xref: /linux/mm/rmap.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
35  *                     i_pages lock (widely used)
36  *                       lruvec->lru_lock (in lock_page_lruvec_irq)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/tlb.h>
79 
80 #include "internal.h"
81 
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84 
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 	struct anon_vma *anon_vma;
88 
89 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 	if (anon_vma) {
91 		atomic_set(&anon_vma->refcount, 1);
92 		anon_vma->degree = 1;	/* Reference for first vma */
93 		anon_vma->parent = anon_vma;
94 		/*
95 		 * Initialise the anon_vma root to point to itself. If called
96 		 * from fork, the root will be reset to the parents anon_vma.
97 		 */
98 		anon_vma->root = anon_vma;
99 	}
100 
101 	return anon_vma;
102 }
103 
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
107 
108 	/*
109 	 * Synchronize against page_lock_anon_vma_read() such that
110 	 * we can safely hold the lock without the anon_vma getting
111 	 * freed.
112 	 *
113 	 * Relies on the full mb implied by the atomic_dec_and_test() from
114 	 * put_anon_vma() against the acquire barrier implied by
115 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 	 *
117 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
118 	 *   down_read_trylock()		  atomic_dec_and_test()
119 	 *   LOCK				  MB
120 	 *   atomic_read()			  rwsem_is_locked()
121 	 *
122 	 * LOCK should suffice since the actual taking of the lock must
123 	 * happen _before_ what follows.
124 	 */
125 	might_sleep();
126 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 		anon_vma_lock_write(anon_vma);
128 		anon_vma_unlock_write(anon_vma);
129 	}
130 
131 	kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133 
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138 
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143 
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 				struct anon_vma_chain *avc,
146 				struct anon_vma *anon_vma)
147 {
148 	avc->vma = vma;
149 	avc->anon_vma = anon_vma;
150 	list_add(&avc->same_vma, &vma->anon_vma_chain);
151 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153 
154 /**
155  * __anon_vma_prepare - attach an anon_vma to a memory region
156  * @vma: the memory region in question
157  *
158  * This makes sure the memory mapping described by 'vma' has
159  * an 'anon_vma' attached to it, so that we can associate the
160  * anonymous pages mapped into it with that anon_vma.
161  *
162  * The common case will be that we already have one, which
163  * is handled inline by anon_vma_prepare(). But if
164  * not we either need to find an adjacent mapping that we
165  * can re-use the anon_vma from (very common when the only
166  * reason for splitting a vma has been mprotect()), or we
167  * allocate a new one.
168  *
169  * Anon-vma allocations are very subtle, because we may have
170  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171  * and that may actually touch the rwsem even in the newly
172  * allocated vma (it depends on RCU to make sure that the
173  * anon_vma isn't actually destroyed).
174  *
175  * As a result, we need to do proper anon_vma locking even
176  * for the new allocation. At the same time, we do not want
177  * to do any locking for the common case of already having
178  * an anon_vma.
179  *
180  * This must be called with the mmap_lock held for reading.
181  */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 	struct mm_struct *mm = vma->vm_mm;
185 	struct anon_vma *anon_vma, *allocated;
186 	struct anon_vma_chain *avc;
187 
188 	might_sleep();
189 
190 	avc = anon_vma_chain_alloc(GFP_KERNEL);
191 	if (!avc)
192 		goto out_enomem;
193 
194 	anon_vma = find_mergeable_anon_vma(vma);
195 	allocated = NULL;
196 	if (!anon_vma) {
197 		anon_vma = anon_vma_alloc();
198 		if (unlikely(!anon_vma))
199 			goto out_enomem_free_avc;
200 		allocated = anon_vma;
201 	}
202 
203 	anon_vma_lock_write(anon_vma);
204 	/* page_table_lock to protect against threads */
205 	spin_lock(&mm->page_table_lock);
206 	if (likely(!vma->anon_vma)) {
207 		vma->anon_vma = anon_vma;
208 		anon_vma_chain_link(vma, avc, anon_vma);
209 		/* vma reference or self-parent link for new root */
210 		anon_vma->degree++;
211 		allocated = NULL;
212 		avc = NULL;
213 	}
214 	spin_unlock(&mm->page_table_lock);
215 	anon_vma_unlock_write(anon_vma);
216 
217 	if (unlikely(allocated))
218 		put_anon_vma(allocated);
219 	if (unlikely(avc))
220 		anon_vma_chain_free(avc);
221 
222 	return 0;
223 
224  out_enomem_free_avc:
225 	anon_vma_chain_free(avc);
226  out_enomem:
227 	return -ENOMEM;
228 }
229 
230 /*
231  * This is a useful helper function for locking the anon_vma root as
232  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233  * have the same vma.
234  *
235  * Such anon_vma's should have the same root, so you'd expect to see
236  * just a single mutex_lock for the whole traversal.
237  */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 	struct anon_vma *new_root = anon_vma->root;
241 	if (new_root != root) {
242 		if (WARN_ON_ONCE(root))
243 			up_write(&root->rwsem);
244 		root = new_root;
245 		down_write(&root->rwsem);
246 	}
247 	return root;
248 }
249 
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 	if (root)
253 		up_write(&root->rwsem);
254 }
255 
256 /*
257  * Attach the anon_vmas from src to dst.
258  * Returns 0 on success, -ENOMEM on failure.
259  *
260  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
261  * anon_vma_fork(). The first three want an exact copy of src, while the last
262  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265  *
266  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268  * This prevents degradation of anon_vma hierarchy to endless linear chain in
269  * case of constantly forking task. On the other hand, an anon_vma with more
270  * than one child isn't reused even if there was no alive vma, thus rmap
271  * walker has a good chance of avoiding scanning the whole hierarchy when it
272  * searches where page is mapped.
273  */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 	struct anon_vma_chain *avc, *pavc;
277 	struct anon_vma *root = NULL;
278 
279 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 		struct anon_vma *anon_vma;
281 
282 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 		if (unlikely(!avc)) {
284 			unlock_anon_vma_root(root);
285 			root = NULL;
286 			avc = anon_vma_chain_alloc(GFP_KERNEL);
287 			if (!avc)
288 				goto enomem_failure;
289 		}
290 		anon_vma = pavc->anon_vma;
291 		root = lock_anon_vma_root(root, anon_vma);
292 		anon_vma_chain_link(dst, avc, anon_vma);
293 
294 		/*
295 		 * Reuse existing anon_vma if its degree lower than two,
296 		 * that means it has no vma and only one anon_vma child.
297 		 *
298 		 * Do not chose parent anon_vma, otherwise first child
299 		 * will always reuse it. Root anon_vma is never reused:
300 		 * it has self-parent reference and at least one child.
301 		 */
302 		if (!dst->anon_vma && src->anon_vma &&
303 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
304 			dst->anon_vma = anon_vma;
305 	}
306 	if (dst->anon_vma)
307 		dst->anon_vma->degree++;
308 	unlock_anon_vma_root(root);
309 	return 0;
310 
311  enomem_failure:
312 	/*
313 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 	 * decremented in unlink_anon_vmas().
315 	 * We can safely do this because callers of anon_vma_clone() don't care
316 	 * about dst->anon_vma if anon_vma_clone() failed.
317 	 */
318 	dst->anon_vma = NULL;
319 	unlink_anon_vmas(dst);
320 	return -ENOMEM;
321 }
322 
323 /*
324  * Attach vma to its own anon_vma, as well as to the anon_vmas that
325  * the corresponding VMA in the parent process is attached to.
326  * Returns 0 on success, non-zero on failure.
327  */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 	struct anon_vma_chain *avc;
331 	struct anon_vma *anon_vma;
332 	int error;
333 
334 	/* Don't bother if the parent process has no anon_vma here. */
335 	if (!pvma->anon_vma)
336 		return 0;
337 
338 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 	vma->anon_vma = NULL;
340 
341 	/*
342 	 * First, attach the new VMA to the parent VMA's anon_vmas,
343 	 * so rmap can find non-COWed pages in child processes.
344 	 */
345 	error = anon_vma_clone(vma, pvma);
346 	if (error)
347 		return error;
348 
349 	/* An existing anon_vma has been reused, all done then. */
350 	if (vma->anon_vma)
351 		return 0;
352 
353 	/* Then add our own anon_vma. */
354 	anon_vma = anon_vma_alloc();
355 	if (!anon_vma)
356 		goto out_error;
357 	avc = anon_vma_chain_alloc(GFP_KERNEL);
358 	if (!avc)
359 		goto out_error_free_anon_vma;
360 
361 	/*
362 	 * The root anon_vma's rwsem is the lock actually used when we
363 	 * lock any of the anon_vmas in this anon_vma tree.
364 	 */
365 	anon_vma->root = pvma->anon_vma->root;
366 	anon_vma->parent = pvma->anon_vma;
367 	/*
368 	 * With refcounts, an anon_vma can stay around longer than the
369 	 * process it belongs to. The root anon_vma needs to be pinned until
370 	 * this anon_vma is freed, because the lock lives in the root.
371 	 */
372 	get_anon_vma(anon_vma->root);
373 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
374 	vma->anon_vma = anon_vma;
375 	anon_vma_lock_write(anon_vma);
376 	anon_vma_chain_link(vma, avc, anon_vma);
377 	anon_vma->parent->degree++;
378 	anon_vma_unlock_write(anon_vma);
379 
380 	return 0;
381 
382  out_error_free_anon_vma:
383 	put_anon_vma(anon_vma);
384  out_error:
385 	unlink_anon_vmas(vma);
386 	return -ENOMEM;
387 }
388 
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 	struct anon_vma_chain *avc, *next;
392 	struct anon_vma *root = NULL;
393 
394 	/*
395 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
396 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 	 */
398 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 		struct anon_vma *anon_vma = avc->anon_vma;
400 
401 		root = lock_anon_vma_root(root, anon_vma);
402 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403 
404 		/*
405 		 * Leave empty anon_vmas on the list - we'll need
406 		 * to free them outside the lock.
407 		 */
408 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 			anon_vma->parent->degree--;
410 			continue;
411 		}
412 
413 		list_del(&avc->same_vma);
414 		anon_vma_chain_free(avc);
415 	}
416 	if (vma->anon_vma) {
417 		vma->anon_vma->degree--;
418 
419 		/*
420 		 * vma would still be needed after unlink, and anon_vma will be prepared
421 		 * when handle fault.
422 		 */
423 		vma->anon_vma = NULL;
424 	}
425 	unlock_anon_vma_root(root);
426 
427 	/*
428 	 * Iterate the list once more, it now only contains empty and unlinked
429 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 	 * needing to write-acquire the anon_vma->root->rwsem.
431 	 */
432 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 		struct anon_vma *anon_vma = avc->anon_vma;
434 
435 		VM_WARN_ON(anon_vma->degree);
436 		put_anon_vma(anon_vma);
437 
438 		list_del(&avc->same_vma);
439 		anon_vma_chain_free(avc);
440 	}
441 }
442 
443 static void anon_vma_ctor(void *data)
444 {
445 	struct anon_vma *anon_vma = data;
446 
447 	init_rwsem(&anon_vma->rwsem);
448 	atomic_set(&anon_vma->refcount, 0);
449 	anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451 
452 void __init anon_vma_init(void)
453 {
454 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 			anon_vma_ctor);
457 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 			SLAB_PANIC|SLAB_ACCOUNT);
459 }
460 
461 /*
462  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463  *
464  * Since there is no serialization what so ever against page_remove_rmap()
465  * the best this function can do is return a refcount increased anon_vma
466  * that might have been relevant to this page.
467  *
468  * The page might have been remapped to a different anon_vma or the anon_vma
469  * returned may already be freed (and even reused).
470  *
471  * In case it was remapped to a different anon_vma, the new anon_vma will be a
472  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473  * ensure that any anon_vma obtained from the page will still be valid for as
474  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475  *
476  * All users of this function must be very careful when walking the anon_vma
477  * chain and verify that the page in question is indeed mapped in it
478  * [ something equivalent to page_mapped_in_vma() ].
479  *
480  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482  * if there is a mapcount, we can dereference the anon_vma after observing
483  * those.
484  */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 	struct anon_vma *anon_vma = NULL;
488 	unsigned long anon_mapping;
489 
490 	rcu_read_lock();
491 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 		goto out;
494 	if (!page_mapped(page))
495 		goto out;
496 
497 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 		anon_vma = NULL;
500 		goto out;
501 	}
502 
503 	/*
504 	 * If this page is still mapped, then its anon_vma cannot have been
505 	 * freed.  But if it has been unmapped, we have no security against the
506 	 * anon_vma structure being freed and reused (for another anon_vma:
507 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 	 * above cannot corrupt).
509 	 */
510 	if (!page_mapped(page)) {
511 		rcu_read_unlock();
512 		put_anon_vma(anon_vma);
513 		return NULL;
514 	}
515 out:
516 	rcu_read_unlock();
517 
518 	return anon_vma;
519 }
520 
521 /*
522  * Similar to page_get_anon_vma() except it locks the anon_vma.
523  *
524  * Its a little more complex as it tries to keep the fast path to a single
525  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526  * reference like with page_get_anon_vma() and then block on the mutex.
527  */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 	struct anon_vma *anon_vma = NULL;
531 	struct anon_vma *root_anon_vma;
532 	unsigned long anon_mapping;
533 
534 	rcu_read_lock();
535 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 		goto out;
538 	if (!page_mapped(page))
539 		goto out;
540 
541 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 	root_anon_vma = READ_ONCE(anon_vma->root);
543 	if (down_read_trylock(&root_anon_vma->rwsem)) {
544 		/*
545 		 * If the page is still mapped, then this anon_vma is still
546 		 * its anon_vma, and holding the mutex ensures that it will
547 		 * not go away, see anon_vma_free().
548 		 */
549 		if (!page_mapped(page)) {
550 			up_read(&root_anon_vma->rwsem);
551 			anon_vma = NULL;
552 		}
553 		goto out;
554 	}
555 
556 	/* trylock failed, we got to sleep */
557 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 		anon_vma = NULL;
559 		goto out;
560 	}
561 
562 	if (!page_mapped(page)) {
563 		rcu_read_unlock();
564 		put_anon_vma(anon_vma);
565 		return NULL;
566 	}
567 
568 	/* we pinned the anon_vma, its safe to sleep */
569 	rcu_read_unlock();
570 	anon_vma_lock_read(anon_vma);
571 
572 	if (atomic_dec_and_test(&anon_vma->refcount)) {
573 		/*
574 		 * Oops, we held the last refcount, release the lock
575 		 * and bail -- can't simply use put_anon_vma() because
576 		 * we'll deadlock on the anon_vma_lock_write() recursion.
577 		 */
578 		anon_vma_unlock_read(anon_vma);
579 		__put_anon_vma(anon_vma);
580 		anon_vma = NULL;
581 	}
582 
583 	return anon_vma;
584 
585 out:
586 	rcu_read_unlock();
587 	return anon_vma;
588 }
589 
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 	anon_vma_unlock_read(anon_vma);
593 }
594 
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598  * important if a PTE was dirty when it was unmapped that it's flushed
599  * before any IO is initiated on the page to prevent lost writes. Similarly,
600  * it must be flushed before freeing to prevent data leakage.
601  */
602 void try_to_unmap_flush(void)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	if (!tlb_ubc->flush_required)
607 		return;
608 
609 	arch_tlbbatch_flush(&tlb_ubc->arch);
610 	tlb_ubc->flush_required = false;
611 	tlb_ubc->writable = false;
612 }
613 
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618 
619 	if (tlb_ubc->writable)
620 		try_to_unmap_flush();
621 }
622 
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626 
627 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 	tlb_ubc->flush_required = true;
629 
630 	/*
631 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 	 * before the PTE is cleared.
633 	 */
634 	barrier();
635 	mm->tlb_flush_batched = true;
636 
637 	/*
638 	 * If the PTE was dirty then it's best to assume it's writable. The
639 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 	 * before the page is queued for IO.
641 	 */
642 	if (writable)
643 		tlb_ubc->writable = true;
644 }
645 
646 /*
647  * Returns true if the TLB flush should be deferred to the end of a batch of
648  * unmap operations to reduce IPIs.
649  */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 	bool should_defer = false;
653 
654 	if (!(flags & TTU_BATCH_FLUSH))
655 		return false;
656 
657 	/* If remote CPUs need to be flushed then defer batch the flush */
658 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 		should_defer = true;
660 	put_cpu();
661 
662 	return should_defer;
663 }
664 
665 /*
666  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668  * operation such as mprotect or munmap to race between reclaim unmapping
669  * the page and flushing the page. If this race occurs, it potentially allows
670  * access to data via a stale TLB entry. Tracking all mm's that have TLB
671  * batching in flight would be expensive during reclaim so instead track
672  * whether TLB batching occurred in the past and if so then do a flush here
673  * if required. This will cost one additional flush per reclaim cycle paid
674  * by the first operation at risk such as mprotect and mumap.
675  *
676  * This must be called under the PTL so that an access to tlb_flush_batched
677  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678  * via the PTL.
679  */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 	if (data_race(mm->tlb_flush_batched)) {
683 		flush_tlb_mm(mm);
684 
685 		/*
686 		 * Do not allow the compiler to re-order the clearing of
687 		 * tlb_flush_batched before the tlb is flushed.
688 		 */
689 		barrier();
690 		mm->tlb_flush_batched = false;
691 	}
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697 
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 	return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703 
704 /*
705  * At what user virtual address is page expected in vma?
706  * Caller should check the page is actually part of the vma.
707  */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 	unsigned long address;
711 	if (PageAnon(page)) {
712 		struct anon_vma *page__anon_vma = page_anon_vma(page);
713 		/*
714 		 * Note: swapoff's unuse_vma() is more efficient with this
715 		 * check, and needs it to match anon_vma when KSM is active.
716 		 */
717 		if (!vma->anon_vma || !page__anon_vma ||
718 		    vma->anon_vma->root != page__anon_vma->root)
719 			return -EFAULT;
720 	} else if (page->mapping) {
721 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
722 			return -EFAULT;
723 	} else
724 		return -EFAULT;
725 	address = __vma_address(page, vma);
726 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 		return -EFAULT;
728 	return address;
729 }
730 
731 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732 {
733 	pgd_t *pgd;
734 	p4d_t *p4d;
735 	pud_t *pud;
736 	pmd_t *pmd = NULL;
737 	pmd_t pmde;
738 
739 	pgd = pgd_offset(mm, address);
740 	if (!pgd_present(*pgd))
741 		goto out;
742 
743 	p4d = p4d_offset(pgd, address);
744 	if (!p4d_present(*p4d))
745 		goto out;
746 
747 	pud = pud_offset(p4d, address);
748 	if (!pud_present(*pud))
749 		goto out;
750 
751 	pmd = pmd_offset(pud, address);
752 	/*
753 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
754 	 * without holding anon_vma lock for write.  So when looking for a
755 	 * genuine pmde (in which to find pte), test present and !THP together.
756 	 */
757 	pmde = *pmd;
758 	barrier();
759 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
760 		pmd = NULL;
761 out:
762 	return pmd;
763 }
764 
765 struct page_referenced_arg {
766 	int mapcount;
767 	int referenced;
768 	unsigned long vm_flags;
769 	struct mem_cgroup *memcg;
770 };
771 /*
772  * arg: page_referenced_arg will be passed
773  */
774 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
775 			unsigned long address, void *arg)
776 {
777 	struct page_referenced_arg *pra = arg;
778 	struct page_vma_mapped_walk pvmw = {
779 		.page = page,
780 		.vma = vma,
781 		.address = address,
782 	};
783 	int referenced = 0;
784 
785 	while (page_vma_mapped_walk(&pvmw)) {
786 		address = pvmw.address;
787 
788 		if (vma->vm_flags & VM_LOCKED) {
789 			page_vma_mapped_walk_done(&pvmw);
790 			pra->vm_flags |= VM_LOCKED;
791 			return false; /* To break the loop */
792 		}
793 
794 		if (pvmw.pte) {
795 			if (ptep_clear_flush_young_notify(vma, address,
796 						pvmw.pte)) {
797 				/*
798 				 * Don't treat a reference through
799 				 * a sequentially read mapping as such.
800 				 * If the page has been used in another mapping,
801 				 * we will catch it; if this other mapping is
802 				 * already gone, the unmap path will have set
803 				 * PG_referenced or activated the page.
804 				 */
805 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 					referenced++;
807 			}
808 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 			if (pmdp_clear_flush_young_notify(vma, address,
810 						pvmw.pmd))
811 				referenced++;
812 		} else {
813 			/* unexpected pmd-mapped page? */
814 			WARN_ON_ONCE(1);
815 		}
816 
817 		pra->mapcount--;
818 	}
819 
820 	if (referenced)
821 		clear_page_idle(page);
822 	if (test_and_clear_page_young(page))
823 		referenced++;
824 
825 	if (referenced) {
826 		pra->referenced++;
827 		pra->vm_flags |= vma->vm_flags;
828 	}
829 
830 	if (!pra->mapcount)
831 		return false; /* To break the loop */
832 
833 	return true;
834 }
835 
836 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
837 {
838 	struct page_referenced_arg *pra = arg;
839 	struct mem_cgroup *memcg = pra->memcg;
840 
841 	if (!mm_match_cgroup(vma->vm_mm, memcg))
842 		return true;
843 
844 	return false;
845 }
846 
847 /**
848  * page_referenced - test if the page was referenced
849  * @page: the page to test
850  * @is_locked: caller holds lock on the page
851  * @memcg: target memory cgroup
852  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
853  *
854  * Quick test_and_clear_referenced for all mappings to a page,
855  * returns the number of ptes which referenced the page.
856  */
857 int page_referenced(struct page *page,
858 		    int is_locked,
859 		    struct mem_cgroup *memcg,
860 		    unsigned long *vm_flags)
861 {
862 	int we_locked = 0;
863 	struct page_referenced_arg pra = {
864 		.mapcount = total_mapcount(page),
865 		.memcg = memcg,
866 	};
867 	struct rmap_walk_control rwc = {
868 		.rmap_one = page_referenced_one,
869 		.arg = (void *)&pra,
870 		.anon_lock = page_lock_anon_vma_read,
871 	};
872 
873 	*vm_flags = 0;
874 	if (!pra.mapcount)
875 		return 0;
876 
877 	if (!page_rmapping(page))
878 		return 0;
879 
880 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 		we_locked = trylock_page(page);
882 		if (!we_locked)
883 			return 1;
884 	}
885 
886 	/*
887 	 * If we are reclaiming on behalf of a cgroup, skip
888 	 * counting on behalf of references from different
889 	 * cgroups
890 	 */
891 	if (memcg) {
892 		rwc.invalid_vma = invalid_page_referenced_vma;
893 	}
894 
895 	rmap_walk(page, &rwc);
896 	*vm_flags = pra.vm_flags;
897 
898 	if (we_locked)
899 		unlock_page(page);
900 
901 	return pra.referenced;
902 }
903 
904 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
905 			    unsigned long address, void *arg)
906 {
907 	struct page_vma_mapped_walk pvmw = {
908 		.page = page,
909 		.vma = vma,
910 		.address = address,
911 		.flags = PVMW_SYNC,
912 	};
913 	struct mmu_notifier_range range;
914 	int *cleaned = arg;
915 
916 	/*
917 	 * We have to assume the worse case ie pmd for invalidation. Note that
918 	 * the page can not be free from this function.
919 	 */
920 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 				0, vma, vma->vm_mm, address,
922 				min(vma->vm_end, address + page_size(page)));
923 	mmu_notifier_invalidate_range_start(&range);
924 
925 	while (page_vma_mapped_walk(&pvmw)) {
926 		int ret = 0;
927 
928 		address = pvmw.address;
929 		if (pvmw.pte) {
930 			pte_t entry;
931 			pte_t *pte = pvmw.pte;
932 
933 			if (!pte_dirty(*pte) && !pte_write(*pte))
934 				continue;
935 
936 			flush_cache_page(vma, address, pte_pfn(*pte));
937 			entry = ptep_clear_flush(vma, address, pte);
938 			entry = pte_wrprotect(entry);
939 			entry = pte_mkclean(entry);
940 			set_pte_at(vma->vm_mm, address, pte, entry);
941 			ret = 1;
942 		} else {
943 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
944 			pmd_t *pmd = pvmw.pmd;
945 			pmd_t entry;
946 
947 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 				continue;
949 
950 			flush_cache_page(vma, address, page_to_pfn(page));
951 			entry = pmdp_invalidate(vma, address, pmd);
952 			entry = pmd_wrprotect(entry);
953 			entry = pmd_mkclean(entry);
954 			set_pmd_at(vma->vm_mm, address, pmd, entry);
955 			ret = 1;
956 #else
957 			/* unexpected pmd-mapped page? */
958 			WARN_ON_ONCE(1);
959 #endif
960 		}
961 
962 		/*
963 		 * No need to call mmu_notifier_invalidate_range() as we are
964 		 * downgrading page table protection not changing it to point
965 		 * to a new page.
966 		 *
967 		 * See Documentation/vm/mmu_notifier.rst
968 		 */
969 		if (ret)
970 			(*cleaned)++;
971 	}
972 
973 	mmu_notifier_invalidate_range_end(&range);
974 
975 	return true;
976 }
977 
978 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
979 {
980 	if (vma->vm_flags & VM_SHARED)
981 		return false;
982 
983 	return true;
984 }
985 
986 int page_mkclean(struct page *page)
987 {
988 	int cleaned = 0;
989 	struct address_space *mapping;
990 	struct rmap_walk_control rwc = {
991 		.arg = (void *)&cleaned,
992 		.rmap_one = page_mkclean_one,
993 		.invalid_vma = invalid_mkclean_vma,
994 	};
995 
996 	BUG_ON(!PageLocked(page));
997 
998 	if (!page_mapped(page))
999 		return 0;
1000 
1001 	mapping = page_mapping(page);
1002 	if (!mapping)
1003 		return 0;
1004 
1005 	rmap_walk(page, &rwc);
1006 
1007 	return cleaned;
1008 }
1009 EXPORT_SYMBOL_GPL(page_mkclean);
1010 
1011 /**
1012  * page_move_anon_rmap - move a page to our anon_vma
1013  * @page:	the page to move to our anon_vma
1014  * @vma:	the vma the page belongs to
1015  *
1016  * When a page belongs exclusively to one process after a COW event,
1017  * that page can be moved into the anon_vma that belongs to just that
1018  * process, so the rmap code will not search the parent or sibling
1019  * processes.
1020  */
1021 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1022 {
1023 	struct anon_vma *anon_vma = vma->anon_vma;
1024 
1025 	page = compound_head(page);
1026 
1027 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1028 	VM_BUG_ON_VMA(!anon_vma, vma);
1029 
1030 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1031 	/*
1032 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 	 * PageAnon()) will not see one without the other.
1035 	 */
1036 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1037 }
1038 
1039 /**
1040  * __page_set_anon_rmap - set up new anonymous rmap
1041  * @page:	Page or Hugepage to add to rmap
1042  * @vma:	VM area to add page to.
1043  * @address:	User virtual address of the mapping
1044  * @exclusive:	the page is exclusively owned by the current process
1045  */
1046 static void __page_set_anon_rmap(struct page *page,
1047 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1048 {
1049 	struct anon_vma *anon_vma = vma->anon_vma;
1050 
1051 	BUG_ON(!anon_vma);
1052 
1053 	if (PageAnon(page))
1054 		return;
1055 
1056 	/*
1057 	 * If the page isn't exclusively mapped into this vma,
1058 	 * we must use the _oldest_ possible anon_vma for the
1059 	 * page mapping!
1060 	 */
1061 	if (!exclusive)
1062 		anon_vma = anon_vma->root;
1063 
1064 	/*
1065 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1066 	 * Make sure the compiler doesn't split the stores of anon_vma and
1067 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1068 	 * could mistake the mapping for a struct address_space and crash.
1069 	 */
1070 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1071 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1072 	page->index = linear_page_index(vma, address);
1073 }
1074 
1075 /**
1076  * __page_check_anon_rmap - sanity check anonymous rmap addition
1077  * @page:	the page to add the mapping to
1078  * @vma:	the vm area in which the mapping is added
1079  * @address:	the user virtual address mapped
1080  */
1081 static void __page_check_anon_rmap(struct page *page,
1082 	struct vm_area_struct *vma, unsigned long address)
1083 {
1084 	/*
1085 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 	 * be set up correctly at this point.
1087 	 *
1088 	 * We have exclusion against page_add_anon_rmap because the caller
1089 	 * always holds the page locked.
1090 	 *
1091 	 * We have exclusion against page_add_new_anon_rmap because those pages
1092 	 * are initially only visible via the pagetables, and the pte is locked
1093 	 * over the call to page_add_new_anon_rmap.
1094 	 */
1095 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1096 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1097 		       page);
1098 }
1099 
1100 /**
1101  * page_add_anon_rmap - add pte mapping to an anonymous page
1102  * @page:	the page to add the mapping to
1103  * @vma:	the vm area in which the mapping is added
1104  * @address:	the user virtual address mapped
1105  * @compound:	charge the page as compound or small page
1106  *
1107  * The caller needs to hold the pte lock, and the page must be locked in
1108  * the anon_vma case: to serialize mapping,index checking after setting,
1109  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1110  * (but PageKsm is never downgraded to PageAnon).
1111  */
1112 void page_add_anon_rmap(struct page *page,
1113 	struct vm_area_struct *vma, unsigned long address, bool compound)
1114 {
1115 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1116 }
1117 
1118 /*
1119  * Special version of the above for do_swap_page, which often runs
1120  * into pages that are exclusively owned by the current process.
1121  * Everybody else should continue to use page_add_anon_rmap above.
1122  */
1123 void do_page_add_anon_rmap(struct page *page,
1124 	struct vm_area_struct *vma, unsigned long address, int flags)
1125 {
1126 	bool compound = flags & RMAP_COMPOUND;
1127 	bool first;
1128 
1129 	if (unlikely(PageKsm(page)))
1130 		lock_page_memcg(page);
1131 	else
1132 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1133 
1134 	if (compound) {
1135 		atomic_t *mapcount;
1136 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1137 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1138 		mapcount = compound_mapcount_ptr(page);
1139 		first = atomic_inc_and_test(mapcount);
1140 	} else {
1141 		first = atomic_inc_and_test(&page->_mapcount);
1142 	}
1143 
1144 	if (first) {
1145 		int nr = compound ? thp_nr_pages(page) : 1;
1146 		/*
1147 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 		 * these counters are not modified in interrupt context, and
1149 		 * pte lock(a spinlock) is held, which implies preemption
1150 		 * disabled.
1151 		 */
1152 		if (compound)
1153 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1154 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1155 	}
1156 
1157 	if (unlikely(PageKsm(page))) {
1158 		unlock_page_memcg(page);
1159 		return;
1160 	}
1161 
1162 	/* address might be in next vma when migration races vma_adjust */
1163 	if (first)
1164 		__page_set_anon_rmap(page, vma, address,
1165 				flags & RMAP_EXCLUSIVE);
1166 	else
1167 		__page_check_anon_rmap(page, vma, address);
1168 }
1169 
1170 /**
1171  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1172  * @page:	the page to add the mapping to
1173  * @vma:	the vm area in which the mapping is added
1174  * @address:	the user virtual address mapped
1175  * @compound:	charge the page as compound or small page
1176  *
1177  * Same as page_add_anon_rmap but must only be called on *new* pages.
1178  * This means the inc-and-test can be bypassed.
1179  * Page does not have to be locked.
1180  */
1181 void page_add_new_anon_rmap(struct page *page,
1182 	struct vm_area_struct *vma, unsigned long address, bool compound)
1183 {
1184 	int nr = compound ? thp_nr_pages(page) : 1;
1185 
1186 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1187 	__SetPageSwapBacked(page);
1188 	if (compound) {
1189 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1190 		/* increment count (starts at -1) */
1191 		atomic_set(compound_mapcount_ptr(page), 0);
1192 		if (hpage_pincount_available(page))
1193 			atomic_set(compound_pincount_ptr(page), 0);
1194 
1195 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1196 	} else {
1197 		/* Anon THP always mapped first with PMD */
1198 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1199 		/* increment count (starts at -1) */
1200 		atomic_set(&page->_mapcount, 0);
1201 	}
1202 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1203 	__page_set_anon_rmap(page, vma, address, 1);
1204 }
1205 
1206 /**
1207  * page_add_file_rmap - add pte mapping to a file page
1208  * @page: the page to add the mapping to
1209  * @compound: charge the page as compound or small page
1210  *
1211  * The caller needs to hold the pte lock.
1212  */
1213 void page_add_file_rmap(struct page *page, bool compound)
1214 {
1215 	int i, nr = 1;
1216 
1217 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1218 	lock_page_memcg(page);
1219 	if (compound && PageTransHuge(page)) {
1220 		int nr_pages = thp_nr_pages(page);
1221 
1222 		for (i = 0, nr = 0; i < nr_pages; i++) {
1223 			if (atomic_inc_and_test(&page[i]._mapcount))
1224 				nr++;
1225 		}
1226 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1227 			goto out;
1228 		if (PageSwapBacked(page))
1229 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1230 						nr_pages);
1231 		else
1232 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1233 						nr_pages);
1234 	} else {
1235 		if (PageTransCompound(page) && page_mapping(page)) {
1236 			VM_WARN_ON_ONCE(!PageLocked(page));
1237 
1238 			SetPageDoubleMap(compound_head(page));
1239 			if (PageMlocked(page))
1240 				clear_page_mlock(compound_head(page));
1241 		}
1242 		if (!atomic_inc_and_test(&page->_mapcount))
1243 			goto out;
1244 	}
1245 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1246 out:
1247 	unlock_page_memcg(page);
1248 }
1249 
1250 static void page_remove_file_rmap(struct page *page, bool compound)
1251 {
1252 	int i, nr = 1;
1253 
1254 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1255 
1256 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257 	if (unlikely(PageHuge(page))) {
1258 		/* hugetlb pages are always mapped with pmds */
1259 		atomic_dec(compound_mapcount_ptr(page));
1260 		return;
1261 	}
1262 
1263 	/* page still mapped by someone else? */
1264 	if (compound && PageTransHuge(page)) {
1265 		int nr_pages = thp_nr_pages(page);
1266 
1267 		for (i = 0, nr = 0; i < nr_pages; i++) {
1268 			if (atomic_add_negative(-1, &page[i]._mapcount))
1269 				nr++;
1270 		}
1271 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1272 			return;
1273 		if (PageSwapBacked(page))
1274 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275 						-nr_pages);
1276 		else
1277 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278 						-nr_pages);
1279 	} else {
1280 		if (!atomic_add_negative(-1, &page->_mapcount))
1281 			return;
1282 	}
1283 
1284 	/*
1285 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286 	 * these counters are not modified in interrupt context, and
1287 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1288 	 */
1289 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1290 
1291 	if (unlikely(PageMlocked(page)))
1292 		clear_page_mlock(page);
1293 }
1294 
1295 static void page_remove_anon_compound_rmap(struct page *page)
1296 {
1297 	int i, nr;
1298 
1299 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300 		return;
1301 
1302 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1303 	if (unlikely(PageHuge(page)))
1304 		return;
1305 
1306 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307 		return;
1308 
1309 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1310 
1311 	if (TestClearPageDoubleMap(page)) {
1312 		/*
1313 		 * Subpages can be mapped with PTEs too. Check how many of
1314 		 * them are still mapped.
1315 		 */
1316 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317 			if (atomic_add_negative(-1, &page[i]._mapcount))
1318 				nr++;
1319 		}
1320 
1321 		/*
1322 		 * Queue the page for deferred split if at least one small
1323 		 * page of the compound page is unmapped, but at least one
1324 		 * small page is still mapped.
1325 		 */
1326 		if (nr && nr < thp_nr_pages(page))
1327 			deferred_split_huge_page(page);
1328 	} else {
1329 		nr = thp_nr_pages(page);
1330 	}
1331 
1332 	if (unlikely(PageMlocked(page)))
1333 		clear_page_mlock(page);
1334 
1335 	if (nr)
1336 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1337 }
1338 
1339 /**
1340  * page_remove_rmap - take down pte mapping from a page
1341  * @page:	page to remove mapping from
1342  * @compound:	uncharge the page as compound or small page
1343  *
1344  * The caller needs to hold the pte lock.
1345  */
1346 void page_remove_rmap(struct page *page, bool compound)
1347 {
1348 	lock_page_memcg(page);
1349 
1350 	if (!PageAnon(page)) {
1351 		page_remove_file_rmap(page, compound);
1352 		goto out;
1353 	}
1354 
1355 	if (compound) {
1356 		page_remove_anon_compound_rmap(page);
1357 		goto out;
1358 	}
1359 
1360 	/* page still mapped by someone else? */
1361 	if (!atomic_add_negative(-1, &page->_mapcount))
1362 		goto out;
1363 
1364 	/*
1365 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366 	 * these counters are not modified in interrupt context, and
1367 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1368 	 */
1369 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1370 
1371 	if (unlikely(PageMlocked(page)))
1372 		clear_page_mlock(page);
1373 
1374 	if (PageTransCompound(page))
1375 		deferred_split_huge_page(compound_head(page));
1376 
1377 	/*
1378 	 * It would be tidy to reset the PageAnon mapping here,
1379 	 * but that might overwrite a racing page_add_anon_rmap
1380 	 * which increments mapcount after us but sets mapping
1381 	 * before us: so leave the reset to free_unref_page,
1382 	 * and remember that it's only reliable while mapped.
1383 	 * Leaving it set also helps swapoff to reinstate ptes
1384 	 * faster for those pages still in swapcache.
1385 	 */
1386 out:
1387 	unlock_page_memcg(page);
1388 }
1389 
1390 /*
1391  * @arg: enum ttu_flags will be passed to this argument
1392  */
1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394 		     unsigned long address, void *arg)
1395 {
1396 	struct mm_struct *mm = vma->vm_mm;
1397 	struct page_vma_mapped_walk pvmw = {
1398 		.page = page,
1399 		.vma = vma,
1400 		.address = address,
1401 	};
1402 	pte_t pteval;
1403 	struct page *subpage;
1404 	bool ret = true;
1405 	struct mmu_notifier_range range;
1406 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1407 
1408 	/* munlock has nothing to gain from examining un-locked vmas */
1409 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1410 		return true;
1411 
1412 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1413 	    is_zone_device_page(page) && !is_device_private_page(page))
1414 		return true;
1415 
1416 	if (flags & TTU_SPLIT_HUGE_PMD) {
1417 		split_huge_pmd_address(vma, address,
1418 				flags & TTU_SPLIT_FREEZE, page);
1419 	}
1420 
1421 	/*
1422 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1423 	 * For hugetlb, it could be much worse if we need to do pud
1424 	 * invalidation in the case of pmd sharing.
1425 	 *
1426 	 * Note that the page can not be free in this function as call of
1427 	 * try_to_unmap() must hold a reference on the page.
1428 	 */
1429 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1430 				address,
1431 				min(vma->vm_end, address + page_size(page)));
1432 	if (PageHuge(page)) {
1433 		/*
1434 		 * If sharing is possible, start and end will be adjusted
1435 		 * accordingly.
1436 		 */
1437 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438 						     &range.end);
1439 	}
1440 	mmu_notifier_invalidate_range_start(&range);
1441 
1442 	while (page_vma_mapped_walk(&pvmw)) {
1443 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1444 		/* PMD-mapped THP migration entry */
1445 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1446 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1447 
1448 			set_pmd_migration_entry(&pvmw, page);
1449 			continue;
1450 		}
1451 #endif
1452 
1453 		/*
1454 		 * If the page is mlock()d, we cannot swap it out.
1455 		 * If it's recently referenced (perhaps page_referenced
1456 		 * skipped over this mm) then we should reactivate it.
1457 		 */
1458 		if (!(flags & TTU_IGNORE_MLOCK)) {
1459 			if (vma->vm_flags & VM_LOCKED) {
1460 				/* PTE-mapped THP are never mlocked */
1461 				if (!PageTransCompound(page)) {
1462 					/*
1463 					 * Holding pte lock, we do *not* need
1464 					 * mmap_lock here
1465 					 */
1466 					mlock_vma_page(page);
1467 				}
1468 				ret = false;
1469 				page_vma_mapped_walk_done(&pvmw);
1470 				break;
1471 			}
1472 			if (flags & TTU_MUNLOCK)
1473 				continue;
1474 		}
1475 
1476 		/* Unexpected PMD-mapped THP? */
1477 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1478 
1479 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1480 		address = pvmw.address;
1481 
1482 		if (PageHuge(page) && !PageAnon(page)) {
1483 			/*
1484 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1485 			 * held in write mode.  Caller needs to explicitly
1486 			 * do this outside rmap routines.
1487 			 */
1488 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1489 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1490 				/*
1491 				 * huge_pmd_unshare unmapped an entire PMD
1492 				 * page.  There is no way of knowing exactly
1493 				 * which PMDs may be cached for this mm, so
1494 				 * we must flush them all.  start/end were
1495 				 * already adjusted above to cover this range.
1496 				 */
1497 				flush_cache_range(vma, range.start, range.end);
1498 				flush_tlb_range(vma, range.start, range.end);
1499 				mmu_notifier_invalidate_range(mm, range.start,
1500 							      range.end);
1501 
1502 				/*
1503 				 * The ref count of the PMD page was dropped
1504 				 * which is part of the way map counting
1505 				 * is done for shared PMDs.  Return 'true'
1506 				 * here.  When there is no other sharing,
1507 				 * huge_pmd_unshare returns false and we will
1508 				 * unmap the actual page and drop map count
1509 				 * to zero.
1510 				 */
1511 				page_vma_mapped_walk_done(&pvmw);
1512 				break;
1513 			}
1514 		}
1515 
1516 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1517 		    (flags & TTU_MIGRATION) &&
1518 		    is_zone_device_page(page)) {
1519 			swp_entry_t entry;
1520 			pte_t swp_pte;
1521 
1522 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1523 
1524 			/*
1525 			 * Store the pfn of the page in a special migration
1526 			 * pte. do_swap_page() will wait until the migration
1527 			 * pte is removed and then restart fault handling.
1528 			 */
1529 			entry = make_migration_entry(page, 0);
1530 			swp_pte = swp_entry_to_pte(entry);
1531 
1532 			/*
1533 			 * pteval maps a zone device page and is therefore
1534 			 * a swap pte.
1535 			 */
1536 			if (pte_swp_soft_dirty(pteval))
1537 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538 			if (pte_swp_uffd_wp(pteval))
1539 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1540 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1541 			/*
1542 			 * No need to invalidate here it will synchronize on
1543 			 * against the special swap migration pte.
1544 			 *
1545 			 * The assignment to subpage above was computed from a
1546 			 * swap PTE which results in an invalid pointer.
1547 			 * Since only PAGE_SIZE pages can currently be
1548 			 * migrated, just set it to page. This will need to be
1549 			 * changed when hugepage migrations to device private
1550 			 * memory are supported.
1551 			 */
1552 			subpage = page;
1553 			goto discard;
1554 		}
1555 
1556 		/* Nuke the page table entry. */
1557 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1558 		if (should_defer_flush(mm, flags)) {
1559 			/*
1560 			 * We clear the PTE but do not flush so potentially
1561 			 * a remote CPU could still be writing to the page.
1562 			 * If the entry was previously clean then the
1563 			 * architecture must guarantee that a clear->dirty
1564 			 * transition on a cached TLB entry is written through
1565 			 * and traps if the PTE is unmapped.
1566 			 */
1567 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1568 
1569 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1570 		} else {
1571 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1572 		}
1573 
1574 		/* Move the dirty bit to the page. Now the pte is gone. */
1575 		if (pte_dirty(pteval))
1576 			set_page_dirty(page);
1577 
1578 		/* Update high watermark before we lower rss */
1579 		update_hiwater_rss(mm);
1580 
1581 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1582 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1583 			if (PageHuge(page)) {
1584 				hugetlb_count_sub(compound_nr(page), mm);
1585 				set_huge_swap_pte_at(mm, address,
1586 						     pvmw.pte, pteval,
1587 						     vma_mmu_pagesize(vma));
1588 			} else {
1589 				dec_mm_counter(mm, mm_counter(page));
1590 				set_pte_at(mm, address, pvmw.pte, pteval);
1591 			}
1592 
1593 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1594 			/*
1595 			 * The guest indicated that the page content is of no
1596 			 * interest anymore. Simply discard the pte, vmscan
1597 			 * will take care of the rest.
1598 			 * A future reference will then fault in a new zero
1599 			 * page. When userfaultfd is active, we must not drop
1600 			 * this page though, as its main user (postcopy
1601 			 * migration) will not expect userfaults on already
1602 			 * copied pages.
1603 			 */
1604 			dec_mm_counter(mm, mm_counter(page));
1605 			/* We have to invalidate as we cleared the pte */
1606 			mmu_notifier_invalidate_range(mm, address,
1607 						      address + PAGE_SIZE);
1608 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1609 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1610 			swp_entry_t entry;
1611 			pte_t swp_pte;
1612 
1613 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1614 				set_pte_at(mm, address, pvmw.pte, pteval);
1615 				ret = false;
1616 				page_vma_mapped_walk_done(&pvmw);
1617 				break;
1618 			}
1619 
1620 			/*
1621 			 * Store the pfn of the page in a special migration
1622 			 * pte. do_swap_page() will wait until the migration
1623 			 * pte is removed and then restart fault handling.
1624 			 */
1625 			entry = make_migration_entry(subpage,
1626 					pte_write(pteval));
1627 			swp_pte = swp_entry_to_pte(entry);
1628 			if (pte_soft_dirty(pteval))
1629 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1630 			if (pte_uffd_wp(pteval))
1631 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1632 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1633 			/*
1634 			 * No need to invalidate here it will synchronize on
1635 			 * against the special swap migration pte.
1636 			 */
1637 		} else if (PageAnon(page)) {
1638 			swp_entry_t entry = { .val = page_private(subpage) };
1639 			pte_t swp_pte;
1640 			/*
1641 			 * Store the swap location in the pte.
1642 			 * See handle_pte_fault() ...
1643 			 */
1644 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1645 				WARN_ON_ONCE(1);
1646 				ret = false;
1647 				/* We have to invalidate as we cleared the pte */
1648 				mmu_notifier_invalidate_range(mm, address,
1649 							address + PAGE_SIZE);
1650 				page_vma_mapped_walk_done(&pvmw);
1651 				break;
1652 			}
1653 
1654 			/* MADV_FREE page check */
1655 			if (!PageSwapBacked(page)) {
1656 				if (!PageDirty(page)) {
1657 					/* Invalidate as we cleared the pte */
1658 					mmu_notifier_invalidate_range(mm,
1659 						address, address + PAGE_SIZE);
1660 					dec_mm_counter(mm, MM_ANONPAGES);
1661 					goto discard;
1662 				}
1663 
1664 				/*
1665 				 * If the page was redirtied, it cannot be
1666 				 * discarded. Remap the page to page table.
1667 				 */
1668 				set_pte_at(mm, address, pvmw.pte, pteval);
1669 				SetPageSwapBacked(page);
1670 				ret = false;
1671 				page_vma_mapped_walk_done(&pvmw);
1672 				break;
1673 			}
1674 
1675 			if (swap_duplicate(entry) < 0) {
1676 				set_pte_at(mm, address, pvmw.pte, pteval);
1677 				ret = false;
1678 				page_vma_mapped_walk_done(&pvmw);
1679 				break;
1680 			}
1681 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1682 				set_pte_at(mm, address, pvmw.pte, pteval);
1683 				ret = false;
1684 				page_vma_mapped_walk_done(&pvmw);
1685 				break;
1686 			}
1687 			if (list_empty(&mm->mmlist)) {
1688 				spin_lock(&mmlist_lock);
1689 				if (list_empty(&mm->mmlist))
1690 					list_add(&mm->mmlist, &init_mm.mmlist);
1691 				spin_unlock(&mmlist_lock);
1692 			}
1693 			dec_mm_counter(mm, MM_ANONPAGES);
1694 			inc_mm_counter(mm, MM_SWAPENTS);
1695 			swp_pte = swp_entry_to_pte(entry);
1696 			if (pte_soft_dirty(pteval))
1697 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1698 			if (pte_uffd_wp(pteval))
1699 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1700 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1701 			/* Invalidate as we cleared the pte */
1702 			mmu_notifier_invalidate_range(mm, address,
1703 						      address + PAGE_SIZE);
1704 		} else {
1705 			/*
1706 			 * This is a locked file-backed page, thus it cannot
1707 			 * be removed from the page cache and replaced by a new
1708 			 * page before mmu_notifier_invalidate_range_end, so no
1709 			 * concurrent thread might update its page table to
1710 			 * point at new page while a device still is using this
1711 			 * page.
1712 			 *
1713 			 * See Documentation/vm/mmu_notifier.rst
1714 			 */
1715 			dec_mm_counter(mm, mm_counter_file(page));
1716 		}
1717 discard:
1718 		/*
1719 		 * No need to call mmu_notifier_invalidate_range() it has be
1720 		 * done above for all cases requiring it to happen under page
1721 		 * table lock before mmu_notifier_invalidate_range_end()
1722 		 *
1723 		 * See Documentation/vm/mmu_notifier.rst
1724 		 */
1725 		page_remove_rmap(subpage, PageHuge(page));
1726 		put_page(page);
1727 	}
1728 
1729 	mmu_notifier_invalidate_range_end(&range);
1730 
1731 	return ret;
1732 }
1733 
1734 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1735 {
1736 	return vma_is_temporary_stack(vma);
1737 }
1738 
1739 static int page_not_mapped(struct page *page)
1740 {
1741 	return !page_mapped(page);
1742 }
1743 
1744 /**
1745  * try_to_unmap - try to remove all page table mappings to a page
1746  * @page: the page to get unmapped
1747  * @flags: action and flags
1748  *
1749  * Tries to remove all the page table entries which are mapping this
1750  * page, used in the pageout path.  Caller must hold the page lock.
1751  *
1752  * If unmap is successful, return true. Otherwise, false.
1753  */
1754 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1755 {
1756 	struct rmap_walk_control rwc = {
1757 		.rmap_one = try_to_unmap_one,
1758 		.arg = (void *)flags,
1759 		.done = page_not_mapped,
1760 		.anon_lock = page_lock_anon_vma_read,
1761 	};
1762 
1763 	/*
1764 	 * During exec, a temporary VMA is setup and later moved.
1765 	 * The VMA is moved under the anon_vma lock but not the
1766 	 * page tables leading to a race where migration cannot
1767 	 * find the migration ptes. Rather than increasing the
1768 	 * locking requirements of exec(), migration skips
1769 	 * temporary VMAs until after exec() completes.
1770 	 */
1771 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1772 	    && !PageKsm(page) && PageAnon(page))
1773 		rwc.invalid_vma = invalid_migration_vma;
1774 
1775 	if (flags & TTU_RMAP_LOCKED)
1776 		rmap_walk_locked(page, &rwc);
1777 	else
1778 		rmap_walk(page, &rwc);
1779 
1780 	return !page_mapcount(page) ? true : false;
1781 }
1782 
1783 /**
1784  * try_to_munlock - try to munlock a page
1785  * @page: the page to be munlocked
1786  *
1787  * Called from munlock code.  Checks all of the VMAs mapping the page
1788  * to make sure nobody else has this page mlocked. The page will be
1789  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1790  */
1791 
1792 void try_to_munlock(struct page *page)
1793 {
1794 	struct rmap_walk_control rwc = {
1795 		.rmap_one = try_to_unmap_one,
1796 		.arg = (void *)TTU_MUNLOCK,
1797 		.done = page_not_mapped,
1798 		.anon_lock = page_lock_anon_vma_read,
1799 
1800 	};
1801 
1802 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1803 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1804 
1805 	rmap_walk(page, &rwc);
1806 }
1807 
1808 void __put_anon_vma(struct anon_vma *anon_vma)
1809 {
1810 	struct anon_vma *root = anon_vma->root;
1811 
1812 	anon_vma_free(anon_vma);
1813 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1814 		anon_vma_free(root);
1815 }
1816 
1817 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1818 					struct rmap_walk_control *rwc)
1819 {
1820 	struct anon_vma *anon_vma;
1821 
1822 	if (rwc->anon_lock)
1823 		return rwc->anon_lock(page);
1824 
1825 	/*
1826 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1827 	 * because that depends on page_mapped(); but not all its usages
1828 	 * are holding mmap_lock. Users without mmap_lock are required to
1829 	 * take a reference count to prevent the anon_vma disappearing
1830 	 */
1831 	anon_vma = page_anon_vma(page);
1832 	if (!anon_vma)
1833 		return NULL;
1834 
1835 	anon_vma_lock_read(anon_vma);
1836 	return anon_vma;
1837 }
1838 
1839 /*
1840  * rmap_walk_anon - do something to anonymous page using the object-based
1841  * rmap method
1842  * @page: the page to be handled
1843  * @rwc: control variable according to each walk type
1844  *
1845  * Find all the mappings of a page using the mapping pointer and the vma chains
1846  * contained in the anon_vma struct it points to.
1847  *
1848  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1849  * where the page was found will be held for write.  So, we won't recheck
1850  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1851  * LOCKED.
1852  */
1853 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1854 		bool locked)
1855 {
1856 	struct anon_vma *anon_vma;
1857 	pgoff_t pgoff_start, pgoff_end;
1858 	struct anon_vma_chain *avc;
1859 
1860 	if (locked) {
1861 		anon_vma = page_anon_vma(page);
1862 		/* anon_vma disappear under us? */
1863 		VM_BUG_ON_PAGE(!anon_vma, page);
1864 	} else {
1865 		anon_vma = rmap_walk_anon_lock(page, rwc);
1866 	}
1867 	if (!anon_vma)
1868 		return;
1869 
1870 	pgoff_start = page_to_pgoff(page);
1871 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1872 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1873 			pgoff_start, pgoff_end) {
1874 		struct vm_area_struct *vma = avc->vma;
1875 		unsigned long address = vma_address(page, vma);
1876 
1877 		cond_resched();
1878 
1879 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1880 			continue;
1881 
1882 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1883 			break;
1884 		if (rwc->done && rwc->done(page))
1885 			break;
1886 	}
1887 
1888 	if (!locked)
1889 		anon_vma_unlock_read(anon_vma);
1890 }
1891 
1892 /*
1893  * rmap_walk_file - do something to file page using the object-based rmap method
1894  * @page: the page to be handled
1895  * @rwc: control variable according to each walk type
1896  *
1897  * Find all the mappings of a page using the mapping pointer and the vma chains
1898  * contained in the address_space struct it points to.
1899  *
1900  * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1901  * where the page was found will be held for write.  So, we won't recheck
1902  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1903  * LOCKED.
1904  */
1905 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1906 		bool locked)
1907 {
1908 	struct address_space *mapping = page_mapping(page);
1909 	pgoff_t pgoff_start, pgoff_end;
1910 	struct vm_area_struct *vma;
1911 
1912 	/*
1913 	 * The page lock not only makes sure that page->mapping cannot
1914 	 * suddenly be NULLified by truncation, it makes sure that the
1915 	 * structure at mapping cannot be freed and reused yet,
1916 	 * so we can safely take mapping->i_mmap_rwsem.
1917 	 */
1918 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1919 
1920 	if (!mapping)
1921 		return;
1922 
1923 	pgoff_start = page_to_pgoff(page);
1924 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1925 	if (!locked)
1926 		i_mmap_lock_read(mapping);
1927 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1928 			pgoff_start, pgoff_end) {
1929 		unsigned long address = vma_address(page, vma);
1930 
1931 		cond_resched();
1932 
1933 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1934 			continue;
1935 
1936 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1937 			goto done;
1938 		if (rwc->done && rwc->done(page))
1939 			goto done;
1940 	}
1941 
1942 done:
1943 	if (!locked)
1944 		i_mmap_unlock_read(mapping);
1945 }
1946 
1947 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1948 {
1949 	if (unlikely(PageKsm(page)))
1950 		rmap_walk_ksm(page, rwc);
1951 	else if (PageAnon(page))
1952 		rmap_walk_anon(page, rwc, false);
1953 	else
1954 		rmap_walk_file(page, rwc, false);
1955 }
1956 
1957 /* Like rmap_walk, but caller holds relevant rmap lock */
1958 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1959 {
1960 	/* no ksm support for now */
1961 	VM_BUG_ON_PAGE(PageKsm(page), page);
1962 	if (PageAnon(page))
1963 		rmap_walk_anon(page, rwc, true);
1964 	else
1965 		rmap_walk_file(page, rwc, true);
1966 }
1967 
1968 #ifdef CONFIG_HUGETLB_PAGE
1969 /*
1970  * The following two functions are for anonymous (private mapped) hugepages.
1971  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1972  * and no lru code, because we handle hugepages differently from common pages.
1973  */
1974 void hugepage_add_anon_rmap(struct page *page,
1975 			    struct vm_area_struct *vma, unsigned long address)
1976 {
1977 	struct anon_vma *anon_vma = vma->anon_vma;
1978 	int first;
1979 
1980 	BUG_ON(!PageLocked(page));
1981 	BUG_ON(!anon_vma);
1982 	/* address might be in next vma when migration races vma_adjust */
1983 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1984 	if (first)
1985 		__page_set_anon_rmap(page, vma, address, 0);
1986 }
1987 
1988 void hugepage_add_new_anon_rmap(struct page *page,
1989 			struct vm_area_struct *vma, unsigned long address)
1990 {
1991 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1992 	atomic_set(compound_mapcount_ptr(page), 0);
1993 	if (hpage_pincount_available(page))
1994 		atomic_set(compound_pincount_ptr(page), 0);
1995 
1996 	__page_set_anon_rmap(page, vma, address, 1);
1997 }
1998 #endif /* CONFIG_HUGETLB_PAGE */
1999