xref: /linux/mm/rmap.c (revision 868ade323e9deff67b8be3e93876596e4d2c71d3)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 		unsigned long start, unsigned long end)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		flush_tlb_mm(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 		unsigned long start, unsigned long end)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /**
771  * page_address_in_vma - The virtual address of a page in this VMA.
772  * @folio: The folio containing the page.
773  * @page: The page within the folio.
774  * @vma: The VMA we need to know the address in.
775  *
776  * Calculates the user virtual address of this page in the specified VMA.
777  * It is the caller's responsibility to check the page is actually
778  * within the VMA.  There may not currently be a PTE pointing at this
779  * page, but if a page fault occurs at this address, this is the page
780  * which will be accessed.
781  *
782  * Context: Caller should hold a reference to the folio.  Caller should
783  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784  * VMA from being altered.
785  *
786  * Return: The virtual address corresponding to this page in the VMA.
787  */
788 unsigned long page_address_in_vma(const struct folio *folio,
789 		const struct page *page, const struct vm_area_struct *vma)
790 {
791 	if (folio_test_anon(folio)) {
792 		struct anon_vma *anon_vma = folio_anon_vma(folio);
793 		/*
794 		 * Note: swapoff's unuse_vma() is more efficient with this
795 		 * check, and needs it to match anon_vma when KSM is active.
796 		 */
797 		if (!vma->anon_vma || !anon_vma ||
798 		    vma->anon_vma->root != anon_vma->root)
799 			return -EFAULT;
800 	} else if (!vma->vm_file) {
801 		return -EFAULT;
802 	} else if (vma->vm_file->f_mapping != folio->mapping) {
803 		return -EFAULT;
804 	}
805 
806 	/* KSM folios don't reach here because of the !anon_vma check */
807 	return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809 
810 /*
811  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
813  * represents.
814  */
815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 	pgd_t *pgd;
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd = NULL;
821 
822 	pgd = pgd_offset(mm, address);
823 	if (!pgd_present(*pgd))
824 		goto out;
825 
826 	p4d = p4d_offset(pgd, address);
827 	if (!p4d_present(*p4d))
828 		goto out;
829 
830 	pud = pud_offset(p4d, address);
831 	if (!pud_present(*pud))
832 		goto out;
833 
834 	pmd = pmd_offset(pud, address);
835 out:
836 	return pmd;
837 }
838 
839 struct folio_referenced_arg {
840 	int mapcount;
841 	int referenced;
842 	vm_flags_t vm_flags;
843 	struct mem_cgroup *memcg;
844 };
845 
846 /*
847  * arg: folio_referenced_arg will be passed
848  */
849 static bool folio_referenced_one(struct folio *folio,
850 		struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 	struct folio_referenced_arg *pra = arg;
853 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 	int referenced = 0;
855 	unsigned long start = address, ptes = 0;
856 
857 	while (page_vma_mapped_walk(&pvmw)) {
858 		address = pvmw.address;
859 
860 		if (vma->vm_flags & VM_LOCKED) {
861 			if (!folio_test_large(folio) || !pvmw.pte) {
862 				/* Restore the mlock which got missed */
863 				mlock_vma_folio(folio, vma);
864 				page_vma_mapped_walk_done(&pvmw);
865 				pra->vm_flags |= VM_LOCKED;
866 				return false; /* To break the loop */
867 			}
868 			/*
869 			 * For large folio fully mapped to VMA, will
870 			 * be handled after the pvmw loop.
871 			 *
872 			 * For large folio cross VMA boundaries, it's
873 			 * expected to be picked  by page reclaim. But
874 			 * should skip reference of pages which are in
875 			 * the range of VM_LOCKED vma. As page reclaim
876 			 * should just count the reference of pages out
877 			 * the range of VM_LOCKED vma.
878 			 */
879 			ptes++;
880 			pra->mapcount--;
881 			continue;
882 		}
883 
884 		/*
885 		 * Skip the non-shared swapbacked folio mapped solely by
886 		 * the exiting or OOM-reaped process. This avoids redundant
887 		 * swap-out followed by an immediate unmap.
888 		 */
889 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 		    check_stable_address_space(vma->vm_mm)) &&
891 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 		    !folio_maybe_mapped_shared(folio)) {
893 			pra->referenced = -1;
894 			page_vma_mapped_walk_done(&pvmw);
895 			return false;
896 		}
897 
898 		if (lru_gen_enabled() && pvmw.pte) {
899 			if (lru_gen_look_around(&pvmw))
900 				referenced++;
901 		} else if (pvmw.pte) {
902 			if (ptep_clear_flush_young_notify(vma, address,
903 						pvmw.pte))
904 				referenced++;
905 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 			if (pmdp_clear_flush_young_notify(vma, address,
907 						pvmw.pmd))
908 				referenced++;
909 		} else {
910 			/* unexpected pmd-mapped folio? */
911 			WARN_ON_ONCE(1);
912 		}
913 
914 		pra->mapcount--;
915 	}
916 
917 	if ((vma->vm_flags & VM_LOCKED) &&
918 			folio_test_large(folio) &&
919 			folio_within_vma(folio, vma)) {
920 		unsigned long s_align, e_align;
921 
922 		s_align = ALIGN_DOWN(start, PMD_SIZE);
923 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924 
925 		/* folio doesn't cross page table boundary and fully mapped */
926 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 			/* Restore the mlock which got missed */
928 			mlock_vma_folio(folio, vma);
929 			pra->vm_flags |= VM_LOCKED;
930 			return false; /* To break the loop */
931 		}
932 	}
933 
934 	if (referenced)
935 		folio_clear_idle(folio);
936 	if (folio_test_clear_young(folio))
937 		referenced++;
938 
939 	if (referenced) {
940 		pra->referenced++;
941 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 	}
943 
944 	if (!pra->mapcount)
945 		return false; /* To break the loop */
946 
947 	return true;
948 }
949 
950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 	struct folio_referenced_arg *pra = arg;
953 	struct mem_cgroup *memcg = pra->memcg;
954 
955 	/*
956 	 * Ignore references from this mapping if it has no recency. If the
957 	 * folio has been used in another mapping, we will catch it; if this
958 	 * other mapping is already gone, the unmap path will have set the
959 	 * referenced flag or activated the folio in zap_pte_range().
960 	 */
961 	if (!vma_has_recency(vma))
962 		return true;
963 
964 	/*
965 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 	 * of references from different cgroups.
967 	 */
968 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * folio_referenced() - Test if the folio was referenced.
976  * @folio: The folio to test.
977  * @is_locked: Caller holds lock on the folio.
978  * @memcg: target memory cgroup
979  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980  *
981  * Quick test_and_clear_referenced for all mappings of a folio,
982  *
983  * Return: The number of mappings which referenced the folio. Return -1 if
984  * the function bailed out due to rmap lock contention.
985  */
986 int folio_referenced(struct folio *folio, int is_locked,
987 		     struct mem_cgroup *memcg, vm_flags_t *vm_flags)
988 {
989 	bool we_locked = false;
990 	struct folio_referenced_arg pra = {
991 		.mapcount = folio_mapcount(folio),
992 		.memcg = memcg,
993 	};
994 	struct rmap_walk_control rwc = {
995 		.rmap_one = folio_referenced_one,
996 		.arg = (void *)&pra,
997 		.anon_lock = folio_lock_anon_vma_read,
998 		.try_lock = true,
999 		.invalid_vma = invalid_folio_referenced_vma,
1000 	};
1001 
1002 	*vm_flags = 0;
1003 	if (!pra.mapcount)
1004 		return 0;
1005 
1006 	if (!folio_raw_mapping(folio))
1007 		return 0;
1008 
1009 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 		we_locked = folio_trylock(folio);
1011 		if (!we_locked)
1012 			return 1;
1013 	}
1014 
1015 	rmap_walk(folio, &rwc);
1016 	*vm_flags = pra.vm_flags;
1017 
1018 	if (we_locked)
1019 		folio_unlock(folio);
1020 
1021 	return rwc.contended ? -1 : pra.referenced;
1022 }
1023 
1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 	int cleaned = 0;
1027 	struct vm_area_struct *vma = pvmw->vma;
1028 	struct mmu_notifier_range range;
1029 	unsigned long address = pvmw->address;
1030 
1031 	/*
1032 	 * We have to assume the worse case ie pmd for invalidation. Note that
1033 	 * the folio can not be freed from this function.
1034 	 */
1035 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 				vma->vm_mm, address, vma_address_end(pvmw));
1037 	mmu_notifier_invalidate_range_start(&range);
1038 
1039 	while (page_vma_mapped_walk(pvmw)) {
1040 		int ret = 0;
1041 
1042 		address = pvmw->address;
1043 		if (pvmw->pte) {
1044 			pte_t *pte = pvmw->pte;
1045 			pte_t entry = ptep_get(pte);
1046 
1047 			/*
1048 			 * PFN swap PTEs, such as device-exclusive ones, that
1049 			 * actually map pages are clean and not writable from a
1050 			 * CPU perspective. The MMU notifier takes care of any
1051 			 * device aspects.
1052 			 */
1053 			if (!pte_present(entry))
1054 				continue;
1055 			if (!pte_dirty(entry) && !pte_write(entry))
1056 				continue;
1057 
1058 			flush_cache_page(vma, address, pte_pfn(entry));
1059 			entry = ptep_clear_flush(vma, address, pte);
1060 			entry = pte_wrprotect(entry);
1061 			entry = pte_mkclean(entry);
1062 			set_pte_at(vma->vm_mm, address, pte, entry);
1063 			ret = 1;
1064 		} else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 			pmd_t *pmd = pvmw->pmd;
1067 			pmd_t entry;
1068 
1069 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 				continue;
1071 
1072 			flush_cache_range(vma, address,
1073 					  address + HPAGE_PMD_SIZE);
1074 			entry = pmdp_invalidate(vma, address, pmd);
1075 			entry = pmd_wrprotect(entry);
1076 			entry = pmd_mkclean(entry);
1077 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 			ret = 1;
1079 #else
1080 			/* unexpected pmd-mapped folio? */
1081 			WARN_ON_ONCE(1);
1082 #endif
1083 		}
1084 
1085 		if (ret)
1086 			cleaned++;
1087 	}
1088 
1089 	mmu_notifier_invalidate_range_end(&range);
1090 
1091 	return cleaned;
1092 }
1093 
1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 			     unsigned long address, void *arg)
1096 {
1097 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 	int *cleaned = arg;
1099 
1100 	*cleaned += page_vma_mkclean_one(&pvmw);
1101 
1102 	return true;
1103 }
1104 
1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 	if (vma->vm_flags & VM_SHARED)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
1113 int folio_mkclean(struct folio *folio)
1114 {
1115 	int cleaned = 0;
1116 	struct address_space *mapping;
1117 	struct rmap_walk_control rwc = {
1118 		.arg = (void *)&cleaned,
1119 		.rmap_one = page_mkclean_one,
1120 		.invalid_vma = invalid_mkclean_vma,
1121 	};
1122 
1123 	BUG_ON(!folio_test_locked(folio));
1124 
1125 	if (!folio_mapped(folio))
1126 		return 0;
1127 
1128 	mapping = folio_mapping(folio);
1129 	if (!mapping)
1130 		return 0;
1131 
1132 	rmap_walk(folio, &rwc);
1133 
1134 	return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137 
1138 struct wrprotect_file_state {
1139 	int cleaned;
1140 	pgoff_t pgoff;
1141 	unsigned long pfn;
1142 	unsigned long nr_pages;
1143 };
1144 
1145 static bool mapping_wrprotect_range_one(struct folio *folio,
1146 		struct vm_area_struct *vma, unsigned long address, void *arg)
1147 {
1148 	struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1149 	struct page_vma_mapped_walk pvmw = {
1150 		.pfn		= state->pfn,
1151 		.nr_pages	= state->nr_pages,
1152 		.pgoff		= state->pgoff,
1153 		.vma		= vma,
1154 		.address	= address,
1155 		.flags		= PVMW_SYNC,
1156 	};
1157 
1158 	state->cleaned += page_vma_mkclean_one(&pvmw);
1159 
1160 	return true;
1161 }
1162 
1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1164 			     pgoff_t pgoff_start, unsigned long nr_pages,
1165 			     struct rmap_walk_control *rwc, bool locked);
1166 
1167 /**
1168  * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1169  *
1170  * @mapping:	The mapping whose reverse mapping should be traversed.
1171  * @pgoff:	The page offset at which @pfn is mapped within @mapping.
1172  * @pfn:	The PFN of the page mapped in @mapping at @pgoff.
1173  * @nr_pages:	The number of physically contiguous base pages spanned.
1174  *
1175  * Traverses the reverse mapping, finding all VMAs which contain a shared
1176  * mapping of the pages in the specified range in @mapping, and write-protects
1177  * them (that is, updates the page tables to mark the mappings read-only such
1178  * that a write protection fault arises when the mappings are written to).
1179  *
1180  * The @pfn value need not refer to a folio, but rather can reference a kernel
1181  * allocation which is mapped into userland. We therefore do not require that
1182  * the page maps to a folio with a valid mapping or index field, rather the
1183  * caller specifies these in @mapping and @pgoff.
1184  *
1185  * Return: the number of write-protected PTEs, or an error.
1186  */
1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1188 		unsigned long pfn, unsigned long nr_pages)
1189 {
1190 	struct wrprotect_file_state state = {
1191 		.cleaned = 0,
1192 		.pgoff = pgoff,
1193 		.pfn = pfn,
1194 		.nr_pages = nr_pages,
1195 	};
1196 	struct rmap_walk_control rwc = {
1197 		.arg = (void *)&state,
1198 		.rmap_one = mapping_wrprotect_range_one,
1199 		.invalid_vma = invalid_mkclean_vma,
1200 	};
1201 
1202 	if (!mapping)
1203 		return 0;
1204 
1205 	__rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1206 			 /* locked = */false);
1207 
1208 	return state.cleaned;
1209 }
1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1211 
1212 /**
1213  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1214  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1215  *                     within the @vma of shared mappings. And since clean PTEs
1216  *                     should also be readonly, write protects them too.
1217  * @pfn: start pfn.
1218  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1219  * @pgoff: page offset that the @pfn mapped with.
1220  * @vma: vma that @pfn mapped within.
1221  *
1222  * Returns the number of cleaned PTEs (including PMDs).
1223  */
1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1225 		      struct vm_area_struct *vma)
1226 {
1227 	struct page_vma_mapped_walk pvmw = {
1228 		.pfn		= pfn,
1229 		.nr_pages	= nr_pages,
1230 		.pgoff		= pgoff,
1231 		.vma		= vma,
1232 		.flags		= PVMW_SYNC,
1233 	};
1234 
1235 	if (invalid_mkclean_vma(vma, NULL))
1236 		return 0;
1237 
1238 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1239 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1240 
1241 	return page_vma_mkclean_one(&pvmw);
1242 }
1243 
1244 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1245 {
1246 	int idx;
1247 
1248 	if (nr) {
1249 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1250 		__lruvec_stat_mod_folio(folio, idx, nr);
1251 	}
1252 	if (nr_pmdmapped) {
1253 		if (folio_test_anon(folio)) {
1254 			idx = NR_ANON_THPS;
1255 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1256 		} else {
1257 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1258 			idx = folio_test_swapbacked(folio) ?
1259 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1260 			__mod_node_page_state(folio_pgdat(folio), idx,
1261 					      nr_pmdmapped);
1262 		}
1263 	}
1264 }
1265 
1266 static __always_inline void __folio_add_rmap(struct folio *folio,
1267 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1268 		enum pgtable_level level)
1269 {
1270 	atomic_t *mapped = &folio->_nr_pages_mapped;
1271 	const int orig_nr_pages = nr_pages;
1272 	int first = 0, nr = 0, nr_pmdmapped = 0;
1273 
1274 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1275 
1276 	switch (level) {
1277 	case PGTABLE_LEVEL_PTE:
1278 		if (!folio_test_large(folio)) {
1279 			nr = atomic_inc_and_test(&folio->_mapcount);
1280 			break;
1281 		}
1282 
1283 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1284 			nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma);
1285 			if (nr == orig_nr_pages)
1286 				/* Was completely unmapped. */
1287 				nr = folio_large_nr_pages(folio);
1288 			else
1289 				nr = 0;
1290 			break;
1291 		}
1292 
1293 		do {
1294 			first += atomic_inc_and_test(&page->_mapcount);
1295 		} while (page++, --nr_pages > 0);
1296 
1297 		if (first &&
1298 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1299 			nr = first;
1300 
1301 		folio_add_large_mapcount(folio, orig_nr_pages, vma);
1302 		break;
1303 	case PGTABLE_LEVEL_PMD:
1304 	case PGTABLE_LEVEL_PUD:
1305 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1306 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1307 			if (level == PGTABLE_LEVEL_PMD && first)
1308 				nr_pmdmapped = folio_large_nr_pages(folio);
1309 			nr = folio_inc_return_large_mapcount(folio, vma);
1310 			if (nr == 1)
1311 				/* Was completely unmapped. */
1312 				nr = folio_large_nr_pages(folio);
1313 			else
1314 				nr = 0;
1315 			break;
1316 		}
1317 
1318 		if (first) {
1319 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1320 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1321 				nr_pages = folio_large_nr_pages(folio);
1322 				/*
1323 				 * We only track PMD mappings of PMD-sized
1324 				 * folios separately.
1325 				 */
1326 				if (level == PGTABLE_LEVEL_PMD)
1327 					nr_pmdmapped = nr_pages;
1328 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1329 				/* Raced ahead of a remove and another add? */
1330 				if (unlikely(nr < 0))
1331 					nr = 0;
1332 			} else {
1333 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1334 				nr = 0;
1335 			}
1336 		}
1337 		folio_inc_large_mapcount(folio, vma);
1338 		break;
1339 	default:
1340 		BUILD_BUG();
1341 	}
1342 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1343 }
1344 
1345 /**
1346  * folio_move_anon_rmap - move a folio to our anon_vma
1347  * @folio:	The folio to move to our anon_vma
1348  * @vma:	The vma the folio belongs to
1349  *
1350  * When a folio belongs exclusively to one process after a COW event,
1351  * that folio can be moved into the anon_vma that belongs to just that
1352  * process, so the rmap code will not search the parent or sibling processes.
1353  */
1354 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1355 {
1356 	void *anon_vma = vma->anon_vma;
1357 
1358 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1359 	VM_BUG_ON_VMA(!anon_vma, vma);
1360 
1361 	anon_vma += FOLIO_MAPPING_ANON;
1362 	/*
1363 	 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written
1364 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1365 	 * folio_test_anon()) will not see one without the other.
1366 	 */
1367 	WRITE_ONCE(folio->mapping, anon_vma);
1368 }
1369 
1370 /**
1371  * __folio_set_anon - set up a new anonymous rmap for a folio
1372  * @folio:	The folio to set up the new anonymous rmap for.
1373  * @vma:	VM area to add the folio to.
1374  * @address:	User virtual address of the mapping
1375  * @exclusive:	Whether the folio is exclusive to the process.
1376  */
1377 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1378 			     unsigned long address, bool exclusive)
1379 {
1380 	struct anon_vma *anon_vma = vma->anon_vma;
1381 
1382 	BUG_ON(!anon_vma);
1383 
1384 	/*
1385 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1386 	 * possible anon_vma for the folio mapping!
1387 	 */
1388 	if (!exclusive)
1389 		anon_vma = anon_vma->root;
1390 
1391 	/*
1392 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1393 	 * Make sure the compiler doesn't split the stores of anon_vma and
1394 	 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code
1395 	 * could mistake the mapping for a struct address_space and crash.
1396 	 */
1397 	anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON;
1398 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1399 	folio->index = linear_page_index(vma, address);
1400 }
1401 
1402 /**
1403  * __page_check_anon_rmap - sanity check anonymous rmap addition
1404  * @folio:	The folio containing @page.
1405  * @page:	the page to check the mapping of
1406  * @vma:	the vm area in which the mapping is added
1407  * @address:	the user virtual address mapped
1408  */
1409 static void __page_check_anon_rmap(const struct folio *folio,
1410 		const struct page *page, struct vm_area_struct *vma,
1411 		unsigned long address)
1412 {
1413 	/*
1414 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1415 	 * be set up correctly at this point.
1416 	 *
1417 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1418 	 * always holds the page locked.
1419 	 *
1420 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1421 	 * are initially only visible via the pagetables, and the pte is locked
1422 	 * over the call to folio_add_new_anon_rmap.
1423 	 */
1424 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1425 			folio);
1426 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1427 		       page);
1428 }
1429 
1430 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1431 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1432 		unsigned long address, rmap_t flags, enum pgtable_level level)
1433 {
1434 	int i;
1435 
1436 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1437 
1438 	__folio_add_rmap(folio, page, nr_pages, vma, level);
1439 
1440 	if (likely(!folio_test_ksm(folio)))
1441 		__page_check_anon_rmap(folio, page, vma, address);
1442 
1443 	if (flags & RMAP_EXCLUSIVE) {
1444 		switch (level) {
1445 		case PGTABLE_LEVEL_PTE:
1446 			for (i = 0; i < nr_pages; i++)
1447 				SetPageAnonExclusive(page + i);
1448 			break;
1449 		case PGTABLE_LEVEL_PMD:
1450 			SetPageAnonExclusive(page);
1451 			break;
1452 		case PGTABLE_LEVEL_PUD:
1453 			/*
1454 			 * Keep the compiler happy, we don't support anonymous
1455 			 * PUD mappings.
1456 			 */
1457 			WARN_ON_ONCE(1);
1458 			break;
1459 		default:
1460 			BUILD_BUG();
1461 		}
1462 	}
1463 
1464 	VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) &&
1465 			 atomic_read(&folio->_mapcount) > 0, folio);
1466 	for (i = 0; i < nr_pages; i++) {
1467 		struct page *cur_page = page + i;
1468 
1469 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1470 				 folio_entire_mapcount(folio) > 1 &&
1471 				 PageAnonExclusive(cur_page), folio);
1472 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
1473 			continue;
1474 
1475 		/*
1476 		 * While PTE-mapping a THP we have a PMD and a PTE
1477 		 * mapping.
1478 		 */
1479 		VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 &&
1480 				 PageAnonExclusive(cur_page), folio);
1481 	}
1482 
1483 	/*
1484 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1485 	 * not easy to check whether the large folio is fully mapped to VMA
1486 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1487 	 * large folio.
1488 	 */
1489 	if (!folio_test_large(folio))
1490 		mlock_vma_folio(folio, vma);
1491 }
1492 
1493 /**
1494  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1495  * @folio:	The folio to add the mappings to
1496  * @page:	The first page to add
1497  * @nr_pages:	The number of pages which will be mapped
1498  * @vma:	The vm area in which the mappings are added
1499  * @address:	The user virtual address of the first page to map
1500  * @flags:	The rmap flags
1501  *
1502  * The page range of folio is defined by [first_page, first_page + nr_pages)
1503  *
1504  * The caller needs to hold the page table lock, and the page must be locked in
1505  * the anon_vma case: to serialize mapping,index checking after setting,
1506  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1507  * (but KSM folios are never downgraded).
1508  */
1509 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1510 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1511 		rmap_t flags)
1512 {
1513 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1514 			      PGTABLE_LEVEL_PTE);
1515 }
1516 
1517 /**
1518  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1519  * @folio:	The folio to add the mapping to
1520  * @page:	The first page to add
1521  * @vma:	The vm area in which the mapping is added
1522  * @address:	The user virtual address of the first page to map
1523  * @flags:	The rmap flags
1524  *
1525  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1526  *
1527  * The caller needs to hold the page table lock, and the page must be locked in
1528  * the anon_vma case: to serialize mapping,index checking after setting.
1529  */
1530 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1531 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1532 {
1533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1534 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1535 			      PGTABLE_LEVEL_PMD);
1536 #else
1537 	WARN_ON_ONCE(true);
1538 #endif
1539 }
1540 
1541 /**
1542  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1543  * @folio:	The folio to add the mapping to.
1544  * @vma:	the vm area in which the mapping is added
1545  * @address:	the user virtual address mapped
1546  * @flags:	The rmap flags
1547  *
1548  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1549  * This means the inc-and-test can be bypassed.
1550  * The folio doesn't necessarily need to be locked while it's exclusive
1551  * unless two threads map it concurrently. However, the folio must be
1552  * locked if it's shared.
1553  *
1554  * If the folio is pmd-mappable, it is accounted as a THP.
1555  */
1556 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1557 		unsigned long address, rmap_t flags)
1558 {
1559 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1560 	int nr = 1, nr_pmdmapped = 0;
1561 
1562 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1563 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1564 
1565 	/*
1566 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1567 	 * under memory pressure.
1568 	 */
1569 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1570 		__folio_set_swapbacked(folio);
1571 	__folio_set_anon(folio, vma, address, exclusive);
1572 
1573 	if (likely(!folio_test_large(folio))) {
1574 		/* increment count (starts at -1) */
1575 		atomic_set(&folio->_mapcount, 0);
1576 		if (exclusive)
1577 			SetPageAnonExclusive(&folio->page);
1578 	} else if (!folio_test_pmd_mappable(folio)) {
1579 		int i;
1580 
1581 		nr = folio_large_nr_pages(folio);
1582 		for (i = 0; i < nr; i++) {
1583 			struct page *page = folio_page(folio, i);
1584 
1585 			if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1586 				/* increment count (starts at -1) */
1587 				atomic_set(&page->_mapcount, 0);
1588 			if (exclusive)
1589 				SetPageAnonExclusive(page);
1590 		}
1591 
1592 		folio_set_large_mapcount(folio, nr, vma);
1593 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1594 			atomic_set(&folio->_nr_pages_mapped, nr);
1595 	} else {
1596 		nr = folio_large_nr_pages(folio);
1597 		/* increment count (starts at -1) */
1598 		atomic_set(&folio->_entire_mapcount, 0);
1599 		folio_set_large_mapcount(folio, 1, vma);
1600 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1601 			atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1602 		if (exclusive)
1603 			SetPageAnonExclusive(&folio->page);
1604 		nr_pmdmapped = nr;
1605 	}
1606 
1607 	VM_WARN_ON_ONCE(address < vma->vm_start ||
1608 			address + (nr << PAGE_SHIFT) > vma->vm_end);
1609 
1610 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1611 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1612 }
1613 
1614 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1615 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1616 		enum pgtable_level level)
1617 {
1618 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1619 
1620 	__folio_add_rmap(folio, page, nr_pages, vma, level);
1621 
1622 	/* See comments in folio_add_anon_rmap_*() */
1623 	if (!folio_test_large(folio))
1624 		mlock_vma_folio(folio, vma);
1625 }
1626 
1627 /**
1628  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1629  * @folio:	The folio to add the mappings to
1630  * @page:	The first page to add
1631  * @nr_pages:	The number of pages that will be mapped using PTEs
1632  * @vma:	The vm area in which the mappings are added
1633  *
1634  * The page range of the folio is defined by [page, page + nr_pages)
1635  *
1636  * The caller needs to hold the page table lock.
1637  */
1638 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1639 		int nr_pages, struct vm_area_struct *vma)
1640 {
1641 	__folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1642 }
1643 
1644 /**
1645  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1646  * @folio:	The folio to add the mapping to
1647  * @page:	The first page to add
1648  * @vma:	The vm area in which the mapping is added
1649  *
1650  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1651  *
1652  * The caller needs to hold the page table lock.
1653  */
1654 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1655 		struct vm_area_struct *vma)
1656 {
1657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1658 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1659 #else
1660 	WARN_ON_ONCE(true);
1661 #endif
1662 }
1663 
1664 /**
1665  * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio
1666  * @folio:	The folio to add the mapping to
1667  * @page:	The first page to add
1668  * @vma:	The vm area in which the mapping is added
1669  *
1670  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1671  *
1672  * The caller needs to hold the page table lock.
1673  */
1674 void folio_add_file_rmap_pud(struct folio *folio, struct page *page,
1675 		struct vm_area_struct *vma)
1676 {
1677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1678 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1679 	__folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1680 #else
1681 	WARN_ON_ONCE(true);
1682 #endif
1683 }
1684 
1685 static __always_inline void __folio_remove_rmap(struct folio *folio,
1686 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1687 		enum pgtable_level level)
1688 {
1689 	atomic_t *mapped = &folio->_nr_pages_mapped;
1690 	int last = 0, nr = 0, nr_pmdmapped = 0;
1691 	bool partially_mapped = false;
1692 
1693 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1694 
1695 	switch (level) {
1696 	case PGTABLE_LEVEL_PTE:
1697 		if (!folio_test_large(folio)) {
1698 			nr = atomic_add_negative(-1, &folio->_mapcount);
1699 			break;
1700 		}
1701 
1702 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1703 			nr = folio_sub_return_large_mapcount(folio, nr_pages, vma);
1704 			if (!nr) {
1705 				/* Now completely unmapped. */
1706 				nr = folio_nr_pages(folio);
1707 			} else {
1708 				partially_mapped = nr < folio_large_nr_pages(folio) &&
1709 						   !folio_entire_mapcount(folio);
1710 				nr = 0;
1711 			}
1712 			break;
1713 		}
1714 
1715 		folio_sub_large_mapcount(folio, nr_pages, vma);
1716 		do {
1717 			last += atomic_add_negative(-1, &page->_mapcount);
1718 		} while (page++, --nr_pages > 0);
1719 
1720 		if (last &&
1721 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1722 			nr = last;
1723 
1724 		partially_mapped = nr && atomic_read(mapped);
1725 		break;
1726 	case PGTABLE_LEVEL_PMD:
1727 	case PGTABLE_LEVEL_PUD:
1728 		if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
1729 			last = atomic_add_negative(-1, &folio->_entire_mapcount);
1730 			if (level == PGTABLE_LEVEL_PMD && last)
1731 				nr_pmdmapped = folio_large_nr_pages(folio);
1732 			nr = folio_dec_return_large_mapcount(folio, vma);
1733 			if (!nr) {
1734 				/* Now completely unmapped. */
1735 				nr = folio_large_nr_pages(folio);
1736 			} else {
1737 				partially_mapped = last &&
1738 						   nr < folio_large_nr_pages(folio);
1739 				nr = 0;
1740 			}
1741 			break;
1742 		}
1743 
1744 		folio_dec_large_mapcount(folio, vma);
1745 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1746 		if (last) {
1747 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1748 			if (likely(nr < ENTIRELY_MAPPED)) {
1749 				nr_pages = folio_large_nr_pages(folio);
1750 				if (level == PGTABLE_LEVEL_PMD)
1751 					nr_pmdmapped = nr_pages;
1752 				nr = nr_pages - (nr & FOLIO_PAGES_MAPPED);
1753 				/* Raced ahead of another remove and an add? */
1754 				if (unlikely(nr < 0))
1755 					nr = 0;
1756 			} else {
1757 				/* An add of ENTIRELY_MAPPED raced ahead */
1758 				nr = 0;
1759 			}
1760 		}
1761 
1762 		partially_mapped = nr && nr < nr_pmdmapped;
1763 		break;
1764 	default:
1765 		BUILD_BUG();
1766 	}
1767 
1768 	/*
1769 	 * Queue anon large folio for deferred split if at least one page of
1770 	 * the folio is unmapped and at least one page is still mapped.
1771 	 *
1772 	 * Check partially_mapped first to ensure it is a large folio.
1773 	 */
1774 	if (partially_mapped && folio_test_anon(folio) &&
1775 	    !folio_test_partially_mapped(folio))
1776 		deferred_split_folio(folio, true);
1777 
1778 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1779 
1780 	/*
1781 	 * It would be tidy to reset folio_test_anon mapping when fully
1782 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1783 	 * which increments mapcount after us but sets mapping before us:
1784 	 * so leave the reset to free_pages_prepare, and remember that
1785 	 * it's only reliable while mapped.
1786 	 */
1787 
1788 	munlock_vma_folio(folio, vma);
1789 }
1790 
1791 /**
1792  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1793  * @folio:	The folio to remove the mappings from
1794  * @page:	The first page to remove
1795  * @nr_pages:	The number of pages that will be removed from the mapping
1796  * @vma:	The vm area from which the mappings are removed
1797  *
1798  * The page range of the folio is defined by [page, page + nr_pages)
1799  *
1800  * The caller needs to hold the page table lock.
1801  */
1802 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1803 		int nr_pages, struct vm_area_struct *vma)
1804 {
1805 	__folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE);
1806 }
1807 
1808 /**
1809  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1810  * @folio:	The folio to remove the mapping from
1811  * @page:	The first page to remove
1812  * @vma:	The vm area from which the mapping is removed
1813  *
1814  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1815  *
1816  * The caller needs to hold the page table lock.
1817  */
1818 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1819 		struct vm_area_struct *vma)
1820 {
1821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1822 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD);
1823 #else
1824 	WARN_ON_ONCE(true);
1825 #endif
1826 }
1827 
1828 /**
1829  * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio
1830  * @folio:	The folio to remove the mapping from
1831  * @page:	The first page to remove
1832  * @vma:	The vm area from which the mapping is removed
1833  *
1834  * The page range of the folio is defined by [page, page + HPAGE_PUD_NR)
1835  *
1836  * The caller needs to hold the page table lock.
1837  */
1838 void folio_remove_rmap_pud(struct folio *folio, struct page *page,
1839 		struct vm_area_struct *vma)
1840 {
1841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1842 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1843 	__folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD);
1844 #else
1845 	WARN_ON_ONCE(true);
1846 #endif
1847 }
1848 
1849 static inline unsigned int folio_unmap_pte_batch(struct folio *folio,
1850 			struct page_vma_mapped_walk *pvmw,
1851 			enum ttu_flags flags, pte_t pte)
1852 {
1853 	unsigned long end_addr, addr = pvmw->address;
1854 	struct vm_area_struct *vma = pvmw->vma;
1855 	unsigned int max_nr;
1856 
1857 	if (flags & TTU_HWPOISON)
1858 		return 1;
1859 	if (!folio_test_large(folio))
1860 		return 1;
1861 
1862 	/* We may only batch within a single VMA and a single page table. */
1863 	end_addr = pmd_addr_end(addr, vma->vm_end);
1864 	max_nr = (end_addr - addr) >> PAGE_SHIFT;
1865 
1866 	/* We only support lazyfree batching for now ... */
1867 	if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1868 		return 1;
1869 	if (pte_unused(pte))
1870 		return 1;
1871 
1872 	return folio_pte_batch(folio, pvmw->pte, pte, max_nr);
1873 }
1874 
1875 /*
1876  * @arg: enum ttu_flags will be passed to this argument
1877  */
1878 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1879 		     unsigned long address, void *arg)
1880 {
1881 	struct mm_struct *mm = vma->vm_mm;
1882 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1883 	bool anon_exclusive, ret = true;
1884 	pte_t pteval;
1885 	struct page *subpage;
1886 	struct mmu_notifier_range range;
1887 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1888 	unsigned long nr_pages = 1, end_addr;
1889 	unsigned long pfn;
1890 	unsigned long hsz = 0;
1891 
1892 	/*
1893 	 * When racing against e.g. zap_pte_range() on another cpu,
1894 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1895 	 * try_to_unmap() may return before page_mapped() has become false,
1896 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1897 	 */
1898 	if (flags & TTU_SYNC)
1899 		pvmw.flags = PVMW_SYNC;
1900 
1901 	/*
1902 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1903 	 * For hugetlb, it could be much worse if we need to do pud
1904 	 * invalidation in the case of pmd sharing.
1905 	 *
1906 	 * Note that the folio can not be freed in this function as call of
1907 	 * try_to_unmap() must hold a reference on the folio.
1908 	 */
1909 	range.end = vma_address_end(&pvmw);
1910 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1911 				address, range.end);
1912 	if (folio_test_hugetlb(folio)) {
1913 		/*
1914 		 * If sharing is possible, start and end will be adjusted
1915 		 * accordingly.
1916 		 */
1917 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1918 						     &range.end);
1919 
1920 		/* We need the huge page size for set_huge_pte_at() */
1921 		hsz = huge_page_size(hstate_vma(vma));
1922 	}
1923 	mmu_notifier_invalidate_range_start(&range);
1924 
1925 	while (page_vma_mapped_walk(&pvmw)) {
1926 		/*
1927 		 * If the folio is in an mlock()d vma, we must not swap it out.
1928 		 */
1929 		if (!(flags & TTU_IGNORE_MLOCK) &&
1930 		    (vma->vm_flags & VM_LOCKED)) {
1931 			/* Restore the mlock which got missed */
1932 			if (!folio_test_large(folio))
1933 				mlock_vma_folio(folio, vma);
1934 			goto walk_abort;
1935 		}
1936 
1937 		if (!pvmw.pte) {
1938 			if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1939 				if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1940 					goto walk_done;
1941 				/*
1942 				 * unmap_huge_pmd_locked has either already marked
1943 				 * the folio as swap-backed or decided to retain it
1944 				 * due to GUP or speculative references.
1945 				 */
1946 				goto walk_abort;
1947 			}
1948 
1949 			if (flags & TTU_SPLIT_HUGE_PMD) {
1950 				/*
1951 				 * We temporarily have to drop the PTL and
1952 				 * restart so we can process the PTE-mapped THP.
1953 				 */
1954 				split_huge_pmd_locked(vma, pvmw.address,
1955 						      pvmw.pmd, false);
1956 				flags &= ~TTU_SPLIT_HUGE_PMD;
1957 				page_vma_mapped_walk_restart(&pvmw);
1958 				continue;
1959 			}
1960 		}
1961 
1962 		/* Unexpected PMD-mapped THP? */
1963 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1964 
1965 		/*
1966 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
1967 		 * actually map pages.
1968 		 */
1969 		pteval = ptep_get(pvmw.pte);
1970 		if (likely(pte_present(pteval))) {
1971 			pfn = pte_pfn(pteval);
1972 		} else {
1973 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1974 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1975 		}
1976 
1977 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1978 		address = pvmw.address;
1979 		anon_exclusive = folio_test_anon(folio) &&
1980 				 PageAnonExclusive(subpage);
1981 
1982 		if (folio_test_hugetlb(folio)) {
1983 			bool anon = folio_test_anon(folio);
1984 
1985 			/*
1986 			 * The try_to_unmap() is only passed a hugetlb page
1987 			 * in the case where the hugetlb page is poisoned.
1988 			 */
1989 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1990 			/*
1991 			 * huge_pmd_unshare may unmap an entire PMD page.
1992 			 * There is no way of knowing exactly which PMDs may
1993 			 * be cached for this mm, so we must flush them all.
1994 			 * start/end were already adjusted above to cover this
1995 			 * range.
1996 			 */
1997 			flush_cache_range(vma, range.start, range.end);
1998 
1999 			/*
2000 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2001 			 * held in write mode.  Caller needs to explicitly
2002 			 * do this outside rmap routines.
2003 			 *
2004 			 * We also must hold hugetlb vma_lock in write mode.
2005 			 * Lock order dictates acquiring vma_lock BEFORE
2006 			 * i_mmap_rwsem.  We can only try lock here and fail
2007 			 * if unsuccessful.
2008 			 */
2009 			if (!anon) {
2010 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2011 				if (!hugetlb_vma_trylock_write(vma))
2012 					goto walk_abort;
2013 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2014 					hugetlb_vma_unlock_write(vma);
2015 					flush_tlb_range(vma,
2016 						range.start, range.end);
2017 					/*
2018 					 * The ref count of the PMD page was
2019 					 * dropped which is part of the way map
2020 					 * counting is done for shared PMDs.
2021 					 * Return 'true' here.  When there is
2022 					 * no other sharing, huge_pmd_unshare
2023 					 * returns false and we will unmap the
2024 					 * actual page and drop map count
2025 					 * to zero.
2026 					 */
2027 					goto walk_done;
2028 				}
2029 				hugetlb_vma_unlock_write(vma);
2030 			}
2031 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2032 			if (pte_dirty(pteval))
2033 				folio_mark_dirty(folio);
2034 		} else if (likely(pte_present(pteval))) {
2035 			nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval);
2036 			end_addr = address + nr_pages * PAGE_SIZE;
2037 			flush_cache_range(vma, address, end_addr);
2038 
2039 			/* Nuke the page table entry. */
2040 			pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages);
2041 			/*
2042 			 * We clear the PTE but do not flush so potentially
2043 			 * a remote CPU could still be writing to the folio.
2044 			 * If the entry was previously clean then the
2045 			 * architecture must guarantee that a clear->dirty
2046 			 * transition on a cached TLB entry is written through
2047 			 * and traps if the PTE is unmapped.
2048 			 */
2049 			if (should_defer_flush(mm, flags))
2050 				set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
2051 			else
2052 				flush_tlb_range(vma, address, end_addr);
2053 			if (pte_dirty(pteval))
2054 				folio_mark_dirty(folio);
2055 		} else {
2056 			pte_clear(mm, address, pvmw.pte);
2057 		}
2058 
2059 		/*
2060 		 * Now the pte is cleared. If this pte was uffd-wp armed,
2061 		 * we may want to replace a none pte with a marker pte if
2062 		 * it's file-backed, so we don't lose the tracking info.
2063 		 */
2064 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
2065 
2066 		/* Update high watermark before we lower rss */
2067 		update_hiwater_rss(mm);
2068 
2069 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
2070 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2071 			if (folio_test_hugetlb(folio)) {
2072 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2073 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2074 						hsz);
2075 			} else {
2076 				dec_mm_counter(mm, mm_counter(folio));
2077 				set_pte_at(mm, address, pvmw.pte, pteval);
2078 			}
2079 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2080 			   !userfaultfd_armed(vma)) {
2081 			/*
2082 			 * The guest indicated that the page content is of no
2083 			 * interest anymore. Simply discard the pte, vmscan
2084 			 * will take care of the rest.
2085 			 * A future reference will then fault in a new zero
2086 			 * page. When userfaultfd is active, we must not drop
2087 			 * this page though, as its main user (postcopy
2088 			 * migration) will not expect userfaults on already
2089 			 * copied pages.
2090 			 */
2091 			dec_mm_counter(mm, mm_counter(folio));
2092 		} else if (folio_test_anon(folio)) {
2093 			swp_entry_t entry = page_swap_entry(subpage);
2094 			pte_t swp_pte;
2095 			/*
2096 			 * Store the swap location in the pte.
2097 			 * See handle_pte_fault() ...
2098 			 */
2099 			if (unlikely(folio_test_swapbacked(folio) !=
2100 					folio_test_swapcache(folio))) {
2101 				WARN_ON_ONCE(1);
2102 				goto walk_abort;
2103 			}
2104 
2105 			/* MADV_FREE page check */
2106 			if (!folio_test_swapbacked(folio)) {
2107 				int ref_count, map_count;
2108 
2109 				/*
2110 				 * Synchronize with gup_pte_range():
2111 				 * - clear PTE; barrier; read refcount
2112 				 * - inc refcount; barrier; read PTE
2113 				 */
2114 				smp_mb();
2115 
2116 				ref_count = folio_ref_count(folio);
2117 				map_count = folio_mapcount(folio);
2118 
2119 				/*
2120 				 * Order reads for page refcount and dirty flag
2121 				 * (see comments in __remove_mapping()).
2122 				 */
2123 				smp_rmb();
2124 
2125 				if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
2126 					/*
2127 					 * redirtied either using the page table or a previously
2128 					 * obtained GUP reference.
2129 					 */
2130 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2131 					folio_set_swapbacked(folio);
2132 					goto walk_abort;
2133 				} else if (ref_count != 1 + map_count) {
2134 					/*
2135 					 * Additional reference. Could be a GUP reference or any
2136 					 * speculative reference. GUP users must mark the folio
2137 					 * dirty if there was a modification. This folio cannot be
2138 					 * reclaimed right now either way, so act just like nothing
2139 					 * happened.
2140 					 * We'll come back here later and detect if the folio was
2141 					 * dirtied when the additional reference is gone.
2142 					 */
2143 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2144 					goto walk_abort;
2145 				}
2146 				add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2147 				goto discard;
2148 			}
2149 
2150 			if (swap_duplicate(entry) < 0) {
2151 				set_pte_at(mm, address, pvmw.pte, pteval);
2152 				goto walk_abort;
2153 			}
2154 
2155 			/*
2156 			 * arch_unmap_one() is expected to be a NOP on
2157 			 * architectures where we could have PFN swap PTEs,
2158 			 * so we'll not check/care.
2159 			 */
2160 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2161 				swap_free(entry);
2162 				set_pte_at(mm, address, pvmw.pte, pteval);
2163 				goto walk_abort;
2164 			}
2165 
2166 			/* See folio_try_share_anon_rmap(): clear PTE first. */
2167 			if (anon_exclusive &&
2168 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
2169 				swap_free(entry);
2170 				set_pte_at(mm, address, pvmw.pte, pteval);
2171 				goto walk_abort;
2172 			}
2173 			if (list_empty(&mm->mmlist)) {
2174 				spin_lock(&mmlist_lock);
2175 				if (list_empty(&mm->mmlist))
2176 					list_add(&mm->mmlist, &init_mm.mmlist);
2177 				spin_unlock(&mmlist_lock);
2178 			}
2179 			dec_mm_counter(mm, MM_ANONPAGES);
2180 			inc_mm_counter(mm, MM_SWAPENTS);
2181 			swp_pte = swp_entry_to_pte(entry);
2182 			if (anon_exclusive)
2183 				swp_pte = pte_swp_mkexclusive(swp_pte);
2184 			if (likely(pte_present(pteval))) {
2185 				if (pte_soft_dirty(pteval))
2186 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2187 				if (pte_uffd_wp(pteval))
2188 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2189 			} else {
2190 				if (pte_swp_soft_dirty(pteval))
2191 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2192 				if (pte_swp_uffd_wp(pteval))
2193 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2194 			}
2195 			set_pte_at(mm, address, pvmw.pte, swp_pte);
2196 		} else {
2197 			/*
2198 			 * This is a locked file-backed folio,
2199 			 * so it cannot be removed from the page
2200 			 * cache and replaced by a new folio before
2201 			 * mmu_notifier_invalidate_range_end, so no
2202 			 * concurrent thread might update its page table
2203 			 * to point at a new folio while a device is
2204 			 * still using this folio.
2205 			 *
2206 			 * See Documentation/mm/mmu_notifier.rst
2207 			 */
2208 			dec_mm_counter(mm, mm_counter_file(folio));
2209 		}
2210 discard:
2211 		if (unlikely(folio_test_hugetlb(folio))) {
2212 			hugetlb_remove_rmap(folio);
2213 		} else {
2214 			folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2215 		}
2216 		if (vma->vm_flags & VM_LOCKED)
2217 			mlock_drain_local();
2218 		folio_put_refs(folio, nr_pages);
2219 
2220 		/*
2221 		 * If we are sure that we batched the entire folio and cleared
2222 		 * all PTEs, we can just optimize and stop right here.
2223 		 */
2224 		if (nr_pages == folio_nr_pages(folio))
2225 			goto walk_done;
2226 		continue;
2227 walk_abort:
2228 		ret = false;
2229 walk_done:
2230 		page_vma_mapped_walk_done(&pvmw);
2231 		break;
2232 	}
2233 
2234 	mmu_notifier_invalidate_range_end(&range);
2235 
2236 	return ret;
2237 }
2238 
2239 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2240 {
2241 	return vma_is_temporary_stack(vma);
2242 }
2243 
2244 static int folio_not_mapped(struct folio *folio)
2245 {
2246 	return !folio_mapped(folio);
2247 }
2248 
2249 /**
2250  * try_to_unmap - Try to remove all page table mappings to a folio.
2251  * @folio: The folio to unmap.
2252  * @flags: action and flags
2253  *
2254  * Tries to remove all the page table entries which are mapping this
2255  * folio.  It is the caller's responsibility to check if the folio is
2256  * still mapped if needed (use TTU_SYNC to prevent accounting races).
2257  *
2258  * Context: Caller must hold the folio lock.
2259  */
2260 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2261 {
2262 	struct rmap_walk_control rwc = {
2263 		.rmap_one = try_to_unmap_one,
2264 		.arg = (void *)flags,
2265 		.done = folio_not_mapped,
2266 		.anon_lock = folio_lock_anon_vma_read,
2267 	};
2268 
2269 	if (flags & TTU_RMAP_LOCKED)
2270 		rmap_walk_locked(folio, &rwc);
2271 	else
2272 		rmap_walk(folio, &rwc);
2273 }
2274 
2275 /*
2276  * @arg: enum ttu_flags will be passed to this argument.
2277  *
2278  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2279  * containing migration entries.
2280  */
2281 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2282 		     unsigned long address, void *arg)
2283 {
2284 	struct mm_struct *mm = vma->vm_mm;
2285 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2286 	bool anon_exclusive, writable, ret = true;
2287 	pte_t pteval;
2288 	struct page *subpage;
2289 	struct mmu_notifier_range range;
2290 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2291 	unsigned long pfn;
2292 	unsigned long hsz = 0;
2293 
2294 	/*
2295 	 * When racing against e.g. zap_pte_range() on another cpu,
2296 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2297 	 * try_to_migrate() may return before page_mapped() has become false,
2298 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2299 	 */
2300 	if (flags & TTU_SYNC)
2301 		pvmw.flags = PVMW_SYNC;
2302 
2303 	/*
2304 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2305 	 * For hugetlb, it could be much worse if we need to do pud
2306 	 * invalidation in the case of pmd sharing.
2307 	 *
2308 	 * Note that the page can not be free in this function as call of
2309 	 * try_to_unmap() must hold a reference on the page.
2310 	 */
2311 	range.end = vma_address_end(&pvmw);
2312 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2313 				address, range.end);
2314 	if (folio_test_hugetlb(folio)) {
2315 		/*
2316 		 * If sharing is possible, start and end will be adjusted
2317 		 * accordingly.
2318 		 */
2319 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2320 						     &range.end);
2321 
2322 		/* We need the huge page size for set_huge_pte_at() */
2323 		hsz = huge_page_size(hstate_vma(vma));
2324 	}
2325 	mmu_notifier_invalidate_range_start(&range);
2326 
2327 	while (page_vma_mapped_walk(&pvmw)) {
2328 		/* PMD-mapped THP migration entry */
2329 		if (!pvmw.pte) {
2330 			if (flags & TTU_SPLIT_HUGE_PMD) {
2331 				split_huge_pmd_locked(vma, pvmw.address,
2332 						      pvmw.pmd, true);
2333 				ret = false;
2334 				page_vma_mapped_walk_done(&pvmw);
2335 				break;
2336 			}
2337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2338 			subpage = folio_page(folio,
2339 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2340 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2341 					!folio_test_pmd_mappable(folio), folio);
2342 
2343 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2344 				ret = false;
2345 				page_vma_mapped_walk_done(&pvmw);
2346 				break;
2347 			}
2348 			continue;
2349 #endif
2350 		}
2351 
2352 		/* Unexpected PMD-mapped THP? */
2353 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2354 
2355 		/*
2356 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
2357 		 * actually map pages.
2358 		 */
2359 		pteval = ptep_get(pvmw.pte);
2360 		if (likely(pte_present(pteval))) {
2361 			pfn = pte_pfn(pteval);
2362 		} else {
2363 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2364 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2365 		}
2366 
2367 		subpage = folio_page(folio, pfn - folio_pfn(folio));
2368 		address = pvmw.address;
2369 		anon_exclusive = folio_test_anon(folio) &&
2370 				 PageAnonExclusive(subpage);
2371 
2372 		if (folio_test_hugetlb(folio)) {
2373 			bool anon = folio_test_anon(folio);
2374 
2375 			/*
2376 			 * huge_pmd_unshare may unmap an entire PMD page.
2377 			 * There is no way of knowing exactly which PMDs may
2378 			 * be cached for this mm, so we must flush them all.
2379 			 * start/end were already adjusted above to cover this
2380 			 * range.
2381 			 */
2382 			flush_cache_range(vma, range.start, range.end);
2383 
2384 			/*
2385 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2386 			 * held in write mode.  Caller needs to explicitly
2387 			 * do this outside rmap routines.
2388 			 *
2389 			 * We also must hold hugetlb vma_lock in write mode.
2390 			 * Lock order dictates acquiring vma_lock BEFORE
2391 			 * i_mmap_rwsem.  We can only try lock here and
2392 			 * fail if unsuccessful.
2393 			 */
2394 			if (!anon) {
2395 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2396 				if (!hugetlb_vma_trylock_write(vma)) {
2397 					page_vma_mapped_walk_done(&pvmw);
2398 					ret = false;
2399 					break;
2400 				}
2401 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2402 					hugetlb_vma_unlock_write(vma);
2403 					flush_tlb_range(vma,
2404 						range.start, range.end);
2405 
2406 					/*
2407 					 * The ref count of the PMD page was
2408 					 * dropped which is part of the way map
2409 					 * counting is done for shared PMDs.
2410 					 * Return 'true' here.  When there is
2411 					 * no other sharing, huge_pmd_unshare
2412 					 * returns false and we will unmap the
2413 					 * actual page and drop map count
2414 					 * to zero.
2415 					 */
2416 					page_vma_mapped_walk_done(&pvmw);
2417 					break;
2418 				}
2419 				hugetlb_vma_unlock_write(vma);
2420 			}
2421 			/* Nuke the hugetlb page table entry */
2422 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2423 			if (pte_dirty(pteval))
2424 				folio_mark_dirty(folio);
2425 			writable = pte_write(pteval);
2426 		} else if (likely(pte_present(pteval))) {
2427 			flush_cache_page(vma, address, pfn);
2428 			/* Nuke the page table entry. */
2429 			if (should_defer_flush(mm, flags)) {
2430 				/*
2431 				 * We clear the PTE but do not flush so potentially
2432 				 * a remote CPU could still be writing to the folio.
2433 				 * If the entry was previously clean then the
2434 				 * architecture must guarantee that a clear->dirty
2435 				 * transition on a cached TLB entry is written through
2436 				 * and traps if the PTE is unmapped.
2437 				 */
2438 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2439 
2440 				set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2441 			} else {
2442 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2443 			}
2444 			if (pte_dirty(pteval))
2445 				folio_mark_dirty(folio);
2446 			writable = pte_write(pteval);
2447 		} else {
2448 			pte_clear(mm, address, pvmw.pte);
2449 			writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2450 		}
2451 
2452 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2453 				!anon_exclusive, folio);
2454 
2455 		/* Update high watermark before we lower rss */
2456 		update_hiwater_rss(mm);
2457 
2458 		if (PageHWPoison(subpage)) {
2459 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2460 
2461 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2462 			if (folio_test_hugetlb(folio)) {
2463 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2464 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2465 						hsz);
2466 			} else {
2467 				dec_mm_counter(mm, mm_counter(folio));
2468 				set_pte_at(mm, address, pvmw.pte, pteval);
2469 			}
2470 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2471 			   !userfaultfd_armed(vma)) {
2472 			/*
2473 			 * The guest indicated that the page content is of no
2474 			 * interest anymore. Simply discard the pte, vmscan
2475 			 * will take care of the rest.
2476 			 * A future reference will then fault in a new zero
2477 			 * page. When userfaultfd is active, we must not drop
2478 			 * this page though, as its main user (postcopy
2479 			 * migration) will not expect userfaults on already
2480 			 * copied pages.
2481 			 */
2482 			dec_mm_counter(mm, mm_counter(folio));
2483 		} else {
2484 			swp_entry_t entry;
2485 			pte_t swp_pte;
2486 
2487 			/*
2488 			 * arch_unmap_one() is expected to be a NOP on
2489 			 * architectures where we could have PFN swap PTEs,
2490 			 * so we'll not check/care.
2491 			 */
2492 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2493 				if (folio_test_hugetlb(folio))
2494 					set_huge_pte_at(mm, address, pvmw.pte,
2495 							pteval, hsz);
2496 				else
2497 					set_pte_at(mm, address, pvmw.pte, pteval);
2498 				ret = false;
2499 				page_vma_mapped_walk_done(&pvmw);
2500 				break;
2501 			}
2502 
2503 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2504 			if (folio_test_hugetlb(folio)) {
2505 				if (anon_exclusive &&
2506 				    hugetlb_try_share_anon_rmap(folio)) {
2507 					set_huge_pte_at(mm, address, pvmw.pte,
2508 							pteval, hsz);
2509 					ret = false;
2510 					page_vma_mapped_walk_done(&pvmw);
2511 					break;
2512 				}
2513 			} else if (anon_exclusive &&
2514 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2515 				set_pte_at(mm, address, pvmw.pte, pteval);
2516 				ret = false;
2517 				page_vma_mapped_walk_done(&pvmw);
2518 				break;
2519 			}
2520 
2521 			/*
2522 			 * Store the pfn of the page in a special migration
2523 			 * pte. do_swap_page() will wait until the migration
2524 			 * pte is removed and then restart fault handling.
2525 			 */
2526 			if (writable)
2527 				entry = make_writable_migration_entry(
2528 							page_to_pfn(subpage));
2529 			else if (anon_exclusive)
2530 				entry = make_readable_exclusive_migration_entry(
2531 							page_to_pfn(subpage));
2532 			else
2533 				entry = make_readable_migration_entry(
2534 							page_to_pfn(subpage));
2535 			if (likely(pte_present(pteval))) {
2536 				if (pte_young(pteval))
2537 					entry = make_migration_entry_young(entry);
2538 				if (pte_dirty(pteval))
2539 					entry = make_migration_entry_dirty(entry);
2540 				swp_pte = swp_entry_to_pte(entry);
2541 				if (pte_soft_dirty(pteval))
2542 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2543 				if (pte_uffd_wp(pteval))
2544 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2545 			} else {
2546 				swp_pte = swp_entry_to_pte(entry);
2547 				if (pte_swp_soft_dirty(pteval))
2548 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2549 				if (pte_swp_uffd_wp(pteval))
2550 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2551 			}
2552 			if (folio_test_hugetlb(folio))
2553 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2554 						hsz);
2555 			else
2556 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2557 			trace_set_migration_pte(address, pte_val(swp_pte),
2558 						folio_order(folio));
2559 			/*
2560 			 * No need to invalidate here it will synchronize on
2561 			 * against the special swap migration pte.
2562 			 */
2563 		}
2564 
2565 		if (unlikely(folio_test_hugetlb(folio)))
2566 			hugetlb_remove_rmap(folio);
2567 		else
2568 			folio_remove_rmap_pte(folio, subpage, vma);
2569 		if (vma->vm_flags & VM_LOCKED)
2570 			mlock_drain_local();
2571 		folio_put(folio);
2572 	}
2573 
2574 	mmu_notifier_invalidate_range_end(&range);
2575 
2576 	return ret;
2577 }
2578 
2579 /**
2580  * try_to_migrate - try to replace all page table mappings with swap entries
2581  * @folio: the folio to replace page table entries for
2582  * @flags: action and flags
2583  *
2584  * Tries to remove all the page table entries which are mapping this folio and
2585  * replace them with special swap entries. Caller must hold the folio lock.
2586  */
2587 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2588 {
2589 	struct rmap_walk_control rwc = {
2590 		.rmap_one = try_to_migrate_one,
2591 		.arg = (void *)flags,
2592 		.done = folio_not_mapped,
2593 		.anon_lock = folio_lock_anon_vma_read,
2594 	};
2595 
2596 	/*
2597 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2598 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2599 	 */
2600 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2601 					TTU_SYNC | TTU_BATCH_FLUSH)))
2602 		return;
2603 
2604 	if (folio_is_zone_device(folio) &&
2605 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2606 		return;
2607 
2608 	/*
2609 	 * During exec, a temporary VMA is setup and later moved.
2610 	 * The VMA is moved under the anon_vma lock but not the
2611 	 * page tables leading to a race where migration cannot
2612 	 * find the migration ptes. Rather than increasing the
2613 	 * locking requirements of exec(), migration skips
2614 	 * temporary VMAs until after exec() completes.
2615 	 */
2616 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2617 		rwc.invalid_vma = invalid_migration_vma;
2618 
2619 	if (flags & TTU_RMAP_LOCKED)
2620 		rmap_walk_locked(folio, &rwc);
2621 	else
2622 		rmap_walk(folio, &rwc);
2623 }
2624 
2625 #ifdef CONFIG_DEVICE_PRIVATE
2626 /**
2627  * make_device_exclusive() - Mark a page for exclusive use by a device
2628  * @mm: mm_struct of associated target process
2629  * @addr: the virtual address to mark for exclusive device access
2630  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2631  * @foliop: folio pointer will be stored here on success.
2632  *
2633  * This function looks up the page mapped at the given address, grabs a
2634  * folio reference, locks the folio and replaces the PTE with special
2635  * device-exclusive PFN swap entry, preventing access through the process
2636  * page tables. The function will return with the folio locked and referenced.
2637  *
2638  * On fault, the device-exclusive entries are replaced with the original PTE
2639  * under folio lock, after calling MMU notifiers.
2640  *
2641  * Only anonymous non-hugetlb folios are supported and the VMA must have
2642  * write permissions such that we can fault in the anonymous page writable
2643  * in order to mark it exclusive. The caller must hold the mmap_lock in read
2644  * mode.
2645  *
2646  * A driver using this to program access from a device must use a mmu notifier
2647  * critical section to hold a device specific lock during programming. Once
2648  * programming is complete it should drop the folio lock and reference after
2649  * which point CPU access to the page will revoke the exclusive access.
2650  *
2651  * Notes:
2652  *   #. This function always operates on individual PTEs mapping individual
2653  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2654  *      the conversion happens on a single PTE corresponding to @addr.
2655  *   #. While concurrent access through the process page tables is prevented,
2656  *      concurrent access through other page references (e.g., earlier GUP
2657  *      invocation) is not handled and not supported.
2658  *   #. device-exclusive entries are considered "clean" and "old" by core-mm.
2659  *      Device drivers must update the folio state when informed by MMU
2660  *      notifiers.
2661  *
2662  * Returns: pointer to mapped page on success, otherwise a negative error.
2663  */
2664 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2665 		void *owner, struct folio **foliop)
2666 {
2667 	struct mmu_notifier_range range;
2668 	struct folio *folio, *fw_folio;
2669 	struct vm_area_struct *vma;
2670 	struct folio_walk fw;
2671 	struct page *page;
2672 	swp_entry_t entry;
2673 	pte_t swp_pte;
2674 	int ret;
2675 
2676 	mmap_assert_locked(mm);
2677 	addr = PAGE_ALIGN_DOWN(addr);
2678 
2679 	/*
2680 	 * Fault in the page writable and try to lock it; note that if the
2681 	 * address would already be marked for exclusive use by a device,
2682 	 * the GUP call would undo that first by triggering a fault.
2683 	 *
2684 	 * If any other device would already map this page exclusively, the
2685 	 * fault will trigger a conversion to an ordinary
2686 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2687 	 */
2688 retry:
2689 	page = get_user_page_vma_remote(mm, addr,
2690 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2691 					&vma);
2692 	if (IS_ERR(page))
2693 		return page;
2694 	folio = page_folio(page);
2695 
2696 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2697 		folio_put(folio);
2698 		return ERR_PTR(-EOPNOTSUPP);
2699 	}
2700 
2701 	ret = folio_lock_killable(folio);
2702 	if (ret) {
2703 		folio_put(folio);
2704 		return ERR_PTR(ret);
2705 	}
2706 
2707 	/*
2708 	 * Inform secondary MMUs that we are going to convert this PTE to
2709 	 * device-exclusive, such that they unmap it now. Note that the
2710 	 * caller must filter this event out to prevent livelocks.
2711 	 */
2712 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2713 				      mm, addr, addr + PAGE_SIZE, owner);
2714 	mmu_notifier_invalidate_range_start(&range);
2715 
2716 	/*
2717 	 * Let's do a second walk and make sure we still find the same page
2718 	 * mapped writable. Note that any page of an anonymous folio can
2719 	 * only be mapped writable using exactly one PTE ("exclusive"), so
2720 	 * there cannot be other mappings.
2721 	 */
2722 	fw_folio = folio_walk_start(&fw, vma, addr, 0);
2723 	if (fw_folio != folio || fw.page != page ||
2724 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2725 		if (fw_folio)
2726 			folio_walk_end(&fw, vma);
2727 		mmu_notifier_invalidate_range_end(&range);
2728 		folio_unlock(folio);
2729 		folio_put(folio);
2730 		goto retry;
2731 	}
2732 
2733 	/* Nuke the page table entry so we get the uptodate dirty bit. */
2734 	flush_cache_page(vma, addr, page_to_pfn(page));
2735 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2736 
2737 	/* Set the dirty flag on the folio now the PTE is gone. */
2738 	if (pte_dirty(fw.pte))
2739 		folio_mark_dirty(folio);
2740 
2741 	/*
2742 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2743 	 * do_swap_page() will trigger the conversion back while holding the
2744 	 * folio lock.
2745 	 */
2746 	entry = make_device_exclusive_entry(page_to_pfn(page));
2747 	swp_pte = swp_entry_to_pte(entry);
2748 	if (pte_soft_dirty(fw.pte))
2749 		swp_pte = pte_swp_mksoft_dirty(swp_pte);
2750 	/* The pte is writable, uffd-wp does not apply. */
2751 	set_pte_at(mm, addr, fw.ptep, swp_pte);
2752 
2753 	folio_walk_end(&fw, vma);
2754 	mmu_notifier_invalidate_range_end(&range);
2755 	*foliop = folio;
2756 	return page;
2757 }
2758 EXPORT_SYMBOL_GPL(make_device_exclusive);
2759 #endif
2760 
2761 void __put_anon_vma(struct anon_vma *anon_vma)
2762 {
2763 	struct anon_vma *root = anon_vma->root;
2764 
2765 	anon_vma_free(anon_vma);
2766 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2767 		anon_vma_free(root);
2768 }
2769 
2770 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2771 					    struct rmap_walk_control *rwc)
2772 {
2773 	struct anon_vma *anon_vma;
2774 
2775 	if (rwc->anon_lock)
2776 		return rwc->anon_lock(folio, rwc);
2777 
2778 	/*
2779 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2780 	 * because that depends on page_mapped(); but not all its usages
2781 	 * are holding mmap_lock. Users without mmap_lock are required to
2782 	 * take a reference count to prevent the anon_vma disappearing
2783 	 */
2784 	anon_vma = folio_anon_vma(folio);
2785 	if (!anon_vma)
2786 		return NULL;
2787 
2788 	if (anon_vma_trylock_read(anon_vma))
2789 		goto out;
2790 
2791 	if (rwc->try_lock) {
2792 		anon_vma = NULL;
2793 		rwc->contended = true;
2794 		goto out;
2795 	}
2796 
2797 	anon_vma_lock_read(anon_vma);
2798 out:
2799 	return anon_vma;
2800 }
2801 
2802 /*
2803  * rmap_walk_anon - do something to anonymous page using the object-based
2804  * rmap method
2805  * @folio: the folio to be handled
2806  * @rwc: control variable according to each walk type
2807  * @locked: caller holds relevant rmap lock
2808  *
2809  * Find all the mappings of a folio using the mapping pointer and the vma
2810  * chains contained in the anon_vma struct it points to.
2811  */
2812 static void rmap_walk_anon(struct folio *folio,
2813 		struct rmap_walk_control *rwc, bool locked)
2814 {
2815 	struct anon_vma *anon_vma;
2816 	pgoff_t pgoff_start, pgoff_end;
2817 	struct anon_vma_chain *avc;
2818 
2819 	if (locked) {
2820 		anon_vma = folio_anon_vma(folio);
2821 		/* anon_vma disappear under us? */
2822 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2823 	} else {
2824 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2825 	}
2826 	if (!anon_vma)
2827 		return;
2828 
2829 	pgoff_start = folio_pgoff(folio);
2830 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2831 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2832 			pgoff_start, pgoff_end) {
2833 		struct vm_area_struct *vma = avc->vma;
2834 		unsigned long address = vma_address(vma, pgoff_start,
2835 				folio_nr_pages(folio));
2836 
2837 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2838 		cond_resched();
2839 
2840 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2841 			continue;
2842 
2843 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2844 			break;
2845 		if (rwc->done && rwc->done(folio))
2846 			break;
2847 	}
2848 
2849 	if (!locked)
2850 		anon_vma_unlock_read(anon_vma);
2851 }
2852 
2853 /**
2854  * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2855  * of a page mapped within a specified page cache object at a specified offset.
2856  *
2857  * @folio: 		Either the folio whose mappings to traverse, or if NULL,
2858  * 			the callbacks specified in @rwc will be configured such
2859  * 			as to be able to look up mappings correctly.
2860  * @mapping: 		The page cache object whose mapping VMAs we intend to
2861  * 			traverse. If @folio is non-NULL, this should be equal to
2862  *			folio_mapping(folio).
2863  * @pgoff_start:	The offset within @mapping of the page which we are
2864  * 			looking up. If @folio is non-NULL, this should be equal
2865  * 			to folio_pgoff(folio).
2866  * @nr_pages:		The number of pages mapped by the mapping. If @folio is
2867  *			non-NULL, this should be equal to folio_nr_pages(folio).
2868  * @rwc:		The reverse mapping walk control object describing how
2869  *			the traversal should proceed.
2870  * @locked:		Is the @mapping already locked? If not, we acquire the
2871  *			lock.
2872  */
2873 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2874 			     pgoff_t pgoff_start, unsigned long nr_pages,
2875 			     struct rmap_walk_control *rwc, bool locked)
2876 {
2877 	pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2878 	struct vm_area_struct *vma;
2879 
2880 	VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2881 	VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2882 	VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2883 
2884 	if (!locked) {
2885 		if (i_mmap_trylock_read(mapping))
2886 			goto lookup;
2887 
2888 		if (rwc->try_lock) {
2889 			rwc->contended = true;
2890 			return;
2891 		}
2892 
2893 		i_mmap_lock_read(mapping);
2894 	}
2895 lookup:
2896 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2897 			pgoff_start, pgoff_end) {
2898 		unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2899 
2900 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2901 		cond_resched();
2902 
2903 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2904 			continue;
2905 
2906 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2907 			goto done;
2908 		if (rwc->done && rwc->done(folio))
2909 			goto done;
2910 	}
2911 done:
2912 	if (!locked)
2913 		i_mmap_unlock_read(mapping);
2914 }
2915 
2916 /*
2917  * rmap_walk_file - do something to file page using the object-based rmap method
2918  * @folio: the folio to be handled
2919  * @rwc: control variable according to each walk type
2920  * @locked: caller holds relevant rmap lock
2921  *
2922  * Find all the mappings of a folio using the mapping pointer and the vma chains
2923  * contained in the address_space struct it points to.
2924  */
2925 static void rmap_walk_file(struct folio *folio,
2926 		struct rmap_walk_control *rwc, bool locked)
2927 {
2928 	/*
2929 	 * The folio lock not only makes sure that folio->mapping cannot
2930 	 * suddenly be NULLified by truncation, it makes sure that the structure
2931 	 * at mapping cannot be freed and reused yet, so we can safely take
2932 	 * mapping->i_mmap_rwsem.
2933 	 */
2934 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2935 
2936 	if (!folio->mapping)
2937 		return;
2938 
2939 	__rmap_walk_file(folio, folio->mapping, folio->index,
2940 			 folio_nr_pages(folio), rwc, locked);
2941 }
2942 
2943 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2944 {
2945 	if (unlikely(folio_test_ksm(folio)))
2946 		rmap_walk_ksm(folio, rwc);
2947 	else if (folio_test_anon(folio))
2948 		rmap_walk_anon(folio, rwc, false);
2949 	else
2950 		rmap_walk_file(folio, rwc, false);
2951 }
2952 
2953 /* Like rmap_walk, but caller holds relevant rmap lock */
2954 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2955 {
2956 	/* no ksm support for now */
2957 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2958 	if (folio_test_anon(folio))
2959 		rmap_walk_anon(folio, rwc, true);
2960 	else
2961 		rmap_walk_file(folio, rwc, true);
2962 }
2963 
2964 #ifdef CONFIG_HUGETLB_PAGE
2965 /*
2966  * The following two functions are for anonymous (private mapped) hugepages.
2967  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2968  * and no lru code, because we handle hugepages differently from common pages.
2969  */
2970 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2971 		unsigned long address, rmap_t flags)
2972 {
2973 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2974 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2975 
2976 	atomic_inc(&folio->_entire_mapcount);
2977 	atomic_inc(&folio->_large_mapcount);
2978 	if (flags & RMAP_EXCLUSIVE)
2979 		SetPageAnonExclusive(&folio->page);
2980 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2981 			 PageAnonExclusive(&folio->page), folio);
2982 }
2983 
2984 void hugetlb_add_new_anon_rmap(struct folio *folio,
2985 		struct vm_area_struct *vma, unsigned long address)
2986 {
2987 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2988 
2989 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2990 	/* increment count (starts at -1) */
2991 	atomic_set(&folio->_entire_mapcount, 0);
2992 	atomic_set(&folio->_large_mapcount, 0);
2993 	folio_clear_hugetlb_restore_reserve(folio);
2994 	__folio_set_anon(folio, vma, address, true);
2995 	SetPageAnonExclusive(&folio->page);
2996 }
2997 #endif /* CONFIG_HUGETLB_PAGE */
2998