xref: /linux/mm/rmap.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         folio_lock
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against folio_remove_rmap_*()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  *
494  * NOTE: the caller should normally hold folio lock when calling this.  If
495  * not, the caller needs to double check the anon_vma didn't change after
496  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
497  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
498  * which has already covered that, and comment above remap_pages().
499  */
500 struct anon_vma *folio_get_anon_vma(struct folio *folio)
501 {
502 	struct anon_vma *anon_vma = NULL;
503 	unsigned long anon_mapping;
504 
505 	rcu_read_lock();
506 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
507 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
508 		goto out;
509 	if (!folio_mapped(folio))
510 		goto out;
511 
512 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
513 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
514 		anon_vma = NULL;
515 		goto out;
516 	}
517 
518 	/*
519 	 * If this folio is still mapped, then its anon_vma cannot have been
520 	 * freed.  But if it has been unmapped, we have no security against the
521 	 * anon_vma structure being freed and reused (for another anon_vma:
522 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
523 	 * above cannot corrupt).
524 	 */
525 	if (!folio_mapped(folio)) {
526 		rcu_read_unlock();
527 		put_anon_vma(anon_vma);
528 		return NULL;
529 	}
530 out:
531 	rcu_read_unlock();
532 
533 	return anon_vma;
534 }
535 
536 /*
537  * Similar to folio_get_anon_vma() except it locks the anon_vma.
538  *
539  * Its a little more complex as it tries to keep the fast path to a single
540  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
541  * reference like with folio_get_anon_vma() and then block on the mutex
542  * on !rwc->try_lock case.
543  */
544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
545 					  struct rmap_walk_control *rwc)
546 {
547 	struct anon_vma *anon_vma = NULL;
548 	struct anon_vma *root_anon_vma;
549 	unsigned long anon_mapping;
550 
551 retry:
552 	rcu_read_lock();
553 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
554 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
555 		goto out;
556 	if (!folio_mapped(folio))
557 		goto out;
558 
559 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
560 	root_anon_vma = READ_ONCE(anon_vma->root);
561 	if (down_read_trylock(&root_anon_vma->rwsem)) {
562 		/*
563 		 * folio_move_anon_rmap() might have changed the anon_vma as we
564 		 * might not hold the folio lock here.
565 		 */
566 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
567 			     anon_mapping)) {
568 			up_read(&root_anon_vma->rwsem);
569 			rcu_read_unlock();
570 			goto retry;
571 		}
572 
573 		/*
574 		 * If the folio is still mapped, then this anon_vma is still
575 		 * its anon_vma, and holding the mutex ensures that it will
576 		 * not go away, see anon_vma_free().
577 		 */
578 		if (!folio_mapped(folio)) {
579 			up_read(&root_anon_vma->rwsem);
580 			anon_vma = NULL;
581 		}
582 		goto out;
583 	}
584 
585 	if (rwc && rwc->try_lock) {
586 		anon_vma = NULL;
587 		rwc->contended = true;
588 		goto out;
589 	}
590 
591 	/* trylock failed, we got to sleep */
592 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
593 		anon_vma = NULL;
594 		goto out;
595 	}
596 
597 	if (!folio_mapped(folio)) {
598 		rcu_read_unlock();
599 		put_anon_vma(anon_vma);
600 		return NULL;
601 	}
602 
603 	/* we pinned the anon_vma, its safe to sleep */
604 	rcu_read_unlock();
605 	anon_vma_lock_read(anon_vma);
606 
607 	/*
608 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
609 	 * not hold the folio lock here.
610 	 */
611 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
612 		     anon_mapping)) {
613 		anon_vma_unlock_read(anon_vma);
614 		put_anon_vma(anon_vma);
615 		anon_vma = NULL;
616 		goto retry;
617 	}
618 
619 	if (atomic_dec_and_test(&anon_vma->refcount)) {
620 		/*
621 		 * Oops, we held the last refcount, release the lock
622 		 * and bail -- can't simply use put_anon_vma() because
623 		 * we'll deadlock on the anon_vma_lock_write() recursion.
624 		 */
625 		anon_vma_unlock_read(anon_vma);
626 		__put_anon_vma(anon_vma);
627 		anon_vma = NULL;
628 	}
629 
630 	return anon_vma;
631 
632 out:
633 	rcu_read_unlock();
634 	return anon_vma;
635 }
636 
637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
638 /*
639  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
640  * important if a PTE was dirty when it was unmapped that it's flushed
641  * before any IO is initiated on the page to prevent lost writes. Similarly,
642  * it must be flushed before freeing to prevent data leakage.
643  */
644 void try_to_unmap_flush(void)
645 {
646 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
647 
648 	if (!tlb_ubc->flush_required)
649 		return;
650 
651 	arch_tlbbatch_flush(&tlb_ubc->arch);
652 	tlb_ubc->flush_required = false;
653 	tlb_ubc->writable = false;
654 }
655 
656 /* Flush iff there are potentially writable TLB entries that can race with IO */
657 void try_to_unmap_flush_dirty(void)
658 {
659 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
660 
661 	if (tlb_ubc->writable)
662 		try_to_unmap_flush();
663 }
664 
665 /*
666  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
667  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
668  */
669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
670 #define TLB_FLUSH_BATCH_PENDING_MASK			\
671 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
672 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
673 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
674 
675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
676 				      unsigned long uaddr)
677 {
678 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
679 	int batch;
680 	bool writable = pte_dirty(pteval);
681 
682 	if (!pte_accessible(mm, pteval))
683 		return;
684 
685 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
686 	tlb_ubc->flush_required = true;
687 
688 	/*
689 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
690 	 * before the PTE is cleared.
691 	 */
692 	barrier();
693 	batch = atomic_read(&mm->tlb_flush_batched);
694 retry:
695 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
696 		/*
697 		 * Prevent `pending' from catching up with `flushed' because of
698 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
699 		 * `pending' becomes large.
700 		 */
701 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
702 			goto retry;
703 	} else {
704 		atomic_inc(&mm->tlb_flush_batched);
705 	}
706 
707 	/*
708 	 * If the PTE was dirty then it's best to assume it's writable. The
709 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
710 	 * before the page is queued for IO.
711 	 */
712 	if (writable)
713 		tlb_ubc->writable = true;
714 }
715 
716 /*
717  * Returns true if the TLB flush should be deferred to the end of a batch of
718  * unmap operations to reduce IPIs.
719  */
720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
721 {
722 	if (!(flags & TTU_BATCH_FLUSH))
723 		return false;
724 
725 	return arch_tlbbatch_should_defer(mm);
726 }
727 
728 /*
729  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
730  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
731  * operation such as mprotect or munmap to race between reclaim unmapping
732  * the page and flushing the page. If this race occurs, it potentially allows
733  * access to data via a stale TLB entry. Tracking all mm's that have TLB
734  * batching in flight would be expensive during reclaim so instead track
735  * whether TLB batching occurred in the past and if so then do a flush here
736  * if required. This will cost one additional flush per reclaim cycle paid
737  * by the first operation at risk such as mprotect and mumap.
738  *
739  * This must be called under the PTL so that an access to tlb_flush_batched
740  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
741  * via the PTL.
742  */
743 void flush_tlb_batched_pending(struct mm_struct *mm)
744 {
745 	int batch = atomic_read(&mm->tlb_flush_batched);
746 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
747 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
748 
749 	if (pending != flushed) {
750 		arch_flush_tlb_batched_pending(mm);
751 		/*
752 		 * If the new TLB flushing is pending during flushing, leave
753 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
754 		 */
755 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
756 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
757 	}
758 }
759 #else
760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
761 				      unsigned long uaddr)
762 {
763 }
764 
765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
766 {
767 	return false;
768 }
769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
770 
771 /*
772  * At what user virtual address is page expected in vma?
773  * Caller should check the page is actually part of the vma.
774  */
775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
776 {
777 	struct folio *folio = page_folio(page);
778 	pgoff_t pgoff;
779 
780 	if (folio_test_anon(folio)) {
781 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
782 		/*
783 		 * Note: swapoff's unuse_vma() is more efficient with this
784 		 * check, and needs it to match anon_vma when KSM is active.
785 		 */
786 		if (!vma->anon_vma || !page__anon_vma ||
787 		    vma->anon_vma->root != page__anon_vma->root)
788 			return -EFAULT;
789 	} else if (!vma->vm_file) {
790 		return -EFAULT;
791 	} else if (vma->vm_file->f_mapping != folio->mapping) {
792 		return -EFAULT;
793 	}
794 
795 	/* The !page__anon_vma above handles KSM folios */
796 	pgoff = folio->index + folio_page_idx(folio, page);
797 	return vma_address(vma, pgoff, 1);
798 }
799 
800 /*
801  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
802  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
803  * represents.
804  */
805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
806 {
807 	pgd_t *pgd;
808 	p4d_t *p4d;
809 	pud_t *pud;
810 	pmd_t *pmd = NULL;
811 
812 	pgd = pgd_offset(mm, address);
813 	if (!pgd_present(*pgd))
814 		goto out;
815 
816 	p4d = p4d_offset(pgd, address);
817 	if (!p4d_present(*p4d))
818 		goto out;
819 
820 	pud = pud_offset(p4d, address);
821 	if (!pud_present(*pud))
822 		goto out;
823 
824 	pmd = pmd_offset(pud, address);
825 out:
826 	return pmd;
827 }
828 
829 struct folio_referenced_arg {
830 	int mapcount;
831 	int referenced;
832 	unsigned long vm_flags;
833 	struct mem_cgroup *memcg;
834 };
835 
836 /*
837  * arg: folio_referenced_arg will be passed
838  */
839 static bool folio_referenced_one(struct folio *folio,
840 		struct vm_area_struct *vma, unsigned long address, void *arg)
841 {
842 	struct folio_referenced_arg *pra = arg;
843 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
844 	int referenced = 0;
845 	unsigned long start = address, ptes = 0;
846 
847 	while (page_vma_mapped_walk(&pvmw)) {
848 		address = pvmw.address;
849 
850 		if (vma->vm_flags & VM_LOCKED) {
851 			if (!folio_test_large(folio) || !pvmw.pte) {
852 				/* Restore the mlock which got missed */
853 				mlock_vma_folio(folio, vma);
854 				page_vma_mapped_walk_done(&pvmw);
855 				pra->vm_flags |= VM_LOCKED;
856 				return false; /* To break the loop */
857 			}
858 			/*
859 			 * For large folio fully mapped to VMA, will
860 			 * be handled after the pvmw loop.
861 			 *
862 			 * For large folio cross VMA boundaries, it's
863 			 * expected to be picked  by page reclaim. But
864 			 * should skip reference of pages which are in
865 			 * the range of VM_LOCKED vma. As page reclaim
866 			 * should just count the reference of pages out
867 			 * the range of VM_LOCKED vma.
868 			 */
869 			ptes++;
870 			pra->mapcount--;
871 			continue;
872 		}
873 
874 		if (pvmw.pte) {
875 			if (lru_gen_enabled() &&
876 			    pte_young(ptep_get(pvmw.pte))) {
877 				lru_gen_look_around(&pvmw);
878 				referenced++;
879 			}
880 
881 			if (ptep_clear_flush_young_notify(vma, address,
882 						pvmw.pte))
883 				referenced++;
884 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
885 			if (pmdp_clear_flush_young_notify(vma, address,
886 						pvmw.pmd))
887 				referenced++;
888 		} else {
889 			/* unexpected pmd-mapped folio? */
890 			WARN_ON_ONCE(1);
891 		}
892 
893 		pra->mapcount--;
894 	}
895 
896 	if ((vma->vm_flags & VM_LOCKED) &&
897 			folio_test_large(folio) &&
898 			folio_within_vma(folio, vma)) {
899 		unsigned long s_align, e_align;
900 
901 		s_align = ALIGN_DOWN(start, PMD_SIZE);
902 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
903 
904 		/* folio doesn't cross page table boundary and fully mapped */
905 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
906 			/* Restore the mlock which got missed */
907 			mlock_vma_folio(folio, vma);
908 			pra->vm_flags |= VM_LOCKED;
909 			return false; /* To break the loop */
910 		}
911 	}
912 
913 	if (referenced)
914 		folio_clear_idle(folio);
915 	if (folio_test_clear_young(folio))
916 		referenced++;
917 
918 	if (referenced) {
919 		pra->referenced++;
920 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
921 	}
922 
923 	if (!pra->mapcount)
924 		return false; /* To break the loop */
925 
926 	return true;
927 }
928 
929 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
930 {
931 	struct folio_referenced_arg *pra = arg;
932 	struct mem_cgroup *memcg = pra->memcg;
933 
934 	/*
935 	 * Ignore references from this mapping if it has no recency. If the
936 	 * folio has been used in another mapping, we will catch it; if this
937 	 * other mapping is already gone, the unmap path will have set the
938 	 * referenced flag or activated the folio in zap_pte_range().
939 	 */
940 	if (!vma_has_recency(vma))
941 		return true;
942 
943 	/*
944 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
945 	 * of references from different cgroups.
946 	 */
947 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
948 		return true;
949 
950 	return false;
951 }
952 
953 /**
954  * folio_referenced() - Test if the folio was referenced.
955  * @folio: The folio to test.
956  * @is_locked: Caller holds lock on the folio.
957  * @memcg: target memory cgroup
958  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
959  *
960  * Quick test_and_clear_referenced for all mappings of a folio,
961  *
962  * Return: The number of mappings which referenced the folio. Return -1 if
963  * the function bailed out due to rmap lock contention.
964  */
965 int folio_referenced(struct folio *folio, int is_locked,
966 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
967 {
968 	int we_locked = 0;
969 	struct folio_referenced_arg pra = {
970 		.mapcount = folio_mapcount(folio),
971 		.memcg = memcg,
972 	};
973 	struct rmap_walk_control rwc = {
974 		.rmap_one = folio_referenced_one,
975 		.arg = (void *)&pra,
976 		.anon_lock = folio_lock_anon_vma_read,
977 		.try_lock = true,
978 		.invalid_vma = invalid_folio_referenced_vma,
979 	};
980 
981 	*vm_flags = 0;
982 	if (!pra.mapcount)
983 		return 0;
984 
985 	if (!folio_raw_mapping(folio))
986 		return 0;
987 
988 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
989 		we_locked = folio_trylock(folio);
990 		if (!we_locked)
991 			return 1;
992 	}
993 
994 	rmap_walk(folio, &rwc);
995 	*vm_flags = pra.vm_flags;
996 
997 	if (we_locked)
998 		folio_unlock(folio);
999 
1000 	return rwc.contended ? -1 : pra.referenced;
1001 }
1002 
1003 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1004 {
1005 	int cleaned = 0;
1006 	struct vm_area_struct *vma = pvmw->vma;
1007 	struct mmu_notifier_range range;
1008 	unsigned long address = pvmw->address;
1009 
1010 	/*
1011 	 * We have to assume the worse case ie pmd for invalidation. Note that
1012 	 * the folio can not be freed from this function.
1013 	 */
1014 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1015 				vma->vm_mm, address, vma_address_end(pvmw));
1016 	mmu_notifier_invalidate_range_start(&range);
1017 
1018 	while (page_vma_mapped_walk(pvmw)) {
1019 		int ret = 0;
1020 
1021 		address = pvmw->address;
1022 		if (pvmw->pte) {
1023 			pte_t *pte = pvmw->pte;
1024 			pte_t entry = ptep_get(pte);
1025 
1026 			if (!pte_dirty(entry) && !pte_write(entry))
1027 				continue;
1028 
1029 			flush_cache_page(vma, address, pte_pfn(entry));
1030 			entry = ptep_clear_flush(vma, address, pte);
1031 			entry = pte_wrprotect(entry);
1032 			entry = pte_mkclean(entry);
1033 			set_pte_at(vma->vm_mm, address, pte, entry);
1034 			ret = 1;
1035 		} else {
1036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1037 			pmd_t *pmd = pvmw->pmd;
1038 			pmd_t entry;
1039 
1040 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1041 				continue;
1042 
1043 			flush_cache_range(vma, address,
1044 					  address + HPAGE_PMD_SIZE);
1045 			entry = pmdp_invalidate(vma, address, pmd);
1046 			entry = pmd_wrprotect(entry);
1047 			entry = pmd_mkclean(entry);
1048 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1049 			ret = 1;
1050 #else
1051 			/* unexpected pmd-mapped folio? */
1052 			WARN_ON_ONCE(1);
1053 #endif
1054 		}
1055 
1056 		if (ret)
1057 			cleaned++;
1058 	}
1059 
1060 	mmu_notifier_invalidate_range_end(&range);
1061 
1062 	return cleaned;
1063 }
1064 
1065 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1066 			     unsigned long address, void *arg)
1067 {
1068 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1069 	int *cleaned = arg;
1070 
1071 	*cleaned += page_vma_mkclean_one(&pvmw);
1072 
1073 	return true;
1074 }
1075 
1076 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1077 {
1078 	if (vma->vm_flags & VM_SHARED)
1079 		return false;
1080 
1081 	return true;
1082 }
1083 
1084 int folio_mkclean(struct folio *folio)
1085 {
1086 	int cleaned = 0;
1087 	struct address_space *mapping;
1088 	struct rmap_walk_control rwc = {
1089 		.arg = (void *)&cleaned,
1090 		.rmap_one = page_mkclean_one,
1091 		.invalid_vma = invalid_mkclean_vma,
1092 	};
1093 
1094 	BUG_ON(!folio_test_locked(folio));
1095 
1096 	if (!folio_mapped(folio))
1097 		return 0;
1098 
1099 	mapping = folio_mapping(folio);
1100 	if (!mapping)
1101 		return 0;
1102 
1103 	rmap_walk(folio, &rwc);
1104 
1105 	return cleaned;
1106 }
1107 EXPORT_SYMBOL_GPL(folio_mkclean);
1108 
1109 /**
1110  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1111  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1112  *                     within the @vma of shared mappings. And since clean PTEs
1113  *                     should also be readonly, write protects them too.
1114  * @pfn: start pfn.
1115  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1116  * @pgoff: page offset that the @pfn mapped with.
1117  * @vma: vma that @pfn mapped within.
1118  *
1119  * Returns the number of cleaned PTEs (including PMDs).
1120  */
1121 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1122 		      struct vm_area_struct *vma)
1123 {
1124 	struct page_vma_mapped_walk pvmw = {
1125 		.pfn		= pfn,
1126 		.nr_pages	= nr_pages,
1127 		.pgoff		= pgoff,
1128 		.vma		= vma,
1129 		.flags		= PVMW_SYNC,
1130 	};
1131 
1132 	if (invalid_mkclean_vma(vma, NULL))
1133 		return 0;
1134 
1135 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1136 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1137 
1138 	return page_vma_mkclean_one(&pvmw);
1139 }
1140 
1141 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1142 		struct page *page, int nr_pages, enum rmap_level level,
1143 		int *nr_pmdmapped)
1144 {
1145 	atomic_t *mapped = &folio->_nr_pages_mapped;
1146 	const int orig_nr_pages = nr_pages;
1147 	int first, nr = 0;
1148 
1149 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1150 
1151 	switch (level) {
1152 	case RMAP_LEVEL_PTE:
1153 		if (!folio_test_large(folio)) {
1154 			nr = atomic_inc_and_test(&page->_mapcount);
1155 			break;
1156 		}
1157 
1158 		do {
1159 			first = atomic_inc_and_test(&page->_mapcount);
1160 			if (first) {
1161 				first = atomic_inc_return_relaxed(mapped);
1162 				if (first < ENTIRELY_MAPPED)
1163 					nr++;
1164 			}
1165 		} while (page++, --nr_pages > 0);
1166 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1167 		break;
1168 	case RMAP_LEVEL_PMD:
1169 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1170 		if (first) {
1171 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1172 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1173 				*nr_pmdmapped = folio_nr_pages(folio);
1174 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1175 				/* Raced ahead of a remove and another add? */
1176 				if (unlikely(nr < 0))
1177 					nr = 0;
1178 			} else {
1179 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1180 				nr = 0;
1181 			}
1182 		}
1183 		atomic_inc(&folio->_large_mapcount);
1184 		break;
1185 	}
1186 	return nr;
1187 }
1188 
1189 /**
1190  * folio_move_anon_rmap - move a folio to our anon_vma
1191  * @folio:	The folio to move to our anon_vma
1192  * @vma:	The vma the folio belongs to
1193  *
1194  * When a folio belongs exclusively to one process after a COW event,
1195  * that folio can be moved into the anon_vma that belongs to just that
1196  * process, so the rmap code will not search the parent or sibling processes.
1197  */
1198 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1199 {
1200 	void *anon_vma = vma->anon_vma;
1201 
1202 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1203 	VM_BUG_ON_VMA(!anon_vma, vma);
1204 
1205 	anon_vma += PAGE_MAPPING_ANON;
1206 	/*
1207 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1208 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1209 	 * folio_test_anon()) will not see one without the other.
1210 	 */
1211 	WRITE_ONCE(folio->mapping, anon_vma);
1212 }
1213 
1214 /**
1215  * __folio_set_anon - set up a new anonymous rmap for a folio
1216  * @folio:	The folio to set up the new anonymous rmap for.
1217  * @vma:	VM area to add the folio to.
1218  * @address:	User virtual address of the mapping
1219  * @exclusive:	Whether the folio is exclusive to the process.
1220  */
1221 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1222 			     unsigned long address, bool exclusive)
1223 {
1224 	struct anon_vma *anon_vma = vma->anon_vma;
1225 
1226 	BUG_ON(!anon_vma);
1227 
1228 	/*
1229 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1230 	 * possible anon_vma for the folio mapping!
1231 	 */
1232 	if (!exclusive)
1233 		anon_vma = anon_vma->root;
1234 
1235 	/*
1236 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1237 	 * Make sure the compiler doesn't split the stores of anon_vma and
1238 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1239 	 * could mistake the mapping for a struct address_space and crash.
1240 	 */
1241 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1242 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1243 	folio->index = linear_page_index(vma, address);
1244 }
1245 
1246 /**
1247  * __page_check_anon_rmap - sanity check anonymous rmap addition
1248  * @folio:	The folio containing @page.
1249  * @page:	the page to check the mapping of
1250  * @vma:	the vm area in which the mapping is added
1251  * @address:	the user virtual address mapped
1252  */
1253 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1254 	struct vm_area_struct *vma, unsigned long address)
1255 {
1256 	/*
1257 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1258 	 * be set up correctly at this point.
1259 	 *
1260 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1261 	 * always holds the page locked.
1262 	 *
1263 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1264 	 * are initially only visible via the pagetables, and the pte is locked
1265 	 * over the call to folio_add_new_anon_rmap.
1266 	 */
1267 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1268 			folio);
1269 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1270 		       page);
1271 }
1272 
1273 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1274 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1275 		unsigned long address, rmap_t flags, enum rmap_level level)
1276 {
1277 	int i, nr, nr_pmdmapped = 0;
1278 
1279 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1280 	if (nr_pmdmapped)
1281 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1282 	if (nr)
1283 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1284 
1285 	if (unlikely(!folio_test_anon(folio))) {
1286 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1287 		/*
1288 		 * For a PTE-mapped large folio, we only know that the single
1289 		 * PTE is exclusive. Further, __folio_set_anon() might not get
1290 		 * folio->index right when not given the address of the head
1291 		 * page.
1292 		 */
1293 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1294 				 level != RMAP_LEVEL_PMD, folio);
1295 		__folio_set_anon(folio, vma, address,
1296 				 !!(flags & RMAP_EXCLUSIVE));
1297 	} else if (likely(!folio_test_ksm(folio))) {
1298 		__page_check_anon_rmap(folio, page, vma, address);
1299 	}
1300 
1301 	if (flags & RMAP_EXCLUSIVE) {
1302 		switch (level) {
1303 		case RMAP_LEVEL_PTE:
1304 			for (i = 0; i < nr_pages; i++)
1305 				SetPageAnonExclusive(page + i);
1306 			break;
1307 		case RMAP_LEVEL_PMD:
1308 			SetPageAnonExclusive(page);
1309 			break;
1310 		}
1311 	}
1312 	for (i = 0; i < nr_pages; i++) {
1313 		struct page *cur_page = page + i;
1314 
1315 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1316 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1317 				  (folio_test_large(folio) &&
1318 				   folio_entire_mapcount(folio) > 1)) &&
1319 				 PageAnonExclusive(cur_page), folio);
1320 	}
1321 
1322 	/*
1323 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1324 	 * not easy to check whether the large folio is fully mapped to VMA
1325 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1326 	 * large folio.
1327 	 */
1328 	if (!folio_test_large(folio))
1329 		mlock_vma_folio(folio, vma);
1330 }
1331 
1332 /**
1333  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1334  * @folio:	The folio to add the mappings to
1335  * @page:	The first page to add
1336  * @nr_pages:	The number of pages which will be mapped
1337  * @vma:	The vm area in which the mappings are added
1338  * @address:	The user virtual address of the first page to map
1339  * @flags:	The rmap flags
1340  *
1341  * The page range of folio is defined by [first_page, first_page + nr_pages)
1342  *
1343  * The caller needs to hold the page table lock, and the page must be locked in
1344  * the anon_vma case: to serialize mapping,index checking after setting,
1345  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1346  * (but KSM folios are never downgraded).
1347  */
1348 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1349 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1350 		rmap_t flags)
1351 {
1352 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1353 			      RMAP_LEVEL_PTE);
1354 }
1355 
1356 /**
1357  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1358  * @folio:	The folio to add the mapping to
1359  * @page:	The first page to add
1360  * @vma:	The vm area in which the mapping is added
1361  * @address:	The user virtual address of the first page to map
1362  * @flags:	The rmap flags
1363  *
1364  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1365  *
1366  * The caller needs to hold the page table lock, and the page must be locked in
1367  * the anon_vma case: to serialize mapping,index checking after setting.
1368  */
1369 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1370 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1371 {
1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1373 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1374 			      RMAP_LEVEL_PMD);
1375 #else
1376 	WARN_ON_ONCE(true);
1377 #endif
1378 }
1379 
1380 /**
1381  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1382  * @folio:	The folio to add the mapping to.
1383  * @vma:	the vm area in which the mapping is added
1384  * @address:	the user virtual address mapped
1385  *
1386  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1387  * This means the inc-and-test can be bypassed.
1388  * The folio does not have to be locked.
1389  *
1390  * If the folio is pmd-mappable, it is accounted as a THP.  As the folio
1391  * is new, it's assumed to be mapped exclusively by a single process.
1392  */
1393 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1394 		unsigned long address)
1395 {
1396 	int nr = folio_nr_pages(folio);
1397 
1398 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1399 	VM_BUG_ON_VMA(address < vma->vm_start ||
1400 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1401 	__folio_set_swapbacked(folio);
1402 	__folio_set_anon(folio, vma, address, true);
1403 
1404 	if (likely(!folio_test_large(folio))) {
1405 		/* increment count (starts at -1) */
1406 		atomic_set(&folio->_mapcount, 0);
1407 		SetPageAnonExclusive(&folio->page);
1408 	} else if (!folio_test_pmd_mappable(folio)) {
1409 		int i;
1410 
1411 		for (i = 0; i < nr; i++) {
1412 			struct page *page = folio_page(folio, i);
1413 
1414 			/* increment count (starts at -1) */
1415 			atomic_set(&page->_mapcount, 0);
1416 			SetPageAnonExclusive(page);
1417 		}
1418 
1419 		/* increment count (starts at -1) */
1420 		atomic_set(&folio->_large_mapcount, nr - 1);
1421 		atomic_set(&folio->_nr_pages_mapped, nr);
1422 	} else {
1423 		/* increment count (starts at -1) */
1424 		atomic_set(&folio->_entire_mapcount, 0);
1425 		/* increment count (starts at -1) */
1426 		atomic_set(&folio->_large_mapcount, 0);
1427 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1428 		SetPageAnonExclusive(&folio->page);
1429 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1430 	}
1431 
1432 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1433 }
1434 
1435 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1436 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1437 		enum rmap_level level)
1438 {
1439 	int nr, nr_pmdmapped = 0;
1440 
1441 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1442 
1443 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1444 	if (nr_pmdmapped)
1445 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1446 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1447 	if (nr)
1448 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1449 
1450 	/* See comments in folio_add_anon_rmap_*() */
1451 	if (!folio_test_large(folio))
1452 		mlock_vma_folio(folio, vma);
1453 }
1454 
1455 /**
1456  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1457  * @folio:	The folio to add the mappings to
1458  * @page:	The first page to add
1459  * @nr_pages:	The number of pages that will be mapped using PTEs
1460  * @vma:	The vm area in which the mappings are added
1461  *
1462  * The page range of the folio is defined by [page, page + nr_pages)
1463  *
1464  * The caller needs to hold the page table lock.
1465  */
1466 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1467 		int nr_pages, struct vm_area_struct *vma)
1468 {
1469 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1470 }
1471 
1472 /**
1473  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1474  * @folio:	The folio to add the mapping to
1475  * @page:	The first page to add
1476  * @vma:	The vm area in which the mapping is added
1477  *
1478  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1479  *
1480  * The caller needs to hold the page table lock.
1481  */
1482 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1483 		struct vm_area_struct *vma)
1484 {
1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1487 #else
1488 	WARN_ON_ONCE(true);
1489 #endif
1490 }
1491 
1492 static __always_inline void __folio_remove_rmap(struct folio *folio,
1493 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1494 		enum rmap_level level)
1495 {
1496 	atomic_t *mapped = &folio->_nr_pages_mapped;
1497 	int last, nr = 0, nr_pmdmapped = 0;
1498 	enum node_stat_item idx;
1499 
1500 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1501 
1502 	switch (level) {
1503 	case RMAP_LEVEL_PTE:
1504 		if (!folio_test_large(folio)) {
1505 			nr = atomic_add_negative(-1, &page->_mapcount);
1506 			break;
1507 		}
1508 
1509 		atomic_sub(nr_pages, &folio->_large_mapcount);
1510 		do {
1511 			last = atomic_add_negative(-1, &page->_mapcount);
1512 			if (last) {
1513 				last = atomic_dec_return_relaxed(mapped);
1514 				if (last < ENTIRELY_MAPPED)
1515 					nr++;
1516 			}
1517 		} while (page++, --nr_pages > 0);
1518 		break;
1519 	case RMAP_LEVEL_PMD:
1520 		atomic_dec(&folio->_large_mapcount);
1521 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1522 		if (last) {
1523 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1524 			if (likely(nr < ENTIRELY_MAPPED)) {
1525 				nr_pmdmapped = folio_nr_pages(folio);
1526 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1527 				/* Raced ahead of another remove and an add? */
1528 				if (unlikely(nr < 0))
1529 					nr = 0;
1530 			} else {
1531 				/* An add of ENTIRELY_MAPPED raced ahead */
1532 				nr = 0;
1533 			}
1534 		}
1535 		break;
1536 	}
1537 
1538 	if (nr_pmdmapped) {
1539 		if (folio_test_anon(folio))
1540 			idx = NR_ANON_THPS;
1541 		else if (folio_test_swapbacked(folio))
1542 			idx = NR_SHMEM_PMDMAPPED;
1543 		else
1544 			idx = NR_FILE_PMDMAPPED;
1545 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1546 	}
1547 	if (nr) {
1548 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1549 		__lruvec_stat_mod_folio(folio, idx, -nr);
1550 
1551 		/*
1552 		 * Queue anon large folio for deferred split if at least one
1553 		 * page of the folio is unmapped and at least one page
1554 		 * is still mapped.
1555 		 */
1556 		if (folio_test_large(folio) && folio_test_anon(folio))
1557 			if (level == RMAP_LEVEL_PTE || nr < nr_pmdmapped)
1558 				deferred_split_folio(folio);
1559 	}
1560 
1561 	/*
1562 	 * It would be tidy to reset folio_test_anon mapping when fully
1563 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1564 	 * which increments mapcount after us but sets mapping before us:
1565 	 * so leave the reset to free_pages_prepare, and remember that
1566 	 * it's only reliable while mapped.
1567 	 */
1568 
1569 	munlock_vma_folio(folio, vma);
1570 }
1571 
1572 /**
1573  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1574  * @folio:	The folio to remove the mappings from
1575  * @page:	The first page to remove
1576  * @nr_pages:	The number of pages that will be removed from the mapping
1577  * @vma:	The vm area from which the mappings are removed
1578  *
1579  * The page range of the folio is defined by [page, page + nr_pages)
1580  *
1581  * The caller needs to hold the page table lock.
1582  */
1583 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1584 		int nr_pages, struct vm_area_struct *vma)
1585 {
1586 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1587 }
1588 
1589 /**
1590  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1591  * @folio:	The folio to remove the mapping from
1592  * @page:	The first page to remove
1593  * @vma:	The vm area from which the mapping is removed
1594  *
1595  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1596  *
1597  * The caller needs to hold the page table lock.
1598  */
1599 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1600 		struct vm_area_struct *vma)
1601 {
1602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1603 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1604 #else
1605 	WARN_ON_ONCE(true);
1606 #endif
1607 }
1608 
1609 /*
1610  * @arg: enum ttu_flags will be passed to this argument
1611  */
1612 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1613 		     unsigned long address, void *arg)
1614 {
1615 	struct mm_struct *mm = vma->vm_mm;
1616 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1617 	pte_t pteval;
1618 	struct page *subpage;
1619 	bool anon_exclusive, ret = true;
1620 	struct mmu_notifier_range range;
1621 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1622 	unsigned long pfn;
1623 	unsigned long hsz = 0;
1624 
1625 	/*
1626 	 * When racing against e.g. zap_pte_range() on another cpu,
1627 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1628 	 * try_to_unmap() may return before page_mapped() has become false,
1629 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1630 	 */
1631 	if (flags & TTU_SYNC)
1632 		pvmw.flags = PVMW_SYNC;
1633 
1634 	if (flags & TTU_SPLIT_HUGE_PMD)
1635 		split_huge_pmd_address(vma, address, false, folio);
1636 
1637 	/*
1638 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1639 	 * For hugetlb, it could be much worse if we need to do pud
1640 	 * invalidation in the case of pmd sharing.
1641 	 *
1642 	 * Note that the folio can not be freed in this function as call of
1643 	 * try_to_unmap() must hold a reference on the folio.
1644 	 */
1645 	range.end = vma_address_end(&pvmw);
1646 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1647 				address, range.end);
1648 	if (folio_test_hugetlb(folio)) {
1649 		/*
1650 		 * If sharing is possible, start and end will be adjusted
1651 		 * accordingly.
1652 		 */
1653 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1654 						     &range.end);
1655 
1656 		/* We need the huge page size for set_huge_pte_at() */
1657 		hsz = huge_page_size(hstate_vma(vma));
1658 	}
1659 	mmu_notifier_invalidate_range_start(&range);
1660 
1661 	while (page_vma_mapped_walk(&pvmw)) {
1662 		/* Unexpected PMD-mapped THP? */
1663 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1664 
1665 		/*
1666 		 * If the folio is in an mlock()d vma, we must not swap it out.
1667 		 */
1668 		if (!(flags & TTU_IGNORE_MLOCK) &&
1669 		    (vma->vm_flags & VM_LOCKED)) {
1670 			/* Restore the mlock which got missed */
1671 			if (!folio_test_large(folio))
1672 				mlock_vma_folio(folio, vma);
1673 			page_vma_mapped_walk_done(&pvmw);
1674 			ret = false;
1675 			break;
1676 		}
1677 
1678 		pfn = pte_pfn(ptep_get(pvmw.pte));
1679 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1680 		address = pvmw.address;
1681 		anon_exclusive = folio_test_anon(folio) &&
1682 				 PageAnonExclusive(subpage);
1683 
1684 		if (folio_test_hugetlb(folio)) {
1685 			bool anon = folio_test_anon(folio);
1686 
1687 			/*
1688 			 * The try_to_unmap() is only passed a hugetlb page
1689 			 * in the case where the hugetlb page is poisoned.
1690 			 */
1691 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1692 			/*
1693 			 * huge_pmd_unshare may unmap an entire PMD page.
1694 			 * There is no way of knowing exactly which PMDs may
1695 			 * be cached for this mm, so we must flush them all.
1696 			 * start/end were already adjusted above to cover this
1697 			 * range.
1698 			 */
1699 			flush_cache_range(vma, range.start, range.end);
1700 
1701 			/*
1702 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1703 			 * held in write mode.  Caller needs to explicitly
1704 			 * do this outside rmap routines.
1705 			 *
1706 			 * We also must hold hugetlb vma_lock in write mode.
1707 			 * Lock order dictates acquiring vma_lock BEFORE
1708 			 * i_mmap_rwsem.  We can only try lock here and fail
1709 			 * if unsuccessful.
1710 			 */
1711 			if (!anon) {
1712 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1713 				if (!hugetlb_vma_trylock_write(vma)) {
1714 					page_vma_mapped_walk_done(&pvmw);
1715 					ret = false;
1716 					break;
1717 				}
1718 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1719 					hugetlb_vma_unlock_write(vma);
1720 					flush_tlb_range(vma,
1721 						range.start, range.end);
1722 					/*
1723 					 * The ref count of the PMD page was
1724 					 * dropped which is part of the way map
1725 					 * counting is done for shared PMDs.
1726 					 * Return 'true' here.  When there is
1727 					 * no other sharing, huge_pmd_unshare
1728 					 * returns false and we will unmap the
1729 					 * actual page and drop map count
1730 					 * to zero.
1731 					 */
1732 					page_vma_mapped_walk_done(&pvmw);
1733 					break;
1734 				}
1735 				hugetlb_vma_unlock_write(vma);
1736 			}
1737 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1738 		} else {
1739 			flush_cache_page(vma, address, pfn);
1740 			/* Nuke the page table entry. */
1741 			if (should_defer_flush(mm, flags)) {
1742 				/*
1743 				 * We clear the PTE but do not flush so potentially
1744 				 * a remote CPU could still be writing to the folio.
1745 				 * If the entry was previously clean then the
1746 				 * architecture must guarantee that a clear->dirty
1747 				 * transition on a cached TLB entry is written through
1748 				 * and traps if the PTE is unmapped.
1749 				 */
1750 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1751 
1752 				set_tlb_ubc_flush_pending(mm, pteval, address);
1753 			} else {
1754 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1755 			}
1756 		}
1757 
1758 		/*
1759 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1760 		 * we may want to replace a none pte with a marker pte if
1761 		 * it's file-backed, so we don't lose the tracking info.
1762 		 */
1763 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1764 
1765 		/* Set the dirty flag on the folio now the pte is gone. */
1766 		if (pte_dirty(pteval))
1767 			folio_mark_dirty(folio);
1768 
1769 		/* Update high watermark before we lower rss */
1770 		update_hiwater_rss(mm);
1771 
1772 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1773 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1774 			if (folio_test_hugetlb(folio)) {
1775 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1776 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1777 						hsz);
1778 			} else {
1779 				dec_mm_counter(mm, mm_counter(folio));
1780 				set_pte_at(mm, address, pvmw.pte, pteval);
1781 			}
1782 
1783 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1784 			/*
1785 			 * The guest indicated that the page content is of no
1786 			 * interest anymore. Simply discard the pte, vmscan
1787 			 * will take care of the rest.
1788 			 * A future reference will then fault in a new zero
1789 			 * page. When userfaultfd is active, we must not drop
1790 			 * this page though, as its main user (postcopy
1791 			 * migration) will not expect userfaults on already
1792 			 * copied pages.
1793 			 */
1794 			dec_mm_counter(mm, mm_counter(folio));
1795 		} else if (folio_test_anon(folio)) {
1796 			swp_entry_t entry = page_swap_entry(subpage);
1797 			pte_t swp_pte;
1798 			/*
1799 			 * Store the swap location in the pte.
1800 			 * See handle_pte_fault() ...
1801 			 */
1802 			if (unlikely(folio_test_swapbacked(folio) !=
1803 					folio_test_swapcache(folio))) {
1804 				WARN_ON_ONCE(1);
1805 				ret = false;
1806 				page_vma_mapped_walk_done(&pvmw);
1807 				break;
1808 			}
1809 
1810 			/* MADV_FREE page check */
1811 			if (!folio_test_swapbacked(folio)) {
1812 				int ref_count, map_count;
1813 
1814 				/*
1815 				 * Synchronize with gup_pte_range():
1816 				 * - clear PTE; barrier; read refcount
1817 				 * - inc refcount; barrier; read PTE
1818 				 */
1819 				smp_mb();
1820 
1821 				ref_count = folio_ref_count(folio);
1822 				map_count = folio_mapcount(folio);
1823 
1824 				/*
1825 				 * Order reads for page refcount and dirty flag
1826 				 * (see comments in __remove_mapping()).
1827 				 */
1828 				smp_rmb();
1829 
1830 				/*
1831 				 * The only page refs must be one from isolation
1832 				 * plus the rmap(s) (dropped by discard:).
1833 				 */
1834 				if (ref_count == 1 + map_count &&
1835 				    !folio_test_dirty(folio)) {
1836 					dec_mm_counter(mm, MM_ANONPAGES);
1837 					goto discard;
1838 				}
1839 
1840 				/*
1841 				 * If the folio was redirtied, it cannot be
1842 				 * discarded. Remap the page to page table.
1843 				 */
1844 				set_pte_at(mm, address, pvmw.pte, pteval);
1845 				folio_set_swapbacked(folio);
1846 				ret = false;
1847 				page_vma_mapped_walk_done(&pvmw);
1848 				break;
1849 			}
1850 
1851 			if (swap_duplicate(entry) < 0) {
1852 				set_pte_at(mm, address, pvmw.pte, pteval);
1853 				ret = false;
1854 				page_vma_mapped_walk_done(&pvmw);
1855 				break;
1856 			}
1857 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1858 				swap_free(entry);
1859 				set_pte_at(mm, address, pvmw.pte, pteval);
1860 				ret = false;
1861 				page_vma_mapped_walk_done(&pvmw);
1862 				break;
1863 			}
1864 
1865 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1866 			if (anon_exclusive &&
1867 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1868 				swap_free(entry);
1869 				set_pte_at(mm, address, pvmw.pte, pteval);
1870 				ret = false;
1871 				page_vma_mapped_walk_done(&pvmw);
1872 				break;
1873 			}
1874 			if (list_empty(&mm->mmlist)) {
1875 				spin_lock(&mmlist_lock);
1876 				if (list_empty(&mm->mmlist))
1877 					list_add(&mm->mmlist, &init_mm.mmlist);
1878 				spin_unlock(&mmlist_lock);
1879 			}
1880 			dec_mm_counter(mm, MM_ANONPAGES);
1881 			inc_mm_counter(mm, MM_SWAPENTS);
1882 			swp_pte = swp_entry_to_pte(entry);
1883 			if (anon_exclusive)
1884 				swp_pte = pte_swp_mkexclusive(swp_pte);
1885 			if (pte_soft_dirty(pteval))
1886 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1887 			if (pte_uffd_wp(pteval))
1888 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1889 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1890 		} else {
1891 			/*
1892 			 * This is a locked file-backed folio,
1893 			 * so it cannot be removed from the page
1894 			 * cache and replaced by a new folio before
1895 			 * mmu_notifier_invalidate_range_end, so no
1896 			 * concurrent thread might update its page table
1897 			 * to point at a new folio while a device is
1898 			 * still using this folio.
1899 			 *
1900 			 * See Documentation/mm/mmu_notifier.rst
1901 			 */
1902 			dec_mm_counter(mm, mm_counter_file(folio));
1903 		}
1904 discard:
1905 		if (unlikely(folio_test_hugetlb(folio)))
1906 			hugetlb_remove_rmap(folio);
1907 		else
1908 			folio_remove_rmap_pte(folio, subpage, vma);
1909 		if (vma->vm_flags & VM_LOCKED)
1910 			mlock_drain_local();
1911 		folio_put(folio);
1912 	}
1913 
1914 	mmu_notifier_invalidate_range_end(&range);
1915 
1916 	return ret;
1917 }
1918 
1919 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1920 {
1921 	return vma_is_temporary_stack(vma);
1922 }
1923 
1924 static int folio_not_mapped(struct folio *folio)
1925 {
1926 	return !folio_mapped(folio);
1927 }
1928 
1929 /**
1930  * try_to_unmap - Try to remove all page table mappings to a folio.
1931  * @folio: The folio to unmap.
1932  * @flags: action and flags
1933  *
1934  * Tries to remove all the page table entries which are mapping this
1935  * folio.  It is the caller's responsibility to check if the folio is
1936  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1937  *
1938  * Context: Caller must hold the folio lock.
1939  */
1940 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1941 {
1942 	struct rmap_walk_control rwc = {
1943 		.rmap_one = try_to_unmap_one,
1944 		.arg = (void *)flags,
1945 		.done = folio_not_mapped,
1946 		.anon_lock = folio_lock_anon_vma_read,
1947 	};
1948 
1949 	if (flags & TTU_RMAP_LOCKED)
1950 		rmap_walk_locked(folio, &rwc);
1951 	else
1952 		rmap_walk(folio, &rwc);
1953 }
1954 
1955 /*
1956  * @arg: enum ttu_flags will be passed to this argument.
1957  *
1958  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1959  * containing migration entries.
1960  */
1961 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1962 		     unsigned long address, void *arg)
1963 {
1964 	struct mm_struct *mm = vma->vm_mm;
1965 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1966 	pte_t pteval;
1967 	struct page *subpage;
1968 	bool anon_exclusive, ret = true;
1969 	struct mmu_notifier_range range;
1970 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1971 	unsigned long pfn;
1972 	unsigned long hsz = 0;
1973 
1974 	/*
1975 	 * When racing against e.g. zap_pte_range() on another cpu,
1976 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1977 	 * try_to_migrate() may return before page_mapped() has become false,
1978 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1979 	 */
1980 	if (flags & TTU_SYNC)
1981 		pvmw.flags = PVMW_SYNC;
1982 
1983 	/*
1984 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1985 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1986 	 */
1987 	if (flags & TTU_SPLIT_HUGE_PMD)
1988 		split_huge_pmd_address(vma, address, true, folio);
1989 
1990 	/*
1991 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1992 	 * For hugetlb, it could be much worse if we need to do pud
1993 	 * invalidation in the case of pmd sharing.
1994 	 *
1995 	 * Note that the page can not be free in this function as call of
1996 	 * try_to_unmap() must hold a reference on the page.
1997 	 */
1998 	range.end = vma_address_end(&pvmw);
1999 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2000 				address, range.end);
2001 	if (folio_test_hugetlb(folio)) {
2002 		/*
2003 		 * If sharing is possible, start and end will be adjusted
2004 		 * accordingly.
2005 		 */
2006 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2007 						     &range.end);
2008 
2009 		/* We need the huge page size for set_huge_pte_at() */
2010 		hsz = huge_page_size(hstate_vma(vma));
2011 	}
2012 	mmu_notifier_invalidate_range_start(&range);
2013 
2014 	while (page_vma_mapped_walk(&pvmw)) {
2015 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2016 		/* PMD-mapped THP migration entry */
2017 		if (!pvmw.pte) {
2018 			subpage = folio_page(folio,
2019 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2020 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2021 					!folio_test_pmd_mappable(folio), folio);
2022 
2023 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2024 				ret = false;
2025 				page_vma_mapped_walk_done(&pvmw);
2026 				break;
2027 			}
2028 			continue;
2029 		}
2030 #endif
2031 
2032 		/* Unexpected PMD-mapped THP? */
2033 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2034 
2035 		pfn = pte_pfn(ptep_get(pvmw.pte));
2036 
2037 		if (folio_is_zone_device(folio)) {
2038 			/*
2039 			 * Our PTE is a non-present device exclusive entry and
2040 			 * calculating the subpage as for the common case would
2041 			 * result in an invalid pointer.
2042 			 *
2043 			 * Since only PAGE_SIZE pages can currently be
2044 			 * migrated, just set it to page. This will need to be
2045 			 * changed when hugepage migrations to device private
2046 			 * memory are supported.
2047 			 */
2048 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2049 			subpage = &folio->page;
2050 		} else {
2051 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2052 		}
2053 		address = pvmw.address;
2054 		anon_exclusive = folio_test_anon(folio) &&
2055 				 PageAnonExclusive(subpage);
2056 
2057 		if (folio_test_hugetlb(folio)) {
2058 			bool anon = folio_test_anon(folio);
2059 
2060 			/*
2061 			 * huge_pmd_unshare may unmap an entire PMD page.
2062 			 * There is no way of knowing exactly which PMDs may
2063 			 * be cached for this mm, so we must flush them all.
2064 			 * start/end were already adjusted above to cover this
2065 			 * range.
2066 			 */
2067 			flush_cache_range(vma, range.start, range.end);
2068 
2069 			/*
2070 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2071 			 * held in write mode.  Caller needs to explicitly
2072 			 * do this outside rmap routines.
2073 			 *
2074 			 * We also must hold hugetlb vma_lock in write mode.
2075 			 * Lock order dictates acquiring vma_lock BEFORE
2076 			 * i_mmap_rwsem.  We can only try lock here and
2077 			 * fail if unsuccessful.
2078 			 */
2079 			if (!anon) {
2080 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2081 				if (!hugetlb_vma_trylock_write(vma)) {
2082 					page_vma_mapped_walk_done(&pvmw);
2083 					ret = false;
2084 					break;
2085 				}
2086 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2087 					hugetlb_vma_unlock_write(vma);
2088 					flush_tlb_range(vma,
2089 						range.start, range.end);
2090 
2091 					/*
2092 					 * The ref count of the PMD page was
2093 					 * dropped which is part of the way map
2094 					 * counting is done for shared PMDs.
2095 					 * Return 'true' here.  When there is
2096 					 * no other sharing, huge_pmd_unshare
2097 					 * returns false and we will unmap the
2098 					 * actual page and drop map count
2099 					 * to zero.
2100 					 */
2101 					page_vma_mapped_walk_done(&pvmw);
2102 					break;
2103 				}
2104 				hugetlb_vma_unlock_write(vma);
2105 			}
2106 			/* Nuke the hugetlb page table entry */
2107 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2108 		} else {
2109 			flush_cache_page(vma, address, pfn);
2110 			/* Nuke the page table entry. */
2111 			if (should_defer_flush(mm, flags)) {
2112 				/*
2113 				 * We clear the PTE but do not flush so potentially
2114 				 * a remote CPU could still be writing to the folio.
2115 				 * If the entry was previously clean then the
2116 				 * architecture must guarantee that a clear->dirty
2117 				 * transition on a cached TLB entry is written through
2118 				 * and traps if the PTE is unmapped.
2119 				 */
2120 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2121 
2122 				set_tlb_ubc_flush_pending(mm, pteval, address);
2123 			} else {
2124 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2125 			}
2126 		}
2127 
2128 		/* Set the dirty flag on the folio now the pte is gone. */
2129 		if (pte_dirty(pteval))
2130 			folio_mark_dirty(folio);
2131 
2132 		/* Update high watermark before we lower rss */
2133 		update_hiwater_rss(mm);
2134 
2135 		if (folio_is_device_private(folio)) {
2136 			unsigned long pfn = folio_pfn(folio);
2137 			swp_entry_t entry;
2138 			pte_t swp_pte;
2139 
2140 			if (anon_exclusive)
2141 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2142 									   subpage));
2143 
2144 			/*
2145 			 * Store the pfn of the page in a special migration
2146 			 * pte. do_swap_page() will wait until the migration
2147 			 * pte is removed and then restart fault handling.
2148 			 */
2149 			entry = pte_to_swp_entry(pteval);
2150 			if (is_writable_device_private_entry(entry))
2151 				entry = make_writable_migration_entry(pfn);
2152 			else if (anon_exclusive)
2153 				entry = make_readable_exclusive_migration_entry(pfn);
2154 			else
2155 				entry = make_readable_migration_entry(pfn);
2156 			swp_pte = swp_entry_to_pte(entry);
2157 
2158 			/*
2159 			 * pteval maps a zone device page and is therefore
2160 			 * a swap pte.
2161 			 */
2162 			if (pte_swp_soft_dirty(pteval))
2163 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2164 			if (pte_swp_uffd_wp(pteval))
2165 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2166 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2167 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2168 						folio_order(folio));
2169 			/*
2170 			 * No need to invalidate here it will synchronize on
2171 			 * against the special swap migration pte.
2172 			 */
2173 		} else if (PageHWPoison(subpage)) {
2174 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2175 			if (folio_test_hugetlb(folio)) {
2176 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2177 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2178 						hsz);
2179 			} else {
2180 				dec_mm_counter(mm, mm_counter(folio));
2181 				set_pte_at(mm, address, pvmw.pte, pteval);
2182 			}
2183 
2184 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2185 			/*
2186 			 * The guest indicated that the page content is of no
2187 			 * interest anymore. Simply discard the pte, vmscan
2188 			 * will take care of the rest.
2189 			 * A future reference will then fault in a new zero
2190 			 * page. When userfaultfd is active, we must not drop
2191 			 * this page though, as its main user (postcopy
2192 			 * migration) will not expect userfaults on already
2193 			 * copied pages.
2194 			 */
2195 			dec_mm_counter(mm, mm_counter(folio));
2196 		} else {
2197 			swp_entry_t entry;
2198 			pte_t swp_pte;
2199 
2200 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2201 				if (folio_test_hugetlb(folio))
2202 					set_huge_pte_at(mm, address, pvmw.pte,
2203 							pteval, hsz);
2204 				else
2205 					set_pte_at(mm, address, pvmw.pte, pteval);
2206 				ret = false;
2207 				page_vma_mapped_walk_done(&pvmw);
2208 				break;
2209 			}
2210 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2211 				       !anon_exclusive, subpage);
2212 
2213 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2214 			if (folio_test_hugetlb(folio)) {
2215 				if (anon_exclusive &&
2216 				    hugetlb_try_share_anon_rmap(folio)) {
2217 					set_huge_pte_at(mm, address, pvmw.pte,
2218 							pteval, hsz);
2219 					ret = false;
2220 					page_vma_mapped_walk_done(&pvmw);
2221 					break;
2222 				}
2223 			} else if (anon_exclusive &&
2224 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2225 				set_pte_at(mm, address, pvmw.pte, pteval);
2226 				ret = false;
2227 				page_vma_mapped_walk_done(&pvmw);
2228 				break;
2229 			}
2230 
2231 			/*
2232 			 * Store the pfn of the page in a special migration
2233 			 * pte. do_swap_page() will wait until the migration
2234 			 * pte is removed and then restart fault handling.
2235 			 */
2236 			if (pte_write(pteval))
2237 				entry = make_writable_migration_entry(
2238 							page_to_pfn(subpage));
2239 			else if (anon_exclusive)
2240 				entry = make_readable_exclusive_migration_entry(
2241 							page_to_pfn(subpage));
2242 			else
2243 				entry = make_readable_migration_entry(
2244 							page_to_pfn(subpage));
2245 			if (pte_young(pteval))
2246 				entry = make_migration_entry_young(entry);
2247 			if (pte_dirty(pteval))
2248 				entry = make_migration_entry_dirty(entry);
2249 			swp_pte = swp_entry_to_pte(entry);
2250 			if (pte_soft_dirty(pteval))
2251 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2252 			if (pte_uffd_wp(pteval))
2253 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2254 			if (folio_test_hugetlb(folio))
2255 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2256 						hsz);
2257 			else
2258 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2259 			trace_set_migration_pte(address, pte_val(swp_pte),
2260 						folio_order(folio));
2261 			/*
2262 			 * No need to invalidate here it will synchronize on
2263 			 * against the special swap migration pte.
2264 			 */
2265 		}
2266 
2267 		if (unlikely(folio_test_hugetlb(folio)))
2268 			hugetlb_remove_rmap(folio);
2269 		else
2270 			folio_remove_rmap_pte(folio, subpage, vma);
2271 		if (vma->vm_flags & VM_LOCKED)
2272 			mlock_drain_local();
2273 		folio_put(folio);
2274 	}
2275 
2276 	mmu_notifier_invalidate_range_end(&range);
2277 
2278 	return ret;
2279 }
2280 
2281 /**
2282  * try_to_migrate - try to replace all page table mappings with swap entries
2283  * @folio: the folio to replace page table entries for
2284  * @flags: action and flags
2285  *
2286  * Tries to remove all the page table entries which are mapping this folio and
2287  * replace them with special swap entries. Caller must hold the folio lock.
2288  */
2289 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2290 {
2291 	struct rmap_walk_control rwc = {
2292 		.rmap_one = try_to_migrate_one,
2293 		.arg = (void *)flags,
2294 		.done = folio_not_mapped,
2295 		.anon_lock = folio_lock_anon_vma_read,
2296 	};
2297 
2298 	/*
2299 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2300 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2301 	 */
2302 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2303 					TTU_SYNC | TTU_BATCH_FLUSH)))
2304 		return;
2305 
2306 	if (folio_is_zone_device(folio) &&
2307 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2308 		return;
2309 
2310 	/*
2311 	 * During exec, a temporary VMA is setup and later moved.
2312 	 * The VMA is moved under the anon_vma lock but not the
2313 	 * page tables leading to a race where migration cannot
2314 	 * find the migration ptes. Rather than increasing the
2315 	 * locking requirements of exec(), migration skips
2316 	 * temporary VMAs until after exec() completes.
2317 	 */
2318 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2319 		rwc.invalid_vma = invalid_migration_vma;
2320 
2321 	if (flags & TTU_RMAP_LOCKED)
2322 		rmap_walk_locked(folio, &rwc);
2323 	else
2324 		rmap_walk(folio, &rwc);
2325 }
2326 
2327 #ifdef CONFIG_DEVICE_PRIVATE
2328 struct make_exclusive_args {
2329 	struct mm_struct *mm;
2330 	unsigned long address;
2331 	void *owner;
2332 	bool valid;
2333 };
2334 
2335 static bool page_make_device_exclusive_one(struct folio *folio,
2336 		struct vm_area_struct *vma, unsigned long address, void *priv)
2337 {
2338 	struct mm_struct *mm = vma->vm_mm;
2339 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2340 	struct make_exclusive_args *args = priv;
2341 	pte_t pteval;
2342 	struct page *subpage;
2343 	bool ret = true;
2344 	struct mmu_notifier_range range;
2345 	swp_entry_t entry;
2346 	pte_t swp_pte;
2347 	pte_t ptent;
2348 
2349 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2350 				      vma->vm_mm, address, min(vma->vm_end,
2351 				      address + folio_size(folio)),
2352 				      args->owner);
2353 	mmu_notifier_invalidate_range_start(&range);
2354 
2355 	while (page_vma_mapped_walk(&pvmw)) {
2356 		/* Unexpected PMD-mapped THP? */
2357 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2358 
2359 		ptent = ptep_get(pvmw.pte);
2360 		if (!pte_present(ptent)) {
2361 			ret = false;
2362 			page_vma_mapped_walk_done(&pvmw);
2363 			break;
2364 		}
2365 
2366 		subpage = folio_page(folio,
2367 				pte_pfn(ptent) - folio_pfn(folio));
2368 		address = pvmw.address;
2369 
2370 		/* Nuke the page table entry. */
2371 		flush_cache_page(vma, address, pte_pfn(ptent));
2372 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2373 
2374 		/* Set the dirty flag on the folio now the pte is gone. */
2375 		if (pte_dirty(pteval))
2376 			folio_mark_dirty(folio);
2377 
2378 		/*
2379 		 * Check that our target page is still mapped at the expected
2380 		 * address.
2381 		 */
2382 		if (args->mm == mm && args->address == address &&
2383 		    pte_write(pteval))
2384 			args->valid = true;
2385 
2386 		/*
2387 		 * Store the pfn of the page in a special migration
2388 		 * pte. do_swap_page() will wait until the migration
2389 		 * pte is removed and then restart fault handling.
2390 		 */
2391 		if (pte_write(pteval))
2392 			entry = make_writable_device_exclusive_entry(
2393 							page_to_pfn(subpage));
2394 		else
2395 			entry = make_readable_device_exclusive_entry(
2396 							page_to_pfn(subpage));
2397 		swp_pte = swp_entry_to_pte(entry);
2398 		if (pte_soft_dirty(pteval))
2399 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2400 		if (pte_uffd_wp(pteval))
2401 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2402 
2403 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2404 
2405 		/*
2406 		 * There is a reference on the page for the swap entry which has
2407 		 * been removed, so shouldn't take another.
2408 		 */
2409 		folio_remove_rmap_pte(folio, subpage, vma);
2410 	}
2411 
2412 	mmu_notifier_invalidate_range_end(&range);
2413 
2414 	return ret;
2415 }
2416 
2417 /**
2418  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2419  * @folio: The folio to replace page table entries for.
2420  * @mm: The mm_struct where the folio is expected to be mapped.
2421  * @address: Address where the folio is expected to be mapped.
2422  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2423  *
2424  * Tries to remove all the page table entries which are mapping this
2425  * folio and replace them with special device exclusive swap entries to
2426  * grant a device exclusive access to the folio.
2427  *
2428  * Context: Caller must hold the folio lock.
2429  * Return: false if the page is still mapped, or if it could not be unmapped
2430  * from the expected address. Otherwise returns true (success).
2431  */
2432 static bool folio_make_device_exclusive(struct folio *folio,
2433 		struct mm_struct *mm, unsigned long address, void *owner)
2434 {
2435 	struct make_exclusive_args args = {
2436 		.mm = mm,
2437 		.address = address,
2438 		.owner = owner,
2439 		.valid = false,
2440 	};
2441 	struct rmap_walk_control rwc = {
2442 		.rmap_one = page_make_device_exclusive_one,
2443 		.done = folio_not_mapped,
2444 		.anon_lock = folio_lock_anon_vma_read,
2445 		.arg = &args,
2446 	};
2447 
2448 	/*
2449 	 * Restrict to anonymous folios for now to avoid potential writeback
2450 	 * issues.
2451 	 */
2452 	if (!folio_test_anon(folio))
2453 		return false;
2454 
2455 	rmap_walk(folio, &rwc);
2456 
2457 	return args.valid && !folio_mapcount(folio);
2458 }
2459 
2460 /**
2461  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2462  * @mm: mm_struct of associated target process
2463  * @start: start of the region to mark for exclusive device access
2464  * @end: end address of region
2465  * @pages: returns the pages which were successfully marked for exclusive access
2466  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2467  *
2468  * Returns: number of pages found in the range by GUP. A page is marked for
2469  * exclusive access only if the page pointer is non-NULL.
2470  *
2471  * This function finds ptes mapping page(s) to the given address range, locks
2472  * them and replaces mappings with special swap entries preventing userspace CPU
2473  * access. On fault these entries are replaced with the original mapping after
2474  * calling MMU notifiers.
2475  *
2476  * A driver using this to program access from a device must use a mmu notifier
2477  * critical section to hold a device specific lock during programming. Once
2478  * programming is complete it should drop the page lock and reference after
2479  * which point CPU access to the page will revoke the exclusive access.
2480  */
2481 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2482 				unsigned long end, struct page **pages,
2483 				void *owner)
2484 {
2485 	long npages = (end - start) >> PAGE_SHIFT;
2486 	long i;
2487 
2488 	npages = get_user_pages_remote(mm, start, npages,
2489 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2490 				       pages, NULL);
2491 	if (npages < 0)
2492 		return npages;
2493 
2494 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2495 		struct folio *folio = page_folio(pages[i]);
2496 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2497 			folio_put(folio);
2498 			pages[i] = NULL;
2499 			continue;
2500 		}
2501 
2502 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2503 			folio_unlock(folio);
2504 			folio_put(folio);
2505 			pages[i] = NULL;
2506 		}
2507 	}
2508 
2509 	return npages;
2510 }
2511 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2512 #endif
2513 
2514 void __put_anon_vma(struct anon_vma *anon_vma)
2515 {
2516 	struct anon_vma *root = anon_vma->root;
2517 
2518 	anon_vma_free(anon_vma);
2519 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2520 		anon_vma_free(root);
2521 }
2522 
2523 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2524 					    struct rmap_walk_control *rwc)
2525 {
2526 	struct anon_vma *anon_vma;
2527 
2528 	if (rwc->anon_lock)
2529 		return rwc->anon_lock(folio, rwc);
2530 
2531 	/*
2532 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2533 	 * because that depends on page_mapped(); but not all its usages
2534 	 * are holding mmap_lock. Users without mmap_lock are required to
2535 	 * take a reference count to prevent the anon_vma disappearing
2536 	 */
2537 	anon_vma = folio_anon_vma(folio);
2538 	if (!anon_vma)
2539 		return NULL;
2540 
2541 	if (anon_vma_trylock_read(anon_vma))
2542 		goto out;
2543 
2544 	if (rwc->try_lock) {
2545 		anon_vma = NULL;
2546 		rwc->contended = true;
2547 		goto out;
2548 	}
2549 
2550 	anon_vma_lock_read(anon_vma);
2551 out:
2552 	return anon_vma;
2553 }
2554 
2555 /*
2556  * rmap_walk_anon - do something to anonymous page using the object-based
2557  * rmap method
2558  * @folio: the folio to be handled
2559  * @rwc: control variable according to each walk type
2560  * @locked: caller holds relevant rmap lock
2561  *
2562  * Find all the mappings of a folio using the mapping pointer and the vma
2563  * chains contained in the anon_vma struct it points to.
2564  */
2565 static void rmap_walk_anon(struct folio *folio,
2566 		struct rmap_walk_control *rwc, bool locked)
2567 {
2568 	struct anon_vma *anon_vma;
2569 	pgoff_t pgoff_start, pgoff_end;
2570 	struct anon_vma_chain *avc;
2571 
2572 	if (locked) {
2573 		anon_vma = folio_anon_vma(folio);
2574 		/* anon_vma disappear under us? */
2575 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2576 	} else {
2577 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2578 	}
2579 	if (!anon_vma)
2580 		return;
2581 
2582 	pgoff_start = folio_pgoff(folio);
2583 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2584 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2585 			pgoff_start, pgoff_end) {
2586 		struct vm_area_struct *vma = avc->vma;
2587 		unsigned long address = vma_address(vma, pgoff_start,
2588 				folio_nr_pages(folio));
2589 
2590 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2591 		cond_resched();
2592 
2593 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2594 			continue;
2595 
2596 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2597 			break;
2598 		if (rwc->done && rwc->done(folio))
2599 			break;
2600 	}
2601 
2602 	if (!locked)
2603 		anon_vma_unlock_read(anon_vma);
2604 }
2605 
2606 /*
2607  * rmap_walk_file - do something to file page using the object-based rmap method
2608  * @folio: the folio to be handled
2609  * @rwc: control variable according to each walk type
2610  * @locked: caller holds relevant rmap lock
2611  *
2612  * Find all the mappings of a folio using the mapping pointer and the vma chains
2613  * contained in the address_space struct it points to.
2614  */
2615 static void rmap_walk_file(struct folio *folio,
2616 		struct rmap_walk_control *rwc, bool locked)
2617 {
2618 	struct address_space *mapping = folio_mapping(folio);
2619 	pgoff_t pgoff_start, pgoff_end;
2620 	struct vm_area_struct *vma;
2621 
2622 	/*
2623 	 * The page lock not only makes sure that page->mapping cannot
2624 	 * suddenly be NULLified by truncation, it makes sure that the
2625 	 * structure at mapping cannot be freed and reused yet,
2626 	 * so we can safely take mapping->i_mmap_rwsem.
2627 	 */
2628 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2629 
2630 	if (!mapping)
2631 		return;
2632 
2633 	pgoff_start = folio_pgoff(folio);
2634 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2635 	if (!locked) {
2636 		if (i_mmap_trylock_read(mapping))
2637 			goto lookup;
2638 
2639 		if (rwc->try_lock) {
2640 			rwc->contended = true;
2641 			return;
2642 		}
2643 
2644 		i_mmap_lock_read(mapping);
2645 	}
2646 lookup:
2647 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2648 			pgoff_start, pgoff_end) {
2649 		unsigned long address = vma_address(vma, pgoff_start,
2650 			       folio_nr_pages(folio));
2651 
2652 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2653 		cond_resched();
2654 
2655 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656 			continue;
2657 
2658 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2659 			goto done;
2660 		if (rwc->done && rwc->done(folio))
2661 			goto done;
2662 	}
2663 
2664 done:
2665 	if (!locked)
2666 		i_mmap_unlock_read(mapping);
2667 }
2668 
2669 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2670 {
2671 	if (unlikely(folio_test_ksm(folio)))
2672 		rmap_walk_ksm(folio, rwc);
2673 	else if (folio_test_anon(folio))
2674 		rmap_walk_anon(folio, rwc, false);
2675 	else
2676 		rmap_walk_file(folio, rwc, false);
2677 }
2678 
2679 /* Like rmap_walk, but caller holds relevant rmap lock */
2680 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2681 {
2682 	/* no ksm support for now */
2683 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2684 	if (folio_test_anon(folio))
2685 		rmap_walk_anon(folio, rwc, true);
2686 	else
2687 		rmap_walk_file(folio, rwc, true);
2688 }
2689 
2690 #ifdef CONFIG_HUGETLB_PAGE
2691 /*
2692  * The following two functions are for anonymous (private mapped) hugepages.
2693  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2694  * and no lru code, because we handle hugepages differently from common pages.
2695  */
2696 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2697 		unsigned long address, rmap_t flags)
2698 {
2699 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2700 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2701 
2702 	atomic_inc(&folio->_entire_mapcount);
2703 	atomic_inc(&folio->_large_mapcount);
2704 	if (flags & RMAP_EXCLUSIVE)
2705 		SetPageAnonExclusive(&folio->page);
2706 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2707 			 PageAnonExclusive(&folio->page), folio);
2708 }
2709 
2710 void hugetlb_add_new_anon_rmap(struct folio *folio,
2711 		struct vm_area_struct *vma, unsigned long address)
2712 {
2713 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2714 
2715 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2716 	/* increment count (starts at -1) */
2717 	atomic_set(&folio->_entire_mapcount, 0);
2718 	atomic_set(&folio->_large_mapcount, 0);
2719 	folio_clear_hugetlb_restore_reserve(folio);
2720 	__folio_set_anon(folio, vma, address, true);
2721 	SetPageAnonExclusive(&folio->page);
2722 }
2723 #endif /* CONFIG_HUGETLB_PAGE */
2724