1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long uaddr) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 arch_flush_tlb_batched_pending(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long uaddr) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /** 771 * page_address_in_vma - The virtual address of a page in this VMA. 772 * @folio: The folio containing the page. 773 * @page: The page within the folio. 774 * @vma: The VMA we need to know the address in. 775 * 776 * Calculates the user virtual address of this page in the specified VMA. 777 * It is the caller's responsibililty to check the page is actually 778 * within the VMA. There may not currently be a PTE pointing at this 779 * page, but if a page fault occurs at this address, this is the page 780 * which will be accessed. 781 * 782 * Context: Caller should hold a reference to the folio. Caller should 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 784 * VMA from being altered. 785 * 786 * Return: The virtual address corresponding to this page in the VMA. 787 */ 788 unsigned long page_address_in_vma(const struct folio *folio, 789 const struct page *page, const struct vm_area_struct *vma) 790 { 791 if (folio_test_anon(folio)) { 792 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 793 /* 794 * Note: swapoff's unuse_vma() is more efficient with this 795 * check, and needs it to match anon_vma when KSM is active. 796 */ 797 if (!vma->anon_vma || !page__anon_vma || 798 vma->anon_vma->root != page__anon_vma->root) 799 return -EFAULT; 800 } else if (!vma->vm_file) { 801 return -EFAULT; 802 } else if (vma->vm_file->f_mapping != folio->mapping) { 803 return -EFAULT; 804 } 805 806 /* KSM folios don't reach here because of the !page__anon_vma check */ 807 return vma_address(vma, page_pgoff(folio, page), 1); 808 } 809 810 /* 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 813 * represents. 814 */ 815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 816 { 817 pgd_t *pgd; 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd = NULL; 821 822 pgd = pgd_offset(mm, address); 823 if (!pgd_present(*pgd)) 824 goto out; 825 826 p4d = p4d_offset(pgd, address); 827 if (!p4d_present(*p4d)) 828 goto out; 829 830 pud = pud_offset(p4d, address); 831 if (!pud_present(*pud)) 832 goto out; 833 834 pmd = pmd_offset(pud, address); 835 out: 836 return pmd; 837 } 838 839 struct folio_referenced_arg { 840 int mapcount; 841 int referenced; 842 unsigned long vm_flags; 843 struct mem_cgroup *memcg; 844 }; 845 846 /* 847 * arg: folio_referenced_arg will be passed 848 */ 849 static bool folio_referenced_one(struct folio *folio, 850 struct vm_area_struct *vma, unsigned long address, void *arg) 851 { 852 struct folio_referenced_arg *pra = arg; 853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 854 int referenced = 0; 855 unsigned long start = address, ptes = 0; 856 857 while (page_vma_mapped_walk(&pvmw)) { 858 address = pvmw.address; 859 860 if (vma->vm_flags & VM_LOCKED) { 861 if (!folio_test_large(folio) || !pvmw.pte) { 862 /* Restore the mlock which got missed */ 863 mlock_vma_folio(folio, vma); 864 page_vma_mapped_walk_done(&pvmw); 865 pra->vm_flags |= VM_LOCKED; 866 return false; /* To break the loop */ 867 } 868 /* 869 * For large folio fully mapped to VMA, will 870 * be handled after the pvmw loop. 871 * 872 * For large folio cross VMA boundaries, it's 873 * expected to be picked by page reclaim. But 874 * should skip reference of pages which are in 875 * the range of VM_LOCKED vma. As page reclaim 876 * should just count the reference of pages out 877 * the range of VM_LOCKED vma. 878 */ 879 ptes++; 880 pra->mapcount--; 881 continue; 882 } 883 884 /* 885 * Skip the non-shared swapbacked folio mapped solely by 886 * the exiting or OOM-reaped process. This avoids redundant 887 * swap-out followed by an immediate unmap. 888 */ 889 if ((!atomic_read(&vma->vm_mm->mm_users) || 890 check_stable_address_space(vma->vm_mm)) && 891 folio_test_anon(folio) && folio_test_swapbacked(folio) && 892 !folio_likely_mapped_shared(folio)) { 893 pra->referenced = -1; 894 page_vma_mapped_walk_done(&pvmw); 895 return false; 896 } 897 898 if (lru_gen_enabled() && pvmw.pte) { 899 if (lru_gen_look_around(&pvmw)) 900 referenced++; 901 } else if (pvmw.pte) { 902 if (ptep_clear_flush_young_notify(vma, address, 903 pvmw.pte)) 904 referenced++; 905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 906 if (pmdp_clear_flush_young_notify(vma, address, 907 pvmw.pmd)) 908 referenced++; 909 } else { 910 /* unexpected pmd-mapped folio? */ 911 WARN_ON_ONCE(1); 912 } 913 914 pra->mapcount--; 915 } 916 917 if ((vma->vm_flags & VM_LOCKED) && 918 folio_test_large(folio) && 919 folio_within_vma(folio, vma)) { 920 unsigned long s_align, e_align; 921 922 s_align = ALIGN_DOWN(start, PMD_SIZE); 923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 924 925 /* folio doesn't cross page table boundary and fully mapped */ 926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 927 /* Restore the mlock which got missed */ 928 mlock_vma_folio(folio, vma); 929 pra->vm_flags |= VM_LOCKED; 930 return false; /* To break the loop */ 931 } 932 } 933 934 if (referenced) 935 folio_clear_idle(folio); 936 if (folio_test_clear_young(folio)) 937 referenced++; 938 939 if (referenced) { 940 pra->referenced++; 941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 942 } 943 944 if (!pra->mapcount) 945 return false; /* To break the loop */ 946 947 return true; 948 } 949 950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 951 { 952 struct folio_referenced_arg *pra = arg; 953 struct mem_cgroup *memcg = pra->memcg; 954 955 /* 956 * Ignore references from this mapping if it has no recency. If the 957 * folio has been used in another mapping, we will catch it; if this 958 * other mapping is already gone, the unmap path will have set the 959 * referenced flag or activated the folio in zap_pte_range(). 960 */ 961 if (!vma_has_recency(vma)) 962 return true; 963 964 /* 965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 966 * of references from different cgroups. 967 */ 968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 969 return true; 970 971 return false; 972 } 973 974 /** 975 * folio_referenced() - Test if the folio was referenced. 976 * @folio: The folio to test. 977 * @is_locked: Caller holds lock on the folio. 978 * @memcg: target memory cgroup 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 980 * 981 * Quick test_and_clear_referenced for all mappings of a folio, 982 * 983 * Return: The number of mappings which referenced the folio. Return -1 if 984 * the function bailed out due to rmap lock contention. 985 */ 986 int folio_referenced(struct folio *folio, int is_locked, 987 struct mem_cgroup *memcg, unsigned long *vm_flags) 988 { 989 bool we_locked = false; 990 struct folio_referenced_arg pra = { 991 .mapcount = folio_mapcount(folio), 992 .memcg = memcg, 993 }; 994 struct rmap_walk_control rwc = { 995 .rmap_one = folio_referenced_one, 996 .arg = (void *)&pra, 997 .anon_lock = folio_lock_anon_vma_read, 998 .try_lock = true, 999 .invalid_vma = invalid_folio_referenced_vma, 1000 }; 1001 1002 *vm_flags = 0; 1003 if (!pra.mapcount) 1004 return 0; 1005 1006 if (!folio_raw_mapping(folio)) 1007 return 0; 1008 1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1010 we_locked = folio_trylock(folio); 1011 if (!we_locked) 1012 return 1; 1013 } 1014 1015 rmap_walk(folio, &rwc); 1016 *vm_flags = pra.vm_flags; 1017 1018 if (we_locked) 1019 folio_unlock(folio); 1020 1021 return rwc.contended ? -1 : pra.referenced; 1022 } 1023 1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1025 { 1026 int cleaned = 0; 1027 struct vm_area_struct *vma = pvmw->vma; 1028 struct mmu_notifier_range range; 1029 unsigned long address = pvmw->address; 1030 1031 /* 1032 * We have to assume the worse case ie pmd for invalidation. Note that 1033 * the folio can not be freed from this function. 1034 */ 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1036 vma->vm_mm, address, vma_address_end(pvmw)); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 while (page_vma_mapped_walk(pvmw)) { 1040 int ret = 0; 1041 1042 address = pvmw->address; 1043 if (pvmw->pte) { 1044 pte_t *pte = pvmw->pte; 1045 pte_t entry = ptep_get(pte); 1046 1047 if (!pte_dirty(entry) && !pte_write(entry)) 1048 continue; 1049 1050 flush_cache_page(vma, address, pte_pfn(entry)); 1051 entry = ptep_clear_flush(vma, address, pte); 1052 entry = pte_wrprotect(entry); 1053 entry = pte_mkclean(entry); 1054 set_pte_at(vma->vm_mm, address, pte, entry); 1055 ret = 1; 1056 } else { 1057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1058 pmd_t *pmd = pvmw->pmd; 1059 pmd_t entry; 1060 1061 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1062 continue; 1063 1064 flush_cache_range(vma, address, 1065 address + HPAGE_PMD_SIZE); 1066 entry = pmdp_invalidate(vma, address, pmd); 1067 entry = pmd_wrprotect(entry); 1068 entry = pmd_mkclean(entry); 1069 set_pmd_at(vma->vm_mm, address, pmd, entry); 1070 ret = 1; 1071 #else 1072 /* unexpected pmd-mapped folio? */ 1073 WARN_ON_ONCE(1); 1074 #endif 1075 } 1076 1077 if (ret) 1078 cleaned++; 1079 } 1080 1081 mmu_notifier_invalidate_range_end(&range); 1082 1083 return cleaned; 1084 } 1085 1086 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1087 unsigned long address, void *arg) 1088 { 1089 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1090 int *cleaned = arg; 1091 1092 *cleaned += page_vma_mkclean_one(&pvmw); 1093 1094 return true; 1095 } 1096 1097 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1098 { 1099 if (vma->vm_flags & VM_SHARED) 1100 return false; 1101 1102 return true; 1103 } 1104 1105 int folio_mkclean(struct folio *folio) 1106 { 1107 int cleaned = 0; 1108 struct address_space *mapping; 1109 struct rmap_walk_control rwc = { 1110 .arg = (void *)&cleaned, 1111 .rmap_one = page_mkclean_one, 1112 .invalid_vma = invalid_mkclean_vma, 1113 }; 1114 1115 BUG_ON(!folio_test_locked(folio)); 1116 1117 if (!folio_mapped(folio)) 1118 return 0; 1119 1120 mapping = folio_mapping(folio); 1121 if (!mapping) 1122 return 0; 1123 1124 rmap_walk(folio, &rwc); 1125 1126 return cleaned; 1127 } 1128 EXPORT_SYMBOL_GPL(folio_mkclean); 1129 1130 /** 1131 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1132 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1133 * within the @vma of shared mappings. And since clean PTEs 1134 * should also be readonly, write protects them too. 1135 * @pfn: start pfn. 1136 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1137 * @pgoff: page offset that the @pfn mapped with. 1138 * @vma: vma that @pfn mapped within. 1139 * 1140 * Returns the number of cleaned PTEs (including PMDs). 1141 */ 1142 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1143 struct vm_area_struct *vma) 1144 { 1145 struct page_vma_mapped_walk pvmw = { 1146 .pfn = pfn, 1147 .nr_pages = nr_pages, 1148 .pgoff = pgoff, 1149 .vma = vma, 1150 .flags = PVMW_SYNC, 1151 }; 1152 1153 if (invalid_mkclean_vma(vma, NULL)) 1154 return 0; 1155 1156 pvmw.address = vma_address(vma, pgoff, nr_pages); 1157 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1158 1159 return page_vma_mkclean_one(&pvmw); 1160 } 1161 1162 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1163 struct page *page, int nr_pages, enum rmap_level level, 1164 int *nr_pmdmapped) 1165 { 1166 atomic_t *mapped = &folio->_nr_pages_mapped; 1167 const int orig_nr_pages = nr_pages; 1168 int first = 0, nr = 0; 1169 1170 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1171 1172 switch (level) { 1173 case RMAP_LEVEL_PTE: 1174 if (!folio_test_large(folio)) { 1175 nr = atomic_inc_and_test(&folio->_mapcount); 1176 break; 1177 } 1178 1179 do { 1180 first += atomic_inc_and_test(&page->_mapcount); 1181 } while (page++, --nr_pages > 0); 1182 1183 if (first && 1184 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1185 nr = first; 1186 1187 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1188 break; 1189 case RMAP_LEVEL_PMD: 1190 first = atomic_inc_and_test(&folio->_entire_mapcount); 1191 if (first) { 1192 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1193 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1194 *nr_pmdmapped = folio_nr_pages(folio); 1195 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1196 /* Raced ahead of a remove and another add? */ 1197 if (unlikely(nr < 0)) 1198 nr = 0; 1199 } else { 1200 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1201 nr = 0; 1202 } 1203 } 1204 atomic_inc(&folio->_large_mapcount); 1205 break; 1206 } 1207 return nr; 1208 } 1209 1210 /** 1211 * folio_move_anon_rmap - move a folio to our anon_vma 1212 * @folio: The folio to move to our anon_vma 1213 * @vma: The vma the folio belongs to 1214 * 1215 * When a folio belongs exclusively to one process after a COW event, 1216 * that folio can be moved into the anon_vma that belongs to just that 1217 * process, so the rmap code will not search the parent or sibling processes. 1218 */ 1219 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1220 { 1221 void *anon_vma = vma->anon_vma; 1222 1223 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1224 VM_BUG_ON_VMA(!anon_vma, vma); 1225 1226 anon_vma += PAGE_MAPPING_ANON; 1227 /* 1228 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1229 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1230 * folio_test_anon()) will not see one without the other. 1231 */ 1232 WRITE_ONCE(folio->mapping, anon_vma); 1233 } 1234 1235 /** 1236 * __folio_set_anon - set up a new anonymous rmap for a folio 1237 * @folio: The folio to set up the new anonymous rmap for. 1238 * @vma: VM area to add the folio to. 1239 * @address: User virtual address of the mapping 1240 * @exclusive: Whether the folio is exclusive to the process. 1241 */ 1242 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1243 unsigned long address, bool exclusive) 1244 { 1245 struct anon_vma *anon_vma = vma->anon_vma; 1246 1247 BUG_ON(!anon_vma); 1248 1249 /* 1250 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1251 * possible anon_vma for the folio mapping! 1252 */ 1253 if (!exclusive) 1254 anon_vma = anon_vma->root; 1255 1256 /* 1257 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1258 * Make sure the compiler doesn't split the stores of anon_vma and 1259 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1260 * could mistake the mapping for a struct address_space and crash. 1261 */ 1262 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1263 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1264 folio->index = linear_page_index(vma, address); 1265 } 1266 1267 /** 1268 * __page_check_anon_rmap - sanity check anonymous rmap addition 1269 * @folio: The folio containing @page. 1270 * @page: the page to check the mapping of 1271 * @vma: the vm area in which the mapping is added 1272 * @address: the user virtual address mapped 1273 */ 1274 static void __page_check_anon_rmap(const struct folio *folio, 1275 const struct page *page, struct vm_area_struct *vma, 1276 unsigned long address) 1277 { 1278 /* 1279 * The page's anon-rmap details (mapping and index) are guaranteed to 1280 * be set up correctly at this point. 1281 * 1282 * We have exclusion against folio_add_anon_rmap_*() because the caller 1283 * always holds the page locked. 1284 * 1285 * We have exclusion against folio_add_new_anon_rmap because those pages 1286 * are initially only visible via the pagetables, and the pte is locked 1287 * over the call to folio_add_new_anon_rmap. 1288 */ 1289 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1290 folio); 1291 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1292 page); 1293 } 1294 1295 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1296 { 1297 int idx; 1298 1299 if (nr) { 1300 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1301 __lruvec_stat_mod_folio(folio, idx, nr); 1302 } 1303 if (nr_pmdmapped) { 1304 if (folio_test_anon(folio)) { 1305 idx = NR_ANON_THPS; 1306 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1307 } else { 1308 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1309 idx = folio_test_swapbacked(folio) ? 1310 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1311 __mod_node_page_state(folio_pgdat(folio), idx, 1312 nr_pmdmapped); 1313 } 1314 } 1315 } 1316 1317 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1318 struct page *page, int nr_pages, struct vm_area_struct *vma, 1319 unsigned long address, rmap_t flags, enum rmap_level level) 1320 { 1321 int i, nr, nr_pmdmapped = 0; 1322 1323 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1324 1325 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1326 1327 if (likely(!folio_test_ksm(folio))) 1328 __page_check_anon_rmap(folio, page, vma, address); 1329 1330 __folio_mod_stat(folio, nr, nr_pmdmapped); 1331 1332 if (flags & RMAP_EXCLUSIVE) { 1333 switch (level) { 1334 case RMAP_LEVEL_PTE: 1335 for (i = 0; i < nr_pages; i++) 1336 SetPageAnonExclusive(page + i); 1337 break; 1338 case RMAP_LEVEL_PMD: 1339 SetPageAnonExclusive(page); 1340 break; 1341 } 1342 } 1343 for (i = 0; i < nr_pages; i++) { 1344 struct page *cur_page = page + i; 1345 1346 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1347 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1348 (folio_test_large(folio) && 1349 folio_entire_mapcount(folio) > 1)) && 1350 PageAnonExclusive(cur_page), folio); 1351 } 1352 1353 /* 1354 * For large folio, only mlock it if it's fully mapped to VMA. It's 1355 * not easy to check whether the large folio is fully mapped to VMA 1356 * here. Only mlock normal 4K folio and leave page reclaim to handle 1357 * large folio. 1358 */ 1359 if (!folio_test_large(folio)) 1360 mlock_vma_folio(folio, vma); 1361 } 1362 1363 /** 1364 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1365 * @folio: The folio to add the mappings to 1366 * @page: The first page to add 1367 * @nr_pages: The number of pages which will be mapped 1368 * @vma: The vm area in which the mappings are added 1369 * @address: The user virtual address of the first page to map 1370 * @flags: The rmap flags 1371 * 1372 * The page range of folio is defined by [first_page, first_page + nr_pages) 1373 * 1374 * The caller needs to hold the page table lock, and the page must be locked in 1375 * the anon_vma case: to serialize mapping,index checking after setting, 1376 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1377 * (but KSM folios are never downgraded). 1378 */ 1379 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1380 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1381 rmap_t flags) 1382 { 1383 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1384 RMAP_LEVEL_PTE); 1385 } 1386 1387 /** 1388 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1389 * @folio: The folio to add the mapping to 1390 * @page: The first page to add 1391 * @vma: The vm area in which the mapping is added 1392 * @address: The user virtual address of the first page to map 1393 * @flags: The rmap flags 1394 * 1395 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1396 * 1397 * The caller needs to hold the page table lock, and the page must be locked in 1398 * the anon_vma case: to serialize mapping,index checking after setting. 1399 */ 1400 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1401 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1402 { 1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1404 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1405 RMAP_LEVEL_PMD); 1406 #else 1407 WARN_ON_ONCE(true); 1408 #endif 1409 } 1410 1411 /** 1412 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1413 * @folio: The folio to add the mapping to. 1414 * @vma: the vm area in which the mapping is added 1415 * @address: the user virtual address mapped 1416 * @flags: The rmap flags 1417 * 1418 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1419 * This means the inc-and-test can be bypassed. 1420 * The folio doesn't necessarily need to be locked while it's exclusive 1421 * unless two threads map it concurrently. However, the folio must be 1422 * locked if it's shared. 1423 * 1424 * If the folio is pmd-mappable, it is accounted as a THP. 1425 */ 1426 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1427 unsigned long address, rmap_t flags) 1428 { 1429 const int nr = folio_nr_pages(folio); 1430 const bool exclusive = flags & RMAP_EXCLUSIVE; 1431 int nr_pmdmapped = 0; 1432 1433 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1434 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1435 VM_BUG_ON_VMA(address < vma->vm_start || 1436 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1437 1438 /* 1439 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1440 * under memory pressure. 1441 */ 1442 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1443 __folio_set_swapbacked(folio); 1444 __folio_set_anon(folio, vma, address, exclusive); 1445 1446 if (likely(!folio_test_large(folio))) { 1447 /* increment count (starts at -1) */ 1448 atomic_set(&folio->_mapcount, 0); 1449 if (exclusive) 1450 SetPageAnonExclusive(&folio->page); 1451 } else if (!folio_test_pmd_mappable(folio)) { 1452 int i; 1453 1454 for (i = 0; i < nr; i++) { 1455 struct page *page = folio_page(folio, i); 1456 1457 /* increment count (starts at -1) */ 1458 atomic_set(&page->_mapcount, 0); 1459 if (exclusive) 1460 SetPageAnonExclusive(page); 1461 } 1462 1463 /* increment count (starts at -1) */ 1464 atomic_set(&folio->_large_mapcount, nr - 1); 1465 atomic_set(&folio->_nr_pages_mapped, nr); 1466 } else { 1467 /* increment count (starts at -1) */ 1468 atomic_set(&folio->_entire_mapcount, 0); 1469 /* increment count (starts at -1) */ 1470 atomic_set(&folio->_large_mapcount, 0); 1471 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1472 if (exclusive) 1473 SetPageAnonExclusive(&folio->page); 1474 nr_pmdmapped = nr; 1475 } 1476 1477 __folio_mod_stat(folio, nr, nr_pmdmapped); 1478 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1479 } 1480 1481 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1482 struct page *page, int nr_pages, struct vm_area_struct *vma, 1483 enum rmap_level level) 1484 { 1485 int nr, nr_pmdmapped = 0; 1486 1487 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1488 1489 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1490 __folio_mod_stat(folio, nr, nr_pmdmapped); 1491 1492 /* See comments in folio_add_anon_rmap_*() */ 1493 if (!folio_test_large(folio)) 1494 mlock_vma_folio(folio, vma); 1495 } 1496 1497 /** 1498 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1499 * @folio: The folio to add the mappings to 1500 * @page: The first page to add 1501 * @nr_pages: The number of pages that will be mapped using PTEs 1502 * @vma: The vm area in which the mappings are added 1503 * 1504 * The page range of the folio is defined by [page, page + nr_pages) 1505 * 1506 * The caller needs to hold the page table lock. 1507 */ 1508 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1509 int nr_pages, struct vm_area_struct *vma) 1510 { 1511 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1512 } 1513 1514 /** 1515 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1516 * @folio: The folio to add the mapping to 1517 * @page: The first page to add 1518 * @vma: The vm area in which the mapping is added 1519 * 1520 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1521 * 1522 * The caller needs to hold the page table lock. 1523 */ 1524 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1525 struct vm_area_struct *vma) 1526 { 1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1528 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1529 #else 1530 WARN_ON_ONCE(true); 1531 #endif 1532 } 1533 1534 static __always_inline void __folio_remove_rmap(struct folio *folio, 1535 struct page *page, int nr_pages, struct vm_area_struct *vma, 1536 enum rmap_level level) 1537 { 1538 atomic_t *mapped = &folio->_nr_pages_mapped; 1539 int last = 0, nr = 0, nr_pmdmapped = 0; 1540 bool partially_mapped = false; 1541 1542 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1543 1544 switch (level) { 1545 case RMAP_LEVEL_PTE: 1546 if (!folio_test_large(folio)) { 1547 nr = atomic_add_negative(-1, &folio->_mapcount); 1548 break; 1549 } 1550 1551 atomic_sub(nr_pages, &folio->_large_mapcount); 1552 do { 1553 last += atomic_add_negative(-1, &page->_mapcount); 1554 } while (page++, --nr_pages > 0); 1555 1556 if (last && 1557 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1558 nr = last; 1559 1560 partially_mapped = nr && atomic_read(mapped); 1561 break; 1562 case RMAP_LEVEL_PMD: 1563 atomic_dec(&folio->_large_mapcount); 1564 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1565 if (last) { 1566 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1567 if (likely(nr < ENTIRELY_MAPPED)) { 1568 nr_pmdmapped = folio_nr_pages(folio); 1569 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1570 /* Raced ahead of another remove and an add? */ 1571 if (unlikely(nr < 0)) 1572 nr = 0; 1573 } else { 1574 /* An add of ENTIRELY_MAPPED raced ahead */ 1575 nr = 0; 1576 } 1577 } 1578 1579 partially_mapped = nr && nr < nr_pmdmapped; 1580 break; 1581 } 1582 1583 /* 1584 * Queue anon large folio for deferred split if at least one page of 1585 * the folio is unmapped and at least one page is still mapped. 1586 * 1587 * Check partially_mapped first to ensure it is a large folio. 1588 */ 1589 if (partially_mapped && folio_test_anon(folio) && 1590 !folio_test_partially_mapped(folio)) 1591 deferred_split_folio(folio, true); 1592 1593 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1594 1595 /* 1596 * It would be tidy to reset folio_test_anon mapping when fully 1597 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1598 * which increments mapcount after us but sets mapping before us: 1599 * so leave the reset to free_pages_prepare, and remember that 1600 * it's only reliable while mapped. 1601 */ 1602 1603 munlock_vma_folio(folio, vma); 1604 } 1605 1606 /** 1607 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1608 * @folio: The folio to remove the mappings from 1609 * @page: The first page to remove 1610 * @nr_pages: The number of pages that will be removed from the mapping 1611 * @vma: The vm area from which the mappings are removed 1612 * 1613 * The page range of the folio is defined by [page, page + nr_pages) 1614 * 1615 * The caller needs to hold the page table lock. 1616 */ 1617 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1618 int nr_pages, struct vm_area_struct *vma) 1619 { 1620 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1621 } 1622 1623 /** 1624 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1625 * @folio: The folio to remove the mapping from 1626 * @page: The first page to remove 1627 * @vma: The vm area from which the mapping is removed 1628 * 1629 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1630 * 1631 * The caller needs to hold the page table lock. 1632 */ 1633 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1634 struct vm_area_struct *vma) 1635 { 1636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1637 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1638 #else 1639 WARN_ON_ONCE(true); 1640 #endif 1641 } 1642 1643 /* 1644 * @arg: enum ttu_flags will be passed to this argument 1645 */ 1646 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1647 unsigned long address, void *arg) 1648 { 1649 struct mm_struct *mm = vma->vm_mm; 1650 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1651 pte_t pteval; 1652 struct page *subpage; 1653 bool anon_exclusive, ret = true; 1654 struct mmu_notifier_range range; 1655 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1656 unsigned long pfn; 1657 unsigned long hsz = 0; 1658 1659 /* 1660 * When racing against e.g. zap_pte_range() on another cpu, 1661 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1662 * try_to_unmap() may return before page_mapped() has become false, 1663 * if page table locking is skipped: use TTU_SYNC to wait for that. 1664 */ 1665 if (flags & TTU_SYNC) 1666 pvmw.flags = PVMW_SYNC; 1667 1668 /* 1669 * For THP, we have to assume the worse case ie pmd for invalidation. 1670 * For hugetlb, it could be much worse if we need to do pud 1671 * invalidation in the case of pmd sharing. 1672 * 1673 * Note that the folio can not be freed in this function as call of 1674 * try_to_unmap() must hold a reference on the folio. 1675 */ 1676 range.end = vma_address_end(&pvmw); 1677 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1678 address, range.end); 1679 if (folio_test_hugetlb(folio)) { 1680 /* 1681 * If sharing is possible, start and end will be adjusted 1682 * accordingly. 1683 */ 1684 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1685 &range.end); 1686 1687 /* We need the huge page size for set_huge_pte_at() */ 1688 hsz = huge_page_size(hstate_vma(vma)); 1689 } 1690 mmu_notifier_invalidate_range_start(&range); 1691 1692 while (page_vma_mapped_walk(&pvmw)) { 1693 /* 1694 * If the folio is in an mlock()d vma, we must not swap it out. 1695 */ 1696 if (!(flags & TTU_IGNORE_MLOCK) && 1697 (vma->vm_flags & VM_LOCKED)) { 1698 /* Restore the mlock which got missed */ 1699 if (!folio_test_large(folio)) 1700 mlock_vma_folio(folio, vma); 1701 goto walk_abort; 1702 } 1703 1704 if (!pvmw.pte) { 1705 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, 1706 folio)) 1707 goto walk_done; 1708 1709 if (flags & TTU_SPLIT_HUGE_PMD) { 1710 /* 1711 * We temporarily have to drop the PTL and 1712 * restart so we can process the PTE-mapped THP. 1713 */ 1714 split_huge_pmd_locked(vma, pvmw.address, 1715 pvmw.pmd, false, folio); 1716 flags &= ~TTU_SPLIT_HUGE_PMD; 1717 page_vma_mapped_walk_restart(&pvmw); 1718 continue; 1719 } 1720 } 1721 1722 /* Unexpected PMD-mapped THP? */ 1723 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1724 1725 pfn = pte_pfn(ptep_get(pvmw.pte)); 1726 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1727 address = pvmw.address; 1728 anon_exclusive = folio_test_anon(folio) && 1729 PageAnonExclusive(subpage); 1730 1731 if (folio_test_hugetlb(folio)) { 1732 bool anon = folio_test_anon(folio); 1733 1734 /* 1735 * The try_to_unmap() is only passed a hugetlb page 1736 * in the case where the hugetlb page is poisoned. 1737 */ 1738 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1739 /* 1740 * huge_pmd_unshare may unmap an entire PMD page. 1741 * There is no way of knowing exactly which PMDs may 1742 * be cached for this mm, so we must flush them all. 1743 * start/end were already adjusted above to cover this 1744 * range. 1745 */ 1746 flush_cache_range(vma, range.start, range.end); 1747 1748 /* 1749 * To call huge_pmd_unshare, i_mmap_rwsem must be 1750 * held in write mode. Caller needs to explicitly 1751 * do this outside rmap routines. 1752 * 1753 * We also must hold hugetlb vma_lock in write mode. 1754 * Lock order dictates acquiring vma_lock BEFORE 1755 * i_mmap_rwsem. We can only try lock here and fail 1756 * if unsuccessful. 1757 */ 1758 if (!anon) { 1759 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1760 if (!hugetlb_vma_trylock_write(vma)) 1761 goto walk_abort; 1762 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1763 hugetlb_vma_unlock_write(vma); 1764 flush_tlb_range(vma, 1765 range.start, range.end); 1766 /* 1767 * The ref count of the PMD page was 1768 * dropped which is part of the way map 1769 * counting is done for shared PMDs. 1770 * Return 'true' here. When there is 1771 * no other sharing, huge_pmd_unshare 1772 * returns false and we will unmap the 1773 * actual page and drop map count 1774 * to zero. 1775 */ 1776 goto walk_done; 1777 } 1778 hugetlb_vma_unlock_write(vma); 1779 } 1780 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1781 } else { 1782 flush_cache_page(vma, address, pfn); 1783 /* Nuke the page table entry. */ 1784 if (should_defer_flush(mm, flags)) { 1785 /* 1786 * We clear the PTE but do not flush so potentially 1787 * a remote CPU could still be writing to the folio. 1788 * If the entry was previously clean then the 1789 * architecture must guarantee that a clear->dirty 1790 * transition on a cached TLB entry is written through 1791 * and traps if the PTE is unmapped. 1792 */ 1793 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1794 1795 set_tlb_ubc_flush_pending(mm, pteval, address); 1796 } else { 1797 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1798 } 1799 } 1800 1801 /* 1802 * Now the pte is cleared. If this pte was uffd-wp armed, 1803 * we may want to replace a none pte with a marker pte if 1804 * it's file-backed, so we don't lose the tracking info. 1805 */ 1806 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1807 1808 /* Set the dirty flag on the folio now the pte is gone. */ 1809 if (pte_dirty(pteval)) 1810 folio_mark_dirty(folio); 1811 1812 /* Update high watermark before we lower rss */ 1813 update_hiwater_rss(mm); 1814 1815 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1816 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1817 if (folio_test_hugetlb(folio)) { 1818 hugetlb_count_sub(folio_nr_pages(folio), mm); 1819 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1820 hsz); 1821 } else { 1822 dec_mm_counter(mm, mm_counter(folio)); 1823 set_pte_at(mm, address, pvmw.pte, pteval); 1824 } 1825 1826 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1827 /* 1828 * The guest indicated that the page content is of no 1829 * interest anymore. Simply discard the pte, vmscan 1830 * will take care of the rest. 1831 * A future reference will then fault in a new zero 1832 * page. When userfaultfd is active, we must not drop 1833 * this page though, as its main user (postcopy 1834 * migration) will not expect userfaults on already 1835 * copied pages. 1836 */ 1837 dec_mm_counter(mm, mm_counter(folio)); 1838 } else if (folio_test_anon(folio)) { 1839 swp_entry_t entry = page_swap_entry(subpage); 1840 pte_t swp_pte; 1841 /* 1842 * Store the swap location in the pte. 1843 * See handle_pte_fault() ... 1844 */ 1845 if (unlikely(folio_test_swapbacked(folio) != 1846 folio_test_swapcache(folio))) { 1847 WARN_ON_ONCE(1); 1848 goto walk_abort; 1849 } 1850 1851 /* MADV_FREE page check */ 1852 if (!folio_test_swapbacked(folio)) { 1853 int ref_count, map_count; 1854 1855 /* 1856 * Synchronize with gup_pte_range(): 1857 * - clear PTE; barrier; read refcount 1858 * - inc refcount; barrier; read PTE 1859 */ 1860 smp_mb(); 1861 1862 ref_count = folio_ref_count(folio); 1863 map_count = folio_mapcount(folio); 1864 1865 /* 1866 * Order reads for page refcount and dirty flag 1867 * (see comments in __remove_mapping()). 1868 */ 1869 smp_rmb(); 1870 1871 /* 1872 * The only page refs must be one from isolation 1873 * plus the rmap(s) (dropped by discard:). 1874 */ 1875 if (ref_count == 1 + map_count && 1876 (!folio_test_dirty(folio) || 1877 /* 1878 * Unlike MADV_FREE mappings, VM_DROPPABLE 1879 * ones can be dropped even if they've 1880 * been dirtied. 1881 */ 1882 (vma->vm_flags & VM_DROPPABLE))) { 1883 dec_mm_counter(mm, MM_ANONPAGES); 1884 goto discard; 1885 } 1886 1887 /* 1888 * If the folio was redirtied, it cannot be 1889 * discarded. Remap the page to page table. 1890 */ 1891 set_pte_at(mm, address, pvmw.pte, pteval); 1892 /* 1893 * Unlike MADV_FREE mappings, VM_DROPPABLE ones 1894 * never get swap backed on failure to drop. 1895 */ 1896 if (!(vma->vm_flags & VM_DROPPABLE)) 1897 folio_set_swapbacked(folio); 1898 goto walk_abort; 1899 } 1900 1901 if (swap_duplicate(entry) < 0) { 1902 set_pte_at(mm, address, pvmw.pte, pteval); 1903 goto walk_abort; 1904 } 1905 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1906 swap_free(entry); 1907 set_pte_at(mm, address, pvmw.pte, pteval); 1908 goto walk_abort; 1909 } 1910 1911 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1912 if (anon_exclusive && 1913 folio_try_share_anon_rmap_pte(folio, subpage)) { 1914 swap_free(entry); 1915 set_pte_at(mm, address, pvmw.pte, pteval); 1916 goto walk_abort; 1917 } 1918 if (list_empty(&mm->mmlist)) { 1919 spin_lock(&mmlist_lock); 1920 if (list_empty(&mm->mmlist)) 1921 list_add(&mm->mmlist, &init_mm.mmlist); 1922 spin_unlock(&mmlist_lock); 1923 } 1924 dec_mm_counter(mm, MM_ANONPAGES); 1925 inc_mm_counter(mm, MM_SWAPENTS); 1926 swp_pte = swp_entry_to_pte(entry); 1927 if (anon_exclusive) 1928 swp_pte = pte_swp_mkexclusive(swp_pte); 1929 if (pte_soft_dirty(pteval)) 1930 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1931 if (pte_uffd_wp(pteval)) 1932 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1933 set_pte_at(mm, address, pvmw.pte, swp_pte); 1934 } else { 1935 /* 1936 * This is a locked file-backed folio, 1937 * so it cannot be removed from the page 1938 * cache and replaced by a new folio before 1939 * mmu_notifier_invalidate_range_end, so no 1940 * concurrent thread might update its page table 1941 * to point at a new folio while a device is 1942 * still using this folio. 1943 * 1944 * See Documentation/mm/mmu_notifier.rst 1945 */ 1946 dec_mm_counter(mm, mm_counter_file(folio)); 1947 } 1948 discard: 1949 if (unlikely(folio_test_hugetlb(folio))) 1950 hugetlb_remove_rmap(folio); 1951 else 1952 folio_remove_rmap_pte(folio, subpage, vma); 1953 if (vma->vm_flags & VM_LOCKED) 1954 mlock_drain_local(); 1955 folio_put(folio); 1956 continue; 1957 walk_abort: 1958 ret = false; 1959 walk_done: 1960 page_vma_mapped_walk_done(&pvmw); 1961 break; 1962 } 1963 1964 mmu_notifier_invalidate_range_end(&range); 1965 1966 return ret; 1967 } 1968 1969 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1970 { 1971 return vma_is_temporary_stack(vma); 1972 } 1973 1974 static int folio_not_mapped(struct folio *folio) 1975 { 1976 return !folio_mapped(folio); 1977 } 1978 1979 /** 1980 * try_to_unmap - Try to remove all page table mappings to a folio. 1981 * @folio: The folio to unmap. 1982 * @flags: action and flags 1983 * 1984 * Tries to remove all the page table entries which are mapping this 1985 * folio. It is the caller's responsibility to check if the folio is 1986 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1987 * 1988 * Context: Caller must hold the folio lock. 1989 */ 1990 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1991 { 1992 struct rmap_walk_control rwc = { 1993 .rmap_one = try_to_unmap_one, 1994 .arg = (void *)flags, 1995 .done = folio_not_mapped, 1996 .anon_lock = folio_lock_anon_vma_read, 1997 }; 1998 1999 if (flags & TTU_RMAP_LOCKED) 2000 rmap_walk_locked(folio, &rwc); 2001 else 2002 rmap_walk(folio, &rwc); 2003 } 2004 2005 /* 2006 * @arg: enum ttu_flags will be passed to this argument. 2007 * 2008 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2009 * containing migration entries. 2010 */ 2011 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2012 unsigned long address, void *arg) 2013 { 2014 struct mm_struct *mm = vma->vm_mm; 2015 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2016 pte_t pteval; 2017 struct page *subpage; 2018 bool anon_exclusive, ret = true; 2019 struct mmu_notifier_range range; 2020 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2021 unsigned long pfn; 2022 unsigned long hsz = 0; 2023 2024 /* 2025 * When racing against e.g. zap_pte_range() on another cpu, 2026 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2027 * try_to_migrate() may return before page_mapped() has become false, 2028 * if page table locking is skipped: use TTU_SYNC to wait for that. 2029 */ 2030 if (flags & TTU_SYNC) 2031 pvmw.flags = PVMW_SYNC; 2032 2033 /* 2034 * unmap_page() in mm/huge_memory.c is the only user of migration with 2035 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2036 */ 2037 if (flags & TTU_SPLIT_HUGE_PMD) 2038 split_huge_pmd_address(vma, address, true, folio); 2039 2040 /* 2041 * For THP, we have to assume the worse case ie pmd for invalidation. 2042 * For hugetlb, it could be much worse if we need to do pud 2043 * invalidation in the case of pmd sharing. 2044 * 2045 * Note that the page can not be free in this function as call of 2046 * try_to_unmap() must hold a reference on the page. 2047 */ 2048 range.end = vma_address_end(&pvmw); 2049 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2050 address, range.end); 2051 if (folio_test_hugetlb(folio)) { 2052 /* 2053 * If sharing is possible, start and end will be adjusted 2054 * accordingly. 2055 */ 2056 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2057 &range.end); 2058 2059 /* We need the huge page size for set_huge_pte_at() */ 2060 hsz = huge_page_size(hstate_vma(vma)); 2061 } 2062 mmu_notifier_invalidate_range_start(&range); 2063 2064 while (page_vma_mapped_walk(&pvmw)) { 2065 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2066 /* PMD-mapped THP migration entry */ 2067 if (!pvmw.pte) { 2068 subpage = folio_page(folio, 2069 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2070 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2071 !folio_test_pmd_mappable(folio), folio); 2072 2073 if (set_pmd_migration_entry(&pvmw, subpage)) { 2074 ret = false; 2075 page_vma_mapped_walk_done(&pvmw); 2076 break; 2077 } 2078 continue; 2079 } 2080 #endif 2081 2082 /* Unexpected PMD-mapped THP? */ 2083 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2084 2085 pfn = pte_pfn(ptep_get(pvmw.pte)); 2086 2087 if (folio_is_zone_device(folio)) { 2088 /* 2089 * Our PTE is a non-present device exclusive entry and 2090 * calculating the subpage as for the common case would 2091 * result in an invalid pointer. 2092 * 2093 * Since only PAGE_SIZE pages can currently be 2094 * migrated, just set it to page. This will need to be 2095 * changed when hugepage migrations to device private 2096 * memory are supported. 2097 */ 2098 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2099 subpage = &folio->page; 2100 } else { 2101 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2102 } 2103 address = pvmw.address; 2104 anon_exclusive = folio_test_anon(folio) && 2105 PageAnonExclusive(subpage); 2106 2107 if (folio_test_hugetlb(folio)) { 2108 bool anon = folio_test_anon(folio); 2109 2110 /* 2111 * huge_pmd_unshare may unmap an entire PMD page. 2112 * There is no way of knowing exactly which PMDs may 2113 * be cached for this mm, so we must flush them all. 2114 * start/end were already adjusted above to cover this 2115 * range. 2116 */ 2117 flush_cache_range(vma, range.start, range.end); 2118 2119 /* 2120 * To call huge_pmd_unshare, i_mmap_rwsem must be 2121 * held in write mode. Caller needs to explicitly 2122 * do this outside rmap routines. 2123 * 2124 * We also must hold hugetlb vma_lock in write mode. 2125 * Lock order dictates acquiring vma_lock BEFORE 2126 * i_mmap_rwsem. We can only try lock here and 2127 * fail if unsuccessful. 2128 */ 2129 if (!anon) { 2130 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2131 if (!hugetlb_vma_trylock_write(vma)) { 2132 page_vma_mapped_walk_done(&pvmw); 2133 ret = false; 2134 break; 2135 } 2136 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2137 hugetlb_vma_unlock_write(vma); 2138 flush_tlb_range(vma, 2139 range.start, range.end); 2140 2141 /* 2142 * The ref count of the PMD page was 2143 * dropped which is part of the way map 2144 * counting is done for shared PMDs. 2145 * Return 'true' here. When there is 2146 * no other sharing, huge_pmd_unshare 2147 * returns false and we will unmap the 2148 * actual page and drop map count 2149 * to zero. 2150 */ 2151 page_vma_mapped_walk_done(&pvmw); 2152 break; 2153 } 2154 hugetlb_vma_unlock_write(vma); 2155 } 2156 /* Nuke the hugetlb page table entry */ 2157 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2158 } else { 2159 flush_cache_page(vma, address, pfn); 2160 /* Nuke the page table entry. */ 2161 if (should_defer_flush(mm, flags)) { 2162 /* 2163 * We clear the PTE but do not flush so potentially 2164 * a remote CPU could still be writing to the folio. 2165 * If the entry was previously clean then the 2166 * architecture must guarantee that a clear->dirty 2167 * transition on a cached TLB entry is written through 2168 * and traps if the PTE is unmapped. 2169 */ 2170 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2171 2172 set_tlb_ubc_flush_pending(mm, pteval, address); 2173 } else { 2174 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2175 } 2176 } 2177 2178 /* Set the dirty flag on the folio now the pte is gone. */ 2179 if (pte_dirty(pteval)) 2180 folio_mark_dirty(folio); 2181 2182 /* Update high watermark before we lower rss */ 2183 update_hiwater_rss(mm); 2184 2185 if (folio_is_device_private(folio)) { 2186 unsigned long pfn = folio_pfn(folio); 2187 swp_entry_t entry; 2188 pte_t swp_pte; 2189 2190 if (anon_exclusive) 2191 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2192 subpage)); 2193 2194 /* 2195 * Store the pfn of the page in a special migration 2196 * pte. do_swap_page() will wait until the migration 2197 * pte is removed and then restart fault handling. 2198 */ 2199 entry = pte_to_swp_entry(pteval); 2200 if (is_writable_device_private_entry(entry)) 2201 entry = make_writable_migration_entry(pfn); 2202 else if (anon_exclusive) 2203 entry = make_readable_exclusive_migration_entry(pfn); 2204 else 2205 entry = make_readable_migration_entry(pfn); 2206 swp_pte = swp_entry_to_pte(entry); 2207 2208 /* 2209 * pteval maps a zone device page and is therefore 2210 * a swap pte. 2211 */ 2212 if (pte_swp_soft_dirty(pteval)) 2213 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2214 if (pte_swp_uffd_wp(pteval)) 2215 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2216 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2217 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2218 folio_order(folio)); 2219 /* 2220 * No need to invalidate here it will synchronize on 2221 * against the special swap migration pte. 2222 */ 2223 } else if (PageHWPoison(subpage)) { 2224 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2225 if (folio_test_hugetlb(folio)) { 2226 hugetlb_count_sub(folio_nr_pages(folio), mm); 2227 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2228 hsz); 2229 } else { 2230 dec_mm_counter(mm, mm_counter(folio)); 2231 set_pte_at(mm, address, pvmw.pte, pteval); 2232 } 2233 2234 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2235 /* 2236 * The guest indicated that the page content is of no 2237 * interest anymore. Simply discard the pte, vmscan 2238 * will take care of the rest. 2239 * A future reference will then fault in a new zero 2240 * page. When userfaultfd is active, we must not drop 2241 * this page though, as its main user (postcopy 2242 * migration) will not expect userfaults on already 2243 * copied pages. 2244 */ 2245 dec_mm_counter(mm, mm_counter(folio)); 2246 } else { 2247 swp_entry_t entry; 2248 pte_t swp_pte; 2249 2250 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2251 if (folio_test_hugetlb(folio)) 2252 set_huge_pte_at(mm, address, pvmw.pte, 2253 pteval, hsz); 2254 else 2255 set_pte_at(mm, address, pvmw.pte, pteval); 2256 ret = false; 2257 page_vma_mapped_walk_done(&pvmw); 2258 break; 2259 } 2260 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2261 !anon_exclusive, subpage); 2262 2263 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2264 if (folio_test_hugetlb(folio)) { 2265 if (anon_exclusive && 2266 hugetlb_try_share_anon_rmap(folio)) { 2267 set_huge_pte_at(mm, address, pvmw.pte, 2268 pteval, hsz); 2269 ret = false; 2270 page_vma_mapped_walk_done(&pvmw); 2271 break; 2272 } 2273 } else if (anon_exclusive && 2274 folio_try_share_anon_rmap_pte(folio, subpage)) { 2275 set_pte_at(mm, address, pvmw.pte, pteval); 2276 ret = false; 2277 page_vma_mapped_walk_done(&pvmw); 2278 break; 2279 } 2280 2281 /* 2282 * Store the pfn of the page in a special migration 2283 * pte. do_swap_page() will wait until the migration 2284 * pte is removed and then restart fault handling. 2285 */ 2286 if (pte_write(pteval)) 2287 entry = make_writable_migration_entry( 2288 page_to_pfn(subpage)); 2289 else if (anon_exclusive) 2290 entry = make_readable_exclusive_migration_entry( 2291 page_to_pfn(subpage)); 2292 else 2293 entry = make_readable_migration_entry( 2294 page_to_pfn(subpage)); 2295 if (pte_young(pteval)) 2296 entry = make_migration_entry_young(entry); 2297 if (pte_dirty(pteval)) 2298 entry = make_migration_entry_dirty(entry); 2299 swp_pte = swp_entry_to_pte(entry); 2300 if (pte_soft_dirty(pteval)) 2301 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2302 if (pte_uffd_wp(pteval)) 2303 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2304 if (folio_test_hugetlb(folio)) 2305 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2306 hsz); 2307 else 2308 set_pte_at(mm, address, pvmw.pte, swp_pte); 2309 trace_set_migration_pte(address, pte_val(swp_pte), 2310 folio_order(folio)); 2311 /* 2312 * No need to invalidate here it will synchronize on 2313 * against the special swap migration pte. 2314 */ 2315 } 2316 2317 if (unlikely(folio_test_hugetlb(folio))) 2318 hugetlb_remove_rmap(folio); 2319 else 2320 folio_remove_rmap_pte(folio, subpage, vma); 2321 if (vma->vm_flags & VM_LOCKED) 2322 mlock_drain_local(); 2323 folio_put(folio); 2324 } 2325 2326 mmu_notifier_invalidate_range_end(&range); 2327 2328 return ret; 2329 } 2330 2331 /** 2332 * try_to_migrate - try to replace all page table mappings with swap entries 2333 * @folio: the folio to replace page table entries for 2334 * @flags: action and flags 2335 * 2336 * Tries to remove all the page table entries which are mapping this folio and 2337 * replace them with special swap entries. Caller must hold the folio lock. 2338 */ 2339 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2340 { 2341 struct rmap_walk_control rwc = { 2342 .rmap_one = try_to_migrate_one, 2343 .arg = (void *)flags, 2344 .done = folio_not_mapped, 2345 .anon_lock = folio_lock_anon_vma_read, 2346 }; 2347 2348 /* 2349 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2350 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2351 */ 2352 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2353 TTU_SYNC | TTU_BATCH_FLUSH))) 2354 return; 2355 2356 if (folio_is_zone_device(folio) && 2357 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2358 return; 2359 2360 /* 2361 * During exec, a temporary VMA is setup and later moved. 2362 * The VMA is moved under the anon_vma lock but not the 2363 * page tables leading to a race where migration cannot 2364 * find the migration ptes. Rather than increasing the 2365 * locking requirements of exec(), migration skips 2366 * temporary VMAs until after exec() completes. 2367 */ 2368 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2369 rwc.invalid_vma = invalid_migration_vma; 2370 2371 if (flags & TTU_RMAP_LOCKED) 2372 rmap_walk_locked(folio, &rwc); 2373 else 2374 rmap_walk(folio, &rwc); 2375 } 2376 2377 #ifdef CONFIG_DEVICE_PRIVATE 2378 struct make_exclusive_args { 2379 struct mm_struct *mm; 2380 unsigned long address; 2381 void *owner; 2382 bool valid; 2383 }; 2384 2385 static bool page_make_device_exclusive_one(struct folio *folio, 2386 struct vm_area_struct *vma, unsigned long address, void *priv) 2387 { 2388 struct mm_struct *mm = vma->vm_mm; 2389 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2390 struct make_exclusive_args *args = priv; 2391 pte_t pteval; 2392 struct page *subpage; 2393 bool ret = true; 2394 struct mmu_notifier_range range; 2395 swp_entry_t entry; 2396 pte_t swp_pte; 2397 pte_t ptent; 2398 2399 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2400 vma->vm_mm, address, min(vma->vm_end, 2401 address + folio_size(folio)), 2402 args->owner); 2403 mmu_notifier_invalidate_range_start(&range); 2404 2405 while (page_vma_mapped_walk(&pvmw)) { 2406 /* Unexpected PMD-mapped THP? */ 2407 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2408 2409 ptent = ptep_get(pvmw.pte); 2410 if (!pte_present(ptent)) { 2411 ret = false; 2412 page_vma_mapped_walk_done(&pvmw); 2413 break; 2414 } 2415 2416 subpage = folio_page(folio, 2417 pte_pfn(ptent) - folio_pfn(folio)); 2418 address = pvmw.address; 2419 2420 /* Nuke the page table entry. */ 2421 flush_cache_page(vma, address, pte_pfn(ptent)); 2422 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2423 2424 /* Set the dirty flag on the folio now the pte is gone. */ 2425 if (pte_dirty(pteval)) 2426 folio_mark_dirty(folio); 2427 2428 /* 2429 * Check that our target page is still mapped at the expected 2430 * address. 2431 */ 2432 if (args->mm == mm && args->address == address && 2433 pte_write(pteval)) 2434 args->valid = true; 2435 2436 /* 2437 * Store the pfn of the page in a special migration 2438 * pte. do_swap_page() will wait until the migration 2439 * pte is removed and then restart fault handling. 2440 */ 2441 if (pte_write(pteval)) 2442 entry = make_writable_device_exclusive_entry( 2443 page_to_pfn(subpage)); 2444 else 2445 entry = make_readable_device_exclusive_entry( 2446 page_to_pfn(subpage)); 2447 swp_pte = swp_entry_to_pte(entry); 2448 if (pte_soft_dirty(pteval)) 2449 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2450 if (pte_uffd_wp(pteval)) 2451 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2452 2453 set_pte_at(mm, address, pvmw.pte, swp_pte); 2454 2455 /* 2456 * There is a reference on the page for the swap entry which has 2457 * been removed, so shouldn't take another. 2458 */ 2459 folio_remove_rmap_pte(folio, subpage, vma); 2460 } 2461 2462 mmu_notifier_invalidate_range_end(&range); 2463 2464 return ret; 2465 } 2466 2467 /** 2468 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2469 * @folio: The folio to replace page table entries for. 2470 * @mm: The mm_struct where the folio is expected to be mapped. 2471 * @address: Address where the folio is expected to be mapped. 2472 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2473 * 2474 * Tries to remove all the page table entries which are mapping this 2475 * folio and replace them with special device exclusive swap entries to 2476 * grant a device exclusive access to the folio. 2477 * 2478 * Context: Caller must hold the folio lock. 2479 * Return: false if the page is still mapped, or if it could not be unmapped 2480 * from the expected address. Otherwise returns true (success). 2481 */ 2482 static bool folio_make_device_exclusive(struct folio *folio, 2483 struct mm_struct *mm, unsigned long address, void *owner) 2484 { 2485 struct make_exclusive_args args = { 2486 .mm = mm, 2487 .address = address, 2488 .owner = owner, 2489 .valid = false, 2490 }; 2491 struct rmap_walk_control rwc = { 2492 .rmap_one = page_make_device_exclusive_one, 2493 .done = folio_not_mapped, 2494 .anon_lock = folio_lock_anon_vma_read, 2495 .arg = &args, 2496 }; 2497 2498 /* 2499 * Restrict to anonymous folios for now to avoid potential writeback 2500 * issues. 2501 */ 2502 if (!folio_test_anon(folio)) 2503 return false; 2504 2505 rmap_walk(folio, &rwc); 2506 2507 return args.valid && !folio_mapcount(folio); 2508 } 2509 2510 /** 2511 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2512 * @mm: mm_struct of associated target process 2513 * @start: start of the region to mark for exclusive device access 2514 * @end: end address of region 2515 * @pages: returns the pages which were successfully marked for exclusive access 2516 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2517 * 2518 * Returns: number of pages found in the range by GUP. A page is marked for 2519 * exclusive access only if the page pointer is non-NULL. 2520 * 2521 * This function finds ptes mapping page(s) to the given address range, locks 2522 * them and replaces mappings with special swap entries preventing userspace CPU 2523 * access. On fault these entries are replaced with the original mapping after 2524 * calling MMU notifiers. 2525 * 2526 * A driver using this to program access from a device must use a mmu notifier 2527 * critical section to hold a device specific lock during programming. Once 2528 * programming is complete it should drop the page lock and reference after 2529 * which point CPU access to the page will revoke the exclusive access. 2530 */ 2531 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2532 unsigned long end, struct page **pages, 2533 void *owner) 2534 { 2535 long npages = (end - start) >> PAGE_SHIFT; 2536 long i; 2537 2538 npages = get_user_pages_remote(mm, start, npages, 2539 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2540 pages, NULL); 2541 if (npages < 0) 2542 return npages; 2543 2544 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2545 struct folio *folio = page_folio(pages[i]); 2546 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2547 folio_put(folio); 2548 pages[i] = NULL; 2549 continue; 2550 } 2551 2552 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2553 folio_unlock(folio); 2554 folio_put(folio); 2555 pages[i] = NULL; 2556 } 2557 } 2558 2559 return npages; 2560 } 2561 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2562 #endif 2563 2564 void __put_anon_vma(struct anon_vma *anon_vma) 2565 { 2566 struct anon_vma *root = anon_vma->root; 2567 2568 anon_vma_free(anon_vma); 2569 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2570 anon_vma_free(root); 2571 } 2572 2573 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2574 struct rmap_walk_control *rwc) 2575 { 2576 struct anon_vma *anon_vma; 2577 2578 if (rwc->anon_lock) 2579 return rwc->anon_lock(folio, rwc); 2580 2581 /* 2582 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2583 * because that depends on page_mapped(); but not all its usages 2584 * are holding mmap_lock. Users without mmap_lock are required to 2585 * take a reference count to prevent the anon_vma disappearing 2586 */ 2587 anon_vma = folio_anon_vma(folio); 2588 if (!anon_vma) 2589 return NULL; 2590 2591 if (anon_vma_trylock_read(anon_vma)) 2592 goto out; 2593 2594 if (rwc->try_lock) { 2595 anon_vma = NULL; 2596 rwc->contended = true; 2597 goto out; 2598 } 2599 2600 anon_vma_lock_read(anon_vma); 2601 out: 2602 return anon_vma; 2603 } 2604 2605 /* 2606 * rmap_walk_anon - do something to anonymous page using the object-based 2607 * rmap method 2608 * @folio: the folio to be handled 2609 * @rwc: control variable according to each walk type 2610 * @locked: caller holds relevant rmap lock 2611 * 2612 * Find all the mappings of a folio using the mapping pointer and the vma 2613 * chains contained in the anon_vma struct it points to. 2614 */ 2615 static void rmap_walk_anon(struct folio *folio, 2616 struct rmap_walk_control *rwc, bool locked) 2617 { 2618 struct anon_vma *anon_vma; 2619 pgoff_t pgoff_start, pgoff_end; 2620 struct anon_vma_chain *avc; 2621 2622 if (locked) { 2623 anon_vma = folio_anon_vma(folio); 2624 /* anon_vma disappear under us? */ 2625 VM_BUG_ON_FOLIO(!anon_vma, folio); 2626 } else { 2627 anon_vma = rmap_walk_anon_lock(folio, rwc); 2628 } 2629 if (!anon_vma) 2630 return; 2631 2632 pgoff_start = folio_pgoff(folio); 2633 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2634 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2635 pgoff_start, pgoff_end) { 2636 struct vm_area_struct *vma = avc->vma; 2637 unsigned long address = vma_address(vma, pgoff_start, 2638 folio_nr_pages(folio)); 2639 2640 VM_BUG_ON_VMA(address == -EFAULT, vma); 2641 cond_resched(); 2642 2643 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2644 continue; 2645 2646 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2647 break; 2648 if (rwc->done && rwc->done(folio)) 2649 break; 2650 } 2651 2652 if (!locked) 2653 anon_vma_unlock_read(anon_vma); 2654 } 2655 2656 /* 2657 * rmap_walk_file - do something to file page using the object-based rmap method 2658 * @folio: the folio to be handled 2659 * @rwc: control variable according to each walk type 2660 * @locked: caller holds relevant rmap lock 2661 * 2662 * Find all the mappings of a folio using the mapping pointer and the vma chains 2663 * contained in the address_space struct it points to. 2664 */ 2665 static void rmap_walk_file(struct folio *folio, 2666 struct rmap_walk_control *rwc, bool locked) 2667 { 2668 struct address_space *mapping = folio_mapping(folio); 2669 pgoff_t pgoff_start, pgoff_end; 2670 struct vm_area_struct *vma; 2671 2672 /* 2673 * The page lock not only makes sure that page->mapping cannot 2674 * suddenly be NULLified by truncation, it makes sure that the 2675 * structure at mapping cannot be freed and reused yet, 2676 * so we can safely take mapping->i_mmap_rwsem. 2677 */ 2678 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2679 2680 if (!mapping) 2681 return; 2682 2683 pgoff_start = folio_pgoff(folio); 2684 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2685 if (!locked) { 2686 if (i_mmap_trylock_read(mapping)) 2687 goto lookup; 2688 2689 if (rwc->try_lock) { 2690 rwc->contended = true; 2691 return; 2692 } 2693 2694 i_mmap_lock_read(mapping); 2695 } 2696 lookup: 2697 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2698 pgoff_start, pgoff_end) { 2699 unsigned long address = vma_address(vma, pgoff_start, 2700 folio_nr_pages(folio)); 2701 2702 VM_BUG_ON_VMA(address == -EFAULT, vma); 2703 cond_resched(); 2704 2705 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2706 continue; 2707 2708 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2709 goto done; 2710 if (rwc->done && rwc->done(folio)) 2711 goto done; 2712 } 2713 2714 done: 2715 if (!locked) 2716 i_mmap_unlock_read(mapping); 2717 } 2718 2719 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2720 { 2721 if (unlikely(folio_test_ksm(folio))) 2722 rmap_walk_ksm(folio, rwc); 2723 else if (folio_test_anon(folio)) 2724 rmap_walk_anon(folio, rwc, false); 2725 else 2726 rmap_walk_file(folio, rwc, false); 2727 } 2728 2729 /* Like rmap_walk, but caller holds relevant rmap lock */ 2730 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2731 { 2732 /* no ksm support for now */ 2733 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2734 if (folio_test_anon(folio)) 2735 rmap_walk_anon(folio, rwc, true); 2736 else 2737 rmap_walk_file(folio, rwc, true); 2738 } 2739 2740 #ifdef CONFIG_HUGETLB_PAGE 2741 /* 2742 * The following two functions are for anonymous (private mapped) hugepages. 2743 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2744 * and no lru code, because we handle hugepages differently from common pages. 2745 */ 2746 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2747 unsigned long address, rmap_t flags) 2748 { 2749 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2750 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2751 2752 atomic_inc(&folio->_entire_mapcount); 2753 atomic_inc(&folio->_large_mapcount); 2754 if (flags & RMAP_EXCLUSIVE) 2755 SetPageAnonExclusive(&folio->page); 2756 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2757 PageAnonExclusive(&folio->page), folio); 2758 } 2759 2760 void hugetlb_add_new_anon_rmap(struct folio *folio, 2761 struct vm_area_struct *vma, unsigned long address) 2762 { 2763 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2764 2765 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2766 /* increment count (starts at -1) */ 2767 atomic_set(&folio->_entire_mapcount, 0); 2768 atomic_set(&folio->_large_mapcount, 0); 2769 folio_clear_hugetlb_restore_reserve(folio); 2770 __folio_set_anon(folio, vma, address, true); 2771 SetPageAnonExclusive(&folio->page); 2772 } 2773 #endif /* CONFIG_HUGETLB_PAGE */ 2774