xref: /linux/mm/rmap.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	/*
181 	 * It's critical to add new vmas to the tail of the anon_vma,
182 	 * see comment in huge_memory.c:__split_huge_page().
183 	 */
184 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
185 	anon_vma_unlock(anon_vma);
186 }
187 
188 /*
189  * Attach the anon_vmas from src to dst.
190  * Returns 0 on success, -ENOMEM on failure.
191  */
192 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
193 {
194 	struct anon_vma_chain *avc, *pavc;
195 
196 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
197 		avc = anon_vma_chain_alloc();
198 		if (!avc)
199 			goto enomem_failure;
200 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
201 	}
202 	return 0;
203 
204  enomem_failure:
205 	unlink_anon_vmas(dst);
206 	return -ENOMEM;
207 }
208 
209 /*
210  * Attach vma to its own anon_vma, as well as to the anon_vmas that
211  * the corresponding VMA in the parent process is attached to.
212  * Returns 0 on success, non-zero on failure.
213  */
214 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
215 {
216 	struct anon_vma_chain *avc;
217 	struct anon_vma *anon_vma;
218 
219 	/* Don't bother if the parent process has no anon_vma here. */
220 	if (!pvma->anon_vma)
221 		return 0;
222 
223 	/*
224 	 * First, attach the new VMA to the parent VMA's anon_vmas,
225 	 * so rmap can find non-COWed pages in child processes.
226 	 */
227 	if (anon_vma_clone(vma, pvma))
228 		return -ENOMEM;
229 
230 	/* Then add our own anon_vma. */
231 	anon_vma = anon_vma_alloc();
232 	if (!anon_vma)
233 		goto out_error;
234 	avc = anon_vma_chain_alloc();
235 	if (!avc)
236 		goto out_error_free_anon_vma;
237 
238 	/*
239 	 * The root anon_vma's spinlock is the lock actually used when we
240 	 * lock any of the anon_vmas in this anon_vma tree.
241 	 */
242 	anon_vma->root = pvma->anon_vma->root;
243 	/*
244 	 * With KSM refcounts, an anon_vma can stay around longer than the
245 	 * process it belongs to.  The root anon_vma needs to be pinned
246 	 * until this anon_vma is freed, because the lock lives in the root.
247 	 */
248 	get_anon_vma(anon_vma->root);
249 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
250 	vma->anon_vma = anon_vma;
251 	anon_vma_chain_link(vma, avc, anon_vma);
252 
253 	return 0;
254 
255  out_error_free_anon_vma:
256 	anon_vma_free(anon_vma);
257  out_error:
258 	unlink_anon_vmas(vma);
259 	return -ENOMEM;
260 }
261 
262 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
263 {
264 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
265 	int empty;
266 
267 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
268 	if (!anon_vma)
269 		return;
270 
271 	anon_vma_lock(anon_vma);
272 	list_del(&anon_vma_chain->same_anon_vma);
273 
274 	/* We must garbage collect the anon_vma if it's empty */
275 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
276 	anon_vma_unlock(anon_vma);
277 
278 	if (empty) {
279 		/* We no longer need the root anon_vma */
280 		if (anon_vma->root != anon_vma)
281 			drop_anon_vma(anon_vma->root);
282 		anon_vma_free(anon_vma);
283 	}
284 }
285 
286 void unlink_anon_vmas(struct vm_area_struct *vma)
287 {
288 	struct anon_vma_chain *avc, *next;
289 
290 	/*
291 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
292 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
293 	 */
294 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295 		anon_vma_unlink(avc);
296 		list_del(&avc->same_vma);
297 		anon_vma_chain_free(avc);
298 	}
299 }
300 
301 static void anon_vma_ctor(void *data)
302 {
303 	struct anon_vma *anon_vma = data;
304 
305 	spin_lock_init(&anon_vma->lock);
306 	anonvma_external_refcount_init(anon_vma);
307 	INIT_LIST_HEAD(&anon_vma->head);
308 }
309 
310 void __init anon_vma_init(void)
311 {
312 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
313 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
314 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
315 }
316 
317 /*
318  * Getting a lock on a stable anon_vma from a page off the LRU is
319  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
320  */
321 struct anon_vma *__page_lock_anon_vma(struct page *page)
322 {
323 	struct anon_vma *anon_vma, *root_anon_vma;
324 	unsigned long anon_mapping;
325 
326 	rcu_read_lock();
327 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
328 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
329 		goto out;
330 	if (!page_mapped(page))
331 		goto out;
332 
333 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
334 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
335 	spin_lock(&root_anon_vma->lock);
336 
337 	/*
338 	 * If this page is still mapped, then its anon_vma cannot have been
339 	 * freed.  But if it has been unmapped, we have no security against
340 	 * the anon_vma structure being freed and reused (for another anon_vma:
341 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
344 	 */
345 	if (page_mapped(page))
346 		return anon_vma;
347 
348 	spin_unlock(&root_anon_vma->lock);
349 out:
350 	rcu_read_unlock();
351 	return NULL;
352 }
353 
354 void page_unlock_anon_vma(struct anon_vma *anon_vma)
355 	__releases(&anon_vma->root->lock)
356 	__releases(RCU)
357 {
358 	anon_vma_unlock(anon_vma);
359 	rcu_read_unlock();
360 }
361 
362 /*
363  * At what user virtual address is page expected in @vma?
364  * Returns virtual address or -EFAULT if page's index/offset is not
365  * within the range mapped the @vma.
366  */
367 inline unsigned long
368 vma_address(struct page *page, struct vm_area_struct *vma)
369 {
370 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371 	unsigned long address;
372 
373 	if (unlikely(is_vm_hugetlb_page(vma)))
374 		pgoff = page->index << huge_page_order(page_hstate(page));
375 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
377 		/* page should be within @vma mapping range */
378 		return -EFAULT;
379 	}
380 	return address;
381 }
382 
383 /*
384  * At what user virtual address is page expected in vma?
385  * Caller should check the page is actually part of the vma.
386  */
387 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
388 {
389 	if (PageAnon(page)) {
390 		struct anon_vma *page__anon_vma = page_anon_vma(page);
391 		/*
392 		 * Note: swapoff's unuse_vma() is more efficient with this
393 		 * check, and needs it to match anon_vma when KSM is active.
394 		 */
395 		if (!vma->anon_vma || !page__anon_vma ||
396 		    vma->anon_vma->root != page__anon_vma->root)
397 			return -EFAULT;
398 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
399 		if (!vma->vm_file ||
400 		    vma->vm_file->f_mapping != page->mapping)
401 			return -EFAULT;
402 	} else
403 		return -EFAULT;
404 	return vma_address(page, vma);
405 }
406 
407 /*
408  * Check that @page is mapped at @address into @mm.
409  *
410  * If @sync is false, page_check_address may perform a racy check to avoid
411  * the page table lock when the pte is not present (helpful when reclaiming
412  * highly shared pages).
413  *
414  * On success returns with pte mapped and locked.
415  */
416 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
417 			  unsigned long address, spinlock_t **ptlp, int sync)
418 {
419 	pgd_t *pgd;
420 	pud_t *pud;
421 	pmd_t *pmd;
422 	pte_t *pte;
423 	spinlock_t *ptl;
424 
425 	if (unlikely(PageHuge(page))) {
426 		pte = huge_pte_offset(mm, address);
427 		ptl = &mm->page_table_lock;
428 		goto check;
429 	}
430 
431 	pgd = pgd_offset(mm, address);
432 	if (!pgd_present(*pgd))
433 		return NULL;
434 
435 	pud = pud_offset(pgd, address);
436 	if (!pud_present(*pud))
437 		return NULL;
438 
439 	pmd = pmd_offset(pud, address);
440 	if (!pmd_present(*pmd))
441 		return NULL;
442 	if (pmd_trans_huge(*pmd))
443 		return NULL;
444 
445 	pte = pte_offset_map(pmd, address);
446 	/* Make a quick check before getting the lock */
447 	if (!sync && !pte_present(*pte)) {
448 		pte_unmap(pte);
449 		return NULL;
450 	}
451 
452 	ptl = pte_lockptr(mm, pmd);
453 check:
454 	spin_lock(ptl);
455 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456 		*ptlp = ptl;
457 		return pte;
458 	}
459 	pte_unmap_unlock(pte, ptl);
460 	return NULL;
461 }
462 
463 /**
464  * page_mapped_in_vma - check whether a page is really mapped in a VMA
465  * @page: the page to test
466  * @vma: the VMA to test
467  *
468  * Returns 1 if the page is mapped into the page tables of the VMA, 0
469  * if the page is not mapped into the page tables of this VMA.  Only
470  * valid for normal file or anonymous VMAs.
471  */
472 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
473 {
474 	unsigned long address;
475 	pte_t *pte;
476 	spinlock_t *ptl;
477 
478 	address = vma_address(page, vma);
479 	if (address == -EFAULT)		/* out of vma range */
480 		return 0;
481 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482 	if (!pte)			/* the page is not in this mm */
483 		return 0;
484 	pte_unmap_unlock(pte, ptl);
485 
486 	return 1;
487 }
488 
489 /*
490  * Subfunctions of page_referenced: page_referenced_one called
491  * repeatedly from either page_referenced_anon or page_referenced_file.
492  */
493 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494 			unsigned long address, unsigned int *mapcount,
495 			unsigned long *vm_flags)
496 {
497 	struct mm_struct *mm = vma->vm_mm;
498 	int referenced = 0;
499 
500 	if (unlikely(PageTransHuge(page))) {
501 		pmd_t *pmd;
502 
503 		spin_lock(&mm->page_table_lock);
504 		/*
505 		 * rmap might return false positives; we must filter
506 		 * these out using page_check_address_pmd().
507 		 */
508 		pmd = page_check_address_pmd(page, mm, address,
509 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
510 		if (!pmd) {
511 			spin_unlock(&mm->page_table_lock);
512 			goto out;
513 		}
514 
515 		if (vma->vm_flags & VM_LOCKED) {
516 			spin_unlock(&mm->page_table_lock);
517 			*mapcount = 0;	/* break early from loop */
518 			*vm_flags |= VM_LOCKED;
519 			goto out;
520 		}
521 
522 		/* go ahead even if the pmd is pmd_trans_splitting() */
523 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
524 			referenced++;
525 		spin_unlock(&mm->page_table_lock);
526 	} else {
527 		pte_t *pte;
528 		spinlock_t *ptl;
529 
530 		/*
531 		 * rmap might return false positives; we must filter
532 		 * these out using page_check_address().
533 		 */
534 		pte = page_check_address(page, mm, address, &ptl, 0);
535 		if (!pte)
536 			goto out;
537 
538 		if (vma->vm_flags & VM_LOCKED) {
539 			pte_unmap_unlock(pte, ptl);
540 			*mapcount = 0;	/* break early from loop */
541 			*vm_flags |= VM_LOCKED;
542 			goto out;
543 		}
544 
545 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
546 			/*
547 			 * Don't treat a reference through a sequentially read
548 			 * mapping as such.  If the page has been used in
549 			 * another mapping, we will catch it; if this other
550 			 * mapping is already gone, the unmap path will have
551 			 * set PG_referenced or activated the page.
552 			 */
553 			if (likely(!VM_SequentialReadHint(vma)))
554 				referenced++;
555 		}
556 		pte_unmap_unlock(pte, ptl);
557 	}
558 
559 	/* Pretend the page is referenced if the task has the
560 	   swap token and is in the middle of a page fault. */
561 	if (mm != current->mm && has_swap_token(mm) &&
562 			rwsem_is_locked(&mm->mmap_sem))
563 		referenced++;
564 
565 	(*mapcount)--;
566 
567 	if (referenced)
568 		*vm_flags |= vma->vm_flags;
569 out:
570 	return referenced;
571 }
572 
573 static int page_referenced_anon(struct page *page,
574 				struct mem_cgroup *mem_cont,
575 				unsigned long *vm_flags)
576 {
577 	unsigned int mapcount;
578 	struct anon_vma *anon_vma;
579 	struct anon_vma_chain *avc;
580 	int referenced = 0;
581 
582 	anon_vma = page_lock_anon_vma(page);
583 	if (!anon_vma)
584 		return referenced;
585 
586 	mapcount = page_mapcount(page);
587 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
588 		struct vm_area_struct *vma = avc->vma;
589 		unsigned long address = vma_address(page, vma);
590 		if (address == -EFAULT)
591 			continue;
592 		/*
593 		 * If we are reclaiming on behalf of a cgroup, skip
594 		 * counting on behalf of references from different
595 		 * cgroups
596 		 */
597 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
598 			continue;
599 		referenced += page_referenced_one(page, vma, address,
600 						  &mapcount, vm_flags);
601 		if (!mapcount)
602 			break;
603 	}
604 
605 	page_unlock_anon_vma(anon_vma);
606 	return referenced;
607 }
608 
609 /**
610  * page_referenced_file - referenced check for object-based rmap
611  * @page: the page we're checking references on.
612  * @mem_cont: target memory controller
613  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
614  *
615  * For an object-based mapped page, find all the places it is mapped and
616  * check/clear the referenced flag.  This is done by following the page->mapping
617  * pointer, then walking the chain of vmas it holds.  It returns the number
618  * of references it found.
619  *
620  * This function is only called from page_referenced for object-based pages.
621  */
622 static int page_referenced_file(struct page *page,
623 				struct mem_cgroup *mem_cont,
624 				unsigned long *vm_flags)
625 {
626 	unsigned int mapcount;
627 	struct address_space *mapping = page->mapping;
628 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
629 	struct vm_area_struct *vma;
630 	struct prio_tree_iter iter;
631 	int referenced = 0;
632 
633 	/*
634 	 * The caller's checks on page->mapping and !PageAnon have made
635 	 * sure that this is a file page: the check for page->mapping
636 	 * excludes the case just before it gets set on an anon page.
637 	 */
638 	BUG_ON(PageAnon(page));
639 
640 	/*
641 	 * The page lock not only makes sure that page->mapping cannot
642 	 * suddenly be NULLified by truncation, it makes sure that the
643 	 * structure at mapping cannot be freed and reused yet,
644 	 * so we can safely take mapping->i_mmap_lock.
645 	 */
646 	BUG_ON(!PageLocked(page));
647 
648 	spin_lock(&mapping->i_mmap_lock);
649 
650 	/*
651 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
652 	 * is more likely to be accurate if we note it after spinning.
653 	 */
654 	mapcount = page_mapcount(page);
655 
656 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
657 		unsigned long address = vma_address(page, vma);
658 		if (address == -EFAULT)
659 			continue;
660 		/*
661 		 * If we are reclaiming on behalf of a cgroup, skip
662 		 * counting on behalf of references from different
663 		 * cgroups
664 		 */
665 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
666 			continue;
667 		referenced += page_referenced_one(page, vma, address,
668 						  &mapcount, vm_flags);
669 		if (!mapcount)
670 			break;
671 	}
672 
673 	spin_unlock(&mapping->i_mmap_lock);
674 	return referenced;
675 }
676 
677 /**
678  * page_referenced - test if the page was referenced
679  * @page: the page to test
680  * @is_locked: caller holds lock on the page
681  * @mem_cont: target memory controller
682  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
683  *
684  * Quick test_and_clear_referenced for all mappings to a page,
685  * returns the number of ptes which referenced the page.
686  */
687 int page_referenced(struct page *page,
688 		    int is_locked,
689 		    struct mem_cgroup *mem_cont,
690 		    unsigned long *vm_flags)
691 {
692 	int referenced = 0;
693 	int we_locked = 0;
694 
695 	*vm_flags = 0;
696 	if (page_mapped(page) && page_rmapping(page)) {
697 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
698 			we_locked = trylock_page(page);
699 			if (!we_locked) {
700 				referenced++;
701 				goto out;
702 			}
703 		}
704 		if (unlikely(PageKsm(page)))
705 			referenced += page_referenced_ksm(page, mem_cont,
706 								vm_flags);
707 		else if (PageAnon(page))
708 			referenced += page_referenced_anon(page, mem_cont,
709 								vm_flags);
710 		else if (page->mapping)
711 			referenced += page_referenced_file(page, mem_cont,
712 								vm_flags);
713 		if (we_locked)
714 			unlock_page(page);
715 	}
716 out:
717 	if (page_test_and_clear_young(page))
718 		referenced++;
719 
720 	return referenced;
721 }
722 
723 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
724 			    unsigned long address)
725 {
726 	struct mm_struct *mm = vma->vm_mm;
727 	pte_t *pte;
728 	spinlock_t *ptl;
729 	int ret = 0;
730 
731 	pte = page_check_address(page, mm, address, &ptl, 1);
732 	if (!pte)
733 		goto out;
734 
735 	if (pte_dirty(*pte) || pte_write(*pte)) {
736 		pte_t entry;
737 
738 		flush_cache_page(vma, address, pte_pfn(*pte));
739 		entry = ptep_clear_flush_notify(vma, address, pte);
740 		entry = pte_wrprotect(entry);
741 		entry = pte_mkclean(entry);
742 		set_pte_at(mm, address, pte, entry);
743 		ret = 1;
744 	}
745 
746 	pte_unmap_unlock(pte, ptl);
747 out:
748 	return ret;
749 }
750 
751 static int page_mkclean_file(struct address_space *mapping, struct page *page)
752 {
753 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
754 	struct vm_area_struct *vma;
755 	struct prio_tree_iter iter;
756 	int ret = 0;
757 
758 	BUG_ON(PageAnon(page));
759 
760 	spin_lock(&mapping->i_mmap_lock);
761 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
762 		if (vma->vm_flags & VM_SHARED) {
763 			unsigned long address = vma_address(page, vma);
764 			if (address == -EFAULT)
765 				continue;
766 			ret += page_mkclean_one(page, vma, address);
767 		}
768 	}
769 	spin_unlock(&mapping->i_mmap_lock);
770 	return ret;
771 }
772 
773 int page_mkclean(struct page *page)
774 {
775 	int ret = 0;
776 
777 	BUG_ON(!PageLocked(page));
778 
779 	if (page_mapped(page)) {
780 		struct address_space *mapping = page_mapping(page);
781 		if (mapping) {
782 			ret = page_mkclean_file(mapping, page);
783 			if (page_test_dirty(page)) {
784 				page_clear_dirty(page, 1);
785 				ret = 1;
786 			}
787 		}
788 	}
789 
790 	return ret;
791 }
792 EXPORT_SYMBOL_GPL(page_mkclean);
793 
794 /**
795  * page_move_anon_rmap - move a page to our anon_vma
796  * @page:	the page to move to our anon_vma
797  * @vma:	the vma the page belongs to
798  * @address:	the user virtual address mapped
799  *
800  * When a page belongs exclusively to one process after a COW event,
801  * that page can be moved into the anon_vma that belongs to just that
802  * process, so the rmap code will not search the parent or sibling
803  * processes.
804  */
805 void page_move_anon_rmap(struct page *page,
806 	struct vm_area_struct *vma, unsigned long address)
807 {
808 	struct anon_vma *anon_vma = vma->anon_vma;
809 
810 	VM_BUG_ON(!PageLocked(page));
811 	VM_BUG_ON(!anon_vma);
812 	VM_BUG_ON(page->index != linear_page_index(vma, address));
813 
814 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
815 	page->mapping = (struct address_space *) anon_vma;
816 }
817 
818 /**
819  * __page_set_anon_rmap - set up new anonymous rmap
820  * @page:	Page to add to rmap
821  * @vma:	VM area to add page to.
822  * @address:	User virtual address of the mapping
823  * @exclusive:	the page is exclusively owned by the current process
824  */
825 static void __page_set_anon_rmap(struct page *page,
826 	struct vm_area_struct *vma, unsigned long address, int exclusive)
827 {
828 	struct anon_vma *anon_vma = vma->anon_vma;
829 
830 	BUG_ON(!anon_vma);
831 
832 	if (PageAnon(page))
833 		return;
834 
835 	/*
836 	 * If the page isn't exclusively mapped into this vma,
837 	 * we must use the _oldest_ possible anon_vma for the
838 	 * page mapping!
839 	 */
840 	if (!exclusive)
841 		anon_vma = anon_vma->root;
842 
843 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
844 	page->mapping = (struct address_space *) anon_vma;
845 	page->index = linear_page_index(vma, address);
846 }
847 
848 /**
849  * __page_check_anon_rmap - sanity check anonymous rmap addition
850  * @page:	the page to add the mapping to
851  * @vma:	the vm area in which the mapping is added
852  * @address:	the user virtual address mapped
853  */
854 static void __page_check_anon_rmap(struct page *page,
855 	struct vm_area_struct *vma, unsigned long address)
856 {
857 #ifdef CONFIG_DEBUG_VM
858 	/*
859 	 * The page's anon-rmap details (mapping and index) are guaranteed to
860 	 * be set up correctly at this point.
861 	 *
862 	 * We have exclusion against page_add_anon_rmap because the caller
863 	 * always holds the page locked, except if called from page_dup_rmap,
864 	 * in which case the page is already known to be setup.
865 	 *
866 	 * We have exclusion against page_add_new_anon_rmap because those pages
867 	 * are initially only visible via the pagetables, and the pte is locked
868 	 * over the call to page_add_new_anon_rmap.
869 	 */
870 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
871 	BUG_ON(page->index != linear_page_index(vma, address));
872 #endif
873 }
874 
875 /**
876  * page_add_anon_rmap - add pte mapping to an anonymous page
877  * @page:	the page to add the mapping to
878  * @vma:	the vm area in which the mapping is added
879  * @address:	the user virtual address mapped
880  *
881  * The caller needs to hold the pte lock, and the page must be locked in
882  * the anon_vma case: to serialize mapping,index checking after setting,
883  * and to ensure that PageAnon is not being upgraded racily to PageKsm
884  * (but PageKsm is never downgraded to PageAnon).
885  */
886 void page_add_anon_rmap(struct page *page,
887 	struct vm_area_struct *vma, unsigned long address)
888 {
889 	do_page_add_anon_rmap(page, vma, address, 0);
890 }
891 
892 /*
893  * Special version of the above for do_swap_page, which often runs
894  * into pages that are exclusively owned by the current process.
895  * Everybody else should continue to use page_add_anon_rmap above.
896  */
897 void do_page_add_anon_rmap(struct page *page,
898 	struct vm_area_struct *vma, unsigned long address, int exclusive)
899 {
900 	int first = atomic_inc_and_test(&page->_mapcount);
901 	if (first) {
902 		if (!PageTransHuge(page))
903 			__inc_zone_page_state(page, NR_ANON_PAGES);
904 		else
905 			__inc_zone_page_state(page,
906 					      NR_ANON_TRANSPARENT_HUGEPAGES);
907 	}
908 	if (unlikely(PageKsm(page)))
909 		return;
910 
911 	VM_BUG_ON(!PageLocked(page));
912 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
913 	if (first)
914 		__page_set_anon_rmap(page, vma, address, exclusive);
915 	else
916 		__page_check_anon_rmap(page, vma, address);
917 }
918 
919 /**
920  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
921  * @page:	the page to add the mapping to
922  * @vma:	the vm area in which the mapping is added
923  * @address:	the user virtual address mapped
924  *
925  * Same as page_add_anon_rmap but must only be called on *new* pages.
926  * This means the inc-and-test can be bypassed.
927  * Page does not have to be locked.
928  */
929 void page_add_new_anon_rmap(struct page *page,
930 	struct vm_area_struct *vma, unsigned long address)
931 {
932 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
933 	SetPageSwapBacked(page);
934 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
935 	if (!PageTransHuge(page))
936 		__inc_zone_page_state(page, NR_ANON_PAGES);
937 	else
938 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
939 	__page_set_anon_rmap(page, vma, address, 1);
940 	if (page_evictable(page, vma))
941 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
942 	else
943 		add_page_to_unevictable_list(page);
944 }
945 
946 /**
947  * page_add_file_rmap - add pte mapping to a file page
948  * @page: the page to add the mapping to
949  *
950  * The caller needs to hold the pte lock.
951  */
952 void page_add_file_rmap(struct page *page)
953 {
954 	if (atomic_inc_and_test(&page->_mapcount)) {
955 		__inc_zone_page_state(page, NR_FILE_MAPPED);
956 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
957 	}
958 }
959 
960 /**
961  * page_remove_rmap - take down pte mapping from a page
962  * @page: page to remove mapping from
963  *
964  * The caller needs to hold the pte lock.
965  */
966 void page_remove_rmap(struct page *page)
967 {
968 	/* page still mapped by someone else? */
969 	if (!atomic_add_negative(-1, &page->_mapcount))
970 		return;
971 
972 	/*
973 	 * Now that the last pte has gone, s390 must transfer dirty
974 	 * flag from storage key to struct page.  We can usually skip
975 	 * this if the page is anon, so about to be freed; but perhaps
976 	 * not if it's in swapcache - there might be another pte slot
977 	 * containing the swap entry, but page not yet written to swap.
978 	 */
979 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
980 		page_clear_dirty(page, 1);
981 		set_page_dirty(page);
982 	}
983 	/*
984 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
985 	 * and not charged by memcg for now.
986 	 */
987 	if (unlikely(PageHuge(page)))
988 		return;
989 	if (PageAnon(page)) {
990 		mem_cgroup_uncharge_page(page);
991 		if (!PageTransHuge(page))
992 			__dec_zone_page_state(page, NR_ANON_PAGES);
993 		else
994 			__dec_zone_page_state(page,
995 					      NR_ANON_TRANSPARENT_HUGEPAGES);
996 	} else {
997 		__dec_zone_page_state(page, NR_FILE_MAPPED);
998 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
999 	}
1000 	/*
1001 	 * It would be tidy to reset the PageAnon mapping here,
1002 	 * but that might overwrite a racing page_add_anon_rmap
1003 	 * which increments mapcount after us but sets mapping
1004 	 * before us: so leave the reset to free_hot_cold_page,
1005 	 * and remember that it's only reliable while mapped.
1006 	 * Leaving it set also helps swapoff to reinstate ptes
1007 	 * faster for those pages still in swapcache.
1008 	 */
1009 }
1010 
1011 /*
1012  * Subfunctions of try_to_unmap: try_to_unmap_one called
1013  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1014  */
1015 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016 		     unsigned long address, enum ttu_flags flags)
1017 {
1018 	struct mm_struct *mm = vma->vm_mm;
1019 	pte_t *pte;
1020 	pte_t pteval;
1021 	spinlock_t *ptl;
1022 	int ret = SWAP_AGAIN;
1023 
1024 	pte = page_check_address(page, mm, address, &ptl, 0);
1025 	if (!pte)
1026 		goto out;
1027 
1028 	/*
1029 	 * If the page is mlock()d, we cannot swap it out.
1030 	 * If it's recently referenced (perhaps page_referenced
1031 	 * skipped over this mm) then we should reactivate it.
1032 	 */
1033 	if (!(flags & TTU_IGNORE_MLOCK)) {
1034 		if (vma->vm_flags & VM_LOCKED)
1035 			goto out_mlock;
1036 
1037 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1038 			goto out_unmap;
1039 	}
1040 	if (!(flags & TTU_IGNORE_ACCESS)) {
1041 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042 			ret = SWAP_FAIL;
1043 			goto out_unmap;
1044 		}
1045   	}
1046 
1047 	/* Nuke the page table entry. */
1048 	flush_cache_page(vma, address, page_to_pfn(page));
1049 	pteval = ptep_clear_flush_notify(vma, address, pte);
1050 
1051 	/* Move the dirty bit to the physical page now the pte is gone. */
1052 	if (pte_dirty(pteval))
1053 		set_page_dirty(page);
1054 
1055 	/* Update high watermark before we lower rss */
1056 	update_hiwater_rss(mm);
1057 
1058 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059 		if (PageAnon(page))
1060 			dec_mm_counter(mm, MM_ANONPAGES);
1061 		else
1062 			dec_mm_counter(mm, MM_FILEPAGES);
1063 		set_pte_at(mm, address, pte,
1064 				swp_entry_to_pte(make_hwpoison_entry(page)));
1065 	} else if (PageAnon(page)) {
1066 		swp_entry_t entry = { .val = page_private(page) };
1067 
1068 		if (PageSwapCache(page)) {
1069 			/*
1070 			 * Store the swap location in the pte.
1071 			 * See handle_pte_fault() ...
1072 			 */
1073 			if (swap_duplicate(entry) < 0) {
1074 				set_pte_at(mm, address, pte, pteval);
1075 				ret = SWAP_FAIL;
1076 				goto out_unmap;
1077 			}
1078 			if (list_empty(&mm->mmlist)) {
1079 				spin_lock(&mmlist_lock);
1080 				if (list_empty(&mm->mmlist))
1081 					list_add(&mm->mmlist, &init_mm.mmlist);
1082 				spin_unlock(&mmlist_lock);
1083 			}
1084 			dec_mm_counter(mm, MM_ANONPAGES);
1085 			inc_mm_counter(mm, MM_SWAPENTS);
1086 		} else if (PAGE_MIGRATION) {
1087 			/*
1088 			 * Store the pfn of the page in a special migration
1089 			 * pte. do_swap_page() will wait until the migration
1090 			 * pte is removed and then restart fault handling.
1091 			 */
1092 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1093 			entry = make_migration_entry(page, pte_write(pteval));
1094 		}
1095 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096 		BUG_ON(pte_file(*pte));
1097 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1098 		/* Establish migration entry for a file page */
1099 		swp_entry_t entry;
1100 		entry = make_migration_entry(page, pte_write(pteval));
1101 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102 	} else
1103 		dec_mm_counter(mm, MM_FILEPAGES);
1104 
1105 	page_remove_rmap(page);
1106 	page_cache_release(page);
1107 
1108 out_unmap:
1109 	pte_unmap_unlock(pte, ptl);
1110 out:
1111 	return ret;
1112 
1113 out_mlock:
1114 	pte_unmap_unlock(pte, ptl);
1115 
1116 
1117 	/*
1118 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119 	 * unstable result and race. Plus, We can't wait here because
1120 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1121 	 * if trylock failed, the page remain in evictable lru and later
1122 	 * vmscan could retry to move the page to unevictable lru if the
1123 	 * page is actually mlocked.
1124 	 */
1125 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126 		if (vma->vm_flags & VM_LOCKED) {
1127 			mlock_vma_page(page);
1128 			ret = SWAP_MLOCK;
1129 		}
1130 		up_read(&vma->vm_mm->mmap_sem);
1131 	}
1132 	return ret;
1133 }
1134 
1135 /*
1136  * objrmap doesn't work for nonlinear VMAs because the assumption that
1137  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138  * Consequently, given a particular page and its ->index, we cannot locate the
1139  * ptes which are mapping that page without an exhaustive linear search.
1140  *
1141  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142  * maps the file to which the target page belongs.  The ->vm_private_data field
1143  * holds the current cursor into that scan.  Successive searches will circulate
1144  * around the vma's virtual address space.
1145  *
1146  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147  * more scanning pressure is placed against them as well.   Eventually pages
1148  * will become fully unmapped and are eligible for eviction.
1149  *
1150  * For very sparsely populated VMAs this is a little inefficient - chances are
1151  * there there won't be many ptes located within the scan cluster.  In this case
1152  * maybe we could scan further - to the end of the pte page, perhaps.
1153  *
1154  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1155  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1156  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1157  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1158  */
1159 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1160 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1161 
1162 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163 		struct vm_area_struct *vma, struct page *check_page)
1164 {
1165 	struct mm_struct *mm = vma->vm_mm;
1166 	pgd_t *pgd;
1167 	pud_t *pud;
1168 	pmd_t *pmd;
1169 	pte_t *pte;
1170 	pte_t pteval;
1171 	spinlock_t *ptl;
1172 	struct page *page;
1173 	unsigned long address;
1174 	unsigned long end;
1175 	int ret = SWAP_AGAIN;
1176 	int locked_vma = 0;
1177 
1178 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179 	end = address + CLUSTER_SIZE;
1180 	if (address < vma->vm_start)
1181 		address = vma->vm_start;
1182 	if (end > vma->vm_end)
1183 		end = vma->vm_end;
1184 
1185 	pgd = pgd_offset(mm, address);
1186 	if (!pgd_present(*pgd))
1187 		return ret;
1188 
1189 	pud = pud_offset(pgd, address);
1190 	if (!pud_present(*pud))
1191 		return ret;
1192 
1193 	pmd = pmd_offset(pud, address);
1194 	if (!pmd_present(*pmd))
1195 		return ret;
1196 
1197 	/*
1198 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1199 	 * keep the sem while scanning the cluster for mlocking pages.
1200 	 */
1201 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1202 		locked_vma = (vma->vm_flags & VM_LOCKED);
1203 		if (!locked_vma)
1204 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1205 	}
1206 
1207 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1208 
1209 	/* Update high watermark before we lower rss */
1210 	update_hiwater_rss(mm);
1211 
1212 	for (; address < end; pte++, address += PAGE_SIZE) {
1213 		if (!pte_present(*pte))
1214 			continue;
1215 		page = vm_normal_page(vma, address, *pte);
1216 		BUG_ON(!page || PageAnon(page));
1217 
1218 		if (locked_vma) {
1219 			mlock_vma_page(page);   /* no-op if already mlocked */
1220 			if (page == check_page)
1221 				ret = SWAP_MLOCK;
1222 			continue;	/* don't unmap */
1223 		}
1224 
1225 		if (ptep_clear_flush_young_notify(vma, address, pte))
1226 			continue;
1227 
1228 		/* Nuke the page table entry. */
1229 		flush_cache_page(vma, address, pte_pfn(*pte));
1230 		pteval = ptep_clear_flush_notify(vma, address, pte);
1231 
1232 		/* If nonlinear, store the file page offset in the pte. */
1233 		if (page->index != linear_page_index(vma, address))
1234 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1235 
1236 		/* Move the dirty bit to the physical page now the pte is gone. */
1237 		if (pte_dirty(pteval))
1238 			set_page_dirty(page);
1239 
1240 		page_remove_rmap(page);
1241 		page_cache_release(page);
1242 		dec_mm_counter(mm, MM_FILEPAGES);
1243 		(*mapcount)--;
1244 	}
1245 	pte_unmap_unlock(pte - 1, ptl);
1246 	if (locked_vma)
1247 		up_read(&vma->vm_mm->mmap_sem);
1248 	return ret;
1249 }
1250 
1251 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1252 {
1253 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1254 
1255 	if (!maybe_stack)
1256 		return false;
1257 
1258 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259 						VM_STACK_INCOMPLETE_SETUP)
1260 		return true;
1261 
1262 	return false;
1263 }
1264 
1265 /**
1266  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267  * rmap method
1268  * @page: the page to unmap/unlock
1269  * @flags: action and flags
1270  *
1271  * Find all the mappings of a page using the mapping pointer and the vma chains
1272  * contained in the anon_vma struct it points to.
1273  *
1274  * This function is only called from try_to_unmap/try_to_munlock for
1275  * anonymous pages.
1276  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277  * where the page was found will be held for write.  So, we won't recheck
1278  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1279  * 'LOCKED.
1280  */
1281 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1282 {
1283 	struct anon_vma *anon_vma;
1284 	struct anon_vma_chain *avc;
1285 	int ret = SWAP_AGAIN;
1286 
1287 	anon_vma = page_lock_anon_vma(page);
1288 	if (!anon_vma)
1289 		return ret;
1290 
1291 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292 		struct vm_area_struct *vma = avc->vma;
1293 		unsigned long address;
1294 
1295 		/*
1296 		 * During exec, a temporary VMA is setup and later moved.
1297 		 * The VMA is moved under the anon_vma lock but not the
1298 		 * page tables leading to a race where migration cannot
1299 		 * find the migration ptes. Rather than increasing the
1300 		 * locking requirements of exec(), migration skips
1301 		 * temporary VMAs until after exec() completes.
1302 		 */
1303 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304 				is_vma_temporary_stack(vma))
1305 			continue;
1306 
1307 		address = vma_address(page, vma);
1308 		if (address == -EFAULT)
1309 			continue;
1310 		ret = try_to_unmap_one(page, vma, address, flags);
1311 		if (ret != SWAP_AGAIN || !page_mapped(page))
1312 			break;
1313 	}
1314 
1315 	page_unlock_anon_vma(anon_vma);
1316 	return ret;
1317 }
1318 
1319 /**
1320  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321  * @page: the page to unmap/unlock
1322  * @flags: action and flags
1323  *
1324  * Find all the mappings of a page using the mapping pointer and the vma chains
1325  * contained in the address_space struct it points to.
1326  *
1327  * This function is only called from try_to_unmap/try_to_munlock for
1328  * object-based pages.
1329  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330  * where the page was found will be held for write.  So, we won't recheck
1331  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1332  * 'LOCKED.
1333  */
1334 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1335 {
1336 	struct address_space *mapping = page->mapping;
1337 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338 	struct vm_area_struct *vma;
1339 	struct prio_tree_iter iter;
1340 	int ret = SWAP_AGAIN;
1341 	unsigned long cursor;
1342 	unsigned long max_nl_cursor = 0;
1343 	unsigned long max_nl_size = 0;
1344 	unsigned int mapcount;
1345 
1346 	spin_lock(&mapping->i_mmap_lock);
1347 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1348 		unsigned long address = vma_address(page, vma);
1349 		if (address == -EFAULT)
1350 			continue;
1351 		ret = try_to_unmap_one(page, vma, address, flags);
1352 		if (ret != SWAP_AGAIN || !page_mapped(page))
1353 			goto out;
1354 	}
1355 
1356 	if (list_empty(&mapping->i_mmap_nonlinear))
1357 		goto out;
1358 
1359 	/*
1360 	 * We don't bother to try to find the munlocked page in nonlinears.
1361 	 * It's costly. Instead, later, page reclaim logic may call
1362 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1363 	 */
1364 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365 		goto out;
1366 
1367 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368 						shared.vm_set.list) {
1369 		cursor = (unsigned long) vma->vm_private_data;
1370 		if (cursor > max_nl_cursor)
1371 			max_nl_cursor = cursor;
1372 		cursor = vma->vm_end - vma->vm_start;
1373 		if (cursor > max_nl_size)
1374 			max_nl_size = cursor;
1375 	}
1376 
1377 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1378 		ret = SWAP_FAIL;
1379 		goto out;
1380 	}
1381 
1382 	/*
1383 	 * We don't try to search for this page in the nonlinear vmas,
1384 	 * and page_referenced wouldn't have found it anyway.  Instead
1385 	 * just walk the nonlinear vmas trying to age and unmap some.
1386 	 * The mapcount of the page we came in with is irrelevant,
1387 	 * but even so use it as a guide to how hard we should try?
1388 	 */
1389 	mapcount = page_mapcount(page);
1390 	if (!mapcount)
1391 		goto out;
1392 	cond_resched_lock(&mapping->i_mmap_lock);
1393 
1394 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395 	if (max_nl_cursor == 0)
1396 		max_nl_cursor = CLUSTER_SIZE;
1397 
1398 	do {
1399 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400 						shared.vm_set.list) {
1401 			cursor = (unsigned long) vma->vm_private_data;
1402 			while ( cursor < max_nl_cursor &&
1403 				cursor < vma->vm_end - vma->vm_start) {
1404 				if (try_to_unmap_cluster(cursor, &mapcount,
1405 						vma, page) == SWAP_MLOCK)
1406 					ret = SWAP_MLOCK;
1407 				cursor += CLUSTER_SIZE;
1408 				vma->vm_private_data = (void *) cursor;
1409 				if ((int)mapcount <= 0)
1410 					goto out;
1411 			}
1412 			vma->vm_private_data = (void *) max_nl_cursor;
1413 		}
1414 		cond_resched_lock(&mapping->i_mmap_lock);
1415 		max_nl_cursor += CLUSTER_SIZE;
1416 	} while (max_nl_cursor <= max_nl_size);
1417 
1418 	/*
1419 	 * Don't loop forever (perhaps all the remaining pages are
1420 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1421 	 * vmas, now forgetting on which ones it had fallen behind.
1422 	 */
1423 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424 		vma->vm_private_data = NULL;
1425 out:
1426 	spin_unlock(&mapping->i_mmap_lock);
1427 	return ret;
1428 }
1429 
1430 /**
1431  * try_to_unmap - try to remove all page table mappings to a page
1432  * @page: the page to get unmapped
1433  * @flags: action and flags
1434  *
1435  * Tries to remove all the page table entries which are mapping this
1436  * page, used in the pageout path.  Caller must hold the page lock.
1437  * Return values are:
1438  *
1439  * SWAP_SUCCESS	- we succeeded in removing all mappings
1440  * SWAP_AGAIN	- we missed a mapping, try again later
1441  * SWAP_FAIL	- the page is unswappable
1442  * SWAP_MLOCK	- page is mlocked.
1443  */
1444 int try_to_unmap(struct page *page, enum ttu_flags flags)
1445 {
1446 	int ret;
1447 
1448 	BUG_ON(!PageLocked(page));
1449 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1450 
1451 	if (unlikely(PageKsm(page)))
1452 		ret = try_to_unmap_ksm(page, flags);
1453 	else if (PageAnon(page))
1454 		ret = try_to_unmap_anon(page, flags);
1455 	else
1456 		ret = try_to_unmap_file(page, flags);
1457 	if (ret != SWAP_MLOCK && !page_mapped(page))
1458 		ret = SWAP_SUCCESS;
1459 	return ret;
1460 }
1461 
1462 /**
1463  * try_to_munlock - try to munlock a page
1464  * @page: the page to be munlocked
1465  *
1466  * Called from munlock code.  Checks all of the VMAs mapping the page
1467  * to make sure nobody else has this page mlocked. The page will be
1468  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1469  *
1470  * Return values are:
1471  *
1472  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1473  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1474  * SWAP_FAIL	- page cannot be located at present
1475  * SWAP_MLOCK	- page is now mlocked.
1476  */
1477 int try_to_munlock(struct page *page)
1478 {
1479 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1480 
1481 	if (unlikely(PageKsm(page)))
1482 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483 	else if (PageAnon(page))
1484 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1485 	else
1486 		return try_to_unmap_file(page, TTU_MUNLOCK);
1487 }
1488 
1489 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1490 /*
1491  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1492  * if necessary.  Be careful to do all the tests under the lock.  Once
1493  * we know we are the last user, nobody else can get a reference and we
1494  * can do the freeing without the lock.
1495  */
1496 void drop_anon_vma(struct anon_vma *anon_vma)
1497 {
1498 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1499 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1500 		struct anon_vma *root = anon_vma->root;
1501 		int empty = list_empty(&anon_vma->head);
1502 		int last_root_user = 0;
1503 		int root_empty = 0;
1504 
1505 		/*
1506 		 * The refcount on a non-root anon_vma got dropped.  Drop
1507 		 * the refcount on the root and check if we need to free it.
1508 		 */
1509 		if (empty && anon_vma != root) {
1510 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1511 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1512 			root_empty = list_empty(&root->head);
1513 		}
1514 		anon_vma_unlock(anon_vma);
1515 
1516 		if (empty) {
1517 			anon_vma_free(anon_vma);
1518 			if (root_empty && last_root_user)
1519 				anon_vma_free(root);
1520 		}
1521 	}
1522 }
1523 #endif
1524 
1525 #ifdef CONFIG_MIGRATION
1526 /*
1527  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528  * Called by migrate.c to remove migration ptes, but might be used more later.
1529  */
1530 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1531 		struct vm_area_struct *, unsigned long, void *), void *arg)
1532 {
1533 	struct anon_vma *anon_vma;
1534 	struct anon_vma_chain *avc;
1535 	int ret = SWAP_AGAIN;
1536 
1537 	/*
1538 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539 	 * because that depends on page_mapped(); but not all its usages
1540 	 * are holding mmap_sem. Users without mmap_sem are required to
1541 	 * take a reference count to prevent the anon_vma disappearing
1542 	 */
1543 	anon_vma = page_anon_vma(page);
1544 	if (!anon_vma)
1545 		return ret;
1546 	anon_vma_lock(anon_vma);
1547 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1548 		struct vm_area_struct *vma = avc->vma;
1549 		unsigned long address = vma_address(page, vma);
1550 		if (address == -EFAULT)
1551 			continue;
1552 		ret = rmap_one(page, vma, address, arg);
1553 		if (ret != SWAP_AGAIN)
1554 			break;
1555 	}
1556 	anon_vma_unlock(anon_vma);
1557 	return ret;
1558 }
1559 
1560 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1561 		struct vm_area_struct *, unsigned long, void *), void *arg)
1562 {
1563 	struct address_space *mapping = page->mapping;
1564 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1565 	struct vm_area_struct *vma;
1566 	struct prio_tree_iter iter;
1567 	int ret = SWAP_AGAIN;
1568 
1569 	if (!mapping)
1570 		return ret;
1571 	spin_lock(&mapping->i_mmap_lock);
1572 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1573 		unsigned long address = vma_address(page, vma);
1574 		if (address == -EFAULT)
1575 			continue;
1576 		ret = rmap_one(page, vma, address, arg);
1577 		if (ret != SWAP_AGAIN)
1578 			break;
1579 	}
1580 	/*
1581 	 * No nonlinear handling: being always shared, nonlinear vmas
1582 	 * never contain migration ptes.  Decide what to do about this
1583 	 * limitation to linear when we need rmap_walk() on nonlinear.
1584 	 */
1585 	spin_unlock(&mapping->i_mmap_lock);
1586 	return ret;
1587 }
1588 
1589 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1590 		struct vm_area_struct *, unsigned long, void *), void *arg)
1591 {
1592 	VM_BUG_ON(!PageLocked(page));
1593 
1594 	if (unlikely(PageKsm(page)))
1595 		return rmap_walk_ksm(page, rmap_one, arg);
1596 	else if (PageAnon(page))
1597 		return rmap_walk_anon(page, rmap_one, arg);
1598 	else
1599 		return rmap_walk_file(page, rmap_one, arg);
1600 }
1601 #endif /* CONFIG_MIGRATION */
1602 
1603 #ifdef CONFIG_HUGETLB_PAGE
1604 /*
1605  * The following three functions are for anonymous (private mapped) hugepages.
1606  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607  * and no lru code, because we handle hugepages differently from common pages.
1608  */
1609 static void __hugepage_set_anon_rmap(struct page *page,
1610 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1611 {
1612 	struct anon_vma *anon_vma = vma->anon_vma;
1613 
1614 	BUG_ON(!anon_vma);
1615 
1616 	if (PageAnon(page))
1617 		return;
1618 	if (!exclusive)
1619 		anon_vma = anon_vma->root;
1620 
1621 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1622 	page->mapping = (struct address_space *) anon_vma;
1623 	page->index = linear_page_index(vma, address);
1624 }
1625 
1626 void hugepage_add_anon_rmap(struct page *page,
1627 			    struct vm_area_struct *vma, unsigned long address)
1628 {
1629 	struct anon_vma *anon_vma = vma->anon_vma;
1630 	int first;
1631 
1632 	BUG_ON(!PageLocked(page));
1633 	BUG_ON(!anon_vma);
1634 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1635 	first = atomic_inc_and_test(&page->_mapcount);
1636 	if (first)
1637 		__hugepage_set_anon_rmap(page, vma, address, 0);
1638 }
1639 
1640 void hugepage_add_new_anon_rmap(struct page *page,
1641 			struct vm_area_struct *vma, unsigned long address)
1642 {
1643 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1644 	atomic_set(&page->_mapcount, 0);
1645 	__hugepage_set_anon_rmap(page, vma, address, 1);
1646 }
1647 #endif /* CONFIG_HUGETLB_PAGE */
1648