folio_lock
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 #include <linux/oom.h>
79 
80 #include <asm/tlbflush.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/tlb.h>
84 #include <trace/events/migrate.h>
85 
86 #include "internal.h"
87 
88 static struct kmem_cache *anon_vma_cachep;
89 static struct kmem_cache *anon_vma_chain_cachep;
90 
91 static inline struct anon_vma *anon_vma_alloc(void)
92 {
93 	struct anon_vma *anon_vma;
94 
95 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
96 	if (anon_vma) {
97 		atomic_set(&anon_vma->refcount, 1);
98 		anon_vma->num_children = 0;
99 		anon_vma->num_active_vmas = 0;
100 		anon_vma->parent = anon_vma;
101 		/*
102 		 * Initialise the anon_vma root to point to itself. If called
103 		 * from fork, the root will be reset to the parents anon_vma.
104 		 */
105 		anon_vma->root = anon_vma;
106 	}
107 
108 	return anon_vma;
109 }
110 
111 static inline void anon_vma_free(struct anon_vma *anon_vma)
112 {
113 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
114 
115 	/*
116 	 * Synchronize against folio_lock_anon_vma_read() such that
117 	 * we can safely hold the lock without the anon_vma getting
118 	 * freed.
119 	 *
120 	 * Relies on the full mb implied by the atomic_dec_and_test() from
121 	 * put_anon_vma() against the acquire barrier implied by
122 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
123 	 *
124 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
125 	 *   down_read_trylock()		  atomic_dec_and_test()
126 	 *   LOCK				  MB
127 	 *   atomic_read()			  rwsem_is_locked()
128 	 *
129 	 * LOCK should suffice since the actual taking of the lock must
130 	 * happen _before_ what follows.
131 	 */
132 	might_sleep();
133 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
134 		anon_vma_lock_write(anon_vma);
135 		anon_vma_unlock_write(anon_vma);
136 	}
137 
138 	kmem_cache_free(anon_vma_cachep, anon_vma);
139 }
140 
141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
142 {
143 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
144 }
145 
146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
147 {
148 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
149 }
150 
151 static void anon_vma_chain_link(struct vm_area_struct *vma,
152 				struct anon_vma_chain *avc,
153 				struct anon_vma *anon_vma)
154 {
155 	avc->vma = vma;
156 	avc->anon_vma = anon_vma;
157 	list_add(&avc->same_vma, &vma->anon_vma_chain);
158 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
159 }
160 
161 /**
162  * __anon_vma_prepare - attach an anon_vma to a memory region
163  * @vma: the memory region in question
164  *
165  * This makes sure the memory mapping described by 'vma' has
166  * an 'anon_vma' attached to it, so that we can associate the
167  * anonymous pages mapped into it with that anon_vma.
168  *
169  * The common case will be that we already have one, which
170  * is handled inline by anon_vma_prepare(). But if
171  * not we either need to find an adjacent mapping that we
172  * can re-use the anon_vma from (very common when the only
173  * reason for splitting a vma has been mprotect()), or we
174  * allocate a new one.
175  *
176  * Anon-vma allocations are very subtle, because we may have
177  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
178  * and that may actually touch the rwsem even in the newly
179  * allocated vma (it depends on RCU to make sure that the
180  * anon_vma isn't actually destroyed).
181  *
182  * As a result, we need to do proper anon_vma locking even
183  * for the new allocation. At the same time, we do not want
184  * to do any locking for the common case of already having
185  * an anon_vma.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	mmap_assert_locked(mm);
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against folio_remove_rmap_*()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  *
494  * NOTE: the caller should normally hold folio lock when calling this.  If
495  * not, the caller needs to double check the anon_vma didn't change after
496  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
497  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
498  * which has already covered that, and comment above remap_pages().
499  */
500 struct anon_vma *folio_get_anon_vma(struct folio *folio)
501 {
502 	struct anon_vma *anon_vma = NULL;
503 	unsigned long anon_mapping;
504 
505 	rcu_read_lock();
506 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
507 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
508 		goto out;
509 	if (!folio_mapped(folio))
510 		goto out;
511 
512 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
513 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
514 		anon_vma = NULL;
515 		goto out;
516 	}
517 
518 	/*
519 	 * If this folio is still mapped, then its anon_vma cannot have been
520 	 * freed.  But if it has been unmapped, we have no security against the
521 	 * anon_vma structure being freed and reused (for another anon_vma:
522 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
523 	 * above cannot corrupt).
524 	 */
525 	if (!folio_mapped(folio)) {
526 		rcu_read_unlock();
527 		put_anon_vma(anon_vma);
528 		return NULL;
529 	}
530 out:
531 	rcu_read_unlock();
532 
533 	return anon_vma;
534 }
535 
536 /*
537  * Similar to folio_get_anon_vma() except it locks the anon_vma.
538  *
539  * Its a little more complex as it tries to keep the fast path to a single
540  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
541  * reference like with folio_get_anon_vma() and then block on the mutex
542  * on !rwc->try_lock case.
543  */
544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
545 					  struct rmap_walk_control *rwc)
546 {
547 	struct anon_vma *anon_vma = NULL;
548 	struct anon_vma *root_anon_vma;
549 	unsigned long anon_mapping;
550 
551 retry:
552 	rcu_read_lock();
553 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
554 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
555 		goto out;
556 	if (!folio_mapped(folio))
557 		goto out;
558 
559 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
560 	root_anon_vma = READ_ONCE(anon_vma->root);
561 	if (down_read_trylock(&root_anon_vma->rwsem)) {
562 		/*
563 		 * folio_move_anon_rmap() might have changed the anon_vma as we
564 		 * might not hold the folio lock here.
565 		 */
566 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
567 			     anon_mapping)) {
568 			up_read(&root_anon_vma->rwsem);
569 			rcu_read_unlock();
570 			goto retry;
571 		}
572 
573 		/*
574 		 * If the folio is still mapped, then this anon_vma is still
575 		 * its anon_vma, and holding the mutex ensures that it will
576 		 * not go away, see anon_vma_free().
577 		 */
578 		if (!folio_mapped(folio)) {
579 			up_read(&root_anon_vma->rwsem);
580 			anon_vma = NULL;
581 		}
582 		goto out;
583 	}
584 
585 	if (rwc && rwc->try_lock) {
586 		anon_vma = NULL;
587 		rwc->contended = true;
588 		goto out;
589 	}
590 
591 	/* trylock failed, we got to sleep */
592 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
593 		anon_vma = NULL;
594 		goto out;
595 	}
596 
597 	if (!folio_mapped(folio)) {
598 		rcu_read_unlock();
599 		put_anon_vma(anon_vma);
600 		return NULL;
601 	}
602 
603 	/* we pinned the anon_vma, its safe to sleep */
604 	rcu_read_unlock();
605 	anon_vma_lock_read(anon_vma);
606 
607 	/*
608 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
609 	 * not hold the folio lock here.
610 	 */
611 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
612 		     anon_mapping)) {
613 		anon_vma_unlock_read(anon_vma);
614 		put_anon_vma(anon_vma);
615 		anon_vma = NULL;
616 		goto retry;
617 	}
618 
619 	if (atomic_dec_and_test(&anon_vma->refcount)) {
620 		/*
621 		 * Oops, we held the last refcount, release the lock
622 		 * and bail -- can't simply use put_anon_vma() because
623 		 * we'll deadlock on the anon_vma_lock_write() recursion.
624 		 */
625 		anon_vma_unlock_read(anon_vma);
626 		__put_anon_vma(anon_vma);
627 		anon_vma = NULL;
628 	}
629 
630 	return anon_vma;
631 
632 out:
633 	rcu_read_unlock();
634 	return anon_vma;
635 }
636 
637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
638 /*
639  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
640  * important if a PTE was dirty when it was unmapped that it's flushed
641  * before any IO is initiated on the page to prevent lost writes. Similarly,
642  * it must be flushed before freeing to prevent data leakage.
643  */
644 void try_to_unmap_flush(void)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 
648 	if (!tlb_ubc->flush_required)
649 		return;
650 
651 	arch_tlbbatch_flush(&tlb_ubc->arch);
652 	tlb_ubc->flush_required = false;
653 	tlb_ubc->writable = false;
654 }
655 
656 /* Flush iff there are potentially writable TLB entries that can race with IO */
657 void try_to_unmap_flush_dirty(void)
658 {
659 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
660 
661 	if (tlb_ubc->writable)
662 		try_to_unmap_flush();
663 }
664 
665 /*
666  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
667  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
668  */
669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
670 #define TLB_FLUSH_BATCH_PENDING_MASK			\
671 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
672 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
673 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
674 
675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
676 				      unsigned long uaddr)
677 {
678 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
679 	int batch;
680 	bool writable = pte_dirty(pteval);
681 
682 	if (!pte_accessible(mm, pteval))
683 		return;
684 
685 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
686 	tlb_ubc->flush_required = true;
687 
688 	/*
689 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
690 	 * before the PTE is cleared.
691 	 */
692 	barrier();
693 	batch = atomic_read(&mm->tlb_flush_batched);
694 retry:
695 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
696 		/*
697 		 * Prevent `pending' from catching up with `flushed' because of
698 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
699 		 * `pending' becomes large.
700 		 */
701 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
702 			goto retry;
703 	} else {
704 		atomic_inc(&mm->tlb_flush_batched);
705 	}
706 
707 	/*
708 	 * If the PTE was dirty then it's best to assume it's writable. The
709 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
710 	 * before the page is queued for IO.
711 	 */
712 	if (writable)
713 		tlb_ubc->writable = true;
714 }
715 
716 /*
717  * Returns true if the TLB flush should be deferred to the end of a batch of
718  * unmap operations to reduce IPIs.
719  */
720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
721 {
722 	if (!(flags & TTU_BATCH_FLUSH))
723 		return false;
724 
725 	return arch_tlbbatch_should_defer(mm);
726 }
727 
728 /*
729  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
730  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
731  * operation such as mprotect or munmap to race between reclaim unmapping
732  * the page and flushing the page. If this race occurs, it potentially allows
733  * access to data via a stale TLB entry. Tracking all mm's that have TLB
734  * batching in flight would be expensive during reclaim so instead track
735  * whether TLB batching occurred in the past and if so then do a flush here
736  * if required. This will cost one additional flush per reclaim cycle paid
737  * by the first operation at risk such as mprotect and mumap.
738  *
739  * This must be called under the PTL so that an access to tlb_flush_batched
740  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
741  * via the PTL.
742  */
743 void flush_tlb_batched_pending(struct mm_struct *mm)
744 {
745 	int batch = atomic_read(&mm->tlb_flush_batched);
746 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
747 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
748 
749 	if (pending != flushed) {
750 		arch_flush_tlb_batched_pending(mm);
751 		/*
752 		 * If the new TLB flushing is pending during flushing, leave
753 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
754 		 */
755 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
756 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
757 	}
758 }
759 #else
760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
761 				      unsigned long uaddr)
762 {
763 }
764 
765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
766 {
767 	return false;
768 }
769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
770 
771 /*
772  * At what user virtual address is page expected in vma?
773  * Caller should check the page is actually part of the vma.
774  */
775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
776 {
777 	struct folio *folio = page_folio(page);
778 	pgoff_t pgoff;
779 
780 	if (folio_test_anon(folio)) {
781 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
782 		/*
783 		 * Note: swapoff's unuse_vma() is more efficient with this
784 		 * check, and needs it to match anon_vma when KSM is active.
785 		 */
786 		if (!vma->anon_vma || !page__anon_vma ||
787 		    vma->anon_vma->root != page__anon_vma->root)
788 			return -EFAULT;
789 	} else if (!vma->vm_file) {
790 		return -EFAULT;
791 	} else if (vma->vm_file->f_mapping != folio->mapping) {
792 		return -EFAULT;
793 	}
794 
795 	/* The !page__anon_vma above handles KSM folios */
796 	pgoff = folio->index + folio_page_idx(folio, page);
797 	return vma_address(vma, pgoff, 1);
798 }
799 
800 /*
801  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
802  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
803  * represents.
804  */
805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
806 {
807 	pgd_t *pgd;
808 	p4d_t *p4d;
809 	pud_t *pud;
810 	pmd_t *pmd = NULL;
811 
812 	pgd = pgd_offset(mm, address);
813 	if (!pgd_present(*pgd))
814 		goto out;
815 
816 	p4d = p4d_offset(pgd, address);
817 	if (!p4d_present(*p4d))
818 		goto out;
819 
820 	pud = pud_offset(p4d, address);
821 	if (!pud_present(*pud))
822 		goto out;
823 
824 	pmd = pmd_offset(pud, address);
825 out:
826 	return pmd;
827 }
828 
829 struct folio_referenced_arg {
830 	int mapcount;
831 	int referenced;
832 	unsigned long vm_flags;
833 	struct mem_cgroup *memcg;
834 };
835 
836 /*
837  * arg: folio_referenced_arg will be passed
838  */
839 static bool folio_referenced_one(struct folio *folio,
840 		struct vm_area_struct *vma, unsigned long address, void *arg)
841 {
842 	struct folio_referenced_arg *pra = arg;
843 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
844 	int referenced = 0;
845 	unsigned long start = address, ptes = 0;
846 
847 	while (page_vma_mapped_walk(&pvmw)) {
848 		address = pvmw.address;
849 
850 		if (vma->vm_flags & VM_LOCKED) {
851 			if (!folio_test_large(folio) || !pvmw.pte) {
852 				/* Restore the mlock which got missed */
853 				mlock_vma_folio(folio, vma);
854 				page_vma_mapped_walk_done(&pvmw);
855 				pra->vm_flags |= VM_LOCKED;
856 				return false; /* To break the loop */
857 			}
858 			/*
859 			 * For large folio fully mapped to VMA, will
860 			 * be handled after the pvmw loop.
861 			 *
862 			 * For large folio cross VMA boundaries, it's
863 			 * expected to be picked  by page reclaim. But
864 			 * should skip reference of pages which are in
865 			 * the range of VM_LOCKED vma. As page reclaim
866 			 * should just count the reference of pages out
867 			 * the range of VM_LOCKED vma.
868 			 */
869 			ptes++;
870 			pra->mapcount--;
871 			continue;
872 		}
873 
874 		/*
875 		 * Skip the non-shared swapbacked folio mapped solely by
876 		 * the exiting or OOM-reaped process. This avoids redundant
877 		 * swap-out followed by an immediate unmap.
878 		 */
879 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
880 		    check_stable_address_space(vma->vm_mm)) &&
881 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
882 		    !folio_likely_mapped_shared(folio)) {
883 			pra->referenced = -1;
884 			page_vma_mapped_walk_done(&pvmw);
885 			return false;
886 		}
887 
888 		if (pvmw.pte) {
889 			if (lru_gen_enabled() &&
890 			    pte_young(ptep_get(pvmw.pte))) {
891 				lru_gen_look_around(&pvmw);
892 				referenced++;
893 			}
894 
895 			if (ptep_clear_flush_young_notify(vma, address,
896 						pvmw.pte))
897 				referenced++;
898 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
899 			if (pmdp_clear_flush_young_notify(vma, address,
900 						pvmw.pmd))
901 				referenced++;
902 		} else {
903 			/* unexpected pmd-mapped folio? */
904 			WARN_ON_ONCE(1);
905 		}
906 
907 		pra->mapcount--;
908 	}
909 
910 	if ((vma->vm_flags & VM_LOCKED) &&
911 			folio_test_large(folio) &&
912 			folio_within_vma(folio, vma)) {
913 		unsigned long s_align, e_align;
914 
915 		s_align = ALIGN_DOWN(start, PMD_SIZE);
916 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
917 
918 		/* folio doesn't cross page table boundary and fully mapped */
919 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
920 			/* Restore the mlock which got missed */
921 			mlock_vma_folio(folio, vma);
922 			pra->vm_flags |= VM_LOCKED;
923 			return false; /* To break the loop */
924 		}
925 	}
926 
927 	if (referenced)
928 		folio_clear_idle(folio);
929 	if (folio_test_clear_young(folio))
930 		referenced++;
931 
932 	if (referenced) {
933 		pra->referenced++;
934 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
935 	}
936 
937 	if (!pra->mapcount)
938 		return false; /* To break the loop */
939 
940 	return true;
941 }
942 
943 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
944 {
945 	struct folio_referenced_arg *pra = arg;
946 	struct mem_cgroup *memcg = pra->memcg;
947 
948 	/*
949 	 * Ignore references from this mapping if it has no recency. If the
950 	 * folio has been used in another mapping, we will catch it; if this
951 	 * other mapping is already gone, the unmap path will have set the
952 	 * referenced flag or activated the folio in zap_pte_range().
953 	 */
954 	if (!vma_has_recency(vma))
955 		return true;
956 
957 	/*
958 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
959 	 * of references from different cgroups.
960 	 */
961 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
962 		return true;
963 
964 	return false;
965 }
966 
967 /**
968  * folio_referenced() - Test if the folio was referenced.
969  * @folio: The folio to test.
970  * @is_locked: Caller holds lock on the folio.
971  * @memcg: target memory cgroup
972  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
973  *
974  * Quick test_and_clear_referenced for all mappings of a folio,
975  *
976  * Return: The number of mappings which referenced the folio. Return -1 if
977  * the function bailed out due to rmap lock contention.
978  */
979 int folio_referenced(struct folio *folio, int is_locked,
980 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
981 {
982 	bool we_locked = false;
983 	struct folio_referenced_arg pra = {
984 		.mapcount = folio_mapcount(folio),
985 		.memcg = memcg,
986 	};
987 	struct rmap_walk_control rwc = {
988 		.rmap_one = folio_referenced_one,
989 		.arg = (void *)&pra,
990 		.anon_lock = folio_lock_anon_vma_read,
991 		.try_lock = true,
992 		.invalid_vma = invalid_folio_referenced_vma,
993 	};
994 
995 	*vm_flags = 0;
996 	if (!pra.mapcount)
997 		return 0;
998 
999 	if (!folio_raw_mapping(folio))
1000 		return 0;
1001 
1002 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1003 		we_locked = folio_trylock(folio);
1004 		if (!we_locked)
1005 			return 1;
1006 	}
1007 
1008 	rmap_walk(folio, &rwc);
1009 	*vm_flags = pra.vm_flags;
1010 
1011 	if (we_locked)
1012 		folio_unlock(folio);
1013 
1014 	return rwc.contended ? -1 : pra.referenced;
1015 }
1016 
1017 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1018 {
1019 	int cleaned = 0;
1020 	struct vm_area_struct *vma = pvmw->vma;
1021 	struct mmu_notifier_range range;
1022 	unsigned long address = pvmw->address;
1023 
1024 	/*
1025 	 * We have to assume the worse case ie pmd for invalidation. Note that
1026 	 * the folio can not be freed from this function.
1027 	 */
1028 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1029 				vma->vm_mm, address, vma_address_end(pvmw));
1030 	mmu_notifier_invalidate_range_start(&range);
1031 
1032 	while (page_vma_mapped_walk(pvmw)) {
1033 		int ret = 0;
1034 
1035 		address = pvmw->address;
1036 		if (pvmw->pte) {
1037 			pte_t *pte = pvmw->pte;
1038 			pte_t entry = ptep_get(pte);
1039 
1040 			if (!pte_dirty(entry) && !pte_write(entry))
1041 				continue;
1042 
1043 			flush_cache_page(vma, address, pte_pfn(entry));
1044 			entry = ptep_clear_flush(vma, address, pte);
1045 			entry = pte_wrprotect(entry);
1046 			entry = pte_mkclean(entry);
1047 			set_pte_at(vma->vm_mm, address, pte, entry);
1048 			ret = 1;
1049 		} else {
1050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1051 			pmd_t *pmd = pvmw->pmd;
1052 			pmd_t entry;
1053 
1054 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1055 				continue;
1056 
1057 			flush_cache_range(vma, address,
1058 					  address + HPAGE_PMD_SIZE);
1059 			entry = pmdp_invalidate(vma, address, pmd);
1060 			entry = pmd_wrprotect(entry);
1061 			entry = pmd_mkclean(entry);
1062 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1063 			ret = 1;
1064 #else
1065 			/* unexpected pmd-mapped folio? */
1066 			WARN_ON_ONCE(1);
1067 #endif
1068 		}
1069 
1070 		if (ret)
1071 			cleaned++;
1072 	}
1073 
1074 	mmu_notifier_invalidate_range_end(&range);
1075 
1076 	return cleaned;
1077 }
1078 
1079 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1080 			     unsigned long address, void *arg)
1081 {
1082 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1083 	int *cleaned = arg;
1084 
1085 	*cleaned += page_vma_mkclean_one(&pvmw);
1086 
1087 	return true;
1088 }
1089 
1090 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1091 {
1092 	if (vma->vm_flags & VM_SHARED)
1093 		return false;
1094 
1095 	return true;
1096 }
1097 
1098 int folio_mkclean(struct folio *folio)
1099 {
1100 	int cleaned = 0;
1101 	struct address_space *mapping;
1102 	struct rmap_walk_control rwc = {
1103 		.arg = (void *)&cleaned,
1104 		.rmap_one = page_mkclean_one,
1105 		.invalid_vma = invalid_mkclean_vma,
1106 	};
1107 
1108 	BUG_ON(!folio_test_locked(folio));
1109 
1110 	if (!folio_mapped(folio))
1111 		return 0;
1112 
1113 	mapping = folio_mapping(folio);
1114 	if (!mapping)
1115 		return 0;
1116 
1117 	rmap_walk(folio, &rwc);
1118 
1119 	return cleaned;
1120 }
1121 EXPORT_SYMBOL_GPL(folio_mkclean);
1122 
1123 /**
1124  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1125  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1126  *                     within the @vma of shared mappings. And since clean PTEs
1127  *                     should also be readonly, write protects them too.
1128  * @pfn: start pfn.
1129  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1130  * @pgoff: page offset that the @pfn mapped with.
1131  * @vma: vma that @pfn mapped within.
1132  *
1133  * Returns the number of cleaned PTEs (including PMDs).
1134  */
1135 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1136 		      struct vm_area_struct *vma)
1137 {
1138 	struct page_vma_mapped_walk pvmw = {
1139 		.pfn		= pfn,
1140 		.nr_pages	= nr_pages,
1141 		.pgoff		= pgoff,
1142 		.vma		= vma,
1143 		.flags		= PVMW_SYNC,
1144 	};
1145 
1146 	if (invalid_mkclean_vma(vma, NULL))
1147 		return 0;
1148 
1149 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1150 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1151 
1152 	return page_vma_mkclean_one(&pvmw);
1153 }
1154 
1155 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1156 		struct page *page, int nr_pages, enum rmap_level level,
1157 		int *nr_pmdmapped)
1158 {
1159 	atomic_t *mapped = &folio->_nr_pages_mapped;
1160 	const int orig_nr_pages = nr_pages;
1161 	int first = 0, nr = 0;
1162 
1163 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1164 
1165 	switch (level) {
1166 	case RMAP_LEVEL_PTE:
1167 		if (!folio_test_large(folio)) {
1168 			nr = atomic_inc_and_test(&folio->_mapcount);
1169 			break;
1170 		}
1171 
1172 		do {
1173 			first += atomic_inc_and_test(&page->_mapcount);
1174 		} while (page++, --nr_pages > 0);
1175 
1176 		if (first &&
1177 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1178 			nr = first;
1179 
1180 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1181 		break;
1182 	case RMAP_LEVEL_PMD:
1183 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1184 		if (first) {
1185 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1186 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1187 				*nr_pmdmapped = folio_nr_pages(folio);
1188 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1189 				/* Raced ahead of a remove and another add? */
1190 				if (unlikely(nr < 0))
1191 					nr = 0;
1192 			} else {
1193 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1194 				nr = 0;
1195 			}
1196 		}
1197 		atomic_inc(&folio->_large_mapcount);
1198 		break;
1199 	}
1200 	return nr;
1201 }
1202 
1203 /**
1204  * folio_move_anon_rmap - move a folio to our anon_vma
1205  * @folio:	The folio to move to our anon_vma
1206  * @vma:	The vma the folio belongs to
1207  *
1208  * When a folio belongs exclusively to one process after a COW event,
1209  * that folio can be moved into the anon_vma that belongs to just that
1210  * process, so the rmap code will not search the parent or sibling processes.
1211  */
1212 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1213 {
1214 	void *anon_vma = vma->anon_vma;
1215 
1216 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1217 	VM_BUG_ON_VMA(!anon_vma, vma);
1218 
1219 	anon_vma += PAGE_MAPPING_ANON;
1220 	/*
1221 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1222 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1223 	 * folio_test_anon()) will not see one without the other.
1224 	 */
1225 	WRITE_ONCE(folio->mapping, anon_vma);
1226 }
1227 
1228 /**
1229  * __folio_set_anon - set up a new anonymous rmap for a folio
1230  * @folio:	The folio to set up the new anonymous rmap for.
1231  * @vma:	VM area to add the folio to.
1232  * @address:	User virtual address of the mapping
1233  * @exclusive:	Whether the folio is exclusive to the process.
1234  */
1235 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1236 			     unsigned long address, bool exclusive)
1237 {
1238 	struct anon_vma *anon_vma = vma->anon_vma;
1239 
1240 	BUG_ON(!anon_vma);
1241 
1242 	/*
1243 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1244 	 * possible anon_vma for the folio mapping!
1245 	 */
1246 	if (!exclusive)
1247 		anon_vma = anon_vma->root;
1248 
1249 	/*
1250 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1251 	 * Make sure the compiler doesn't split the stores of anon_vma and
1252 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1253 	 * could mistake the mapping for a struct address_space and crash.
1254 	 */
1255 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1256 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1257 	folio->index = linear_page_index(vma, address);
1258 }
1259 
1260 /**
1261  * __page_check_anon_rmap - sanity check anonymous rmap addition
1262  * @folio:	The folio containing @page.
1263  * @page:	the page to check the mapping of
1264  * @vma:	the vm area in which the mapping is added
1265  * @address:	the user virtual address mapped
1266  */
1267 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1268 	struct vm_area_struct *vma, unsigned long address)
1269 {
1270 	/*
1271 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1272 	 * be set up correctly at this point.
1273 	 *
1274 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1275 	 * always holds the page locked.
1276 	 *
1277 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1278 	 * are initially only visible via the pagetables, and the pte is locked
1279 	 * over the call to folio_add_new_anon_rmap.
1280 	 */
1281 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1282 			folio);
1283 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1284 		       page);
1285 }
1286 
1287 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1288 {
1289 	int idx;
1290 
1291 	if (nr) {
1292 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1293 		__lruvec_stat_mod_folio(folio, idx, nr);
1294 	}
1295 	if (nr_pmdmapped) {
1296 		if (folio_test_anon(folio)) {
1297 			idx = NR_ANON_THPS;
1298 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1299 		} else {
1300 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1301 			idx = folio_test_swapbacked(folio) ?
1302 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1303 			__mod_node_page_state(folio_pgdat(folio), idx,
1304 					      nr_pmdmapped);
1305 		}
1306 	}
1307 }
1308 
1309 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1310 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1311 		unsigned long address, rmap_t flags, enum rmap_level level)
1312 {
1313 	int i, nr, nr_pmdmapped = 0;
1314 
1315 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1316 
1317 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1318 
1319 	if (likely(!folio_test_ksm(folio)))
1320 		__page_check_anon_rmap(folio, page, vma, address);
1321 
1322 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1323 
1324 	if (flags & RMAP_EXCLUSIVE) {
1325 		switch (level) {
1326 		case RMAP_LEVEL_PTE:
1327 			for (i = 0; i < nr_pages; i++)
1328 				SetPageAnonExclusive(page + i);
1329 			break;
1330 		case RMAP_LEVEL_PMD:
1331 			SetPageAnonExclusive(page);
1332 			break;
1333 		}
1334 	}
1335 	for (i = 0; i < nr_pages; i++) {
1336 		struct page *cur_page = page + i;
1337 
1338 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1339 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1340 				  (folio_test_large(folio) &&
1341 				   folio_entire_mapcount(folio) > 1)) &&
1342 				 PageAnonExclusive(cur_page), folio);
1343 	}
1344 
1345 	/*
1346 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1347 	 * not easy to check whether the large folio is fully mapped to VMA
1348 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1349 	 * large folio.
1350 	 */
1351 	if (!folio_test_large(folio))
1352 		mlock_vma_folio(folio, vma);
1353 }
1354 
1355 /**
1356  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1357  * @folio:	The folio to add the mappings to
1358  * @page:	The first page to add
1359  * @nr_pages:	The number of pages which will be mapped
1360  * @vma:	The vm area in which the mappings are added
1361  * @address:	The user virtual address of the first page to map
1362  * @flags:	The rmap flags
1363  *
1364  * The page range of folio is defined by [first_page, first_page + nr_pages)
1365  *
1366  * The caller needs to hold the page table lock, and the page must be locked in
1367  * the anon_vma case: to serialize mapping,index checking after setting,
1368  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1369  * (but KSM folios are never downgraded).
1370  */
1371 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1372 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1373 		rmap_t flags)
1374 {
1375 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1376 			      RMAP_LEVEL_PTE);
1377 }
1378 
1379 /**
1380  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1381  * @folio:	The folio to add the mapping to
1382  * @page:	The first page to add
1383  * @vma:	The vm area in which the mapping is added
1384  * @address:	The user virtual address of the first page to map
1385  * @flags:	The rmap flags
1386  *
1387  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1388  *
1389  * The caller needs to hold the page table lock, and the page must be locked in
1390  * the anon_vma case: to serialize mapping,index checking after setting.
1391  */
1392 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1393 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1394 {
1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1397 			      RMAP_LEVEL_PMD);
1398 #else
1399 	WARN_ON_ONCE(true);
1400 #endif
1401 }
1402 
1403 /**
1404  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1405  * @folio:	The folio to add the mapping to.
1406  * @vma:	the vm area in which the mapping is added
1407  * @address:	the user virtual address mapped
1408  * @flags:	The rmap flags
1409  *
1410  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1411  * This means the inc-and-test can be bypassed.
1412  * The folio doesn't necessarily need to be locked while it's exclusive
1413  * unless two threads map it concurrently. However, the folio must be
1414  * locked if it's shared.
1415  *
1416  * If the folio is pmd-mappable, it is accounted as a THP.
1417  */
1418 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1419 		unsigned long address, rmap_t flags)
1420 {
1421 	const int nr = folio_nr_pages(folio);
1422 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1423 	int nr_pmdmapped = 0;
1424 
1425 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1426 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1427 	VM_BUG_ON_VMA(address < vma->vm_start ||
1428 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1429 
1430 	/*
1431 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1432 	 * under memory pressure.
1433 	 */
1434 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1435 		__folio_set_swapbacked(folio);
1436 	__folio_set_anon(folio, vma, address, exclusive);
1437 
1438 	if (likely(!folio_test_large(folio))) {
1439 		/* increment count (starts at -1) */
1440 		atomic_set(&folio->_mapcount, 0);
1441 		if (exclusive)
1442 			SetPageAnonExclusive(&folio->page);
1443 	} else if (!folio_test_pmd_mappable(folio)) {
1444 		int i;
1445 
1446 		for (i = 0; i < nr; i++) {
1447 			struct page *page = folio_page(folio, i);
1448 
1449 			/* increment count (starts at -1) */
1450 			atomic_set(&page->_mapcount, 0);
1451 			if (exclusive)
1452 				SetPageAnonExclusive(page);
1453 		}
1454 
1455 		/* increment count (starts at -1) */
1456 		atomic_set(&folio->_large_mapcount, nr - 1);
1457 		atomic_set(&folio->_nr_pages_mapped, nr);
1458 	} else {
1459 		/* increment count (starts at -1) */
1460 		atomic_set(&folio->_entire_mapcount, 0);
1461 		/* increment count (starts at -1) */
1462 		atomic_set(&folio->_large_mapcount, 0);
1463 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1464 		if (exclusive)
1465 			SetPageAnonExclusive(&folio->page);
1466 		nr_pmdmapped = nr;
1467 	}
1468 
1469 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1470 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1471 }
1472 
1473 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1474 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1475 		enum rmap_level level)
1476 {
1477 	int nr, nr_pmdmapped = 0;
1478 
1479 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1480 
1481 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1482 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1483 
1484 	/* See comments in folio_add_anon_rmap_*() */
1485 	if (!folio_test_large(folio))
1486 		mlock_vma_folio(folio, vma);
1487 }
1488 
1489 /**
1490  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1491  * @folio:	The folio to add the mappings to
1492  * @page:	The first page to add
1493  * @nr_pages:	The number of pages that will be mapped using PTEs
1494  * @vma:	The vm area in which the mappings are added
1495  *
1496  * The page range of the folio is defined by [page, page + nr_pages)
1497  *
1498  * The caller needs to hold the page table lock.
1499  */
1500 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1501 		int nr_pages, struct vm_area_struct *vma)
1502 {
1503 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1504 }
1505 
1506 /**
1507  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1508  * @folio:	The folio to add the mapping to
1509  * @page:	The first page to add
1510  * @vma:	The vm area in which the mapping is added
1511  *
1512  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1513  *
1514  * The caller needs to hold the page table lock.
1515  */
1516 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1517 		struct vm_area_struct *vma)
1518 {
1519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1521 #else
1522 	WARN_ON_ONCE(true);
1523 #endif
1524 }
1525 
1526 static __always_inline void __folio_remove_rmap(struct folio *folio,
1527 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1528 		enum rmap_level level)
1529 {
1530 	atomic_t *mapped = &folio->_nr_pages_mapped;
1531 	int last = 0, nr = 0, nr_pmdmapped = 0;
1532 	bool partially_mapped = false;
1533 
1534 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1535 
1536 	switch (level) {
1537 	case RMAP_LEVEL_PTE:
1538 		if (!folio_test_large(folio)) {
1539 			nr = atomic_add_negative(-1, &folio->_mapcount);
1540 			break;
1541 		}
1542 
1543 		atomic_sub(nr_pages, &folio->_large_mapcount);
1544 		do {
1545 			last += atomic_add_negative(-1, &page->_mapcount);
1546 		} while (page++, --nr_pages > 0);
1547 
1548 		if (last &&
1549 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1550 			nr = last;
1551 
1552 		partially_mapped = nr && atomic_read(mapped);
1553 		break;
1554 	case RMAP_LEVEL_PMD:
1555 		atomic_dec(&folio->_large_mapcount);
1556 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1557 		if (last) {
1558 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1559 			if (likely(nr < ENTIRELY_MAPPED)) {
1560 				nr_pmdmapped = folio_nr_pages(folio);
1561 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1562 				/* Raced ahead of another remove and an add? */
1563 				if (unlikely(nr < 0))
1564 					nr = 0;
1565 			} else {
1566 				/* An add of ENTIRELY_MAPPED raced ahead */
1567 				nr = 0;
1568 			}
1569 		}
1570 
1571 		partially_mapped = nr && nr < nr_pmdmapped;
1572 		break;
1573 	}
1574 
1575 	/*
1576 	 * Queue anon large folio for deferred split if at least one page of
1577 	 * the folio is unmapped and at least one page is still mapped.
1578 	 *
1579 	 * Check partially_mapped first to ensure it is a large folio.
1580 	 */
1581 	if (partially_mapped && folio_test_anon(folio) &&
1582 	    !folio_test_partially_mapped(folio))
1583 		deferred_split_folio(folio, true);
1584 
1585 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1586 
1587 	/*
1588 	 * It would be tidy to reset folio_test_anon mapping when fully
1589 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1590 	 * which increments mapcount after us but sets mapping before us:
1591 	 * so leave the reset to free_pages_prepare, and remember that
1592 	 * it's only reliable while mapped.
1593 	 */
1594 
1595 	munlock_vma_folio(folio, vma);
1596 }
1597 
1598 /**
1599  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1600  * @folio:	The folio to remove the mappings from
1601  * @page:	The first page to remove
1602  * @nr_pages:	The number of pages that will be removed from the mapping
1603  * @vma:	The vm area from which the mappings are removed
1604  *
1605  * The page range of the folio is defined by [page, page + nr_pages)
1606  *
1607  * The caller needs to hold the page table lock.
1608  */
1609 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1610 		int nr_pages, struct vm_area_struct *vma)
1611 {
1612 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1613 }
1614 
1615 /**
1616  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1617  * @folio:	The folio to remove the mapping from
1618  * @page:	The first page to remove
1619  * @vma:	The vm area from which the mapping is removed
1620  *
1621  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1622  *
1623  * The caller needs to hold the page table lock.
1624  */
1625 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1626 		struct vm_area_struct *vma)
1627 {
1628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1629 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1630 #else
1631 	WARN_ON_ONCE(true);
1632 #endif
1633 }
1634 
1635 /*
1636  * @arg: enum ttu_flags will be passed to this argument
1637  */
1638 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1639 		     unsigned long address, void *arg)
1640 {
1641 	struct mm_struct *mm = vma->vm_mm;
1642 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1643 	pte_t pteval;
1644 	struct page *subpage;
1645 	bool anon_exclusive, ret = true;
1646 	struct mmu_notifier_range range;
1647 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1648 	unsigned long pfn;
1649 	unsigned long hsz = 0;
1650 
1651 	/*
1652 	 * When racing against e.g. zap_pte_range() on another cpu,
1653 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1654 	 * try_to_unmap() may return before page_mapped() has become false,
1655 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1656 	 */
1657 	if (flags & TTU_SYNC)
1658 		pvmw.flags = PVMW_SYNC;
1659 
1660 	/*
1661 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1662 	 * For hugetlb, it could be much worse if we need to do pud
1663 	 * invalidation in the case of pmd sharing.
1664 	 *
1665 	 * Note that the folio can not be freed in this function as call of
1666 	 * try_to_unmap() must hold a reference on the folio.
1667 	 */
1668 	range.end = vma_address_end(&pvmw);
1669 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1670 				address, range.end);
1671 	if (folio_test_hugetlb(folio)) {
1672 		/*
1673 		 * If sharing is possible, start and end will be adjusted
1674 		 * accordingly.
1675 		 */
1676 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1677 						     &range.end);
1678 
1679 		/* We need the huge page size for set_huge_pte_at() */
1680 		hsz = huge_page_size(hstate_vma(vma));
1681 	}
1682 	mmu_notifier_invalidate_range_start(&range);
1683 
1684 	while (page_vma_mapped_walk(&pvmw)) {
1685 		/*
1686 		 * If the folio is in an mlock()d vma, we must not swap it out.
1687 		 */
1688 		if (!(flags & TTU_IGNORE_MLOCK) &&
1689 		    (vma->vm_flags & VM_LOCKED)) {
1690 			/* Restore the mlock which got missed */
1691 			if (!folio_test_large(folio))
1692 				mlock_vma_folio(folio, vma);
1693 			goto walk_abort;
1694 		}
1695 
1696 		if (!pvmw.pte) {
1697 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1698 						  folio))
1699 				goto walk_done;
1700 
1701 			if (flags & TTU_SPLIT_HUGE_PMD) {
1702 				/*
1703 				 * We temporarily have to drop the PTL and
1704 				 * restart so we can process the PTE-mapped THP.
1705 				 */
1706 				split_huge_pmd_locked(vma, pvmw.address,
1707 						      pvmw.pmd, false, folio);
1708 				flags &= ~TTU_SPLIT_HUGE_PMD;
1709 				page_vma_mapped_walk_restart(&pvmw);
1710 				continue;
1711 			}
1712 		}
1713 
1714 		/* Unexpected PMD-mapped THP? */
1715 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1716 
1717 		pfn = pte_pfn(ptep_get(pvmw.pte));
1718 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1719 		address = pvmw.address;
1720 		anon_exclusive = folio_test_anon(folio) &&
1721 				 PageAnonExclusive(subpage);
1722 
1723 		if (folio_test_hugetlb(folio)) {
1724 			bool anon = folio_test_anon(folio);
1725 
1726 			/*
1727 			 * The try_to_unmap() is only passed a hugetlb page
1728 			 * in the case where the hugetlb page is poisoned.
1729 			 */
1730 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1731 			/*
1732 			 * huge_pmd_unshare may unmap an entire PMD page.
1733 			 * There is no way of knowing exactly which PMDs may
1734 			 * be cached for this mm, so we must flush them all.
1735 			 * start/end were already adjusted above to cover this
1736 			 * range.
1737 			 */
1738 			flush_cache_range(vma, range.start, range.end);
1739 
1740 			/*
1741 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1742 			 * held in write mode.  Caller needs to explicitly
1743 			 * do this outside rmap routines.
1744 			 *
1745 			 * We also must hold hugetlb vma_lock in write mode.
1746 			 * Lock order dictates acquiring vma_lock BEFORE
1747 			 * i_mmap_rwsem.  We can only try lock here and fail
1748 			 * if unsuccessful.
1749 			 */
1750 			if (!anon) {
1751 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1752 				if (!hugetlb_vma_trylock_write(vma))
1753 					goto walk_abort;
1754 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1755 					hugetlb_vma_unlock_write(vma);
1756 					flush_tlb_range(vma,
1757 						range.start, range.end);
1758 					/*
1759 					 * The ref count of the PMD page was
1760 					 * dropped which is part of the way map
1761 					 * counting is done for shared PMDs.
1762 					 * Return 'true' here.  When there is
1763 					 * no other sharing, huge_pmd_unshare
1764 					 * returns false and we will unmap the
1765 					 * actual page and drop map count
1766 					 * to zero.
1767 					 */
1768 					goto walk_done;
1769 				}
1770 				hugetlb_vma_unlock_write(vma);
1771 			}
1772 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1773 		} else {
1774 			flush_cache_page(vma, address, pfn);
1775 			/* Nuke the page table entry. */
1776 			if (should_defer_flush(mm, flags)) {
1777 				/*
1778 				 * We clear the PTE but do not flush so potentially
1779 				 * a remote CPU could still be writing to the folio.
1780 				 * If the entry was previously clean then the
1781 				 * architecture must guarantee that a clear->dirty
1782 				 * transition on a cached TLB entry is written through
1783 				 * and traps if the PTE is unmapped.
1784 				 */
1785 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1786 
1787 				set_tlb_ubc_flush_pending(mm, pteval, address);
1788 			} else {
1789 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1790 			}
1791 		}
1792 
1793 		/*
1794 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1795 		 * we may want to replace a none pte with a marker pte if
1796 		 * it's file-backed, so we don't lose the tracking info.
1797 		 */
1798 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1799 
1800 		/* Set the dirty flag on the folio now the pte is gone. */
1801 		if (pte_dirty(pteval))
1802 			folio_mark_dirty(folio);
1803 
1804 		/* Update high watermark before we lower rss */
1805 		update_hiwater_rss(mm);
1806 
1807 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1808 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1809 			if (folio_test_hugetlb(folio)) {
1810 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1811 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1812 						hsz);
1813 			} else {
1814 				dec_mm_counter(mm, mm_counter(folio));
1815 				set_pte_at(mm, address, pvmw.pte, pteval);
1816 			}
1817 
1818 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1819 			/*
1820 			 * The guest indicated that the page content is of no
1821 			 * interest anymore. Simply discard the pte, vmscan
1822 			 * will take care of the rest.
1823 			 * A future reference will then fault in a new zero
1824 			 * page. When userfaultfd is active, we must not drop
1825 			 * this page though, as its main user (postcopy
1826 			 * migration) will not expect userfaults on already
1827 			 * copied pages.
1828 			 */
1829 			dec_mm_counter(mm, mm_counter(folio));
1830 		} else if (folio_test_anon(folio)) {
1831 			swp_entry_t entry = page_swap_entry(subpage);
1832 			pte_t swp_pte;
1833 			/*
1834 			 * Store the swap location in the pte.
1835 			 * See handle_pte_fault() ...
1836 			 */
1837 			if (unlikely(folio_test_swapbacked(folio) !=
1838 					folio_test_swapcache(folio))) {
1839 				WARN_ON_ONCE(1);
1840 				goto walk_abort;
1841 			}
1842 
1843 			/* MADV_FREE page check */
1844 			if (!folio_test_swapbacked(folio)) {
1845 				int ref_count, map_count;
1846 
1847 				/*
1848 				 * Synchronize with gup_pte_range():
1849 				 * - clear PTE; barrier; read refcount
1850 				 * - inc refcount; barrier; read PTE
1851 				 */
1852 				smp_mb();
1853 
1854 				ref_count = folio_ref_count(folio);
1855 				map_count = folio_mapcount(folio);
1856 
1857 				/*
1858 				 * Order reads for page refcount and dirty flag
1859 				 * (see comments in __remove_mapping()).
1860 				 */
1861 				smp_rmb();
1862 
1863 				/*
1864 				 * The only page refs must be one from isolation
1865 				 * plus the rmap(s) (dropped by discard:).
1866 				 */
1867 				if (ref_count == 1 + map_count &&
1868 				    (!folio_test_dirty(folio) ||
1869 				     /*
1870 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1871 				      * ones can be dropped even if they've
1872 				      * been dirtied.
1873 				      */
1874 				     (vma->vm_flags & VM_DROPPABLE))) {
1875 					dec_mm_counter(mm, MM_ANONPAGES);
1876 					goto discard;
1877 				}
1878 
1879 				/*
1880 				 * If the folio was redirtied, it cannot be
1881 				 * discarded. Remap the page to page table.
1882 				 */
1883 				set_pte_at(mm, address, pvmw.pte, pteval);
1884 				/*
1885 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1886 				 * never get swap backed on failure to drop.
1887 				 */
1888 				if (!(vma->vm_flags & VM_DROPPABLE))
1889 					folio_set_swapbacked(folio);
1890 				goto walk_abort;
1891 			}
1892 
1893 			if (swap_duplicate(entry) < 0) {
1894 				set_pte_at(mm, address, pvmw.pte, pteval);
1895 				goto walk_abort;
1896 			}
1897 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1898 				swap_free(entry);
1899 				set_pte_at(mm, address, pvmw.pte, pteval);
1900 				goto walk_abort;
1901 			}
1902 
1903 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1904 			if (anon_exclusive &&
1905 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1906 				swap_free(entry);
1907 				set_pte_at(mm, address, pvmw.pte, pteval);
1908 				goto walk_abort;
1909 			}
1910 			if (list_empty(&mm->mmlist)) {
1911 				spin_lock(&mmlist_lock);
1912 				if (list_empty(&mm->mmlist))
1913 					list_add(&mm->mmlist, &init_mm.mmlist);
1914 				spin_unlock(&mmlist_lock);
1915 			}
1916 			dec_mm_counter(mm, MM_ANONPAGES);
1917 			inc_mm_counter(mm, MM_SWAPENTS);
1918 			swp_pte = swp_entry_to_pte(entry);
1919 			if (anon_exclusive)
1920 				swp_pte = pte_swp_mkexclusive(swp_pte);
1921 			if (pte_soft_dirty(pteval))
1922 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1923 			if (pte_uffd_wp(pteval))
1924 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1925 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1926 		} else {
1927 			/*
1928 			 * This is a locked file-backed folio,
1929 			 * so it cannot be removed from the page
1930 			 * cache and replaced by a new folio before
1931 			 * mmu_notifier_invalidate_range_end, so no
1932 			 * concurrent thread might update its page table
1933 			 * to point at a new folio while a device is
1934 			 * still using this folio.
1935 			 *
1936 			 * See Documentation/mm/mmu_notifier.rst
1937 			 */
1938 			dec_mm_counter(mm, mm_counter_file(folio));
1939 		}
1940 discard:
1941 		if (unlikely(folio_test_hugetlb(folio)))
1942 			hugetlb_remove_rmap(folio);
1943 		else
1944 			folio_remove_rmap_pte(folio, subpage, vma);
1945 		if (vma->vm_flags & VM_LOCKED)
1946 			mlock_drain_local();
1947 		folio_put(folio);
1948 		continue;
1949 walk_abort:
1950 		ret = false;
1951 walk_done:
1952 		page_vma_mapped_walk_done(&pvmw);
1953 		break;
1954 	}
1955 
1956 	mmu_notifier_invalidate_range_end(&range);
1957 
1958 	return ret;
1959 }
1960 
1961 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1962 {
1963 	return vma_is_temporary_stack(vma);
1964 }
1965 
1966 static int folio_not_mapped(struct folio *folio)
1967 {
1968 	return !folio_mapped(folio);
1969 }
1970 
1971 /**
1972  * try_to_unmap - Try to remove all page table mappings to a folio.
1973  * @folio: The folio to unmap.
1974  * @flags: action and flags
1975  *
1976  * Tries to remove all the page table entries which are mapping this
1977  * folio.  It is the caller's responsibility to check if the folio is
1978  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1979  *
1980  * Context: Caller must hold the folio lock.
1981  */
1982 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1983 {
1984 	struct rmap_walk_control rwc = {
1985 		.rmap_one = try_to_unmap_one,
1986 		.arg = (void *)flags,
1987 		.done = folio_not_mapped,
1988 		.anon_lock = folio_lock_anon_vma_read,
1989 	};
1990 
1991 	if (flags & TTU_RMAP_LOCKED)
1992 		rmap_walk_locked(folio, &rwc);
1993 	else
1994 		rmap_walk(folio, &rwc);
1995 }
1996 
1997 /*
1998  * @arg: enum ttu_flags will be passed to this argument.
1999  *
2000  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2001  * containing migration entries.
2002  */
2003 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2004 		     unsigned long address, void *arg)
2005 {
2006 	struct mm_struct *mm = vma->vm_mm;
2007 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2008 	pte_t pteval;
2009 	struct page *subpage;
2010 	bool anon_exclusive, ret = true;
2011 	struct mmu_notifier_range range;
2012 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2013 	unsigned long pfn;
2014 	unsigned long hsz = 0;
2015 
2016 	/*
2017 	 * When racing against e.g. zap_pte_range() on another cpu,
2018 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2019 	 * try_to_migrate() may return before page_mapped() has become false,
2020 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2021 	 */
2022 	if (flags & TTU_SYNC)
2023 		pvmw.flags = PVMW_SYNC;
2024 
2025 	/*
2026 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2027 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2028 	 */
2029 	if (flags & TTU_SPLIT_HUGE_PMD)
2030 		split_huge_pmd_address(vma, address, true, folio);
2031 
2032 	/*
2033 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2034 	 * For hugetlb, it could be much worse if we need to do pud
2035 	 * invalidation in the case of pmd sharing.
2036 	 *
2037 	 * Note that the page can not be free in this function as call of
2038 	 * try_to_unmap() must hold a reference on the page.
2039 	 */
2040 	range.end = vma_address_end(&pvmw);
2041 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2042 				address, range.end);
2043 	if (folio_test_hugetlb(folio)) {
2044 		/*
2045 		 * If sharing is possible, start and end will be adjusted
2046 		 * accordingly.
2047 		 */
2048 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2049 						     &range.end);
2050 
2051 		/* We need the huge page size for set_huge_pte_at() */
2052 		hsz = huge_page_size(hstate_vma(vma));
2053 	}
2054 	mmu_notifier_invalidate_range_start(&range);
2055 
2056 	while (page_vma_mapped_walk(&pvmw)) {
2057 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2058 		/* PMD-mapped THP migration entry */
2059 		if (!pvmw.pte) {
2060 			subpage = folio_page(folio,
2061 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2062 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2063 					!folio_test_pmd_mappable(folio), folio);
2064 
2065 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2066 				ret = false;
2067 				page_vma_mapped_walk_done(&pvmw);
2068 				break;
2069 			}
2070 			continue;
2071 		}
2072 #endif
2073 
2074 		/* Unexpected PMD-mapped THP? */
2075 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2076 
2077 		pfn = pte_pfn(ptep_get(pvmw.pte));
2078 
2079 		if (folio_is_zone_device(folio)) {
2080 			/*
2081 			 * Our PTE is a non-present device exclusive entry and
2082 			 * calculating the subpage as for the common case would
2083 			 * result in an invalid pointer.
2084 			 *
2085 			 * Since only PAGE_SIZE pages can currently be
2086 			 * migrated, just set it to page. This will need to be
2087 			 * changed when hugepage migrations to device private
2088 			 * memory are supported.
2089 			 */
2090 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2091 			subpage = &folio->page;
2092 		} else {
2093 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2094 		}
2095 		address = pvmw.address;
2096 		anon_exclusive = folio_test_anon(folio) &&
2097 				 PageAnonExclusive(subpage);
2098 
2099 		if (folio_test_hugetlb(folio)) {
2100 			bool anon = folio_test_anon(folio);
2101 
2102 			/*
2103 			 * huge_pmd_unshare may unmap an entire PMD page.
2104 			 * There is no way of knowing exactly which PMDs may
2105 			 * be cached for this mm, so we must flush them all.
2106 			 * start/end were already adjusted above to cover this
2107 			 * range.
2108 			 */
2109 			flush_cache_range(vma, range.start, range.end);
2110 
2111 			/*
2112 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2113 			 * held in write mode.  Caller needs to explicitly
2114 			 * do this outside rmap routines.
2115 			 *
2116 			 * We also must hold hugetlb vma_lock in write mode.
2117 			 * Lock order dictates acquiring vma_lock BEFORE
2118 			 * i_mmap_rwsem.  We can only try lock here and
2119 			 * fail if unsuccessful.
2120 			 */
2121 			if (!anon) {
2122 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2123 				if (!hugetlb_vma_trylock_write(vma)) {
2124 					page_vma_mapped_walk_done(&pvmw);
2125 					ret = false;
2126 					break;
2127 				}
2128 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2129 					hugetlb_vma_unlock_write(vma);
2130 					flush_tlb_range(vma,
2131 						range.start, range.end);
2132 
2133 					/*
2134 					 * The ref count of the PMD page was
2135 					 * dropped which is part of the way map
2136 					 * counting is done for shared PMDs.
2137 					 * Return 'true' here.  When there is
2138 					 * no other sharing, huge_pmd_unshare
2139 					 * returns false and we will unmap the
2140 					 * actual page and drop map count
2141 					 * to zero.
2142 					 */
2143 					page_vma_mapped_walk_done(&pvmw);
2144 					break;
2145 				}
2146 				hugetlb_vma_unlock_write(vma);
2147 			}
2148 			/* Nuke the hugetlb page table entry */
2149 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2150 		} else {
2151 			flush_cache_page(vma, address, pfn);
2152 			/* Nuke the page table entry. */
2153 			if (should_defer_flush(mm, flags)) {
2154 				/*
2155 				 * We clear the PTE but do not flush so potentially
2156 				 * a remote CPU could still be writing to the folio.
2157 				 * If the entry was previously clean then the
2158 				 * architecture must guarantee that a clear->dirty
2159 				 * transition on a cached TLB entry is written through
2160 				 * and traps if the PTE is unmapped.
2161 				 */
2162 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2163 
2164 				set_tlb_ubc_flush_pending(mm, pteval, address);
2165 			} else {
2166 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2167 			}
2168 		}
2169 
2170 		/* Set the dirty flag on the folio now the pte is gone. */
2171 		if (pte_dirty(pteval))
2172 			folio_mark_dirty(folio);
2173 
2174 		/* Update high watermark before we lower rss */
2175 		update_hiwater_rss(mm);
2176 
2177 		if (folio_is_device_private(folio)) {
2178 			unsigned long pfn = folio_pfn(folio);
2179 			swp_entry_t entry;
2180 			pte_t swp_pte;
2181 
2182 			if (anon_exclusive)
2183 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2184 									   subpage));
2185 
2186 			/*
2187 			 * Store the pfn of the page in a special migration
2188 			 * pte. do_swap_page() will wait until the migration
2189 			 * pte is removed and then restart fault handling.
2190 			 */
2191 			entry = pte_to_swp_entry(pteval);
2192 			if (is_writable_device_private_entry(entry))
2193 				entry = make_writable_migration_entry(pfn);
2194 			else if (anon_exclusive)
2195 				entry = make_readable_exclusive_migration_entry(pfn);
2196 			else
2197 				entry = make_readable_migration_entry(pfn);
2198 			swp_pte = swp_entry_to_pte(entry);
2199 
2200 			/*
2201 			 * pteval maps a zone device page and is therefore
2202 			 * a swap pte.
2203 			 */
2204 			if (pte_swp_soft_dirty(pteval))
2205 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2206 			if (pte_swp_uffd_wp(pteval))
2207 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2208 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2209 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2210 						folio_order(folio));
2211 			/*
2212 			 * No need to invalidate here it will synchronize on
2213 			 * against the special swap migration pte.
2214 			 */
2215 		} else if (PageHWPoison(subpage)) {
2216 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2217 			if (folio_test_hugetlb(folio)) {
2218 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2219 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2220 						hsz);
2221 			} else {
2222 				dec_mm_counter(mm, mm_counter(folio));
2223 				set_pte_at(mm, address, pvmw.pte, pteval);
2224 			}
2225 
2226 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2227 			/*
2228 			 * The guest indicated that the page content is of no
2229 			 * interest anymore. Simply discard the pte, vmscan
2230 			 * will take care of the rest.
2231 			 * A future reference will then fault in a new zero
2232 			 * page. When userfaultfd is active, we must not drop
2233 			 * this page though, as its main user (postcopy
2234 			 * migration) will not expect userfaults on already
2235 			 * copied pages.
2236 			 */
2237 			dec_mm_counter(mm, mm_counter(folio));
2238 		} else {
2239 			swp_entry_t entry;
2240 			pte_t swp_pte;
2241 
2242 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2243 				if (folio_test_hugetlb(folio))
2244 					set_huge_pte_at(mm, address, pvmw.pte,
2245 							pteval, hsz);
2246 				else
2247 					set_pte_at(mm, address, pvmw.pte, pteval);
2248 				ret = false;
2249 				page_vma_mapped_walk_done(&pvmw);
2250 				break;
2251 			}
2252 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2253 				       !anon_exclusive, subpage);
2254 
2255 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2256 			if (folio_test_hugetlb(folio)) {
2257 				if (anon_exclusive &&
2258 				    hugetlb_try_share_anon_rmap(folio)) {
2259 					set_huge_pte_at(mm, address, pvmw.pte,
2260 							pteval, hsz);
2261 					ret = false;
2262 					page_vma_mapped_walk_done(&pvmw);
2263 					break;
2264 				}
2265 			} else if (anon_exclusive &&
2266 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2267 				set_pte_at(mm, address, pvmw.pte, pteval);
2268 				ret = false;
2269 				page_vma_mapped_walk_done(&pvmw);
2270 				break;
2271 			}
2272 
2273 			/*
2274 			 * Store the pfn of the page in a special migration
2275 			 * pte. do_swap_page() will wait until the migration
2276 			 * pte is removed and then restart fault handling.
2277 			 */
2278 			if (pte_write(pteval))
2279 				entry = make_writable_migration_entry(
2280 							page_to_pfn(subpage));
2281 			else if (anon_exclusive)
2282 				entry = make_readable_exclusive_migration_entry(
2283 							page_to_pfn(subpage));
2284 			else
2285 				entry = make_readable_migration_entry(
2286 							page_to_pfn(subpage));
2287 			if (pte_young(pteval))
2288 				entry = make_migration_entry_young(entry);
2289 			if (pte_dirty(pteval))
2290 				entry = make_migration_entry_dirty(entry);
2291 			swp_pte = swp_entry_to_pte(entry);
2292 			if (pte_soft_dirty(pteval))
2293 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2294 			if (pte_uffd_wp(pteval))
2295 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2296 			if (folio_test_hugetlb(folio))
2297 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2298 						hsz);
2299 			else
2300 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2301 			trace_set_migration_pte(address, pte_val(swp_pte),
2302 						folio_order(folio));
2303 			/*
2304 			 * No need to invalidate here it will synchronize on
2305 			 * against the special swap migration pte.
2306 			 */
2307 		}
2308 
2309 		if (unlikely(folio_test_hugetlb(folio)))
2310 			hugetlb_remove_rmap(folio);
2311 		else
2312 			folio_remove_rmap_pte(folio, subpage, vma);
2313 		if (vma->vm_flags & VM_LOCKED)
2314 			mlock_drain_local();
2315 		folio_put(folio);
2316 	}
2317 
2318 	mmu_notifier_invalidate_range_end(&range);
2319 
2320 	return ret;
2321 }
2322 
2323 /**
2324  * try_to_migrate - try to replace all page table mappings with swap entries
2325  * @folio: the folio to replace page table entries for
2326  * @flags: action and flags
2327  *
2328  * Tries to remove all the page table entries which are mapping this folio and
2329  * replace them with special swap entries. Caller must hold the folio lock.
2330  */
2331 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2332 {
2333 	struct rmap_walk_control rwc = {
2334 		.rmap_one = try_to_migrate_one,
2335 		.arg = (void *)flags,
2336 		.done = folio_not_mapped,
2337 		.anon_lock = folio_lock_anon_vma_read,
2338 	};
2339 
2340 	/*
2341 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2342 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2343 	 */
2344 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2345 					TTU_SYNC | TTU_BATCH_FLUSH)))
2346 		return;
2347 
2348 	if (folio_is_zone_device(folio) &&
2349 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2350 		return;
2351 
2352 	/*
2353 	 * During exec, a temporary VMA is setup and later moved.
2354 	 * The VMA is moved under the anon_vma lock but not the
2355 	 * page tables leading to a race where migration cannot
2356 	 * find the migration ptes. Rather than increasing the
2357 	 * locking requirements of exec(), migration skips
2358 	 * temporary VMAs until after exec() completes.
2359 	 */
2360 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2361 		rwc.invalid_vma = invalid_migration_vma;
2362 
2363 	if (flags & TTU_RMAP_LOCKED)
2364 		rmap_walk_locked(folio, &rwc);
2365 	else
2366 		rmap_walk(folio, &rwc);
2367 }
2368 
2369 #ifdef CONFIG_DEVICE_PRIVATE
2370 struct make_exclusive_args {
2371 	struct mm_struct *mm;
2372 	unsigned long address;
2373 	void *owner;
2374 	bool valid;
2375 };
2376 
2377 static bool page_make_device_exclusive_one(struct folio *folio,
2378 		struct vm_area_struct *vma, unsigned long address, void *priv)
2379 {
2380 	struct mm_struct *mm = vma->vm_mm;
2381 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2382 	struct make_exclusive_args *args = priv;
2383 	pte_t pteval;
2384 	struct page *subpage;
2385 	bool ret = true;
2386 	struct mmu_notifier_range range;
2387 	swp_entry_t entry;
2388 	pte_t swp_pte;
2389 	pte_t ptent;
2390 
2391 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2392 				      vma->vm_mm, address, min(vma->vm_end,
2393 				      address + folio_size(folio)),
2394 				      args->owner);
2395 	mmu_notifier_invalidate_range_start(&range);
2396 
2397 	while (page_vma_mapped_walk(&pvmw)) {
2398 		/* Unexpected PMD-mapped THP? */
2399 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2400 
2401 		ptent = ptep_get(pvmw.pte);
2402 		if (!pte_present(ptent)) {
2403 			ret = false;
2404 			page_vma_mapped_walk_done(&pvmw);
2405 			break;
2406 		}
2407 
2408 		subpage = folio_page(folio,
2409 				pte_pfn(ptent) - folio_pfn(folio));
2410 		address = pvmw.address;
2411 
2412 		/* Nuke the page table entry. */
2413 		flush_cache_page(vma, address, pte_pfn(ptent));
2414 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2415 
2416 		/* Set the dirty flag on the folio now the pte is gone. */
2417 		if (pte_dirty(pteval))
2418 			folio_mark_dirty(folio);
2419 
2420 		/*
2421 		 * Check that our target page is still mapped at the expected
2422 		 * address.
2423 		 */
2424 		if (args->mm == mm && args->address == address &&
2425 		    pte_write(pteval))
2426 			args->valid = true;
2427 
2428 		/*
2429 		 * Store the pfn of the page in a special migration
2430 		 * pte. do_swap_page() will wait until the migration
2431 		 * pte is removed and then restart fault handling.
2432 		 */
2433 		if (pte_write(pteval))
2434 			entry = make_writable_device_exclusive_entry(
2435 							page_to_pfn(subpage));
2436 		else
2437 			entry = make_readable_device_exclusive_entry(
2438 							page_to_pfn(subpage));
2439 		swp_pte = swp_entry_to_pte(entry);
2440 		if (pte_soft_dirty(pteval))
2441 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2442 		if (pte_uffd_wp(pteval))
2443 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2444 
2445 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2446 
2447 		/*
2448 		 * There is a reference on the page for the swap entry which has
2449 		 * been removed, so shouldn't take another.
2450 		 */
2451 		folio_remove_rmap_pte(folio, subpage, vma);
2452 	}
2453 
2454 	mmu_notifier_invalidate_range_end(&range);
2455 
2456 	return ret;
2457 }
2458 
2459 /**
2460  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2461  * @folio: The folio to replace page table entries for.
2462  * @mm: The mm_struct where the folio is expected to be mapped.
2463  * @address: Address where the folio is expected to be mapped.
2464  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2465  *
2466  * Tries to remove all the page table entries which are mapping this
2467  * folio and replace them with special device exclusive swap entries to
2468  * grant a device exclusive access to the folio.
2469  *
2470  * Context: Caller must hold the folio lock.
2471  * Return: false if the page is still mapped, or if it could not be unmapped
2472  * from the expected address. Otherwise returns true (success).
2473  */
2474 static bool folio_make_device_exclusive(struct folio *folio,
2475 		struct mm_struct *mm, unsigned long address, void *owner)
2476 {
2477 	struct make_exclusive_args args = {
2478 		.mm = mm,
2479 		.address = address,
2480 		.owner = owner,
2481 		.valid = false,
2482 	};
2483 	struct rmap_walk_control rwc = {
2484 		.rmap_one = page_make_device_exclusive_one,
2485 		.done = folio_not_mapped,
2486 		.anon_lock = folio_lock_anon_vma_read,
2487 		.arg = &args,
2488 	};
2489 
2490 	/*
2491 	 * Restrict to anonymous folios for now to avoid potential writeback
2492 	 * issues.
2493 	 */
2494 	if (!folio_test_anon(folio))
2495 		return false;
2496 
2497 	rmap_walk(folio, &rwc);
2498 
2499 	return args.valid && !folio_mapcount(folio);
2500 }
2501 
2502 /**
2503  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2504  * @mm: mm_struct of associated target process
2505  * @start: start of the region to mark for exclusive device access
2506  * @end: end address of region
2507  * @pages: returns the pages which were successfully marked for exclusive access
2508  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2509  *
2510  * Returns: number of pages found in the range by GUP. A page is marked for
2511  * exclusive access only if the page pointer is non-NULL.
2512  *
2513  * This function finds ptes mapping page(s) to the given address range, locks
2514  * them and replaces mappings with special swap entries preventing userspace CPU
2515  * access. On fault these entries are replaced with the original mapping after
2516  * calling MMU notifiers.
2517  *
2518  * A driver using this to program access from a device must use a mmu notifier
2519  * critical section to hold a device specific lock during programming. Once
2520  * programming is complete it should drop the page lock and reference after
2521  * which point CPU access to the page will revoke the exclusive access.
2522  */
2523 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2524 				unsigned long end, struct page **pages,
2525 				void *owner)
2526 {
2527 	long npages = (end - start) >> PAGE_SHIFT;
2528 	long i;
2529 
2530 	npages = get_user_pages_remote(mm, start, npages,
2531 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2532 				       pages, NULL);
2533 	if (npages < 0)
2534 		return npages;
2535 
2536 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2537 		struct folio *folio = page_folio(pages[i]);
2538 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2539 			folio_put(folio);
2540 			pages[i] = NULL;
2541 			continue;
2542 		}
2543 
2544 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2545 			folio_unlock(folio);
2546 			folio_put(folio);
2547 			pages[i] = NULL;
2548 		}
2549 	}
2550 
2551 	return npages;
2552 }
2553 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2554 #endif
2555 
2556 void __put_anon_vma(struct anon_vma *anon_vma)
2557 {
2558 	struct anon_vma *root = anon_vma->root;
2559 
2560 	anon_vma_free(anon_vma);
2561 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2562 		anon_vma_free(root);
2563 }
2564 
2565 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2566 					    struct rmap_walk_control *rwc)
2567 {
2568 	struct anon_vma *anon_vma;
2569 
2570 	if (rwc->anon_lock)
2571 		return rwc->anon_lock(folio, rwc);
2572 
2573 	/*
2574 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2575 	 * because that depends on page_mapped(); but not all its usages
2576 	 * are holding mmap_lock. Users without mmap_lock are required to
2577 	 * take a reference count to prevent the anon_vma disappearing
2578 	 */
2579 	anon_vma = folio_anon_vma(folio);
2580 	if (!anon_vma)
2581 		return NULL;
2582 
2583 	if (anon_vma_trylock_read(anon_vma))
2584 		goto out;
2585 
2586 	if (rwc->try_lock) {
2587 		anon_vma = NULL;
2588 		rwc->contended = true;
2589 		goto out;
2590 	}
2591 
2592 	anon_vma_lock_read(anon_vma);
2593 out:
2594 	return anon_vma;
2595 }
2596 
2597 /*
2598  * rmap_walk_anon - do something to anonymous page using the object-based
2599  * rmap method
2600  * @folio: the folio to be handled
2601  * @rwc: control variable according to each walk type
2602  * @locked: caller holds relevant rmap lock
2603  *
2604  * Find all the mappings of a folio using the mapping pointer and the vma
2605  * chains contained in the anon_vma struct it points to.
2606  */
2607 static void rmap_walk_anon(struct folio *folio,
2608 		struct rmap_walk_control *rwc, bool locked)
2609 {
2610 	struct anon_vma *anon_vma;
2611 	pgoff_t pgoff_start, pgoff_end;
2612 	struct anon_vma_chain *avc;
2613 
2614 	if (locked) {
2615 		anon_vma = folio_anon_vma(folio);
2616 		/* anon_vma disappear under us? */
2617 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2618 	} else {
2619 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2620 	}
2621 	if (!anon_vma)
2622 		return;
2623 
2624 	pgoff_start = folio_pgoff(folio);
2625 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2626 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2627 			pgoff_start, pgoff_end) {
2628 		struct vm_area_struct *vma = avc->vma;
2629 		unsigned long address = vma_address(vma, pgoff_start,
2630 				folio_nr_pages(folio));
2631 
2632 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2633 		cond_resched();
2634 
2635 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2636 			continue;
2637 
2638 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2639 			break;
2640 		if (rwc->done && rwc->done(folio))
2641 			break;
2642 	}
2643 
2644 	if (!locked)
2645 		anon_vma_unlock_read(anon_vma);
2646 }
2647 
2648 /*
2649  * rmap_walk_file - do something to file page using the object-based rmap method
2650  * @folio: the folio to be handled
2651  * @rwc: control variable according to each walk type
2652  * @locked: caller holds relevant rmap lock
2653  *
2654  * Find all the mappings of a folio using the mapping pointer and the vma chains
2655  * contained in the address_space struct it points to.
2656  */
2657 static void rmap_walk_file(struct folio *folio,
2658 		struct rmap_walk_control *rwc, bool locked)
2659 {
2660 	struct address_space *mapping = folio_mapping(folio);
2661 	pgoff_t pgoff_start, pgoff_end;
2662 	struct vm_area_struct *vma;
2663 
2664 	/*
2665 	 * The page lock not only makes sure that page->mapping cannot
2666 	 * suddenly be NULLified by truncation, it makes sure that the
2667 	 * structure at mapping cannot be freed and reused yet,
2668 	 * so we can safely take mapping->i_mmap_rwsem.
2669 	 */
2670 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2671 
2672 	if (!mapping)
2673 		return;
2674 
2675 	pgoff_start = folio_pgoff(folio);
2676 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2677 	if (!locked) {
2678 		if (i_mmap_trylock_read(mapping))
2679 			goto lookup;
2680 
2681 		if (rwc->try_lock) {
2682 			rwc->contended = true;
2683 			return;
2684 		}
2685 
2686 		i_mmap_lock_read(mapping);
2687 	}
2688 lookup:
2689 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2690 			pgoff_start, pgoff_end) {
2691 		unsigned long address = vma_address(vma, pgoff_start,
2692 			       folio_nr_pages(folio));
2693 
2694 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2695 		cond_resched();
2696 
2697 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2698 			continue;
2699 
2700 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2701 			goto done;
2702 		if (rwc->done && rwc->done(folio))
2703 			goto done;
2704 	}
2705 
2706 done:
2707 	if (!locked)
2708 		i_mmap_unlock_read(mapping);
2709 }
2710 
2711 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2712 {
2713 	if (unlikely(folio_test_ksm(folio)))
2714 		rmap_walk_ksm(folio, rwc);
2715 	else if (folio_test_anon(folio))
2716 		rmap_walk_anon(folio, rwc, false);
2717 	else
2718 		rmap_walk_file(folio, rwc, false);
2719 }
2720 
2721 /* Like rmap_walk, but caller holds relevant rmap lock */
2722 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2723 {
2724 	/* no ksm support for now */
2725 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2726 	if (folio_test_anon(folio))
2727 		rmap_walk_anon(folio, rwc, true);
2728 	else
2729 		rmap_walk_file(folio, rwc, true);
2730 }
2731 
2732 #ifdef CONFIG_HUGETLB_PAGE
2733 /*
2734  * The following two functions are for anonymous (private mapped) hugepages.
2735  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2736  * and no lru code, because we handle hugepages differently from common pages.
2737  */
2738 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2739 		unsigned long address, rmap_t flags)
2740 {
2741 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2742 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2743 
2744 	atomic_inc(&folio->_entire_mapcount);
2745 	atomic_inc(&folio->_large_mapcount);
2746 	if (flags & RMAP_EXCLUSIVE)
2747 		SetPageAnonExclusive(&folio->page);
2748 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2749 			 PageAnonExclusive(&folio->page), folio);
2750 }
2751 
2752 void hugetlb_add_new_anon_rmap(struct folio *folio,
2753 		struct vm_area_struct *vma, unsigned long address)
2754 {
2755 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2756 
2757 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2758 	/* increment count (starts at -1) */
2759 	atomic_set(&folio->_entire_mapcount, 0);
2760 	atomic_set(&folio->_large_mapcount, 0);
2761 	folio_clear_hugetlb_restore_reserve(folio);
2762 	__folio_set_anon(folio, vma, address, true);
2763 	SetPageAnonExclusive(&folio->page);
2764 }
2765 #endif /* CONFIG_HUGETLB_PAGE */
2766