1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long start, unsigned long end) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 flush_tlb_mm(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long start, unsigned long end) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /** 771 * page_address_in_vma - The virtual address of a page in this VMA. 772 * @folio: The folio containing the page. 773 * @page: The page within the folio. 774 * @vma: The VMA we need to know the address in. 775 * 776 * Calculates the user virtual address of this page in the specified VMA. 777 * It is the caller's responsibility to check the page is actually 778 * within the VMA. There may not currently be a PTE pointing at this 779 * page, but if a page fault occurs at this address, this is the page 780 * which will be accessed. 781 * 782 * Context: Caller should hold a reference to the folio. Caller should 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 784 * VMA from being altered. 785 * 786 * Return: The virtual address corresponding to this page in the VMA. 787 */ 788 unsigned long page_address_in_vma(const struct folio *folio, 789 const struct page *page, const struct vm_area_struct *vma) 790 { 791 if (folio_test_anon(folio)) { 792 struct anon_vma *anon_vma = folio_anon_vma(folio); 793 /* 794 * Note: swapoff's unuse_vma() is more efficient with this 795 * check, and needs it to match anon_vma when KSM is active. 796 */ 797 if (!vma->anon_vma || !anon_vma || 798 vma->anon_vma->root != anon_vma->root) 799 return -EFAULT; 800 } else if (!vma->vm_file) { 801 return -EFAULT; 802 } else if (vma->vm_file->f_mapping != folio->mapping) { 803 return -EFAULT; 804 } 805 806 /* KSM folios don't reach here because of the !anon_vma check */ 807 return vma_address(vma, page_pgoff(folio, page), 1); 808 } 809 810 /* 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 813 * represents. 814 */ 815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 816 { 817 pgd_t *pgd; 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd = NULL; 821 822 pgd = pgd_offset(mm, address); 823 if (!pgd_present(*pgd)) 824 goto out; 825 826 p4d = p4d_offset(pgd, address); 827 if (!p4d_present(*p4d)) 828 goto out; 829 830 pud = pud_offset(p4d, address); 831 if (!pud_present(*pud)) 832 goto out; 833 834 pmd = pmd_offset(pud, address); 835 out: 836 return pmd; 837 } 838 839 struct folio_referenced_arg { 840 int mapcount; 841 int referenced; 842 vm_flags_t vm_flags; 843 struct mem_cgroup *memcg; 844 }; 845 846 /* 847 * arg: folio_referenced_arg will be passed 848 */ 849 static bool folio_referenced_one(struct folio *folio, 850 struct vm_area_struct *vma, unsigned long address, void *arg) 851 { 852 struct folio_referenced_arg *pra = arg; 853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 854 int referenced = 0; 855 unsigned long start = address, ptes = 0; 856 857 while (page_vma_mapped_walk(&pvmw)) { 858 address = pvmw.address; 859 860 if (vma->vm_flags & VM_LOCKED) { 861 if (!folio_test_large(folio) || !pvmw.pte) { 862 /* Restore the mlock which got missed */ 863 mlock_vma_folio(folio, vma); 864 page_vma_mapped_walk_done(&pvmw); 865 pra->vm_flags |= VM_LOCKED; 866 return false; /* To break the loop */ 867 } 868 /* 869 * For large folio fully mapped to VMA, will 870 * be handled after the pvmw loop. 871 * 872 * For large folio cross VMA boundaries, it's 873 * expected to be picked by page reclaim. But 874 * should skip reference of pages which are in 875 * the range of VM_LOCKED vma. As page reclaim 876 * should just count the reference of pages out 877 * the range of VM_LOCKED vma. 878 */ 879 ptes++; 880 pra->mapcount--; 881 continue; 882 } 883 884 /* 885 * Skip the non-shared swapbacked folio mapped solely by 886 * the exiting or OOM-reaped process. This avoids redundant 887 * swap-out followed by an immediate unmap. 888 */ 889 if ((!atomic_read(&vma->vm_mm->mm_users) || 890 check_stable_address_space(vma->vm_mm)) && 891 folio_test_anon(folio) && folio_test_swapbacked(folio) && 892 !folio_maybe_mapped_shared(folio)) { 893 pra->referenced = -1; 894 page_vma_mapped_walk_done(&pvmw); 895 return false; 896 } 897 898 if (lru_gen_enabled() && pvmw.pte) { 899 if (lru_gen_look_around(&pvmw)) 900 referenced++; 901 } else if (pvmw.pte) { 902 if (ptep_clear_flush_young_notify(vma, address, 903 pvmw.pte)) 904 referenced++; 905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 906 if (pmdp_clear_flush_young_notify(vma, address, 907 pvmw.pmd)) 908 referenced++; 909 } else { 910 /* unexpected pmd-mapped folio? */ 911 WARN_ON_ONCE(1); 912 } 913 914 pra->mapcount--; 915 } 916 917 if ((vma->vm_flags & VM_LOCKED) && 918 folio_test_large(folio) && 919 folio_within_vma(folio, vma)) { 920 unsigned long s_align, e_align; 921 922 s_align = ALIGN_DOWN(start, PMD_SIZE); 923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 924 925 /* folio doesn't cross page table boundary and fully mapped */ 926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 927 /* Restore the mlock which got missed */ 928 mlock_vma_folio(folio, vma); 929 pra->vm_flags |= VM_LOCKED; 930 return false; /* To break the loop */ 931 } 932 } 933 934 if (referenced) 935 folio_clear_idle(folio); 936 if (folio_test_clear_young(folio)) 937 referenced++; 938 939 if (referenced) { 940 pra->referenced++; 941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 942 } 943 944 if (!pra->mapcount) 945 return false; /* To break the loop */ 946 947 return true; 948 } 949 950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 951 { 952 struct folio_referenced_arg *pra = arg; 953 struct mem_cgroup *memcg = pra->memcg; 954 955 /* 956 * Ignore references from this mapping if it has no recency. If the 957 * folio has been used in another mapping, we will catch it; if this 958 * other mapping is already gone, the unmap path will have set the 959 * referenced flag or activated the folio in zap_pte_range(). 960 */ 961 if (!vma_has_recency(vma)) 962 return true; 963 964 /* 965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 966 * of references from different cgroups. 967 */ 968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 969 return true; 970 971 return false; 972 } 973 974 /** 975 * folio_referenced() - Test if the folio was referenced. 976 * @folio: The folio to test. 977 * @is_locked: Caller holds lock on the folio. 978 * @memcg: target memory cgroup 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 980 * 981 * Quick test_and_clear_referenced for all mappings of a folio, 982 * 983 * Return: The number of mappings which referenced the folio. Return -1 if 984 * the function bailed out due to rmap lock contention. 985 */ 986 int folio_referenced(struct folio *folio, int is_locked, 987 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 988 { 989 bool we_locked = false; 990 struct folio_referenced_arg pra = { 991 .mapcount = folio_mapcount(folio), 992 .memcg = memcg, 993 }; 994 struct rmap_walk_control rwc = { 995 .rmap_one = folio_referenced_one, 996 .arg = (void *)&pra, 997 .anon_lock = folio_lock_anon_vma_read, 998 .try_lock = true, 999 .invalid_vma = invalid_folio_referenced_vma, 1000 }; 1001 1002 *vm_flags = 0; 1003 if (!pra.mapcount) 1004 return 0; 1005 1006 if (!folio_raw_mapping(folio)) 1007 return 0; 1008 1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1010 we_locked = folio_trylock(folio); 1011 if (!we_locked) 1012 return 1; 1013 } 1014 1015 rmap_walk(folio, &rwc); 1016 *vm_flags = pra.vm_flags; 1017 1018 if (we_locked) 1019 folio_unlock(folio); 1020 1021 return rwc.contended ? -1 : pra.referenced; 1022 } 1023 1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1025 { 1026 int cleaned = 0; 1027 struct vm_area_struct *vma = pvmw->vma; 1028 struct mmu_notifier_range range; 1029 unsigned long address = pvmw->address; 1030 1031 /* 1032 * We have to assume the worse case ie pmd for invalidation. Note that 1033 * the folio can not be freed from this function. 1034 */ 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1036 vma->vm_mm, address, vma_address_end(pvmw)); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 while (page_vma_mapped_walk(pvmw)) { 1040 int ret = 0; 1041 1042 address = pvmw->address; 1043 if (pvmw->pte) { 1044 pte_t *pte = pvmw->pte; 1045 pte_t entry = ptep_get(pte); 1046 1047 /* 1048 * PFN swap PTEs, such as device-exclusive ones, that 1049 * actually map pages are clean and not writable from a 1050 * CPU perspective. The MMU notifier takes care of any 1051 * device aspects. 1052 */ 1053 if (!pte_present(entry)) 1054 continue; 1055 if (!pte_dirty(entry) && !pte_write(entry)) 1056 continue; 1057 1058 flush_cache_page(vma, address, pte_pfn(entry)); 1059 entry = ptep_clear_flush(vma, address, pte); 1060 entry = pte_wrprotect(entry); 1061 entry = pte_mkclean(entry); 1062 set_pte_at(vma->vm_mm, address, pte, entry); 1063 ret = 1; 1064 } else { 1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1066 pmd_t *pmd = pvmw->pmd; 1067 pmd_t entry; 1068 1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1070 continue; 1071 1072 flush_cache_range(vma, address, 1073 address + HPAGE_PMD_SIZE); 1074 entry = pmdp_invalidate(vma, address, pmd); 1075 entry = pmd_wrprotect(entry); 1076 entry = pmd_mkclean(entry); 1077 set_pmd_at(vma->vm_mm, address, pmd, entry); 1078 ret = 1; 1079 #else 1080 /* unexpected pmd-mapped folio? */ 1081 WARN_ON_ONCE(1); 1082 #endif 1083 } 1084 1085 if (ret) 1086 cleaned++; 1087 } 1088 1089 mmu_notifier_invalidate_range_end(&range); 1090 1091 return cleaned; 1092 } 1093 1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1095 unsigned long address, void *arg) 1096 { 1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1098 int *cleaned = arg; 1099 1100 *cleaned += page_vma_mkclean_one(&pvmw); 1101 1102 return true; 1103 } 1104 1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1106 { 1107 if (vma->vm_flags & VM_SHARED) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 int folio_mkclean(struct folio *folio) 1114 { 1115 int cleaned = 0; 1116 struct address_space *mapping; 1117 struct rmap_walk_control rwc = { 1118 .arg = (void *)&cleaned, 1119 .rmap_one = page_mkclean_one, 1120 .invalid_vma = invalid_mkclean_vma, 1121 }; 1122 1123 BUG_ON(!folio_test_locked(folio)); 1124 1125 if (!folio_mapped(folio)) 1126 return 0; 1127 1128 mapping = folio_mapping(folio); 1129 if (!mapping) 1130 return 0; 1131 1132 rmap_walk(folio, &rwc); 1133 1134 return cleaned; 1135 } 1136 EXPORT_SYMBOL_GPL(folio_mkclean); 1137 1138 struct wrprotect_file_state { 1139 int cleaned; 1140 pgoff_t pgoff; 1141 unsigned long pfn; 1142 unsigned long nr_pages; 1143 }; 1144 1145 static bool mapping_wrprotect_range_one(struct folio *folio, 1146 struct vm_area_struct *vma, unsigned long address, void *arg) 1147 { 1148 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1149 struct page_vma_mapped_walk pvmw = { 1150 .pfn = state->pfn, 1151 .nr_pages = state->nr_pages, 1152 .pgoff = state->pgoff, 1153 .vma = vma, 1154 .address = address, 1155 .flags = PVMW_SYNC, 1156 }; 1157 1158 state->cleaned += page_vma_mkclean_one(&pvmw); 1159 1160 return true; 1161 } 1162 1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1164 pgoff_t pgoff_start, unsigned long nr_pages, 1165 struct rmap_walk_control *rwc, bool locked); 1166 1167 /** 1168 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1169 * 1170 * @mapping: The mapping whose reverse mapping should be traversed. 1171 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1172 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1173 * @nr_pages: The number of physically contiguous base pages spanned. 1174 * 1175 * Traverses the reverse mapping, finding all VMAs which contain a shared 1176 * mapping of the pages in the specified range in @mapping, and write-protects 1177 * them (that is, updates the page tables to mark the mappings read-only such 1178 * that a write protection fault arises when the mappings are written to). 1179 * 1180 * The @pfn value need not refer to a folio, but rather can reference a kernel 1181 * allocation which is mapped into userland. We therefore do not require that 1182 * the page maps to a folio with a valid mapping or index field, rather the 1183 * caller specifies these in @mapping and @pgoff. 1184 * 1185 * Return: the number of write-protected PTEs, or an error. 1186 */ 1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1188 unsigned long pfn, unsigned long nr_pages) 1189 { 1190 struct wrprotect_file_state state = { 1191 .cleaned = 0, 1192 .pgoff = pgoff, 1193 .pfn = pfn, 1194 .nr_pages = nr_pages, 1195 }; 1196 struct rmap_walk_control rwc = { 1197 .arg = (void *)&state, 1198 .rmap_one = mapping_wrprotect_range_one, 1199 .invalid_vma = invalid_mkclean_vma, 1200 }; 1201 1202 if (!mapping) 1203 return 0; 1204 1205 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1206 /* locked = */false); 1207 1208 return state.cleaned; 1209 } 1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1211 1212 /** 1213 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1214 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1215 * within the @vma of shared mappings. And since clean PTEs 1216 * should also be readonly, write protects them too. 1217 * @pfn: start pfn. 1218 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1219 * @pgoff: page offset that the @pfn mapped with. 1220 * @vma: vma that @pfn mapped within. 1221 * 1222 * Returns the number of cleaned PTEs (including PMDs). 1223 */ 1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1225 struct vm_area_struct *vma) 1226 { 1227 struct page_vma_mapped_walk pvmw = { 1228 .pfn = pfn, 1229 .nr_pages = nr_pages, 1230 .pgoff = pgoff, 1231 .vma = vma, 1232 .flags = PVMW_SYNC, 1233 }; 1234 1235 if (invalid_mkclean_vma(vma, NULL)) 1236 return 0; 1237 1238 pvmw.address = vma_address(vma, pgoff, nr_pages); 1239 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1240 1241 return page_vma_mkclean_one(&pvmw); 1242 } 1243 1244 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1245 { 1246 int idx; 1247 1248 if (nr) { 1249 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1250 __lruvec_stat_mod_folio(folio, idx, nr); 1251 } 1252 if (nr_pmdmapped) { 1253 if (folio_test_anon(folio)) { 1254 idx = NR_ANON_THPS; 1255 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1256 } else { 1257 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1258 idx = folio_test_swapbacked(folio) ? 1259 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1260 __mod_node_page_state(folio_pgdat(folio), idx, 1261 nr_pmdmapped); 1262 } 1263 } 1264 } 1265 1266 static __always_inline void __folio_add_rmap(struct folio *folio, 1267 struct page *page, int nr_pages, struct vm_area_struct *vma, 1268 enum pgtable_level level) 1269 { 1270 atomic_t *mapped = &folio->_nr_pages_mapped; 1271 const int orig_nr_pages = nr_pages; 1272 int first = 0, nr = 0, nr_pmdmapped = 0; 1273 1274 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1275 1276 switch (level) { 1277 case PGTABLE_LEVEL_PTE: 1278 if (!folio_test_large(folio)) { 1279 nr = atomic_inc_and_test(&folio->_mapcount); 1280 break; 1281 } 1282 1283 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1284 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1285 if (nr == orig_nr_pages) 1286 /* Was completely unmapped. */ 1287 nr = folio_large_nr_pages(folio); 1288 else 1289 nr = 0; 1290 break; 1291 } 1292 1293 do { 1294 first += atomic_inc_and_test(&page->_mapcount); 1295 } while (page++, --nr_pages > 0); 1296 1297 if (first && 1298 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1299 nr = first; 1300 1301 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1302 break; 1303 case PGTABLE_LEVEL_PMD: 1304 case PGTABLE_LEVEL_PUD: 1305 first = atomic_inc_and_test(&folio->_entire_mapcount); 1306 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1307 if (level == PGTABLE_LEVEL_PMD && first) 1308 nr_pmdmapped = folio_large_nr_pages(folio); 1309 nr = folio_inc_return_large_mapcount(folio, vma); 1310 if (nr == 1) 1311 /* Was completely unmapped. */ 1312 nr = folio_large_nr_pages(folio); 1313 else 1314 nr = 0; 1315 break; 1316 } 1317 1318 if (first) { 1319 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1320 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1321 nr_pages = folio_large_nr_pages(folio); 1322 /* 1323 * We only track PMD mappings of PMD-sized 1324 * folios separately. 1325 */ 1326 if (level == PGTABLE_LEVEL_PMD) 1327 nr_pmdmapped = nr_pages; 1328 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1329 /* Raced ahead of a remove and another add? */ 1330 if (unlikely(nr < 0)) 1331 nr = 0; 1332 } else { 1333 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1334 nr = 0; 1335 } 1336 } 1337 folio_inc_large_mapcount(folio, vma); 1338 break; 1339 default: 1340 BUILD_BUG(); 1341 } 1342 __folio_mod_stat(folio, nr, nr_pmdmapped); 1343 } 1344 1345 /** 1346 * folio_move_anon_rmap - move a folio to our anon_vma 1347 * @folio: The folio to move to our anon_vma 1348 * @vma: The vma the folio belongs to 1349 * 1350 * When a folio belongs exclusively to one process after a COW event, 1351 * that folio can be moved into the anon_vma that belongs to just that 1352 * process, so the rmap code will not search the parent or sibling processes. 1353 */ 1354 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1355 { 1356 void *anon_vma = vma->anon_vma; 1357 1358 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1359 VM_BUG_ON_VMA(!anon_vma, vma); 1360 1361 anon_vma += FOLIO_MAPPING_ANON; 1362 /* 1363 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1364 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1365 * folio_test_anon()) will not see one without the other. 1366 */ 1367 WRITE_ONCE(folio->mapping, anon_vma); 1368 } 1369 1370 /** 1371 * __folio_set_anon - set up a new anonymous rmap for a folio 1372 * @folio: The folio to set up the new anonymous rmap for. 1373 * @vma: VM area to add the folio to. 1374 * @address: User virtual address of the mapping 1375 * @exclusive: Whether the folio is exclusive to the process. 1376 */ 1377 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1378 unsigned long address, bool exclusive) 1379 { 1380 struct anon_vma *anon_vma = vma->anon_vma; 1381 1382 BUG_ON(!anon_vma); 1383 1384 /* 1385 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1386 * possible anon_vma for the folio mapping! 1387 */ 1388 if (!exclusive) 1389 anon_vma = anon_vma->root; 1390 1391 /* 1392 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1393 * Make sure the compiler doesn't split the stores of anon_vma and 1394 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1395 * could mistake the mapping for a struct address_space and crash. 1396 */ 1397 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1398 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1399 folio->index = linear_page_index(vma, address); 1400 } 1401 1402 /** 1403 * __page_check_anon_rmap - sanity check anonymous rmap addition 1404 * @folio: The folio containing @page. 1405 * @page: the page to check the mapping of 1406 * @vma: the vm area in which the mapping is added 1407 * @address: the user virtual address mapped 1408 */ 1409 static void __page_check_anon_rmap(const struct folio *folio, 1410 const struct page *page, struct vm_area_struct *vma, 1411 unsigned long address) 1412 { 1413 /* 1414 * The page's anon-rmap details (mapping and index) are guaranteed to 1415 * be set up correctly at this point. 1416 * 1417 * We have exclusion against folio_add_anon_rmap_*() because the caller 1418 * always holds the page locked. 1419 * 1420 * We have exclusion against folio_add_new_anon_rmap because those pages 1421 * are initially only visible via the pagetables, and the pte is locked 1422 * over the call to folio_add_new_anon_rmap. 1423 */ 1424 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1425 folio); 1426 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1427 page); 1428 } 1429 1430 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1431 struct page *page, int nr_pages, struct vm_area_struct *vma, 1432 unsigned long address, rmap_t flags, enum pgtable_level level) 1433 { 1434 int i; 1435 1436 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1437 1438 __folio_add_rmap(folio, page, nr_pages, vma, level); 1439 1440 if (likely(!folio_test_ksm(folio))) 1441 __page_check_anon_rmap(folio, page, vma, address); 1442 1443 if (flags & RMAP_EXCLUSIVE) { 1444 switch (level) { 1445 case PGTABLE_LEVEL_PTE: 1446 for (i = 0; i < nr_pages; i++) 1447 SetPageAnonExclusive(page + i); 1448 break; 1449 case PGTABLE_LEVEL_PMD: 1450 SetPageAnonExclusive(page); 1451 break; 1452 case PGTABLE_LEVEL_PUD: 1453 /* 1454 * Keep the compiler happy, we don't support anonymous 1455 * PUD mappings. 1456 */ 1457 WARN_ON_ONCE(1); 1458 break; 1459 default: 1460 BUILD_BUG(); 1461 } 1462 } 1463 1464 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1465 atomic_read(&folio->_mapcount) > 0, folio); 1466 for (i = 0; i < nr_pages; i++) { 1467 struct page *cur_page = page + i; 1468 1469 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1470 folio_entire_mapcount(folio) > 1 && 1471 PageAnonExclusive(cur_page), folio); 1472 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1473 continue; 1474 1475 /* 1476 * While PTE-mapping a THP we have a PMD and a PTE 1477 * mapping. 1478 */ 1479 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1480 PageAnonExclusive(cur_page), folio); 1481 } 1482 1483 /* 1484 * For large folio, only mlock it if it's fully mapped to VMA. It's 1485 * not easy to check whether the large folio is fully mapped to VMA 1486 * here. Only mlock normal 4K folio and leave page reclaim to handle 1487 * large folio. 1488 */ 1489 if (!folio_test_large(folio)) 1490 mlock_vma_folio(folio, vma); 1491 } 1492 1493 /** 1494 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1495 * @folio: The folio to add the mappings to 1496 * @page: The first page to add 1497 * @nr_pages: The number of pages which will be mapped 1498 * @vma: The vm area in which the mappings are added 1499 * @address: The user virtual address of the first page to map 1500 * @flags: The rmap flags 1501 * 1502 * The page range of folio is defined by [first_page, first_page + nr_pages) 1503 * 1504 * The caller needs to hold the page table lock, and the page must be locked in 1505 * the anon_vma case: to serialize mapping,index checking after setting, 1506 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1507 * (but KSM folios are never downgraded). 1508 */ 1509 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1510 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1511 rmap_t flags) 1512 { 1513 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1514 PGTABLE_LEVEL_PTE); 1515 } 1516 1517 /** 1518 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1519 * @folio: The folio to add the mapping to 1520 * @page: The first page to add 1521 * @vma: The vm area in which the mapping is added 1522 * @address: The user virtual address of the first page to map 1523 * @flags: The rmap flags 1524 * 1525 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1526 * 1527 * The caller needs to hold the page table lock, and the page must be locked in 1528 * the anon_vma case: to serialize mapping,index checking after setting. 1529 */ 1530 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1531 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1532 { 1533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1534 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1535 PGTABLE_LEVEL_PMD); 1536 #else 1537 WARN_ON_ONCE(true); 1538 #endif 1539 } 1540 1541 /** 1542 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1543 * @folio: The folio to add the mapping to. 1544 * @vma: the vm area in which the mapping is added 1545 * @address: the user virtual address mapped 1546 * @flags: The rmap flags 1547 * 1548 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1549 * This means the inc-and-test can be bypassed. 1550 * The folio doesn't necessarily need to be locked while it's exclusive 1551 * unless two threads map it concurrently. However, the folio must be 1552 * locked if it's shared. 1553 * 1554 * If the folio is pmd-mappable, it is accounted as a THP. 1555 */ 1556 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1557 unsigned long address, rmap_t flags) 1558 { 1559 const bool exclusive = flags & RMAP_EXCLUSIVE; 1560 int nr = 1, nr_pmdmapped = 0; 1561 1562 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1563 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1564 1565 /* 1566 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1567 * under memory pressure. 1568 */ 1569 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1570 __folio_set_swapbacked(folio); 1571 __folio_set_anon(folio, vma, address, exclusive); 1572 1573 if (likely(!folio_test_large(folio))) { 1574 /* increment count (starts at -1) */ 1575 atomic_set(&folio->_mapcount, 0); 1576 if (exclusive) 1577 SetPageAnonExclusive(&folio->page); 1578 } else if (!folio_test_pmd_mappable(folio)) { 1579 int i; 1580 1581 nr = folio_large_nr_pages(folio); 1582 for (i = 0; i < nr; i++) { 1583 struct page *page = folio_page(folio, i); 1584 1585 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1586 /* increment count (starts at -1) */ 1587 atomic_set(&page->_mapcount, 0); 1588 if (exclusive) 1589 SetPageAnonExclusive(page); 1590 } 1591 1592 folio_set_large_mapcount(folio, nr, vma); 1593 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1594 atomic_set(&folio->_nr_pages_mapped, nr); 1595 } else { 1596 nr = folio_large_nr_pages(folio); 1597 /* increment count (starts at -1) */ 1598 atomic_set(&folio->_entire_mapcount, 0); 1599 folio_set_large_mapcount(folio, 1, vma); 1600 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1601 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1602 if (exclusive) 1603 SetPageAnonExclusive(&folio->page); 1604 nr_pmdmapped = nr; 1605 } 1606 1607 VM_WARN_ON_ONCE(address < vma->vm_start || 1608 address + (nr << PAGE_SHIFT) > vma->vm_end); 1609 1610 __folio_mod_stat(folio, nr, nr_pmdmapped); 1611 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1612 } 1613 1614 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1615 struct page *page, int nr_pages, struct vm_area_struct *vma, 1616 enum pgtable_level level) 1617 { 1618 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1619 1620 __folio_add_rmap(folio, page, nr_pages, vma, level); 1621 1622 /* See comments in folio_add_anon_rmap_*() */ 1623 if (!folio_test_large(folio)) 1624 mlock_vma_folio(folio, vma); 1625 } 1626 1627 /** 1628 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1629 * @folio: The folio to add the mappings to 1630 * @page: The first page to add 1631 * @nr_pages: The number of pages that will be mapped using PTEs 1632 * @vma: The vm area in which the mappings are added 1633 * 1634 * The page range of the folio is defined by [page, page + nr_pages) 1635 * 1636 * The caller needs to hold the page table lock. 1637 */ 1638 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1639 int nr_pages, struct vm_area_struct *vma) 1640 { 1641 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1642 } 1643 1644 /** 1645 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1646 * @folio: The folio to add the mapping to 1647 * @page: The first page to add 1648 * @vma: The vm area in which the mapping is added 1649 * 1650 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1651 * 1652 * The caller needs to hold the page table lock. 1653 */ 1654 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1655 struct vm_area_struct *vma) 1656 { 1657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1658 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1659 #else 1660 WARN_ON_ONCE(true); 1661 #endif 1662 } 1663 1664 /** 1665 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1666 * @folio: The folio to add the mapping to 1667 * @page: The first page to add 1668 * @vma: The vm area in which the mapping is added 1669 * 1670 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1671 * 1672 * The caller needs to hold the page table lock. 1673 */ 1674 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1675 struct vm_area_struct *vma) 1676 { 1677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1678 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1679 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1680 #else 1681 WARN_ON_ONCE(true); 1682 #endif 1683 } 1684 1685 static __always_inline void __folio_remove_rmap(struct folio *folio, 1686 struct page *page, int nr_pages, struct vm_area_struct *vma, 1687 enum pgtable_level level) 1688 { 1689 atomic_t *mapped = &folio->_nr_pages_mapped; 1690 int last = 0, nr = 0, nr_pmdmapped = 0; 1691 bool partially_mapped = false; 1692 1693 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1694 1695 switch (level) { 1696 case PGTABLE_LEVEL_PTE: 1697 if (!folio_test_large(folio)) { 1698 nr = atomic_add_negative(-1, &folio->_mapcount); 1699 break; 1700 } 1701 1702 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1703 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1704 if (!nr) { 1705 /* Now completely unmapped. */ 1706 nr = folio_nr_pages(folio); 1707 } else { 1708 partially_mapped = nr < folio_large_nr_pages(folio) && 1709 !folio_entire_mapcount(folio); 1710 nr = 0; 1711 } 1712 break; 1713 } 1714 1715 folio_sub_large_mapcount(folio, nr_pages, vma); 1716 do { 1717 last += atomic_add_negative(-1, &page->_mapcount); 1718 } while (page++, --nr_pages > 0); 1719 1720 if (last && 1721 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1722 nr = last; 1723 1724 partially_mapped = nr && atomic_read(mapped); 1725 break; 1726 case PGTABLE_LEVEL_PMD: 1727 case PGTABLE_LEVEL_PUD: 1728 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1729 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1730 if (level == PGTABLE_LEVEL_PMD && last) 1731 nr_pmdmapped = folio_large_nr_pages(folio); 1732 nr = folio_dec_return_large_mapcount(folio, vma); 1733 if (!nr) { 1734 /* Now completely unmapped. */ 1735 nr = folio_large_nr_pages(folio); 1736 } else { 1737 partially_mapped = last && 1738 nr < folio_large_nr_pages(folio); 1739 nr = 0; 1740 } 1741 break; 1742 } 1743 1744 folio_dec_large_mapcount(folio, vma); 1745 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1746 if (last) { 1747 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1748 if (likely(nr < ENTIRELY_MAPPED)) { 1749 nr_pages = folio_large_nr_pages(folio); 1750 if (level == PGTABLE_LEVEL_PMD) 1751 nr_pmdmapped = nr_pages; 1752 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1753 /* Raced ahead of another remove and an add? */ 1754 if (unlikely(nr < 0)) 1755 nr = 0; 1756 } else { 1757 /* An add of ENTIRELY_MAPPED raced ahead */ 1758 nr = 0; 1759 } 1760 } 1761 1762 partially_mapped = nr && nr < nr_pmdmapped; 1763 break; 1764 default: 1765 BUILD_BUG(); 1766 } 1767 1768 /* 1769 * Queue anon large folio for deferred split if at least one page of 1770 * the folio is unmapped and at least one page is still mapped. 1771 * 1772 * Check partially_mapped first to ensure it is a large folio. 1773 */ 1774 if (partially_mapped && folio_test_anon(folio) && 1775 !folio_test_partially_mapped(folio)) 1776 deferred_split_folio(folio, true); 1777 1778 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1779 1780 /* 1781 * It would be tidy to reset folio_test_anon mapping when fully 1782 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1783 * which increments mapcount after us but sets mapping before us: 1784 * so leave the reset to free_pages_prepare, and remember that 1785 * it's only reliable while mapped. 1786 */ 1787 1788 munlock_vma_folio(folio, vma); 1789 } 1790 1791 /** 1792 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1793 * @folio: The folio to remove the mappings from 1794 * @page: The first page to remove 1795 * @nr_pages: The number of pages that will be removed from the mapping 1796 * @vma: The vm area from which the mappings are removed 1797 * 1798 * The page range of the folio is defined by [page, page + nr_pages) 1799 * 1800 * The caller needs to hold the page table lock. 1801 */ 1802 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1803 int nr_pages, struct vm_area_struct *vma) 1804 { 1805 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1806 } 1807 1808 /** 1809 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1810 * @folio: The folio to remove the mapping from 1811 * @page: The first page to remove 1812 * @vma: The vm area from which the mapping is removed 1813 * 1814 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1815 * 1816 * The caller needs to hold the page table lock. 1817 */ 1818 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1819 struct vm_area_struct *vma) 1820 { 1821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1822 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1823 #else 1824 WARN_ON_ONCE(true); 1825 #endif 1826 } 1827 1828 /** 1829 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1830 * @folio: The folio to remove the mapping from 1831 * @page: The first page to remove 1832 * @vma: The vm area from which the mapping is removed 1833 * 1834 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1835 * 1836 * The caller needs to hold the page table lock. 1837 */ 1838 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1839 struct vm_area_struct *vma) 1840 { 1841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1842 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1843 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1844 #else 1845 WARN_ON_ONCE(true); 1846 #endif 1847 } 1848 1849 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1850 struct page_vma_mapped_walk *pvmw, 1851 enum ttu_flags flags, pte_t pte) 1852 { 1853 unsigned long end_addr, addr = pvmw->address; 1854 struct vm_area_struct *vma = pvmw->vma; 1855 unsigned int max_nr; 1856 1857 if (flags & TTU_HWPOISON) 1858 return 1; 1859 if (!folio_test_large(folio)) 1860 return 1; 1861 1862 /* We may only batch within a single VMA and a single page table. */ 1863 end_addr = pmd_addr_end(addr, vma->vm_end); 1864 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1865 1866 /* We only support lazyfree batching for now ... */ 1867 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1868 return 1; 1869 if (pte_unused(pte)) 1870 return 1; 1871 1872 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1873 } 1874 1875 /* 1876 * @arg: enum ttu_flags will be passed to this argument 1877 */ 1878 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1879 unsigned long address, void *arg) 1880 { 1881 struct mm_struct *mm = vma->vm_mm; 1882 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1883 bool anon_exclusive, ret = true; 1884 pte_t pteval; 1885 struct page *subpage; 1886 struct mmu_notifier_range range; 1887 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1888 unsigned long nr_pages = 1, end_addr; 1889 unsigned long pfn; 1890 unsigned long hsz = 0; 1891 1892 /* 1893 * When racing against e.g. zap_pte_range() on another cpu, 1894 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1895 * try_to_unmap() may return before page_mapped() has become false, 1896 * if page table locking is skipped: use TTU_SYNC to wait for that. 1897 */ 1898 if (flags & TTU_SYNC) 1899 pvmw.flags = PVMW_SYNC; 1900 1901 /* 1902 * For THP, we have to assume the worse case ie pmd for invalidation. 1903 * For hugetlb, it could be much worse if we need to do pud 1904 * invalidation in the case of pmd sharing. 1905 * 1906 * Note that the folio can not be freed in this function as call of 1907 * try_to_unmap() must hold a reference on the folio. 1908 */ 1909 range.end = vma_address_end(&pvmw); 1910 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1911 address, range.end); 1912 if (folio_test_hugetlb(folio)) { 1913 /* 1914 * If sharing is possible, start and end will be adjusted 1915 * accordingly. 1916 */ 1917 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1918 &range.end); 1919 1920 /* We need the huge page size for set_huge_pte_at() */ 1921 hsz = huge_page_size(hstate_vma(vma)); 1922 } 1923 mmu_notifier_invalidate_range_start(&range); 1924 1925 while (page_vma_mapped_walk(&pvmw)) { 1926 /* 1927 * If the folio is in an mlock()d vma, we must not swap it out. 1928 */ 1929 if (!(flags & TTU_IGNORE_MLOCK) && 1930 (vma->vm_flags & VM_LOCKED)) { 1931 /* Restore the mlock which got missed */ 1932 if (!folio_test_large(folio)) 1933 mlock_vma_folio(folio, vma); 1934 goto walk_abort; 1935 } 1936 1937 if (!pvmw.pte) { 1938 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1939 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1940 goto walk_done; 1941 /* 1942 * unmap_huge_pmd_locked has either already marked 1943 * the folio as swap-backed or decided to retain it 1944 * due to GUP or speculative references. 1945 */ 1946 goto walk_abort; 1947 } 1948 1949 if (flags & TTU_SPLIT_HUGE_PMD) { 1950 /* 1951 * We temporarily have to drop the PTL and 1952 * restart so we can process the PTE-mapped THP. 1953 */ 1954 split_huge_pmd_locked(vma, pvmw.address, 1955 pvmw.pmd, false); 1956 flags &= ~TTU_SPLIT_HUGE_PMD; 1957 page_vma_mapped_walk_restart(&pvmw); 1958 continue; 1959 } 1960 } 1961 1962 /* Unexpected PMD-mapped THP? */ 1963 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1964 1965 /* 1966 * Handle PFN swap PTEs, such as device-exclusive ones, that 1967 * actually map pages. 1968 */ 1969 pteval = ptep_get(pvmw.pte); 1970 if (likely(pte_present(pteval))) { 1971 pfn = pte_pfn(pteval); 1972 } else { 1973 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1974 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1975 } 1976 1977 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1978 address = pvmw.address; 1979 anon_exclusive = folio_test_anon(folio) && 1980 PageAnonExclusive(subpage); 1981 1982 if (folio_test_hugetlb(folio)) { 1983 bool anon = folio_test_anon(folio); 1984 1985 /* 1986 * The try_to_unmap() is only passed a hugetlb page 1987 * in the case where the hugetlb page is poisoned. 1988 */ 1989 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1990 /* 1991 * huge_pmd_unshare may unmap an entire PMD page. 1992 * There is no way of knowing exactly which PMDs may 1993 * be cached for this mm, so we must flush them all. 1994 * start/end were already adjusted above to cover this 1995 * range. 1996 */ 1997 flush_cache_range(vma, range.start, range.end); 1998 1999 /* 2000 * To call huge_pmd_unshare, i_mmap_rwsem must be 2001 * held in write mode. Caller needs to explicitly 2002 * do this outside rmap routines. 2003 * 2004 * We also must hold hugetlb vma_lock in write mode. 2005 * Lock order dictates acquiring vma_lock BEFORE 2006 * i_mmap_rwsem. We can only try lock here and fail 2007 * if unsuccessful. 2008 */ 2009 if (!anon) { 2010 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2011 if (!hugetlb_vma_trylock_write(vma)) 2012 goto walk_abort; 2013 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2014 hugetlb_vma_unlock_write(vma); 2015 flush_tlb_range(vma, 2016 range.start, range.end); 2017 /* 2018 * The ref count of the PMD page was 2019 * dropped which is part of the way map 2020 * counting is done for shared PMDs. 2021 * Return 'true' here. When there is 2022 * no other sharing, huge_pmd_unshare 2023 * returns false and we will unmap the 2024 * actual page and drop map count 2025 * to zero. 2026 */ 2027 goto walk_done; 2028 } 2029 hugetlb_vma_unlock_write(vma); 2030 } 2031 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2032 if (pte_dirty(pteval)) 2033 folio_mark_dirty(folio); 2034 } else if (likely(pte_present(pteval))) { 2035 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2036 end_addr = address + nr_pages * PAGE_SIZE; 2037 flush_cache_range(vma, address, end_addr); 2038 2039 /* Nuke the page table entry. */ 2040 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); 2041 /* 2042 * We clear the PTE but do not flush so potentially 2043 * a remote CPU could still be writing to the folio. 2044 * If the entry was previously clean then the 2045 * architecture must guarantee that a clear->dirty 2046 * transition on a cached TLB entry is written through 2047 * and traps if the PTE is unmapped. 2048 */ 2049 if (should_defer_flush(mm, flags)) 2050 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2051 else 2052 flush_tlb_range(vma, address, end_addr); 2053 if (pte_dirty(pteval)) 2054 folio_mark_dirty(folio); 2055 } else { 2056 pte_clear(mm, address, pvmw.pte); 2057 } 2058 2059 /* 2060 * Now the pte is cleared. If this pte was uffd-wp armed, 2061 * we may want to replace a none pte with a marker pte if 2062 * it's file-backed, so we don't lose the tracking info. 2063 */ 2064 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2065 2066 /* Update high watermark before we lower rss */ 2067 update_hiwater_rss(mm); 2068 2069 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2070 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2071 if (folio_test_hugetlb(folio)) { 2072 hugetlb_count_sub(folio_nr_pages(folio), mm); 2073 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2074 hsz); 2075 } else { 2076 dec_mm_counter(mm, mm_counter(folio)); 2077 set_pte_at(mm, address, pvmw.pte, pteval); 2078 } 2079 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2080 !userfaultfd_armed(vma)) { 2081 /* 2082 * The guest indicated that the page content is of no 2083 * interest anymore. Simply discard the pte, vmscan 2084 * will take care of the rest. 2085 * A future reference will then fault in a new zero 2086 * page. When userfaultfd is active, we must not drop 2087 * this page though, as its main user (postcopy 2088 * migration) will not expect userfaults on already 2089 * copied pages. 2090 */ 2091 dec_mm_counter(mm, mm_counter(folio)); 2092 } else if (folio_test_anon(folio)) { 2093 swp_entry_t entry = page_swap_entry(subpage); 2094 pte_t swp_pte; 2095 /* 2096 * Store the swap location in the pte. 2097 * See handle_pte_fault() ... 2098 */ 2099 if (unlikely(folio_test_swapbacked(folio) != 2100 folio_test_swapcache(folio))) { 2101 WARN_ON_ONCE(1); 2102 goto walk_abort; 2103 } 2104 2105 /* MADV_FREE page check */ 2106 if (!folio_test_swapbacked(folio)) { 2107 int ref_count, map_count; 2108 2109 /* 2110 * Synchronize with gup_pte_range(): 2111 * - clear PTE; barrier; read refcount 2112 * - inc refcount; barrier; read PTE 2113 */ 2114 smp_mb(); 2115 2116 ref_count = folio_ref_count(folio); 2117 map_count = folio_mapcount(folio); 2118 2119 /* 2120 * Order reads for page refcount and dirty flag 2121 * (see comments in __remove_mapping()). 2122 */ 2123 smp_rmb(); 2124 2125 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2126 /* 2127 * redirtied either using the page table or a previously 2128 * obtained GUP reference. 2129 */ 2130 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2131 folio_set_swapbacked(folio); 2132 goto walk_abort; 2133 } else if (ref_count != 1 + map_count) { 2134 /* 2135 * Additional reference. Could be a GUP reference or any 2136 * speculative reference. GUP users must mark the folio 2137 * dirty if there was a modification. This folio cannot be 2138 * reclaimed right now either way, so act just like nothing 2139 * happened. 2140 * We'll come back here later and detect if the folio was 2141 * dirtied when the additional reference is gone. 2142 */ 2143 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2144 goto walk_abort; 2145 } 2146 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2147 goto discard; 2148 } 2149 2150 if (swap_duplicate(entry) < 0) { 2151 set_pte_at(mm, address, pvmw.pte, pteval); 2152 goto walk_abort; 2153 } 2154 2155 /* 2156 * arch_unmap_one() is expected to be a NOP on 2157 * architectures where we could have PFN swap PTEs, 2158 * so we'll not check/care. 2159 */ 2160 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2161 swap_free(entry); 2162 set_pte_at(mm, address, pvmw.pte, pteval); 2163 goto walk_abort; 2164 } 2165 2166 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2167 if (anon_exclusive && 2168 folio_try_share_anon_rmap_pte(folio, subpage)) { 2169 swap_free(entry); 2170 set_pte_at(mm, address, pvmw.pte, pteval); 2171 goto walk_abort; 2172 } 2173 if (list_empty(&mm->mmlist)) { 2174 spin_lock(&mmlist_lock); 2175 if (list_empty(&mm->mmlist)) 2176 list_add(&mm->mmlist, &init_mm.mmlist); 2177 spin_unlock(&mmlist_lock); 2178 } 2179 dec_mm_counter(mm, MM_ANONPAGES); 2180 inc_mm_counter(mm, MM_SWAPENTS); 2181 swp_pte = swp_entry_to_pte(entry); 2182 if (anon_exclusive) 2183 swp_pte = pte_swp_mkexclusive(swp_pte); 2184 if (likely(pte_present(pteval))) { 2185 if (pte_soft_dirty(pteval)) 2186 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2187 if (pte_uffd_wp(pteval)) 2188 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2189 } else { 2190 if (pte_swp_soft_dirty(pteval)) 2191 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2192 if (pte_swp_uffd_wp(pteval)) 2193 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2194 } 2195 set_pte_at(mm, address, pvmw.pte, swp_pte); 2196 } else { 2197 /* 2198 * This is a locked file-backed folio, 2199 * so it cannot be removed from the page 2200 * cache and replaced by a new folio before 2201 * mmu_notifier_invalidate_range_end, so no 2202 * concurrent thread might update its page table 2203 * to point at a new folio while a device is 2204 * still using this folio. 2205 * 2206 * See Documentation/mm/mmu_notifier.rst 2207 */ 2208 dec_mm_counter(mm, mm_counter_file(folio)); 2209 } 2210 discard: 2211 if (unlikely(folio_test_hugetlb(folio))) { 2212 hugetlb_remove_rmap(folio); 2213 } else { 2214 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2215 } 2216 if (vma->vm_flags & VM_LOCKED) 2217 mlock_drain_local(); 2218 folio_put_refs(folio, nr_pages); 2219 2220 /* 2221 * If we are sure that we batched the entire folio and cleared 2222 * all PTEs, we can just optimize and stop right here. 2223 */ 2224 if (nr_pages == folio_nr_pages(folio)) 2225 goto walk_done; 2226 continue; 2227 walk_abort: 2228 ret = false; 2229 walk_done: 2230 page_vma_mapped_walk_done(&pvmw); 2231 break; 2232 } 2233 2234 mmu_notifier_invalidate_range_end(&range); 2235 2236 return ret; 2237 } 2238 2239 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2240 { 2241 return vma_is_temporary_stack(vma); 2242 } 2243 2244 static int folio_not_mapped(struct folio *folio) 2245 { 2246 return !folio_mapped(folio); 2247 } 2248 2249 /** 2250 * try_to_unmap - Try to remove all page table mappings to a folio. 2251 * @folio: The folio to unmap. 2252 * @flags: action and flags 2253 * 2254 * Tries to remove all the page table entries which are mapping this 2255 * folio. It is the caller's responsibility to check if the folio is 2256 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2257 * 2258 * Context: Caller must hold the folio lock. 2259 */ 2260 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2261 { 2262 struct rmap_walk_control rwc = { 2263 .rmap_one = try_to_unmap_one, 2264 .arg = (void *)flags, 2265 .done = folio_not_mapped, 2266 .anon_lock = folio_lock_anon_vma_read, 2267 }; 2268 2269 if (flags & TTU_RMAP_LOCKED) 2270 rmap_walk_locked(folio, &rwc); 2271 else 2272 rmap_walk(folio, &rwc); 2273 } 2274 2275 /* 2276 * @arg: enum ttu_flags will be passed to this argument. 2277 * 2278 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2279 * containing migration entries. 2280 */ 2281 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2282 unsigned long address, void *arg) 2283 { 2284 struct mm_struct *mm = vma->vm_mm; 2285 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2286 bool anon_exclusive, writable, ret = true; 2287 pte_t pteval; 2288 struct page *subpage; 2289 struct mmu_notifier_range range; 2290 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2291 unsigned long pfn; 2292 unsigned long hsz = 0; 2293 2294 /* 2295 * When racing against e.g. zap_pte_range() on another cpu, 2296 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2297 * try_to_migrate() may return before page_mapped() has become false, 2298 * if page table locking is skipped: use TTU_SYNC to wait for that. 2299 */ 2300 if (flags & TTU_SYNC) 2301 pvmw.flags = PVMW_SYNC; 2302 2303 /* 2304 * For THP, we have to assume the worse case ie pmd for invalidation. 2305 * For hugetlb, it could be much worse if we need to do pud 2306 * invalidation in the case of pmd sharing. 2307 * 2308 * Note that the page can not be free in this function as call of 2309 * try_to_unmap() must hold a reference on the page. 2310 */ 2311 range.end = vma_address_end(&pvmw); 2312 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2313 address, range.end); 2314 if (folio_test_hugetlb(folio)) { 2315 /* 2316 * If sharing is possible, start and end will be adjusted 2317 * accordingly. 2318 */ 2319 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2320 &range.end); 2321 2322 /* We need the huge page size for set_huge_pte_at() */ 2323 hsz = huge_page_size(hstate_vma(vma)); 2324 } 2325 mmu_notifier_invalidate_range_start(&range); 2326 2327 while (page_vma_mapped_walk(&pvmw)) { 2328 /* PMD-mapped THP migration entry */ 2329 if (!pvmw.pte) { 2330 if (flags & TTU_SPLIT_HUGE_PMD) { 2331 split_huge_pmd_locked(vma, pvmw.address, 2332 pvmw.pmd, true); 2333 ret = false; 2334 page_vma_mapped_walk_done(&pvmw); 2335 break; 2336 } 2337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2338 subpage = folio_page(folio, 2339 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2340 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2341 !folio_test_pmd_mappable(folio), folio); 2342 2343 if (set_pmd_migration_entry(&pvmw, subpage)) { 2344 ret = false; 2345 page_vma_mapped_walk_done(&pvmw); 2346 break; 2347 } 2348 continue; 2349 #endif 2350 } 2351 2352 /* Unexpected PMD-mapped THP? */ 2353 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2354 2355 /* 2356 * Handle PFN swap PTEs, such as device-exclusive ones, that 2357 * actually map pages. 2358 */ 2359 pteval = ptep_get(pvmw.pte); 2360 if (likely(pte_present(pteval))) { 2361 pfn = pte_pfn(pteval); 2362 } else { 2363 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2364 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2365 } 2366 2367 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2368 address = pvmw.address; 2369 anon_exclusive = folio_test_anon(folio) && 2370 PageAnonExclusive(subpage); 2371 2372 if (folio_test_hugetlb(folio)) { 2373 bool anon = folio_test_anon(folio); 2374 2375 /* 2376 * huge_pmd_unshare may unmap an entire PMD page. 2377 * There is no way of knowing exactly which PMDs may 2378 * be cached for this mm, so we must flush them all. 2379 * start/end were already adjusted above to cover this 2380 * range. 2381 */ 2382 flush_cache_range(vma, range.start, range.end); 2383 2384 /* 2385 * To call huge_pmd_unshare, i_mmap_rwsem must be 2386 * held in write mode. Caller needs to explicitly 2387 * do this outside rmap routines. 2388 * 2389 * We also must hold hugetlb vma_lock in write mode. 2390 * Lock order dictates acquiring vma_lock BEFORE 2391 * i_mmap_rwsem. We can only try lock here and 2392 * fail if unsuccessful. 2393 */ 2394 if (!anon) { 2395 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2396 if (!hugetlb_vma_trylock_write(vma)) { 2397 page_vma_mapped_walk_done(&pvmw); 2398 ret = false; 2399 break; 2400 } 2401 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2402 hugetlb_vma_unlock_write(vma); 2403 flush_tlb_range(vma, 2404 range.start, range.end); 2405 2406 /* 2407 * The ref count of the PMD page was 2408 * dropped which is part of the way map 2409 * counting is done for shared PMDs. 2410 * Return 'true' here. When there is 2411 * no other sharing, huge_pmd_unshare 2412 * returns false and we will unmap the 2413 * actual page and drop map count 2414 * to zero. 2415 */ 2416 page_vma_mapped_walk_done(&pvmw); 2417 break; 2418 } 2419 hugetlb_vma_unlock_write(vma); 2420 } 2421 /* Nuke the hugetlb page table entry */ 2422 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2423 if (pte_dirty(pteval)) 2424 folio_mark_dirty(folio); 2425 writable = pte_write(pteval); 2426 } else if (likely(pte_present(pteval))) { 2427 flush_cache_page(vma, address, pfn); 2428 /* Nuke the page table entry. */ 2429 if (should_defer_flush(mm, flags)) { 2430 /* 2431 * We clear the PTE but do not flush so potentially 2432 * a remote CPU could still be writing to the folio. 2433 * If the entry was previously clean then the 2434 * architecture must guarantee that a clear->dirty 2435 * transition on a cached TLB entry is written through 2436 * and traps if the PTE is unmapped. 2437 */ 2438 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2439 2440 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2441 } else { 2442 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2443 } 2444 if (pte_dirty(pteval)) 2445 folio_mark_dirty(folio); 2446 writable = pte_write(pteval); 2447 } else { 2448 pte_clear(mm, address, pvmw.pte); 2449 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2450 } 2451 2452 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2453 !anon_exclusive, folio); 2454 2455 /* Update high watermark before we lower rss */ 2456 update_hiwater_rss(mm); 2457 2458 if (PageHWPoison(subpage)) { 2459 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2460 2461 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2462 if (folio_test_hugetlb(folio)) { 2463 hugetlb_count_sub(folio_nr_pages(folio), mm); 2464 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2465 hsz); 2466 } else { 2467 dec_mm_counter(mm, mm_counter(folio)); 2468 set_pte_at(mm, address, pvmw.pte, pteval); 2469 } 2470 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2471 !userfaultfd_armed(vma)) { 2472 /* 2473 * The guest indicated that the page content is of no 2474 * interest anymore. Simply discard the pte, vmscan 2475 * will take care of the rest. 2476 * A future reference will then fault in a new zero 2477 * page. When userfaultfd is active, we must not drop 2478 * this page though, as its main user (postcopy 2479 * migration) will not expect userfaults on already 2480 * copied pages. 2481 */ 2482 dec_mm_counter(mm, mm_counter(folio)); 2483 } else { 2484 swp_entry_t entry; 2485 pte_t swp_pte; 2486 2487 /* 2488 * arch_unmap_one() is expected to be a NOP on 2489 * architectures where we could have PFN swap PTEs, 2490 * so we'll not check/care. 2491 */ 2492 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2493 if (folio_test_hugetlb(folio)) 2494 set_huge_pte_at(mm, address, pvmw.pte, 2495 pteval, hsz); 2496 else 2497 set_pte_at(mm, address, pvmw.pte, pteval); 2498 ret = false; 2499 page_vma_mapped_walk_done(&pvmw); 2500 break; 2501 } 2502 2503 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2504 if (folio_test_hugetlb(folio)) { 2505 if (anon_exclusive && 2506 hugetlb_try_share_anon_rmap(folio)) { 2507 set_huge_pte_at(mm, address, pvmw.pte, 2508 pteval, hsz); 2509 ret = false; 2510 page_vma_mapped_walk_done(&pvmw); 2511 break; 2512 } 2513 } else if (anon_exclusive && 2514 folio_try_share_anon_rmap_pte(folio, subpage)) { 2515 set_pte_at(mm, address, pvmw.pte, pteval); 2516 ret = false; 2517 page_vma_mapped_walk_done(&pvmw); 2518 break; 2519 } 2520 2521 /* 2522 * Store the pfn of the page in a special migration 2523 * pte. do_swap_page() will wait until the migration 2524 * pte is removed and then restart fault handling. 2525 */ 2526 if (writable) 2527 entry = make_writable_migration_entry( 2528 page_to_pfn(subpage)); 2529 else if (anon_exclusive) 2530 entry = make_readable_exclusive_migration_entry( 2531 page_to_pfn(subpage)); 2532 else 2533 entry = make_readable_migration_entry( 2534 page_to_pfn(subpage)); 2535 if (likely(pte_present(pteval))) { 2536 if (pte_young(pteval)) 2537 entry = make_migration_entry_young(entry); 2538 if (pte_dirty(pteval)) 2539 entry = make_migration_entry_dirty(entry); 2540 swp_pte = swp_entry_to_pte(entry); 2541 if (pte_soft_dirty(pteval)) 2542 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2543 if (pte_uffd_wp(pteval)) 2544 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2545 } else { 2546 swp_pte = swp_entry_to_pte(entry); 2547 if (pte_swp_soft_dirty(pteval)) 2548 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2549 if (pte_swp_uffd_wp(pteval)) 2550 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2551 } 2552 if (folio_test_hugetlb(folio)) 2553 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2554 hsz); 2555 else 2556 set_pte_at(mm, address, pvmw.pte, swp_pte); 2557 trace_set_migration_pte(address, pte_val(swp_pte), 2558 folio_order(folio)); 2559 /* 2560 * No need to invalidate here it will synchronize on 2561 * against the special swap migration pte. 2562 */ 2563 } 2564 2565 if (unlikely(folio_test_hugetlb(folio))) 2566 hugetlb_remove_rmap(folio); 2567 else 2568 folio_remove_rmap_pte(folio, subpage, vma); 2569 if (vma->vm_flags & VM_LOCKED) 2570 mlock_drain_local(); 2571 folio_put(folio); 2572 } 2573 2574 mmu_notifier_invalidate_range_end(&range); 2575 2576 return ret; 2577 } 2578 2579 /** 2580 * try_to_migrate - try to replace all page table mappings with swap entries 2581 * @folio: the folio to replace page table entries for 2582 * @flags: action and flags 2583 * 2584 * Tries to remove all the page table entries which are mapping this folio and 2585 * replace them with special swap entries. Caller must hold the folio lock. 2586 */ 2587 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2588 { 2589 struct rmap_walk_control rwc = { 2590 .rmap_one = try_to_migrate_one, 2591 .arg = (void *)flags, 2592 .done = folio_not_mapped, 2593 .anon_lock = folio_lock_anon_vma_read, 2594 }; 2595 2596 /* 2597 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2598 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2599 */ 2600 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2601 TTU_SYNC | TTU_BATCH_FLUSH))) 2602 return; 2603 2604 if (folio_is_zone_device(folio) && 2605 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2606 return; 2607 2608 /* 2609 * During exec, a temporary VMA is setup and later moved. 2610 * The VMA is moved under the anon_vma lock but not the 2611 * page tables leading to a race where migration cannot 2612 * find the migration ptes. Rather than increasing the 2613 * locking requirements of exec(), migration skips 2614 * temporary VMAs until after exec() completes. 2615 */ 2616 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2617 rwc.invalid_vma = invalid_migration_vma; 2618 2619 if (flags & TTU_RMAP_LOCKED) 2620 rmap_walk_locked(folio, &rwc); 2621 else 2622 rmap_walk(folio, &rwc); 2623 } 2624 2625 #ifdef CONFIG_DEVICE_PRIVATE 2626 /** 2627 * make_device_exclusive() - Mark a page for exclusive use by a device 2628 * @mm: mm_struct of associated target process 2629 * @addr: the virtual address to mark for exclusive device access 2630 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2631 * @foliop: folio pointer will be stored here on success. 2632 * 2633 * This function looks up the page mapped at the given address, grabs a 2634 * folio reference, locks the folio and replaces the PTE with special 2635 * device-exclusive PFN swap entry, preventing access through the process 2636 * page tables. The function will return with the folio locked and referenced. 2637 * 2638 * On fault, the device-exclusive entries are replaced with the original PTE 2639 * under folio lock, after calling MMU notifiers. 2640 * 2641 * Only anonymous non-hugetlb folios are supported and the VMA must have 2642 * write permissions such that we can fault in the anonymous page writable 2643 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2644 * mode. 2645 * 2646 * A driver using this to program access from a device must use a mmu notifier 2647 * critical section to hold a device specific lock during programming. Once 2648 * programming is complete it should drop the folio lock and reference after 2649 * which point CPU access to the page will revoke the exclusive access. 2650 * 2651 * Notes: 2652 * #. This function always operates on individual PTEs mapping individual 2653 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2654 * the conversion happens on a single PTE corresponding to @addr. 2655 * #. While concurrent access through the process page tables is prevented, 2656 * concurrent access through other page references (e.g., earlier GUP 2657 * invocation) is not handled and not supported. 2658 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2659 * Device drivers must update the folio state when informed by MMU 2660 * notifiers. 2661 * 2662 * Returns: pointer to mapped page on success, otherwise a negative error. 2663 */ 2664 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2665 void *owner, struct folio **foliop) 2666 { 2667 struct mmu_notifier_range range; 2668 struct folio *folio, *fw_folio; 2669 struct vm_area_struct *vma; 2670 struct folio_walk fw; 2671 struct page *page; 2672 swp_entry_t entry; 2673 pte_t swp_pte; 2674 int ret; 2675 2676 mmap_assert_locked(mm); 2677 addr = PAGE_ALIGN_DOWN(addr); 2678 2679 /* 2680 * Fault in the page writable and try to lock it; note that if the 2681 * address would already be marked for exclusive use by a device, 2682 * the GUP call would undo that first by triggering a fault. 2683 * 2684 * If any other device would already map this page exclusively, the 2685 * fault will trigger a conversion to an ordinary 2686 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2687 */ 2688 retry: 2689 page = get_user_page_vma_remote(mm, addr, 2690 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2691 &vma); 2692 if (IS_ERR(page)) 2693 return page; 2694 folio = page_folio(page); 2695 2696 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2697 folio_put(folio); 2698 return ERR_PTR(-EOPNOTSUPP); 2699 } 2700 2701 ret = folio_lock_killable(folio); 2702 if (ret) { 2703 folio_put(folio); 2704 return ERR_PTR(ret); 2705 } 2706 2707 /* 2708 * Inform secondary MMUs that we are going to convert this PTE to 2709 * device-exclusive, such that they unmap it now. Note that the 2710 * caller must filter this event out to prevent livelocks. 2711 */ 2712 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2713 mm, addr, addr + PAGE_SIZE, owner); 2714 mmu_notifier_invalidate_range_start(&range); 2715 2716 /* 2717 * Let's do a second walk and make sure we still find the same page 2718 * mapped writable. Note that any page of an anonymous folio can 2719 * only be mapped writable using exactly one PTE ("exclusive"), so 2720 * there cannot be other mappings. 2721 */ 2722 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2723 if (fw_folio != folio || fw.page != page || 2724 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2725 if (fw_folio) 2726 folio_walk_end(&fw, vma); 2727 mmu_notifier_invalidate_range_end(&range); 2728 folio_unlock(folio); 2729 folio_put(folio); 2730 goto retry; 2731 } 2732 2733 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2734 flush_cache_page(vma, addr, page_to_pfn(page)); 2735 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2736 2737 /* Set the dirty flag on the folio now the PTE is gone. */ 2738 if (pte_dirty(fw.pte)) 2739 folio_mark_dirty(folio); 2740 2741 /* 2742 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2743 * do_swap_page() will trigger the conversion back while holding the 2744 * folio lock. 2745 */ 2746 entry = make_device_exclusive_entry(page_to_pfn(page)); 2747 swp_pte = swp_entry_to_pte(entry); 2748 if (pte_soft_dirty(fw.pte)) 2749 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2750 /* The pte is writable, uffd-wp does not apply. */ 2751 set_pte_at(mm, addr, fw.ptep, swp_pte); 2752 2753 folio_walk_end(&fw, vma); 2754 mmu_notifier_invalidate_range_end(&range); 2755 *foliop = folio; 2756 return page; 2757 } 2758 EXPORT_SYMBOL_GPL(make_device_exclusive); 2759 #endif 2760 2761 void __put_anon_vma(struct anon_vma *anon_vma) 2762 { 2763 struct anon_vma *root = anon_vma->root; 2764 2765 anon_vma_free(anon_vma); 2766 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2767 anon_vma_free(root); 2768 } 2769 2770 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2771 struct rmap_walk_control *rwc) 2772 { 2773 struct anon_vma *anon_vma; 2774 2775 if (rwc->anon_lock) 2776 return rwc->anon_lock(folio, rwc); 2777 2778 /* 2779 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2780 * because that depends on page_mapped(); but not all its usages 2781 * are holding mmap_lock. Users without mmap_lock are required to 2782 * take a reference count to prevent the anon_vma disappearing 2783 */ 2784 anon_vma = folio_anon_vma(folio); 2785 if (!anon_vma) 2786 return NULL; 2787 2788 if (anon_vma_trylock_read(anon_vma)) 2789 goto out; 2790 2791 if (rwc->try_lock) { 2792 anon_vma = NULL; 2793 rwc->contended = true; 2794 goto out; 2795 } 2796 2797 anon_vma_lock_read(anon_vma); 2798 out: 2799 return anon_vma; 2800 } 2801 2802 /* 2803 * rmap_walk_anon - do something to anonymous page using the object-based 2804 * rmap method 2805 * @folio: the folio to be handled 2806 * @rwc: control variable according to each walk type 2807 * @locked: caller holds relevant rmap lock 2808 * 2809 * Find all the mappings of a folio using the mapping pointer and the vma 2810 * chains contained in the anon_vma struct it points to. 2811 */ 2812 static void rmap_walk_anon(struct folio *folio, 2813 struct rmap_walk_control *rwc, bool locked) 2814 { 2815 struct anon_vma *anon_vma; 2816 pgoff_t pgoff_start, pgoff_end; 2817 struct anon_vma_chain *avc; 2818 2819 if (locked) { 2820 anon_vma = folio_anon_vma(folio); 2821 /* anon_vma disappear under us? */ 2822 VM_BUG_ON_FOLIO(!anon_vma, folio); 2823 } else { 2824 anon_vma = rmap_walk_anon_lock(folio, rwc); 2825 } 2826 if (!anon_vma) 2827 return; 2828 2829 pgoff_start = folio_pgoff(folio); 2830 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2831 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2832 pgoff_start, pgoff_end) { 2833 struct vm_area_struct *vma = avc->vma; 2834 unsigned long address = vma_address(vma, pgoff_start, 2835 folio_nr_pages(folio)); 2836 2837 VM_BUG_ON_VMA(address == -EFAULT, vma); 2838 cond_resched(); 2839 2840 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2841 continue; 2842 2843 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2844 break; 2845 if (rwc->done && rwc->done(folio)) 2846 break; 2847 } 2848 2849 if (!locked) 2850 anon_vma_unlock_read(anon_vma); 2851 } 2852 2853 /** 2854 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2855 * of a page mapped within a specified page cache object at a specified offset. 2856 * 2857 * @folio: Either the folio whose mappings to traverse, or if NULL, 2858 * the callbacks specified in @rwc will be configured such 2859 * as to be able to look up mappings correctly. 2860 * @mapping: The page cache object whose mapping VMAs we intend to 2861 * traverse. If @folio is non-NULL, this should be equal to 2862 * folio_mapping(folio). 2863 * @pgoff_start: The offset within @mapping of the page which we are 2864 * looking up. If @folio is non-NULL, this should be equal 2865 * to folio_pgoff(folio). 2866 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2867 * non-NULL, this should be equal to folio_nr_pages(folio). 2868 * @rwc: The reverse mapping walk control object describing how 2869 * the traversal should proceed. 2870 * @locked: Is the @mapping already locked? If not, we acquire the 2871 * lock. 2872 */ 2873 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2874 pgoff_t pgoff_start, unsigned long nr_pages, 2875 struct rmap_walk_control *rwc, bool locked) 2876 { 2877 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2878 struct vm_area_struct *vma; 2879 2880 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2881 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2882 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2883 2884 if (!locked) { 2885 if (i_mmap_trylock_read(mapping)) 2886 goto lookup; 2887 2888 if (rwc->try_lock) { 2889 rwc->contended = true; 2890 return; 2891 } 2892 2893 i_mmap_lock_read(mapping); 2894 } 2895 lookup: 2896 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2897 pgoff_start, pgoff_end) { 2898 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2899 2900 VM_BUG_ON_VMA(address == -EFAULT, vma); 2901 cond_resched(); 2902 2903 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2904 continue; 2905 2906 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2907 goto done; 2908 if (rwc->done && rwc->done(folio)) 2909 goto done; 2910 } 2911 done: 2912 if (!locked) 2913 i_mmap_unlock_read(mapping); 2914 } 2915 2916 /* 2917 * rmap_walk_file - do something to file page using the object-based rmap method 2918 * @folio: the folio to be handled 2919 * @rwc: control variable according to each walk type 2920 * @locked: caller holds relevant rmap lock 2921 * 2922 * Find all the mappings of a folio using the mapping pointer and the vma chains 2923 * contained in the address_space struct it points to. 2924 */ 2925 static void rmap_walk_file(struct folio *folio, 2926 struct rmap_walk_control *rwc, bool locked) 2927 { 2928 /* 2929 * The folio lock not only makes sure that folio->mapping cannot 2930 * suddenly be NULLified by truncation, it makes sure that the structure 2931 * at mapping cannot be freed and reused yet, so we can safely take 2932 * mapping->i_mmap_rwsem. 2933 */ 2934 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2935 2936 if (!folio->mapping) 2937 return; 2938 2939 __rmap_walk_file(folio, folio->mapping, folio->index, 2940 folio_nr_pages(folio), rwc, locked); 2941 } 2942 2943 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2944 { 2945 if (unlikely(folio_test_ksm(folio))) 2946 rmap_walk_ksm(folio, rwc); 2947 else if (folio_test_anon(folio)) 2948 rmap_walk_anon(folio, rwc, false); 2949 else 2950 rmap_walk_file(folio, rwc, false); 2951 } 2952 2953 /* Like rmap_walk, but caller holds relevant rmap lock */ 2954 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2955 { 2956 /* no ksm support for now */ 2957 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2958 if (folio_test_anon(folio)) 2959 rmap_walk_anon(folio, rwc, true); 2960 else 2961 rmap_walk_file(folio, rwc, true); 2962 } 2963 2964 #ifdef CONFIG_HUGETLB_PAGE 2965 /* 2966 * The following two functions are for anonymous (private mapped) hugepages. 2967 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2968 * and no lru code, because we handle hugepages differently from common pages. 2969 */ 2970 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2971 unsigned long address, rmap_t flags) 2972 { 2973 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2974 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2975 2976 atomic_inc(&folio->_entire_mapcount); 2977 atomic_inc(&folio->_large_mapcount); 2978 if (flags & RMAP_EXCLUSIVE) 2979 SetPageAnonExclusive(&folio->page); 2980 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2981 PageAnonExclusive(&folio->page), folio); 2982 } 2983 2984 void hugetlb_add_new_anon_rmap(struct folio *folio, 2985 struct vm_area_struct *vma, unsigned long address) 2986 { 2987 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2988 2989 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2990 /* increment count (starts at -1) */ 2991 atomic_set(&folio->_entire_mapcount, 0); 2992 atomic_set(&folio->_large_mapcount, 0); 2993 folio_clear_hugetlb_restore_reserve(folio); 2994 __folio_set_anon(folio, vma, address, true); 2995 SetPageAnonExclusive(&folio->page); 2996 } 2997 #endif /* CONFIG_HUGETLB_PAGE */ 2998