1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * folio_lock 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against folio_remove_rmap_*() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 * 494 * NOTE: the caller should normally hold folio lock when calling this. If 495 * not, the caller needs to double check the anon_vma didn't change after 496 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 497 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 498 * which has already covered that, and comment above remap_pages(). 499 */ 500 struct anon_vma *folio_get_anon_vma(struct folio *folio) 501 { 502 struct anon_vma *anon_vma = NULL; 503 unsigned long anon_mapping; 504 505 rcu_read_lock(); 506 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 507 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 508 goto out; 509 if (!folio_mapped(folio)) 510 goto out; 511 512 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 513 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 514 anon_vma = NULL; 515 goto out; 516 } 517 518 /* 519 * If this folio is still mapped, then its anon_vma cannot have been 520 * freed. But if it has been unmapped, we have no security against the 521 * anon_vma structure being freed and reused (for another anon_vma: 522 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 523 * above cannot corrupt). 524 */ 525 if (!folio_mapped(folio)) { 526 rcu_read_unlock(); 527 put_anon_vma(anon_vma); 528 return NULL; 529 } 530 out: 531 rcu_read_unlock(); 532 533 return anon_vma; 534 } 535 536 /* 537 * Similar to folio_get_anon_vma() except it locks the anon_vma. 538 * 539 * Its a little more complex as it tries to keep the fast path to a single 540 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 541 * reference like with folio_get_anon_vma() and then block on the mutex 542 * on !rwc->try_lock case. 543 */ 544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 545 struct rmap_walk_control *rwc) 546 { 547 struct anon_vma *anon_vma = NULL; 548 struct anon_vma *root_anon_vma; 549 unsigned long anon_mapping; 550 551 retry: 552 rcu_read_lock(); 553 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 554 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 555 goto out; 556 if (!folio_mapped(folio)) 557 goto out; 558 559 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 560 root_anon_vma = READ_ONCE(anon_vma->root); 561 if (down_read_trylock(&root_anon_vma->rwsem)) { 562 /* 563 * folio_move_anon_rmap() might have changed the anon_vma as we 564 * might not hold the folio lock here. 565 */ 566 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 567 anon_mapping)) { 568 up_read(&root_anon_vma->rwsem); 569 rcu_read_unlock(); 570 goto retry; 571 } 572 573 /* 574 * If the folio is still mapped, then this anon_vma is still 575 * its anon_vma, and holding the mutex ensures that it will 576 * not go away, see anon_vma_free(). 577 */ 578 if (!folio_mapped(folio)) { 579 up_read(&root_anon_vma->rwsem); 580 anon_vma = NULL; 581 } 582 goto out; 583 } 584 585 if (rwc && rwc->try_lock) { 586 anon_vma = NULL; 587 rwc->contended = true; 588 goto out; 589 } 590 591 /* trylock failed, we got to sleep */ 592 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 593 anon_vma = NULL; 594 goto out; 595 } 596 597 if (!folio_mapped(folio)) { 598 rcu_read_unlock(); 599 put_anon_vma(anon_vma); 600 return NULL; 601 } 602 603 /* we pinned the anon_vma, its safe to sleep */ 604 rcu_read_unlock(); 605 anon_vma_lock_read(anon_vma); 606 607 /* 608 * folio_move_anon_rmap() might have changed the anon_vma as we might 609 * not hold the folio lock here. 610 */ 611 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 612 anon_mapping)) { 613 anon_vma_unlock_read(anon_vma); 614 put_anon_vma(anon_vma); 615 anon_vma = NULL; 616 goto retry; 617 } 618 619 if (atomic_dec_and_test(&anon_vma->refcount)) { 620 /* 621 * Oops, we held the last refcount, release the lock 622 * and bail -- can't simply use put_anon_vma() because 623 * we'll deadlock on the anon_vma_lock_write() recursion. 624 */ 625 anon_vma_unlock_read(anon_vma); 626 __put_anon_vma(anon_vma); 627 anon_vma = NULL; 628 } 629 630 return anon_vma; 631 632 out: 633 rcu_read_unlock(); 634 return anon_vma; 635 } 636 637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 638 /* 639 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 640 * important if a PTE was dirty when it was unmapped that it's flushed 641 * before any IO is initiated on the page to prevent lost writes. Similarly, 642 * it must be flushed before freeing to prevent data leakage. 643 */ 644 void try_to_unmap_flush(void) 645 { 646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 648 if (!tlb_ubc->flush_required) 649 return; 650 651 arch_tlbbatch_flush(&tlb_ubc->arch); 652 tlb_ubc->flush_required = false; 653 tlb_ubc->writable = false; 654 } 655 656 /* Flush iff there are potentially writable TLB entries that can race with IO */ 657 void try_to_unmap_flush_dirty(void) 658 { 659 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 660 661 if (tlb_ubc->writable) 662 try_to_unmap_flush(); 663 } 664 665 /* 666 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 667 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 668 */ 669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 670 #define TLB_FLUSH_BATCH_PENDING_MASK \ 671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 672 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 673 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 674 675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 676 unsigned long uaddr) 677 { 678 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 679 int batch; 680 bool writable = pte_dirty(pteval); 681 682 if (!pte_accessible(mm, pteval)) 683 return; 684 685 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 686 tlb_ubc->flush_required = true; 687 688 /* 689 * Ensure compiler does not re-order the setting of tlb_flush_batched 690 * before the PTE is cleared. 691 */ 692 barrier(); 693 batch = atomic_read(&mm->tlb_flush_batched); 694 retry: 695 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 696 /* 697 * Prevent `pending' from catching up with `flushed' because of 698 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 699 * `pending' becomes large. 700 */ 701 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 702 goto retry; 703 } else { 704 atomic_inc(&mm->tlb_flush_batched); 705 } 706 707 /* 708 * If the PTE was dirty then it's best to assume it's writable. The 709 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 710 * before the page is queued for IO. 711 */ 712 if (writable) 713 tlb_ubc->writable = true; 714 } 715 716 /* 717 * Returns true if the TLB flush should be deferred to the end of a batch of 718 * unmap operations to reduce IPIs. 719 */ 720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 721 { 722 if (!(flags & TTU_BATCH_FLUSH)) 723 return false; 724 725 return arch_tlbbatch_should_defer(mm); 726 } 727 728 /* 729 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 730 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 731 * operation such as mprotect or munmap to race between reclaim unmapping 732 * the page and flushing the page. If this race occurs, it potentially allows 733 * access to data via a stale TLB entry. Tracking all mm's that have TLB 734 * batching in flight would be expensive during reclaim so instead track 735 * whether TLB batching occurred in the past and if so then do a flush here 736 * if required. This will cost one additional flush per reclaim cycle paid 737 * by the first operation at risk such as mprotect and mumap. 738 * 739 * This must be called under the PTL so that an access to tlb_flush_batched 740 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 741 * via the PTL. 742 */ 743 void flush_tlb_batched_pending(struct mm_struct *mm) 744 { 745 int batch = atomic_read(&mm->tlb_flush_batched); 746 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 747 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 748 749 if (pending != flushed) { 750 arch_flush_tlb_batched_pending(mm); 751 /* 752 * If the new TLB flushing is pending during flushing, leave 753 * mm->tlb_flush_batched as is, to avoid losing flushing. 754 */ 755 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 756 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 757 } 758 } 759 #else 760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 761 unsigned long uaddr) 762 { 763 } 764 765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 766 { 767 return false; 768 } 769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 770 771 /* 772 * At what user virtual address is page expected in vma? 773 * Caller should check the page is actually part of the vma. 774 */ 775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 776 { 777 struct folio *folio = page_folio(page); 778 pgoff_t pgoff; 779 780 if (folio_test_anon(folio)) { 781 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 782 /* 783 * Note: swapoff's unuse_vma() is more efficient with this 784 * check, and needs it to match anon_vma when KSM is active. 785 */ 786 if (!vma->anon_vma || !page__anon_vma || 787 vma->anon_vma->root != page__anon_vma->root) 788 return -EFAULT; 789 } else if (!vma->vm_file) { 790 return -EFAULT; 791 } else if (vma->vm_file->f_mapping != folio->mapping) { 792 return -EFAULT; 793 } 794 795 /* The !page__anon_vma above handles KSM folios */ 796 pgoff = folio->index + folio_page_idx(folio, page); 797 return vma_address(vma, pgoff, 1); 798 } 799 800 /* 801 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 802 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 803 * represents. 804 */ 805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 806 { 807 pgd_t *pgd; 808 p4d_t *p4d; 809 pud_t *pud; 810 pmd_t *pmd = NULL; 811 812 pgd = pgd_offset(mm, address); 813 if (!pgd_present(*pgd)) 814 goto out; 815 816 p4d = p4d_offset(pgd, address); 817 if (!p4d_present(*p4d)) 818 goto out; 819 820 pud = pud_offset(p4d, address); 821 if (!pud_present(*pud)) 822 goto out; 823 824 pmd = pmd_offset(pud, address); 825 out: 826 return pmd; 827 } 828 829 struct folio_referenced_arg { 830 int mapcount; 831 int referenced; 832 unsigned long vm_flags; 833 struct mem_cgroup *memcg; 834 }; 835 836 /* 837 * arg: folio_referenced_arg will be passed 838 */ 839 static bool folio_referenced_one(struct folio *folio, 840 struct vm_area_struct *vma, unsigned long address, void *arg) 841 { 842 struct folio_referenced_arg *pra = arg; 843 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 844 int referenced = 0; 845 unsigned long start = address, ptes = 0; 846 847 while (page_vma_mapped_walk(&pvmw)) { 848 address = pvmw.address; 849 850 if (vma->vm_flags & VM_LOCKED) { 851 if (!folio_test_large(folio) || !pvmw.pte) { 852 /* Restore the mlock which got missed */ 853 mlock_vma_folio(folio, vma); 854 page_vma_mapped_walk_done(&pvmw); 855 pra->vm_flags |= VM_LOCKED; 856 return false; /* To break the loop */ 857 } 858 /* 859 * For large folio fully mapped to VMA, will 860 * be handled after the pvmw loop. 861 * 862 * For large folio cross VMA boundaries, it's 863 * expected to be picked by page reclaim. But 864 * should skip reference of pages which are in 865 * the range of VM_LOCKED vma. As page reclaim 866 * should just count the reference of pages out 867 * the range of VM_LOCKED vma. 868 */ 869 ptes++; 870 pra->mapcount--; 871 continue; 872 } 873 874 if (pvmw.pte) { 875 if (lru_gen_enabled() && 876 pte_young(ptep_get(pvmw.pte))) { 877 lru_gen_look_around(&pvmw); 878 referenced++; 879 } 880 881 if (ptep_clear_flush_young_notify(vma, address, 882 pvmw.pte)) 883 referenced++; 884 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 885 if (pmdp_clear_flush_young_notify(vma, address, 886 pvmw.pmd)) 887 referenced++; 888 } else { 889 /* unexpected pmd-mapped folio? */ 890 WARN_ON_ONCE(1); 891 } 892 893 pra->mapcount--; 894 } 895 896 if ((vma->vm_flags & VM_LOCKED) && 897 folio_test_large(folio) && 898 folio_within_vma(folio, vma)) { 899 unsigned long s_align, e_align; 900 901 s_align = ALIGN_DOWN(start, PMD_SIZE); 902 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 903 904 /* folio doesn't cross page table boundary and fully mapped */ 905 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 906 /* Restore the mlock which got missed */ 907 mlock_vma_folio(folio, vma); 908 pra->vm_flags |= VM_LOCKED; 909 return false; /* To break the loop */ 910 } 911 } 912 913 if (referenced) 914 folio_clear_idle(folio); 915 if (folio_test_clear_young(folio)) 916 referenced++; 917 918 if (referenced) { 919 pra->referenced++; 920 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 921 } 922 923 if (!pra->mapcount) 924 return false; /* To break the loop */ 925 926 return true; 927 } 928 929 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 930 { 931 struct folio_referenced_arg *pra = arg; 932 struct mem_cgroup *memcg = pra->memcg; 933 934 /* 935 * Ignore references from this mapping if it has no recency. If the 936 * folio has been used in another mapping, we will catch it; if this 937 * other mapping is already gone, the unmap path will have set the 938 * referenced flag or activated the folio in zap_pte_range(). 939 */ 940 if (!vma_has_recency(vma)) 941 return true; 942 943 /* 944 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 945 * of references from different cgroups. 946 */ 947 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 948 return true; 949 950 return false; 951 } 952 953 /** 954 * folio_referenced() - Test if the folio was referenced. 955 * @folio: The folio to test. 956 * @is_locked: Caller holds lock on the folio. 957 * @memcg: target memory cgroup 958 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 959 * 960 * Quick test_and_clear_referenced for all mappings of a folio, 961 * 962 * Return: The number of mappings which referenced the folio. Return -1 if 963 * the function bailed out due to rmap lock contention. 964 */ 965 int folio_referenced(struct folio *folio, int is_locked, 966 struct mem_cgroup *memcg, unsigned long *vm_flags) 967 { 968 int we_locked = 0; 969 struct folio_referenced_arg pra = { 970 .mapcount = folio_mapcount(folio), 971 .memcg = memcg, 972 }; 973 struct rmap_walk_control rwc = { 974 .rmap_one = folio_referenced_one, 975 .arg = (void *)&pra, 976 .anon_lock = folio_lock_anon_vma_read, 977 .try_lock = true, 978 .invalid_vma = invalid_folio_referenced_vma, 979 }; 980 981 *vm_flags = 0; 982 if (!pra.mapcount) 983 return 0; 984 985 if (!folio_raw_mapping(folio)) 986 return 0; 987 988 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 989 we_locked = folio_trylock(folio); 990 if (!we_locked) 991 return 1; 992 } 993 994 rmap_walk(folio, &rwc); 995 *vm_flags = pra.vm_flags; 996 997 if (we_locked) 998 folio_unlock(folio); 999 1000 return rwc.contended ? -1 : pra.referenced; 1001 } 1002 1003 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1004 { 1005 int cleaned = 0; 1006 struct vm_area_struct *vma = pvmw->vma; 1007 struct mmu_notifier_range range; 1008 unsigned long address = pvmw->address; 1009 1010 /* 1011 * We have to assume the worse case ie pmd for invalidation. Note that 1012 * the folio can not be freed from this function. 1013 */ 1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1015 vma->vm_mm, address, vma_address_end(pvmw)); 1016 mmu_notifier_invalidate_range_start(&range); 1017 1018 while (page_vma_mapped_walk(pvmw)) { 1019 int ret = 0; 1020 1021 address = pvmw->address; 1022 if (pvmw->pte) { 1023 pte_t *pte = pvmw->pte; 1024 pte_t entry = ptep_get(pte); 1025 1026 if (!pte_dirty(entry) && !pte_write(entry)) 1027 continue; 1028 1029 flush_cache_page(vma, address, pte_pfn(entry)); 1030 entry = ptep_clear_flush(vma, address, pte); 1031 entry = pte_wrprotect(entry); 1032 entry = pte_mkclean(entry); 1033 set_pte_at(vma->vm_mm, address, pte, entry); 1034 ret = 1; 1035 } else { 1036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1037 pmd_t *pmd = pvmw->pmd; 1038 pmd_t entry; 1039 1040 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1041 continue; 1042 1043 flush_cache_range(vma, address, 1044 address + HPAGE_PMD_SIZE); 1045 entry = pmdp_invalidate(vma, address, pmd); 1046 entry = pmd_wrprotect(entry); 1047 entry = pmd_mkclean(entry); 1048 set_pmd_at(vma->vm_mm, address, pmd, entry); 1049 ret = 1; 1050 #else 1051 /* unexpected pmd-mapped folio? */ 1052 WARN_ON_ONCE(1); 1053 #endif 1054 } 1055 1056 if (ret) 1057 cleaned++; 1058 } 1059 1060 mmu_notifier_invalidate_range_end(&range); 1061 1062 return cleaned; 1063 } 1064 1065 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1066 unsigned long address, void *arg) 1067 { 1068 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1069 int *cleaned = arg; 1070 1071 *cleaned += page_vma_mkclean_one(&pvmw); 1072 1073 return true; 1074 } 1075 1076 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1077 { 1078 if (vma->vm_flags & VM_SHARED) 1079 return false; 1080 1081 return true; 1082 } 1083 1084 int folio_mkclean(struct folio *folio) 1085 { 1086 int cleaned = 0; 1087 struct address_space *mapping; 1088 struct rmap_walk_control rwc = { 1089 .arg = (void *)&cleaned, 1090 .rmap_one = page_mkclean_one, 1091 .invalid_vma = invalid_mkclean_vma, 1092 }; 1093 1094 BUG_ON(!folio_test_locked(folio)); 1095 1096 if (!folio_mapped(folio)) 1097 return 0; 1098 1099 mapping = folio_mapping(folio); 1100 if (!mapping) 1101 return 0; 1102 1103 rmap_walk(folio, &rwc); 1104 1105 return cleaned; 1106 } 1107 EXPORT_SYMBOL_GPL(folio_mkclean); 1108 1109 /** 1110 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1111 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1112 * within the @vma of shared mappings. And since clean PTEs 1113 * should also be readonly, write protects them too. 1114 * @pfn: start pfn. 1115 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1116 * @pgoff: page offset that the @pfn mapped with. 1117 * @vma: vma that @pfn mapped within. 1118 * 1119 * Returns the number of cleaned PTEs (including PMDs). 1120 */ 1121 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1122 struct vm_area_struct *vma) 1123 { 1124 struct page_vma_mapped_walk pvmw = { 1125 .pfn = pfn, 1126 .nr_pages = nr_pages, 1127 .pgoff = pgoff, 1128 .vma = vma, 1129 .flags = PVMW_SYNC, 1130 }; 1131 1132 if (invalid_mkclean_vma(vma, NULL)) 1133 return 0; 1134 1135 pvmw.address = vma_address(vma, pgoff, nr_pages); 1136 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1137 1138 return page_vma_mkclean_one(&pvmw); 1139 } 1140 1141 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1142 struct page *page, int nr_pages, enum rmap_level level, 1143 int *nr_pmdmapped) 1144 { 1145 atomic_t *mapped = &folio->_nr_pages_mapped; 1146 const int orig_nr_pages = nr_pages; 1147 int first, nr = 0; 1148 1149 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1150 1151 switch (level) { 1152 case RMAP_LEVEL_PTE: 1153 if (!folio_test_large(folio)) { 1154 nr = atomic_inc_and_test(&page->_mapcount); 1155 break; 1156 } 1157 1158 do { 1159 first = atomic_inc_and_test(&page->_mapcount); 1160 if (first) { 1161 first = atomic_inc_return_relaxed(mapped); 1162 if (first < ENTIRELY_MAPPED) 1163 nr++; 1164 } 1165 } while (page++, --nr_pages > 0); 1166 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1167 break; 1168 case RMAP_LEVEL_PMD: 1169 first = atomic_inc_and_test(&folio->_entire_mapcount); 1170 if (first) { 1171 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1172 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1173 *nr_pmdmapped = folio_nr_pages(folio); 1174 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1175 /* Raced ahead of a remove and another add? */ 1176 if (unlikely(nr < 0)) 1177 nr = 0; 1178 } else { 1179 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1180 nr = 0; 1181 } 1182 } 1183 atomic_inc(&folio->_large_mapcount); 1184 break; 1185 } 1186 return nr; 1187 } 1188 1189 /** 1190 * folio_move_anon_rmap - move a folio to our anon_vma 1191 * @folio: The folio to move to our anon_vma 1192 * @vma: The vma the folio belongs to 1193 * 1194 * When a folio belongs exclusively to one process after a COW event, 1195 * that folio can be moved into the anon_vma that belongs to just that 1196 * process, so the rmap code will not search the parent or sibling processes. 1197 */ 1198 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1199 { 1200 void *anon_vma = vma->anon_vma; 1201 1202 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1203 VM_BUG_ON_VMA(!anon_vma, vma); 1204 1205 anon_vma += PAGE_MAPPING_ANON; 1206 /* 1207 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1208 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1209 * folio_test_anon()) will not see one without the other. 1210 */ 1211 WRITE_ONCE(folio->mapping, anon_vma); 1212 } 1213 1214 /** 1215 * __folio_set_anon - set up a new anonymous rmap for a folio 1216 * @folio: The folio to set up the new anonymous rmap for. 1217 * @vma: VM area to add the folio to. 1218 * @address: User virtual address of the mapping 1219 * @exclusive: Whether the folio is exclusive to the process. 1220 */ 1221 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1222 unsigned long address, bool exclusive) 1223 { 1224 struct anon_vma *anon_vma = vma->anon_vma; 1225 1226 BUG_ON(!anon_vma); 1227 1228 /* 1229 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1230 * possible anon_vma for the folio mapping! 1231 */ 1232 if (!exclusive) 1233 anon_vma = anon_vma->root; 1234 1235 /* 1236 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1237 * Make sure the compiler doesn't split the stores of anon_vma and 1238 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1239 * could mistake the mapping for a struct address_space and crash. 1240 */ 1241 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1242 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1243 folio->index = linear_page_index(vma, address); 1244 } 1245 1246 /** 1247 * __page_check_anon_rmap - sanity check anonymous rmap addition 1248 * @folio: The folio containing @page. 1249 * @page: the page to check the mapping of 1250 * @vma: the vm area in which the mapping is added 1251 * @address: the user virtual address mapped 1252 */ 1253 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1254 struct vm_area_struct *vma, unsigned long address) 1255 { 1256 /* 1257 * The page's anon-rmap details (mapping and index) are guaranteed to 1258 * be set up correctly at this point. 1259 * 1260 * We have exclusion against folio_add_anon_rmap_*() because the caller 1261 * always holds the page locked. 1262 * 1263 * We have exclusion against folio_add_new_anon_rmap because those pages 1264 * are initially only visible via the pagetables, and the pte is locked 1265 * over the call to folio_add_new_anon_rmap. 1266 */ 1267 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1268 folio); 1269 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1270 page); 1271 } 1272 1273 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1274 struct page *page, int nr_pages, struct vm_area_struct *vma, 1275 unsigned long address, rmap_t flags, enum rmap_level level) 1276 { 1277 int i, nr, nr_pmdmapped = 0; 1278 1279 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1280 if (nr_pmdmapped) 1281 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1282 if (nr) 1283 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1284 1285 if (unlikely(!folio_test_anon(folio))) { 1286 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 1287 /* 1288 * For a PTE-mapped large folio, we only know that the single 1289 * PTE is exclusive. Further, __folio_set_anon() might not get 1290 * folio->index right when not given the address of the head 1291 * page. 1292 */ 1293 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1294 level != RMAP_LEVEL_PMD, folio); 1295 __folio_set_anon(folio, vma, address, 1296 !!(flags & RMAP_EXCLUSIVE)); 1297 } else if (likely(!folio_test_ksm(folio))) { 1298 __page_check_anon_rmap(folio, page, vma, address); 1299 } 1300 1301 if (flags & RMAP_EXCLUSIVE) { 1302 switch (level) { 1303 case RMAP_LEVEL_PTE: 1304 for (i = 0; i < nr_pages; i++) 1305 SetPageAnonExclusive(page + i); 1306 break; 1307 case RMAP_LEVEL_PMD: 1308 SetPageAnonExclusive(page); 1309 break; 1310 } 1311 } 1312 for (i = 0; i < nr_pages; i++) { 1313 struct page *cur_page = page + i; 1314 1315 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1316 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1317 (folio_test_large(folio) && 1318 folio_entire_mapcount(folio) > 1)) && 1319 PageAnonExclusive(cur_page), folio); 1320 } 1321 1322 /* 1323 * For large folio, only mlock it if it's fully mapped to VMA. It's 1324 * not easy to check whether the large folio is fully mapped to VMA 1325 * here. Only mlock normal 4K folio and leave page reclaim to handle 1326 * large folio. 1327 */ 1328 if (!folio_test_large(folio)) 1329 mlock_vma_folio(folio, vma); 1330 } 1331 1332 /** 1333 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1334 * @folio: The folio to add the mappings to 1335 * @page: The first page to add 1336 * @nr_pages: The number of pages which will be mapped 1337 * @vma: The vm area in which the mappings are added 1338 * @address: The user virtual address of the first page to map 1339 * @flags: The rmap flags 1340 * 1341 * The page range of folio is defined by [first_page, first_page + nr_pages) 1342 * 1343 * The caller needs to hold the page table lock, and the page must be locked in 1344 * the anon_vma case: to serialize mapping,index checking after setting, 1345 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1346 * (but KSM folios are never downgraded). 1347 */ 1348 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1349 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1350 rmap_t flags) 1351 { 1352 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1353 RMAP_LEVEL_PTE); 1354 } 1355 1356 /** 1357 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1358 * @folio: The folio to add the mapping to 1359 * @page: The first page to add 1360 * @vma: The vm area in which the mapping is added 1361 * @address: The user virtual address of the first page to map 1362 * @flags: The rmap flags 1363 * 1364 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1365 * 1366 * The caller needs to hold the page table lock, and the page must be locked in 1367 * the anon_vma case: to serialize mapping,index checking after setting. 1368 */ 1369 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1370 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1371 { 1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1373 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1374 RMAP_LEVEL_PMD); 1375 #else 1376 WARN_ON_ONCE(true); 1377 #endif 1378 } 1379 1380 /** 1381 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1382 * @folio: The folio to add the mapping to. 1383 * @vma: the vm area in which the mapping is added 1384 * @address: the user virtual address mapped 1385 * 1386 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1387 * This means the inc-and-test can be bypassed. 1388 * The folio does not have to be locked. 1389 * 1390 * If the folio is pmd-mappable, it is accounted as a THP. As the folio 1391 * is new, it's assumed to be mapped exclusively by a single process. 1392 */ 1393 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1394 unsigned long address) 1395 { 1396 int nr = folio_nr_pages(folio); 1397 1398 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1399 VM_BUG_ON_VMA(address < vma->vm_start || 1400 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1401 __folio_set_swapbacked(folio); 1402 __folio_set_anon(folio, vma, address, true); 1403 1404 if (likely(!folio_test_large(folio))) { 1405 /* increment count (starts at -1) */ 1406 atomic_set(&folio->_mapcount, 0); 1407 SetPageAnonExclusive(&folio->page); 1408 } else if (!folio_test_pmd_mappable(folio)) { 1409 int i; 1410 1411 for (i = 0; i < nr; i++) { 1412 struct page *page = folio_page(folio, i); 1413 1414 /* increment count (starts at -1) */ 1415 atomic_set(&page->_mapcount, 0); 1416 SetPageAnonExclusive(page); 1417 } 1418 1419 /* increment count (starts at -1) */ 1420 atomic_set(&folio->_large_mapcount, nr - 1); 1421 atomic_set(&folio->_nr_pages_mapped, nr); 1422 } else { 1423 /* increment count (starts at -1) */ 1424 atomic_set(&folio->_entire_mapcount, 0); 1425 /* increment count (starts at -1) */ 1426 atomic_set(&folio->_large_mapcount, 0); 1427 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1428 SetPageAnonExclusive(&folio->page); 1429 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1430 } 1431 1432 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1433 } 1434 1435 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1436 struct page *page, int nr_pages, struct vm_area_struct *vma, 1437 enum rmap_level level) 1438 { 1439 int nr, nr_pmdmapped = 0; 1440 1441 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1442 1443 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1444 if (nr_pmdmapped) 1445 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1446 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1447 if (nr) 1448 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1449 1450 /* See comments in folio_add_anon_rmap_*() */ 1451 if (!folio_test_large(folio)) 1452 mlock_vma_folio(folio, vma); 1453 } 1454 1455 /** 1456 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1457 * @folio: The folio to add the mappings to 1458 * @page: The first page to add 1459 * @nr_pages: The number of pages that will be mapped using PTEs 1460 * @vma: The vm area in which the mappings are added 1461 * 1462 * The page range of the folio is defined by [page, page + nr_pages) 1463 * 1464 * The caller needs to hold the page table lock. 1465 */ 1466 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1467 int nr_pages, struct vm_area_struct *vma) 1468 { 1469 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1470 } 1471 1472 /** 1473 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1474 * @folio: The folio to add the mapping to 1475 * @page: The first page to add 1476 * @vma: The vm area in which the mapping is added 1477 * 1478 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1479 * 1480 * The caller needs to hold the page table lock. 1481 */ 1482 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1483 struct vm_area_struct *vma) 1484 { 1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1486 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1487 #else 1488 WARN_ON_ONCE(true); 1489 #endif 1490 } 1491 1492 static __always_inline void __folio_remove_rmap(struct folio *folio, 1493 struct page *page, int nr_pages, struct vm_area_struct *vma, 1494 enum rmap_level level) 1495 { 1496 atomic_t *mapped = &folio->_nr_pages_mapped; 1497 int last, nr = 0, nr_pmdmapped = 0; 1498 enum node_stat_item idx; 1499 1500 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1501 1502 switch (level) { 1503 case RMAP_LEVEL_PTE: 1504 if (!folio_test_large(folio)) { 1505 nr = atomic_add_negative(-1, &page->_mapcount); 1506 break; 1507 } 1508 1509 atomic_sub(nr_pages, &folio->_large_mapcount); 1510 do { 1511 last = atomic_add_negative(-1, &page->_mapcount); 1512 if (last) { 1513 last = atomic_dec_return_relaxed(mapped); 1514 if (last < ENTIRELY_MAPPED) 1515 nr++; 1516 } 1517 } while (page++, --nr_pages > 0); 1518 break; 1519 case RMAP_LEVEL_PMD: 1520 atomic_dec(&folio->_large_mapcount); 1521 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1522 if (last) { 1523 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1524 if (likely(nr < ENTIRELY_MAPPED)) { 1525 nr_pmdmapped = folio_nr_pages(folio); 1526 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1527 /* Raced ahead of another remove and an add? */ 1528 if (unlikely(nr < 0)) 1529 nr = 0; 1530 } else { 1531 /* An add of ENTIRELY_MAPPED raced ahead */ 1532 nr = 0; 1533 } 1534 } 1535 break; 1536 } 1537 1538 if (nr_pmdmapped) { 1539 if (folio_test_anon(folio)) 1540 idx = NR_ANON_THPS; 1541 else if (folio_test_swapbacked(folio)) 1542 idx = NR_SHMEM_PMDMAPPED; 1543 else 1544 idx = NR_FILE_PMDMAPPED; 1545 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1546 } 1547 if (nr) { 1548 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1549 __lruvec_stat_mod_folio(folio, idx, -nr); 1550 1551 /* 1552 * Queue anon large folio for deferred split if at least one 1553 * page of the folio is unmapped and at least one page 1554 * is still mapped. 1555 */ 1556 if (folio_test_large(folio) && folio_test_anon(folio)) 1557 if (level == RMAP_LEVEL_PTE || nr < nr_pmdmapped) 1558 deferred_split_folio(folio); 1559 } 1560 1561 /* 1562 * It would be tidy to reset folio_test_anon mapping when fully 1563 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1564 * which increments mapcount after us but sets mapping before us: 1565 * so leave the reset to free_pages_prepare, and remember that 1566 * it's only reliable while mapped. 1567 */ 1568 1569 munlock_vma_folio(folio, vma); 1570 } 1571 1572 /** 1573 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1574 * @folio: The folio to remove the mappings from 1575 * @page: The first page to remove 1576 * @nr_pages: The number of pages that will be removed from the mapping 1577 * @vma: The vm area from which the mappings are removed 1578 * 1579 * The page range of the folio is defined by [page, page + nr_pages) 1580 * 1581 * The caller needs to hold the page table lock. 1582 */ 1583 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1584 int nr_pages, struct vm_area_struct *vma) 1585 { 1586 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1587 } 1588 1589 /** 1590 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1591 * @folio: The folio to remove the mapping from 1592 * @page: The first page to remove 1593 * @vma: The vm area from which the mapping is removed 1594 * 1595 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1596 * 1597 * The caller needs to hold the page table lock. 1598 */ 1599 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1600 struct vm_area_struct *vma) 1601 { 1602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1603 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1604 #else 1605 WARN_ON_ONCE(true); 1606 #endif 1607 } 1608 1609 /* 1610 * @arg: enum ttu_flags will be passed to this argument 1611 */ 1612 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1613 unsigned long address, void *arg) 1614 { 1615 struct mm_struct *mm = vma->vm_mm; 1616 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1617 pte_t pteval; 1618 struct page *subpage; 1619 bool anon_exclusive, ret = true; 1620 struct mmu_notifier_range range; 1621 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1622 unsigned long pfn; 1623 unsigned long hsz = 0; 1624 1625 /* 1626 * When racing against e.g. zap_pte_range() on another cpu, 1627 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1628 * try_to_unmap() may return before page_mapped() has become false, 1629 * if page table locking is skipped: use TTU_SYNC to wait for that. 1630 */ 1631 if (flags & TTU_SYNC) 1632 pvmw.flags = PVMW_SYNC; 1633 1634 if (flags & TTU_SPLIT_HUGE_PMD) 1635 split_huge_pmd_address(vma, address, false, folio); 1636 1637 /* 1638 * For THP, we have to assume the worse case ie pmd for invalidation. 1639 * For hugetlb, it could be much worse if we need to do pud 1640 * invalidation in the case of pmd sharing. 1641 * 1642 * Note that the folio can not be freed in this function as call of 1643 * try_to_unmap() must hold a reference on the folio. 1644 */ 1645 range.end = vma_address_end(&pvmw); 1646 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1647 address, range.end); 1648 if (folio_test_hugetlb(folio)) { 1649 /* 1650 * If sharing is possible, start and end will be adjusted 1651 * accordingly. 1652 */ 1653 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1654 &range.end); 1655 1656 /* We need the huge page size for set_huge_pte_at() */ 1657 hsz = huge_page_size(hstate_vma(vma)); 1658 } 1659 mmu_notifier_invalidate_range_start(&range); 1660 1661 while (page_vma_mapped_walk(&pvmw)) { 1662 /* Unexpected PMD-mapped THP? */ 1663 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1664 1665 /* 1666 * If the folio is in an mlock()d vma, we must not swap it out. 1667 */ 1668 if (!(flags & TTU_IGNORE_MLOCK) && 1669 (vma->vm_flags & VM_LOCKED)) { 1670 /* Restore the mlock which got missed */ 1671 if (!folio_test_large(folio)) 1672 mlock_vma_folio(folio, vma); 1673 page_vma_mapped_walk_done(&pvmw); 1674 ret = false; 1675 break; 1676 } 1677 1678 pfn = pte_pfn(ptep_get(pvmw.pte)); 1679 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1680 address = pvmw.address; 1681 anon_exclusive = folio_test_anon(folio) && 1682 PageAnonExclusive(subpage); 1683 1684 if (folio_test_hugetlb(folio)) { 1685 bool anon = folio_test_anon(folio); 1686 1687 /* 1688 * The try_to_unmap() is only passed a hugetlb page 1689 * in the case where the hugetlb page is poisoned. 1690 */ 1691 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1692 /* 1693 * huge_pmd_unshare may unmap an entire PMD page. 1694 * There is no way of knowing exactly which PMDs may 1695 * be cached for this mm, so we must flush them all. 1696 * start/end were already adjusted above to cover this 1697 * range. 1698 */ 1699 flush_cache_range(vma, range.start, range.end); 1700 1701 /* 1702 * To call huge_pmd_unshare, i_mmap_rwsem must be 1703 * held in write mode. Caller needs to explicitly 1704 * do this outside rmap routines. 1705 * 1706 * We also must hold hugetlb vma_lock in write mode. 1707 * Lock order dictates acquiring vma_lock BEFORE 1708 * i_mmap_rwsem. We can only try lock here and fail 1709 * if unsuccessful. 1710 */ 1711 if (!anon) { 1712 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1713 if (!hugetlb_vma_trylock_write(vma)) { 1714 page_vma_mapped_walk_done(&pvmw); 1715 ret = false; 1716 break; 1717 } 1718 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1719 hugetlb_vma_unlock_write(vma); 1720 flush_tlb_range(vma, 1721 range.start, range.end); 1722 /* 1723 * The ref count of the PMD page was 1724 * dropped which is part of the way map 1725 * counting is done for shared PMDs. 1726 * Return 'true' here. When there is 1727 * no other sharing, huge_pmd_unshare 1728 * returns false and we will unmap the 1729 * actual page and drop map count 1730 * to zero. 1731 */ 1732 page_vma_mapped_walk_done(&pvmw); 1733 break; 1734 } 1735 hugetlb_vma_unlock_write(vma); 1736 } 1737 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1738 } else { 1739 flush_cache_page(vma, address, pfn); 1740 /* Nuke the page table entry. */ 1741 if (should_defer_flush(mm, flags)) { 1742 /* 1743 * We clear the PTE but do not flush so potentially 1744 * a remote CPU could still be writing to the folio. 1745 * If the entry was previously clean then the 1746 * architecture must guarantee that a clear->dirty 1747 * transition on a cached TLB entry is written through 1748 * and traps if the PTE is unmapped. 1749 */ 1750 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1751 1752 set_tlb_ubc_flush_pending(mm, pteval, address); 1753 } else { 1754 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1755 } 1756 } 1757 1758 /* 1759 * Now the pte is cleared. If this pte was uffd-wp armed, 1760 * we may want to replace a none pte with a marker pte if 1761 * it's file-backed, so we don't lose the tracking info. 1762 */ 1763 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1764 1765 /* Set the dirty flag on the folio now the pte is gone. */ 1766 if (pte_dirty(pteval)) 1767 folio_mark_dirty(folio); 1768 1769 /* Update high watermark before we lower rss */ 1770 update_hiwater_rss(mm); 1771 1772 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1773 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1774 if (folio_test_hugetlb(folio)) { 1775 hugetlb_count_sub(folio_nr_pages(folio), mm); 1776 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1777 hsz); 1778 } else { 1779 dec_mm_counter(mm, mm_counter(folio)); 1780 set_pte_at(mm, address, pvmw.pte, pteval); 1781 } 1782 1783 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1784 /* 1785 * The guest indicated that the page content is of no 1786 * interest anymore. Simply discard the pte, vmscan 1787 * will take care of the rest. 1788 * A future reference will then fault in a new zero 1789 * page. When userfaultfd is active, we must not drop 1790 * this page though, as its main user (postcopy 1791 * migration) will not expect userfaults on already 1792 * copied pages. 1793 */ 1794 dec_mm_counter(mm, mm_counter(folio)); 1795 } else if (folio_test_anon(folio)) { 1796 swp_entry_t entry = page_swap_entry(subpage); 1797 pte_t swp_pte; 1798 /* 1799 * Store the swap location in the pte. 1800 * See handle_pte_fault() ... 1801 */ 1802 if (unlikely(folio_test_swapbacked(folio) != 1803 folio_test_swapcache(folio))) { 1804 WARN_ON_ONCE(1); 1805 ret = false; 1806 page_vma_mapped_walk_done(&pvmw); 1807 break; 1808 } 1809 1810 /* MADV_FREE page check */ 1811 if (!folio_test_swapbacked(folio)) { 1812 int ref_count, map_count; 1813 1814 /* 1815 * Synchronize with gup_pte_range(): 1816 * - clear PTE; barrier; read refcount 1817 * - inc refcount; barrier; read PTE 1818 */ 1819 smp_mb(); 1820 1821 ref_count = folio_ref_count(folio); 1822 map_count = folio_mapcount(folio); 1823 1824 /* 1825 * Order reads for page refcount and dirty flag 1826 * (see comments in __remove_mapping()). 1827 */ 1828 smp_rmb(); 1829 1830 /* 1831 * The only page refs must be one from isolation 1832 * plus the rmap(s) (dropped by discard:). 1833 */ 1834 if (ref_count == 1 + map_count && 1835 !folio_test_dirty(folio)) { 1836 dec_mm_counter(mm, MM_ANONPAGES); 1837 goto discard; 1838 } 1839 1840 /* 1841 * If the folio was redirtied, it cannot be 1842 * discarded. Remap the page to page table. 1843 */ 1844 set_pte_at(mm, address, pvmw.pte, pteval); 1845 folio_set_swapbacked(folio); 1846 ret = false; 1847 page_vma_mapped_walk_done(&pvmw); 1848 break; 1849 } 1850 1851 if (swap_duplicate(entry) < 0) { 1852 set_pte_at(mm, address, pvmw.pte, pteval); 1853 ret = false; 1854 page_vma_mapped_walk_done(&pvmw); 1855 break; 1856 } 1857 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1858 swap_free(entry); 1859 set_pte_at(mm, address, pvmw.pte, pteval); 1860 ret = false; 1861 page_vma_mapped_walk_done(&pvmw); 1862 break; 1863 } 1864 1865 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1866 if (anon_exclusive && 1867 folio_try_share_anon_rmap_pte(folio, subpage)) { 1868 swap_free(entry); 1869 set_pte_at(mm, address, pvmw.pte, pteval); 1870 ret = false; 1871 page_vma_mapped_walk_done(&pvmw); 1872 break; 1873 } 1874 if (list_empty(&mm->mmlist)) { 1875 spin_lock(&mmlist_lock); 1876 if (list_empty(&mm->mmlist)) 1877 list_add(&mm->mmlist, &init_mm.mmlist); 1878 spin_unlock(&mmlist_lock); 1879 } 1880 dec_mm_counter(mm, MM_ANONPAGES); 1881 inc_mm_counter(mm, MM_SWAPENTS); 1882 swp_pte = swp_entry_to_pte(entry); 1883 if (anon_exclusive) 1884 swp_pte = pte_swp_mkexclusive(swp_pte); 1885 if (pte_soft_dirty(pteval)) 1886 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1887 if (pte_uffd_wp(pteval)) 1888 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1889 set_pte_at(mm, address, pvmw.pte, swp_pte); 1890 } else { 1891 /* 1892 * This is a locked file-backed folio, 1893 * so it cannot be removed from the page 1894 * cache and replaced by a new folio before 1895 * mmu_notifier_invalidate_range_end, so no 1896 * concurrent thread might update its page table 1897 * to point at a new folio while a device is 1898 * still using this folio. 1899 * 1900 * See Documentation/mm/mmu_notifier.rst 1901 */ 1902 dec_mm_counter(mm, mm_counter_file(folio)); 1903 } 1904 discard: 1905 if (unlikely(folio_test_hugetlb(folio))) 1906 hugetlb_remove_rmap(folio); 1907 else 1908 folio_remove_rmap_pte(folio, subpage, vma); 1909 if (vma->vm_flags & VM_LOCKED) 1910 mlock_drain_local(); 1911 folio_put(folio); 1912 } 1913 1914 mmu_notifier_invalidate_range_end(&range); 1915 1916 return ret; 1917 } 1918 1919 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1920 { 1921 return vma_is_temporary_stack(vma); 1922 } 1923 1924 static int folio_not_mapped(struct folio *folio) 1925 { 1926 return !folio_mapped(folio); 1927 } 1928 1929 /** 1930 * try_to_unmap - Try to remove all page table mappings to a folio. 1931 * @folio: The folio to unmap. 1932 * @flags: action and flags 1933 * 1934 * Tries to remove all the page table entries which are mapping this 1935 * folio. It is the caller's responsibility to check if the folio is 1936 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1937 * 1938 * Context: Caller must hold the folio lock. 1939 */ 1940 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1941 { 1942 struct rmap_walk_control rwc = { 1943 .rmap_one = try_to_unmap_one, 1944 .arg = (void *)flags, 1945 .done = folio_not_mapped, 1946 .anon_lock = folio_lock_anon_vma_read, 1947 }; 1948 1949 if (flags & TTU_RMAP_LOCKED) 1950 rmap_walk_locked(folio, &rwc); 1951 else 1952 rmap_walk(folio, &rwc); 1953 } 1954 1955 /* 1956 * @arg: enum ttu_flags will be passed to this argument. 1957 * 1958 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1959 * containing migration entries. 1960 */ 1961 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1962 unsigned long address, void *arg) 1963 { 1964 struct mm_struct *mm = vma->vm_mm; 1965 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1966 pte_t pteval; 1967 struct page *subpage; 1968 bool anon_exclusive, ret = true; 1969 struct mmu_notifier_range range; 1970 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1971 unsigned long pfn; 1972 unsigned long hsz = 0; 1973 1974 /* 1975 * When racing against e.g. zap_pte_range() on another cpu, 1976 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1977 * try_to_migrate() may return before page_mapped() has become false, 1978 * if page table locking is skipped: use TTU_SYNC to wait for that. 1979 */ 1980 if (flags & TTU_SYNC) 1981 pvmw.flags = PVMW_SYNC; 1982 1983 /* 1984 * unmap_page() in mm/huge_memory.c is the only user of migration with 1985 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1986 */ 1987 if (flags & TTU_SPLIT_HUGE_PMD) 1988 split_huge_pmd_address(vma, address, true, folio); 1989 1990 /* 1991 * For THP, we have to assume the worse case ie pmd for invalidation. 1992 * For hugetlb, it could be much worse if we need to do pud 1993 * invalidation in the case of pmd sharing. 1994 * 1995 * Note that the page can not be free in this function as call of 1996 * try_to_unmap() must hold a reference on the page. 1997 */ 1998 range.end = vma_address_end(&pvmw); 1999 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2000 address, range.end); 2001 if (folio_test_hugetlb(folio)) { 2002 /* 2003 * If sharing is possible, start and end will be adjusted 2004 * accordingly. 2005 */ 2006 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2007 &range.end); 2008 2009 /* We need the huge page size for set_huge_pte_at() */ 2010 hsz = huge_page_size(hstate_vma(vma)); 2011 } 2012 mmu_notifier_invalidate_range_start(&range); 2013 2014 while (page_vma_mapped_walk(&pvmw)) { 2015 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2016 /* PMD-mapped THP migration entry */ 2017 if (!pvmw.pte) { 2018 subpage = folio_page(folio, 2019 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2020 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2021 !folio_test_pmd_mappable(folio), folio); 2022 2023 if (set_pmd_migration_entry(&pvmw, subpage)) { 2024 ret = false; 2025 page_vma_mapped_walk_done(&pvmw); 2026 break; 2027 } 2028 continue; 2029 } 2030 #endif 2031 2032 /* Unexpected PMD-mapped THP? */ 2033 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2034 2035 pfn = pte_pfn(ptep_get(pvmw.pte)); 2036 2037 if (folio_is_zone_device(folio)) { 2038 /* 2039 * Our PTE is a non-present device exclusive entry and 2040 * calculating the subpage as for the common case would 2041 * result in an invalid pointer. 2042 * 2043 * Since only PAGE_SIZE pages can currently be 2044 * migrated, just set it to page. This will need to be 2045 * changed when hugepage migrations to device private 2046 * memory are supported. 2047 */ 2048 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2049 subpage = &folio->page; 2050 } else { 2051 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2052 } 2053 address = pvmw.address; 2054 anon_exclusive = folio_test_anon(folio) && 2055 PageAnonExclusive(subpage); 2056 2057 if (folio_test_hugetlb(folio)) { 2058 bool anon = folio_test_anon(folio); 2059 2060 /* 2061 * huge_pmd_unshare may unmap an entire PMD page. 2062 * There is no way of knowing exactly which PMDs may 2063 * be cached for this mm, so we must flush them all. 2064 * start/end were already adjusted above to cover this 2065 * range. 2066 */ 2067 flush_cache_range(vma, range.start, range.end); 2068 2069 /* 2070 * To call huge_pmd_unshare, i_mmap_rwsem must be 2071 * held in write mode. Caller needs to explicitly 2072 * do this outside rmap routines. 2073 * 2074 * We also must hold hugetlb vma_lock in write mode. 2075 * Lock order dictates acquiring vma_lock BEFORE 2076 * i_mmap_rwsem. We can only try lock here and 2077 * fail if unsuccessful. 2078 */ 2079 if (!anon) { 2080 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2081 if (!hugetlb_vma_trylock_write(vma)) { 2082 page_vma_mapped_walk_done(&pvmw); 2083 ret = false; 2084 break; 2085 } 2086 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2087 hugetlb_vma_unlock_write(vma); 2088 flush_tlb_range(vma, 2089 range.start, range.end); 2090 2091 /* 2092 * The ref count of the PMD page was 2093 * dropped which is part of the way map 2094 * counting is done for shared PMDs. 2095 * Return 'true' here. When there is 2096 * no other sharing, huge_pmd_unshare 2097 * returns false and we will unmap the 2098 * actual page and drop map count 2099 * to zero. 2100 */ 2101 page_vma_mapped_walk_done(&pvmw); 2102 break; 2103 } 2104 hugetlb_vma_unlock_write(vma); 2105 } 2106 /* Nuke the hugetlb page table entry */ 2107 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2108 } else { 2109 flush_cache_page(vma, address, pfn); 2110 /* Nuke the page table entry. */ 2111 if (should_defer_flush(mm, flags)) { 2112 /* 2113 * We clear the PTE but do not flush so potentially 2114 * a remote CPU could still be writing to the folio. 2115 * If the entry was previously clean then the 2116 * architecture must guarantee that a clear->dirty 2117 * transition on a cached TLB entry is written through 2118 * and traps if the PTE is unmapped. 2119 */ 2120 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2121 2122 set_tlb_ubc_flush_pending(mm, pteval, address); 2123 } else { 2124 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2125 } 2126 } 2127 2128 /* Set the dirty flag on the folio now the pte is gone. */ 2129 if (pte_dirty(pteval)) 2130 folio_mark_dirty(folio); 2131 2132 /* Update high watermark before we lower rss */ 2133 update_hiwater_rss(mm); 2134 2135 if (folio_is_device_private(folio)) { 2136 unsigned long pfn = folio_pfn(folio); 2137 swp_entry_t entry; 2138 pte_t swp_pte; 2139 2140 if (anon_exclusive) 2141 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2142 subpage)); 2143 2144 /* 2145 * Store the pfn of the page in a special migration 2146 * pte. do_swap_page() will wait until the migration 2147 * pte is removed and then restart fault handling. 2148 */ 2149 entry = pte_to_swp_entry(pteval); 2150 if (is_writable_device_private_entry(entry)) 2151 entry = make_writable_migration_entry(pfn); 2152 else if (anon_exclusive) 2153 entry = make_readable_exclusive_migration_entry(pfn); 2154 else 2155 entry = make_readable_migration_entry(pfn); 2156 swp_pte = swp_entry_to_pte(entry); 2157 2158 /* 2159 * pteval maps a zone device page and is therefore 2160 * a swap pte. 2161 */ 2162 if (pte_swp_soft_dirty(pteval)) 2163 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2164 if (pte_swp_uffd_wp(pteval)) 2165 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2166 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2167 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2168 folio_order(folio)); 2169 /* 2170 * No need to invalidate here it will synchronize on 2171 * against the special swap migration pte. 2172 */ 2173 } else if (PageHWPoison(subpage)) { 2174 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2175 if (folio_test_hugetlb(folio)) { 2176 hugetlb_count_sub(folio_nr_pages(folio), mm); 2177 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2178 hsz); 2179 } else { 2180 dec_mm_counter(mm, mm_counter(folio)); 2181 set_pte_at(mm, address, pvmw.pte, pteval); 2182 } 2183 2184 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2185 /* 2186 * The guest indicated that the page content is of no 2187 * interest anymore. Simply discard the pte, vmscan 2188 * will take care of the rest. 2189 * A future reference will then fault in a new zero 2190 * page. When userfaultfd is active, we must not drop 2191 * this page though, as its main user (postcopy 2192 * migration) will not expect userfaults on already 2193 * copied pages. 2194 */ 2195 dec_mm_counter(mm, mm_counter(folio)); 2196 } else { 2197 swp_entry_t entry; 2198 pte_t swp_pte; 2199 2200 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2201 if (folio_test_hugetlb(folio)) 2202 set_huge_pte_at(mm, address, pvmw.pte, 2203 pteval, hsz); 2204 else 2205 set_pte_at(mm, address, pvmw.pte, pteval); 2206 ret = false; 2207 page_vma_mapped_walk_done(&pvmw); 2208 break; 2209 } 2210 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2211 !anon_exclusive, subpage); 2212 2213 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2214 if (folio_test_hugetlb(folio)) { 2215 if (anon_exclusive && 2216 hugetlb_try_share_anon_rmap(folio)) { 2217 set_huge_pte_at(mm, address, pvmw.pte, 2218 pteval, hsz); 2219 ret = false; 2220 page_vma_mapped_walk_done(&pvmw); 2221 break; 2222 } 2223 } else if (anon_exclusive && 2224 folio_try_share_anon_rmap_pte(folio, subpage)) { 2225 set_pte_at(mm, address, pvmw.pte, pteval); 2226 ret = false; 2227 page_vma_mapped_walk_done(&pvmw); 2228 break; 2229 } 2230 2231 /* 2232 * Store the pfn of the page in a special migration 2233 * pte. do_swap_page() will wait until the migration 2234 * pte is removed and then restart fault handling. 2235 */ 2236 if (pte_write(pteval)) 2237 entry = make_writable_migration_entry( 2238 page_to_pfn(subpage)); 2239 else if (anon_exclusive) 2240 entry = make_readable_exclusive_migration_entry( 2241 page_to_pfn(subpage)); 2242 else 2243 entry = make_readable_migration_entry( 2244 page_to_pfn(subpage)); 2245 if (pte_young(pteval)) 2246 entry = make_migration_entry_young(entry); 2247 if (pte_dirty(pteval)) 2248 entry = make_migration_entry_dirty(entry); 2249 swp_pte = swp_entry_to_pte(entry); 2250 if (pte_soft_dirty(pteval)) 2251 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2252 if (pte_uffd_wp(pteval)) 2253 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2254 if (folio_test_hugetlb(folio)) 2255 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2256 hsz); 2257 else 2258 set_pte_at(mm, address, pvmw.pte, swp_pte); 2259 trace_set_migration_pte(address, pte_val(swp_pte), 2260 folio_order(folio)); 2261 /* 2262 * No need to invalidate here it will synchronize on 2263 * against the special swap migration pte. 2264 */ 2265 } 2266 2267 if (unlikely(folio_test_hugetlb(folio))) 2268 hugetlb_remove_rmap(folio); 2269 else 2270 folio_remove_rmap_pte(folio, subpage, vma); 2271 if (vma->vm_flags & VM_LOCKED) 2272 mlock_drain_local(); 2273 folio_put(folio); 2274 } 2275 2276 mmu_notifier_invalidate_range_end(&range); 2277 2278 return ret; 2279 } 2280 2281 /** 2282 * try_to_migrate - try to replace all page table mappings with swap entries 2283 * @folio: the folio to replace page table entries for 2284 * @flags: action and flags 2285 * 2286 * Tries to remove all the page table entries which are mapping this folio and 2287 * replace them with special swap entries. Caller must hold the folio lock. 2288 */ 2289 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2290 { 2291 struct rmap_walk_control rwc = { 2292 .rmap_one = try_to_migrate_one, 2293 .arg = (void *)flags, 2294 .done = folio_not_mapped, 2295 .anon_lock = folio_lock_anon_vma_read, 2296 }; 2297 2298 /* 2299 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2300 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2301 */ 2302 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2303 TTU_SYNC | TTU_BATCH_FLUSH))) 2304 return; 2305 2306 if (folio_is_zone_device(folio) && 2307 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2308 return; 2309 2310 /* 2311 * During exec, a temporary VMA is setup and later moved. 2312 * The VMA is moved under the anon_vma lock but not the 2313 * page tables leading to a race where migration cannot 2314 * find the migration ptes. Rather than increasing the 2315 * locking requirements of exec(), migration skips 2316 * temporary VMAs until after exec() completes. 2317 */ 2318 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2319 rwc.invalid_vma = invalid_migration_vma; 2320 2321 if (flags & TTU_RMAP_LOCKED) 2322 rmap_walk_locked(folio, &rwc); 2323 else 2324 rmap_walk(folio, &rwc); 2325 } 2326 2327 #ifdef CONFIG_DEVICE_PRIVATE 2328 struct make_exclusive_args { 2329 struct mm_struct *mm; 2330 unsigned long address; 2331 void *owner; 2332 bool valid; 2333 }; 2334 2335 static bool page_make_device_exclusive_one(struct folio *folio, 2336 struct vm_area_struct *vma, unsigned long address, void *priv) 2337 { 2338 struct mm_struct *mm = vma->vm_mm; 2339 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2340 struct make_exclusive_args *args = priv; 2341 pte_t pteval; 2342 struct page *subpage; 2343 bool ret = true; 2344 struct mmu_notifier_range range; 2345 swp_entry_t entry; 2346 pte_t swp_pte; 2347 pte_t ptent; 2348 2349 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2350 vma->vm_mm, address, min(vma->vm_end, 2351 address + folio_size(folio)), 2352 args->owner); 2353 mmu_notifier_invalidate_range_start(&range); 2354 2355 while (page_vma_mapped_walk(&pvmw)) { 2356 /* Unexpected PMD-mapped THP? */ 2357 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2358 2359 ptent = ptep_get(pvmw.pte); 2360 if (!pte_present(ptent)) { 2361 ret = false; 2362 page_vma_mapped_walk_done(&pvmw); 2363 break; 2364 } 2365 2366 subpage = folio_page(folio, 2367 pte_pfn(ptent) - folio_pfn(folio)); 2368 address = pvmw.address; 2369 2370 /* Nuke the page table entry. */ 2371 flush_cache_page(vma, address, pte_pfn(ptent)); 2372 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2373 2374 /* Set the dirty flag on the folio now the pte is gone. */ 2375 if (pte_dirty(pteval)) 2376 folio_mark_dirty(folio); 2377 2378 /* 2379 * Check that our target page is still mapped at the expected 2380 * address. 2381 */ 2382 if (args->mm == mm && args->address == address && 2383 pte_write(pteval)) 2384 args->valid = true; 2385 2386 /* 2387 * Store the pfn of the page in a special migration 2388 * pte. do_swap_page() will wait until the migration 2389 * pte is removed and then restart fault handling. 2390 */ 2391 if (pte_write(pteval)) 2392 entry = make_writable_device_exclusive_entry( 2393 page_to_pfn(subpage)); 2394 else 2395 entry = make_readable_device_exclusive_entry( 2396 page_to_pfn(subpage)); 2397 swp_pte = swp_entry_to_pte(entry); 2398 if (pte_soft_dirty(pteval)) 2399 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2400 if (pte_uffd_wp(pteval)) 2401 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2402 2403 set_pte_at(mm, address, pvmw.pte, swp_pte); 2404 2405 /* 2406 * There is a reference on the page for the swap entry which has 2407 * been removed, so shouldn't take another. 2408 */ 2409 folio_remove_rmap_pte(folio, subpage, vma); 2410 } 2411 2412 mmu_notifier_invalidate_range_end(&range); 2413 2414 return ret; 2415 } 2416 2417 /** 2418 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2419 * @folio: The folio to replace page table entries for. 2420 * @mm: The mm_struct where the folio is expected to be mapped. 2421 * @address: Address where the folio is expected to be mapped. 2422 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2423 * 2424 * Tries to remove all the page table entries which are mapping this 2425 * folio and replace them with special device exclusive swap entries to 2426 * grant a device exclusive access to the folio. 2427 * 2428 * Context: Caller must hold the folio lock. 2429 * Return: false if the page is still mapped, or if it could not be unmapped 2430 * from the expected address. Otherwise returns true (success). 2431 */ 2432 static bool folio_make_device_exclusive(struct folio *folio, 2433 struct mm_struct *mm, unsigned long address, void *owner) 2434 { 2435 struct make_exclusive_args args = { 2436 .mm = mm, 2437 .address = address, 2438 .owner = owner, 2439 .valid = false, 2440 }; 2441 struct rmap_walk_control rwc = { 2442 .rmap_one = page_make_device_exclusive_one, 2443 .done = folio_not_mapped, 2444 .anon_lock = folio_lock_anon_vma_read, 2445 .arg = &args, 2446 }; 2447 2448 /* 2449 * Restrict to anonymous folios for now to avoid potential writeback 2450 * issues. 2451 */ 2452 if (!folio_test_anon(folio)) 2453 return false; 2454 2455 rmap_walk(folio, &rwc); 2456 2457 return args.valid && !folio_mapcount(folio); 2458 } 2459 2460 /** 2461 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2462 * @mm: mm_struct of associated target process 2463 * @start: start of the region to mark for exclusive device access 2464 * @end: end address of region 2465 * @pages: returns the pages which were successfully marked for exclusive access 2466 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2467 * 2468 * Returns: number of pages found in the range by GUP. A page is marked for 2469 * exclusive access only if the page pointer is non-NULL. 2470 * 2471 * This function finds ptes mapping page(s) to the given address range, locks 2472 * them and replaces mappings with special swap entries preventing userspace CPU 2473 * access. On fault these entries are replaced with the original mapping after 2474 * calling MMU notifiers. 2475 * 2476 * A driver using this to program access from a device must use a mmu notifier 2477 * critical section to hold a device specific lock during programming. Once 2478 * programming is complete it should drop the page lock and reference after 2479 * which point CPU access to the page will revoke the exclusive access. 2480 */ 2481 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2482 unsigned long end, struct page **pages, 2483 void *owner) 2484 { 2485 long npages = (end - start) >> PAGE_SHIFT; 2486 long i; 2487 2488 npages = get_user_pages_remote(mm, start, npages, 2489 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2490 pages, NULL); 2491 if (npages < 0) 2492 return npages; 2493 2494 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2495 struct folio *folio = page_folio(pages[i]); 2496 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2497 folio_put(folio); 2498 pages[i] = NULL; 2499 continue; 2500 } 2501 2502 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2503 folio_unlock(folio); 2504 folio_put(folio); 2505 pages[i] = NULL; 2506 } 2507 } 2508 2509 return npages; 2510 } 2511 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2512 #endif 2513 2514 void __put_anon_vma(struct anon_vma *anon_vma) 2515 { 2516 struct anon_vma *root = anon_vma->root; 2517 2518 anon_vma_free(anon_vma); 2519 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2520 anon_vma_free(root); 2521 } 2522 2523 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2524 struct rmap_walk_control *rwc) 2525 { 2526 struct anon_vma *anon_vma; 2527 2528 if (rwc->anon_lock) 2529 return rwc->anon_lock(folio, rwc); 2530 2531 /* 2532 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2533 * because that depends on page_mapped(); but not all its usages 2534 * are holding mmap_lock. Users without mmap_lock are required to 2535 * take a reference count to prevent the anon_vma disappearing 2536 */ 2537 anon_vma = folio_anon_vma(folio); 2538 if (!anon_vma) 2539 return NULL; 2540 2541 if (anon_vma_trylock_read(anon_vma)) 2542 goto out; 2543 2544 if (rwc->try_lock) { 2545 anon_vma = NULL; 2546 rwc->contended = true; 2547 goto out; 2548 } 2549 2550 anon_vma_lock_read(anon_vma); 2551 out: 2552 return anon_vma; 2553 } 2554 2555 /* 2556 * rmap_walk_anon - do something to anonymous page using the object-based 2557 * rmap method 2558 * @folio: the folio to be handled 2559 * @rwc: control variable according to each walk type 2560 * @locked: caller holds relevant rmap lock 2561 * 2562 * Find all the mappings of a folio using the mapping pointer and the vma 2563 * chains contained in the anon_vma struct it points to. 2564 */ 2565 static void rmap_walk_anon(struct folio *folio, 2566 struct rmap_walk_control *rwc, bool locked) 2567 { 2568 struct anon_vma *anon_vma; 2569 pgoff_t pgoff_start, pgoff_end; 2570 struct anon_vma_chain *avc; 2571 2572 if (locked) { 2573 anon_vma = folio_anon_vma(folio); 2574 /* anon_vma disappear under us? */ 2575 VM_BUG_ON_FOLIO(!anon_vma, folio); 2576 } else { 2577 anon_vma = rmap_walk_anon_lock(folio, rwc); 2578 } 2579 if (!anon_vma) 2580 return; 2581 2582 pgoff_start = folio_pgoff(folio); 2583 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2584 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2585 pgoff_start, pgoff_end) { 2586 struct vm_area_struct *vma = avc->vma; 2587 unsigned long address = vma_address(vma, pgoff_start, 2588 folio_nr_pages(folio)); 2589 2590 VM_BUG_ON_VMA(address == -EFAULT, vma); 2591 cond_resched(); 2592 2593 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2594 continue; 2595 2596 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2597 break; 2598 if (rwc->done && rwc->done(folio)) 2599 break; 2600 } 2601 2602 if (!locked) 2603 anon_vma_unlock_read(anon_vma); 2604 } 2605 2606 /* 2607 * rmap_walk_file - do something to file page using the object-based rmap method 2608 * @folio: the folio to be handled 2609 * @rwc: control variable according to each walk type 2610 * @locked: caller holds relevant rmap lock 2611 * 2612 * Find all the mappings of a folio using the mapping pointer and the vma chains 2613 * contained in the address_space struct it points to. 2614 */ 2615 static void rmap_walk_file(struct folio *folio, 2616 struct rmap_walk_control *rwc, bool locked) 2617 { 2618 struct address_space *mapping = folio_mapping(folio); 2619 pgoff_t pgoff_start, pgoff_end; 2620 struct vm_area_struct *vma; 2621 2622 /* 2623 * The page lock not only makes sure that page->mapping cannot 2624 * suddenly be NULLified by truncation, it makes sure that the 2625 * structure at mapping cannot be freed and reused yet, 2626 * so we can safely take mapping->i_mmap_rwsem. 2627 */ 2628 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2629 2630 if (!mapping) 2631 return; 2632 2633 pgoff_start = folio_pgoff(folio); 2634 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2635 if (!locked) { 2636 if (i_mmap_trylock_read(mapping)) 2637 goto lookup; 2638 2639 if (rwc->try_lock) { 2640 rwc->contended = true; 2641 return; 2642 } 2643 2644 i_mmap_lock_read(mapping); 2645 } 2646 lookup: 2647 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2648 pgoff_start, pgoff_end) { 2649 unsigned long address = vma_address(vma, pgoff_start, 2650 folio_nr_pages(folio)); 2651 2652 VM_BUG_ON_VMA(address == -EFAULT, vma); 2653 cond_resched(); 2654 2655 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2656 continue; 2657 2658 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2659 goto done; 2660 if (rwc->done && rwc->done(folio)) 2661 goto done; 2662 } 2663 2664 done: 2665 if (!locked) 2666 i_mmap_unlock_read(mapping); 2667 } 2668 2669 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2670 { 2671 if (unlikely(folio_test_ksm(folio))) 2672 rmap_walk_ksm(folio, rwc); 2673 else if (folio_test_anon(folio)) 2674 rmap_walk_anon(folio, rwc, false); 2675 else 2676 rmap_walk_file(folio, rwc, false); 2677 } 2678 2679 /* Like rmap_walk, but caller holds relevant rmap lock */ 2680 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2681 { 2682 /* no ksm support for now */ 2683 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2684 if (folio_test_anon(folio)) 2685 rmap_walk_anon(folio, rwc, true); 2686 else 2687 rmap_walk_file(folio, rwc, true); 2688 } 2689 2690 #ifdef CONFIG_HUGETLB_PAGE 2691 /* 2692 * The following two functions are for anonymous (private mapped) hugepages. 2693 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2694 * and no lru code, because we handle hugepages differently from common pages. 2695 */ 2696 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2697 unsigned long address, rmap_t flags) 2698 { 2699 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2700 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2701 2702 atomic_inc(&folio->_entire_mapcount); 2703 atomic_inc(&folio->_large_mapcount); 2704 if (flags & RMAP_EXCLUSIVE) 2705 SetPageAnonExclusive(&folio->page); 2706 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2707 PageAnonExclusive(&folio->page), folio); 2708 } 2709 2710 void hugetlb_add_new_anon_rmap(struct folio *folio, 2711 struct vm_area_struct *vma, unsigned long address) 2712 { 2713 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2714 2715 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2716 /* increment count (starts at -1) */ 2717 atomic_set(&folio->_entire_mapcount, 0); 2718 atomic_set(&folio->_large_mapcount, 0); 2719 folio_clear_hugetlb_restore_reserve(folio); 2720 __folio_set_anon(folio, vma, address, true); 2721 SetPageAnonExclusive(&folio->page); 2722 } 2723 #endif /* CONFIG_HUGETLB_PAGE */ 2724