xref: /linux/mm/rmap.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         page->flags PG_locked (lock_page)
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against page_remove_rmap()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  */
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	rcu_read_lock();
500 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 		goto out;
503 	if (!folio_mapped(folio))
504 		goto out;
505 
506 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 		anon_vma = NULL;
509 		goto out;
510 	}
511 
512 	/*
513 	 * If this folio is still mapped, then its anon_vma cannot have been
514 	 * freed.  But if it has been unmapped, we have no security against the
515 	 * anon_vma structure being freed and reused (for another anon_vma:
516 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 	 * above cannot corrupt).
518 	 */
519 	if (!folio_mapped(folio)) {
520 		rcu_read_unlock();
521 		put_anon_vma(anon_vma);
522 		return NULL;
523 	}
524 out:
525 	rcu_read_unlock();
526 
527 	return anon_vma;
528 }
529 
530 /*
531  * Similar to folio_get_anon_vma() except it locks the anon_vma.
532  *
533  * Its a little more complex as it tries to keep the fast path to a single
534  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535  * reference like with folio_get_anon_vma() and then block on the mutex
536  * on !rwc->try_lock case.
537  */
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 					  struct rmap_walk_control *rwc)
540 {
541 	struct anon_vma *anon_vma = NULL;
542 	struct anon_vma *root_anon_vma;
543 	unsigned long anon_mapping;
544 
545 	rcu_read_lock();
546 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 		goto out;
549 	if (!folio_mapped(folio))
550 		goto out;
551 
552 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 	root_anon_vma = READ_ONCE(anon_vma->root);
554 	if (down_read_trylock(&root_anon_vma->rwsem)) {
555 		/*
556 		 * If the folio is still mapped, then this anon_vma is still
557 		 * its anon_vma, and holding the mutex ensures that it will
558 		 * not go away, see anon_vma_free().
559 		 */
560 		if (!folio_mapped(folio)) {
561 			up_read(&root_anon_vma->rwsem);
562 			anon_vma = NULL;
563 		}
564 		goto out;
565 	}
566 
567 	if (rwc && rwc->try_lock) {
568 		anon_vma = NULL;
569 		rwc->contended = true;
570 		goto out;
571 	}
572 
573 	/* trylock failed, we got to sleep */
574 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 		anon_vma = NULL;
576 		goto out;
577 	}
578 
579 	if (!folio_mapped(folio)) {
580 		rcu_read_unlock();
581 		put_anon_vma(anon_vma);
582 		return NULL;
583 	}
584 
585 	/* we pinned the anon_vma, its safe to sleep */
586 	rcu_read_unlock();
587 	anon_vma_lock_read(anon_vma);
588 
589 	if (atomic_dec_and_test(&anon_vma->refcount)) {
590 		/*
591 		 * Oops, we held the last refcount, release the lock
592 		 * and bail -- can't simply use put_anon_vma() because
593 		 * we'll deadlock on the anon_vma_lock_write() recursion.
594 		 */
595 		anon_vma_unlock_read(anon_vma);
596 		__put_anon_vma(anon_vma);
597 		anon_vma = NULL;
598 	}
599 
600 	return anon_vma;
601 
602 out:
603 	rcu_read_unlock();
604 	return anon_vma;
605 }
606 
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610  * important if a PTE was dirty when it was unmapped that it's flushed
611  * before any IO is initiated on the page to prevent lost writes. Similarly,
612  * it must be flushed before freeing to prevent data leakage.
613  */
614 void try_to_unmap_flush(void)
615 {
616 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617 
618 	if (!tlb_ubc->flush_required)
619 		return;
620 
621 	arch_tlbbatch_flush(&tlb_ubc->arch);
622 	tlb_ubc->flush_required = false;
623 	tlb_ubc->writable = false;
624 }
625 
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	if (tlb_ubc->writable)
632 		try_to_unmap_flush();
633 }
634 
635 /*
636  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638  */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
640 #define TLB_FLUSH_BATCH_PENDING_MASK			\
641 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
643 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
646 				      unsigned long uaddr)
647 {
648 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649 	int batch;
650 	bool writable = pte_dirty(pteval);
651 
652 	if (!pte_accessible(mm, pteval))
653 		return;
654 
655 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
656 	tlb_ubc->flush_required = true;
657 
658 	/*
659 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
660 	 * before the PTE is cleared.
661 	 */
662 	barrier();
663 	batch = atomic_read(&mm->tlb_flush_batched);
664 retry:
665 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
666 		/*
667 		 * Prevent `pending' from catching up with `flushed' because of
668 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
669 		 * `pending' becomes large.
670 		 */
671 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
672 			goto retry;
673 	} else {
674 		atomic_inc(&mm->tlb_flush_batched);
675 	}
676 
677 	/*
678 	 * If the PTE was dirty then it's best to assume it's writable. The
679 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
680 	 * before the page is queued for IO.
681 	 */
682 	if (writable)
683 		tlb_ubc->writable = true;
684 }
685 
686 /*
687  * Returns true if the TLB flush should be deferred to the end of a batch of
688  * unmap operations to reduce IPIs.
689  */
690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691 {
692 	if (!(flags & TTU_BATCH_FLUSH))
693 		return false;
694 
695 	return arch_tlbbatch_should_defer(mm);
696 }
697 
698 /*
699  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
700  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
701  * operation such as mprotect or munmap to race between reclaim unmapping
702  * the page and flushing the page. If this race occurs, it potentially allows
703  * access to data via a stale TLB entry. Tracking all mm's that have TLB
704  * batching in flight would be expensive during reclaim so instead track
705  * whether TLB batching occurred in the past and if so then do a flush here
706  * if required. This will cost one additional flush per reclaim cycle paid
707  * by the first operation at risk such as mprotect and mumap.
708  *
709  * This must be called under the PTL so that an access to tlb_flush_batched
710  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
711  * via the PTL.
712  */
713 void flush_tlb_batched_pending(struct mm_struct *mm)
714 {
715 	int batch = atomic_read(&mm->tlb_flush_batched);
716 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
717 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
718 
719 	if (pending != flushed) {
720 		arch_flush_tlb_batched_pending(mm);
721 		/*
722 		 * If the new TLB flushing is pending during flushing, leave
723 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
724 		 */
725 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
726 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
727 	}
728 }
729 #else
730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
731 				      unsigned long uaddr)
732 {
733 }
734 
735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
736 {
737 	return false;
738 }
739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
740 
741 /*
742  * At what user virtual address is page expected in vma?
743  * Caller should check the page is actually part of the vma.
744  */
745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
746 {
747 	struct folio *folio = page_folio(page);
748 	if (folio_test_anon(folio)) {
749 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
750 		/*
751 		 * Note: swapoff's unuse_vma() is more efficient with this
752 		 * check, and needs it to match anon_vma when KSM is active.
753 		 */
754 		if (!vma->anon_vma || !page__anon_vma ||
755 		    vma->anon_vma->root != page__anon_vma->root)
756 			return -EFAULT;
757 	} else if (!vma->vm_file) {
758 		return -EFAULT;
759 	} else if (vma->vm_file->f_mapping != folio->mapping) {
760 		return -EFAULT;
761 	}
762 
763 	return vma_address(page, vma);
764 }
765 
766 /*
767  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
769  * represents.
770  */
771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
772 {
773 	pgd_t *pgd;
774 	p4d_t *p4d;
775 	pud_t *pud;
776 	pmd_t *pmd = NULL;
777 
778 	pgd = pgd_offset(mm, address);
779 	if (!pgd_present(*pgd))
780 		goto out;
781 
782 	p4d = p4d_offset(pgd, address);
783 	if (!p4d_present(*p4d))
784 		goto out;
785 
786 	pud = pud_offset(p4d, address);
787 	if (!pud_present(*pud))
788 		goto out;
789 
790 	pmd = pmd_offset(pud, address);
791 out:
792 	return pmd;
793 }
794 
795 struct folio_referenced_arg {
796 	int mapcount;
797 	int referenced;
798 	unsigned long vm_flags;
799 	struct mem_cgroup *memcg;
800 };
801 
802 /*
803  * arg: folio_referenced_arg will be passed
804  */
805 static bool folio_referenced_one(struct folio *folio,
806 		struct vm_area_struct *vma, unsigned long address, void *arg)
807 {
808 	struct folio_referenced_arg *pra = arg;
809 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
810 	int referenced = 0;
811 	unsigned long start = address, ptes = 0;
812 
813 	while (page_vma_mapped_walk(&pvmw)) {
814 		address = pvmw.address;
815 
816 		if (vma->vm_flags & VM_LOCKED) {
817 			if (!folio_test_large(folio) || !pvmw.pte) {
818 				/* Restore the mlock which got missed */
819 				mlock_vma_folio(folio, vma);
820 				page_vma_mapped_walk_done(&pvmw);
821 				pra->vm_flags |= VM_LOCKED;
822 				return false; /* To break the loop */
823 			}
824 			/*
825 			 * For large folio fully mapped to VMA, will
826 			 * be handled after the pvmw loop.
827 			 *
828 			 * For large folio cross VMA boundaries, it's
829 			 * expected to be picked  by page reclaim. But
830 			 * should skip reference of pages which are in
831 			 * the range of VM_LOCKED vma. As page reclaim
832 			 * should just count the reference of pages out
833 			 * the range of VM_LOCKED vma.
834 			 */
835 			ptes++;
836 			pra->mapcount--;
837 			continue;
838 		}
839 
840 		if (pvmw.pte) {
841 			if (lru_gen_enabled() &&
842 			    pte_young(ptep_get(pvmw.pte))) {
843 				lru_gen_look_around(&pvmw);
844 				referenced++;
845 			}
846 
847 			if (ptep_clear_flush_young_notify(vma, address,
848 						pvmw.pte))
849 				referenced++;
850 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
851 			if (pmdp_clear_flush_young_notify(vma, address,
852 						pvmw.pmd))
853 				referenced++;
854 		} else {
855 			/* unexpected pmd-mapped folio? */
856 			WARN_ON_ONCE(1);
857 		}
858 
859 		pra->mapcount--;
860 	}
861 
862 	if ((vma->vm_flags & VM_LOCKED) &&
863 			folio_test_large(folio) &&
864 			folio_within_vma(folio, vma)) {
865 		unsigned long s_align, e_align;
866 
867 		s_align = ALIGN_DOWN(start, PMD_SIZE);
868 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
869 
870 		/* folio doesn't cross page table boundary and fully mapped */
871 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
872 			/* Restore the mlock which got missed */
873 			mlock_vma_folio(folio, vma);
874 			pra->vm_flags |= VM_LOCKED;
875 			return false; /* To break the loop */
876 		}
877 	}
878 
879 	if (referenced)
880 		folio_clear_idle(folio);
881 	if (folio_test_clear_young(folio))
882 		referenced++;
883 
884 	if (referenced) {
885 		pra->referenced++;
886 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
887 	}
888 
889 	if (!pra->mapcount)
890 		return false; /* To break the loop */
891 
892 	return true;
893 }
894 
895 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
896 {
897 	struct folio_referenced_arg *pra = arg;
898 	struct mem_cgroup *memcg = pra->memcg;
899 
900 	/*
901 	 * Ignore references from this mapping if it has no recency. If the
902 	 * folio has been used in another mapping, we will catch it; if this
903 	 * other mapping is already gone, the unmap path will have set the
904 	 * referenced flag or activated the folio in zap_pte_range().
905 	 */
906 	if (!vma_has_recency(vma))
907 		return true;
908 
909 	/*
910 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
911 	 * of references from different cgroups.
912 	 */
913 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
914 		return true;
915 
916 	return false;
917 }
918 
919 /**
920  * folio_referenced() - Test if the folio was referenced.
921  * @folio: The folio to test.
922  * @is_locked: Caller holds lock on the folio.
923  * @memcg: target memory cgroup
924  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
925  *
926  * Quick test_and_clear_referenced for all mappings of a folio,
927  *
928  * Return: The number of mappings which referenced the folio. Return -1 if
929  * the function bailed out due to rmap lock contention.
930  */
931 int folio_referenced(struct folio *folio, int is_locked,
932 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
933 {
934 	int we_locked = 0;
935 	struct folio_referenced_arg pra = {
936 		.mapcount = folio_mapcount(folio),
937 		.memcg = memcg,
938 	};
939 	struct rmap_walk_control rwc = {
940 		.rmap_one = folio_referenced_one,
941 		.arg = (void *)&pra,
942 		.anon_lock = folio_lock_anon_vma_read,
943 		.try_lock = true,
944 		.invalid_vma = invalid_folio_referenced_vma,
945 	};
946 
947 	*vm_flags = 0;
948 	if (!pra.mapcount)
949 		return 0;
950 
951 	if (!folio_raw_mapping(folio))
952 		return 0;
953 
954 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
955 		we_locked = folio_trylock(folio);
956 		if (!we_locked)
957 			return 1;
958 	}
959 
960 	rmap_walk(folio, &rwc);
961 	*vm_flags = pra.vm_flags;
962 
963 	if (we_locked)
964 		folio_unlock(folio);
965 
966 	return rwc.contended ? -1 : pra.referenced;
967 }
968 
969 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
970 {
971 	int cleaned = 0;
972 	struct vm_area_struct *vma = pvmw->vma;
973 	struct mmu_notifier_range range;
974 	unsigned long address = pvmw->address;
975 
976 	/*
977 	 * We have to assume the worse case ie pmd for invalidation. Note that
978 	 * the folio can not be freed from this function.
979 	 */
980 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
981 				vma->vm_mm, address, vma_address_end(pvmw));
982 	mmu_notifier_invalidate_range_start(&range);
983 
984 	while (page_vma_mapped_walk(pvmw)) {
985 		int ret = 0;
986 
987 		address = pvmw->address;
988 		if (pvmw->pte) {
989 			pte_t *pte = pvmw->pte;
990 			pte_t entry = ptep_get(pte);
991 
992 			if (!pte_dirty(entry) && !pte_write(entry))
993 				continue;
994 
995 			flush_cache_page(vma, address, pte_pfn(entry));
996 			entry = ptep_clear_flush(vma, address, pte);
997 			entry = pte_wrprotect(entry);
998 			entry = pte_mkclean(entry);
999 			set_pte_at(vma->vm_mm, address, pte, entry);
1000 			ret = 1;
1001 		} else {
1002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1003 			pmd_t *pmd = pvmw->pmd;
1004 			pmd_t entry;
1005 
1006 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1007 				continue;
1008 
1009 			flush_cache_range(vma, address,
1010 					  address + HPAGE_PMD_SIZE);
1011 			entry = pmdp_invalidate(vma, address, pmd);
1012 			entry = pmd_wrprotect(entry);
1013 			entry = pmd_mkclean(entry);
1014 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1015 			ret = 1;
1016 #else
1017 			/* unexpected pmd-mapped folio? */
1018 			WARN_ON_ONCE(1);
1019 #endif
1020 		}
1021 
1022 		if (ret)
1023 			cleaned++;
1024 	}
1025 
1026 	mmu_notifier_invalidate_range_end(&range);
1027 
1028 	return cleaned;
1029 }
1030 
1031 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1032 			     unsigned long address, void *arg)
1033 {
1034 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1035 	int *cleaned = arg;
1036 
1037 	*cleaned += page_vma_mkclean_one(&pvmw);
1038 
1039 	return true;
1040 }
1041 
1042 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1043 {
1044 	if (vma->vm_flags & VM_SHARED)
1045 		return false;
1046 
1047 	return true;
1048 }
1049 
1050 int folio_mkclean(struct folio *folio)
1051 {
1052 	int cleaned = 0;
1053 	struct address_space *mapping;
1054 	struct rmap_walk_control rwc = {
1055 		.arg = (void *)&cleaned,
1056 		.rmap_one = page_mkclean_one,
1057 		.invalid_vma = invalid_mkclean_vma,
1058 	};
1059 
1060 	BUG_ON(!folio_test_locked(folio));
1061 
1062 	if (!folio_mapped(folio))
1063 		return 0;
1064 
1065 	mapping = folio_mapping(folio);
1066 	if (!mapping)
1067 		return 0;
1068 
1069 	rmap_walk(folio, &rwc);
1070 
1071 	return cleaned;
1072 }
1073 EXPORT_SYMBOL_GPL(folio_mkclean);
1074 
1075 /**
1076  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1077  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1078  *                     within the @vma of shared mappings. And since clean PTEs
1079  *                     should also be readonly, write protects them too.
1080  * @pfn: start pfn.
1081  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1082  * @pgoff: page offset that the @pfn mapped with.
1083  * @vma: vma that @pfn mapped within.
1084  *
1085  * Returns the number of cleaned PTEs (including PMDs).
1086  */
1087 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1088 		      struct vm_area_struct *vma)
1089 {
1090 	struct page_vma_mapped_walk pvmw = {
1091 		.pfn		= pfn,
1092 		.nr_pages	= nr_pages,
1093 		.pgoff		= pgoff,
1094 		.vma		= vma,
1095 		.flags		= PVMW_SYNC,
1096 	};
1097 
1098 	if (invalid_mkclean_vma(vma, NULL))
1099 		return 0;
1100 
1101 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1102 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1103 
1104 	return page_vma_mkclean_one(&pvmw);
1105 }
1106 
1107 int folio_total_mapcount(struct folio *folio)
1108 {
1109 	int mapcount = folio_entire_mapcount(folio);
1110 	int nr_pages;
1111 	int i;
1112 
1113 	/* In the common case, avoid the loop when no pages mapped by PTE */
1114 	if (folio_nr_pages_mapped(folio) == 0)
1115 		return mapcount;
1116 	/*
1117 	 * Add all the PTE mappings of those pages mapped by PTE.
1118 	 * Limit the loop to folio_nr_pages_mapped()?
1119 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1120 	 */
1121 	nr_pages = folio_nr_pages(folio);
1122 	for (i = 0; i < nr_pages; i++)
1123 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1124 
1125 	/* But each of those _mapcounts was based on -1 */
1126 	mapcount += nr_pages;
1127 	return mapcount;
1128 }
1129 
1130 /**
1131  * folio_move_anon_rmap - move a folio to our anon_vma
1132  * @folio:	The folio to move to our anon_vma
1133  * @vma:	The vma the folio belongs to
1134  *
1135  * When a folio belongs exclusively to one process after a COW event,
1136  * that folio can be moved into the anon_vma that belongs to just that
1137  * process, so the rmap code will not search the parent or sibling processes.
1138  */
1139 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1140 {
1141 	void *anon_vma = vma->anon_vma;
1142 
1143 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1144 	VM_BUG_ON_VMA(!anon_vma, vma);
1145 
1146 	anon_vma += PAGE_MAPPING_ANON;
1147 	/*
1148 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1149 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1150 	 * folio_test_anon()) will not see one without the other.
1151 	 */
1152 	WRITE_ONCE(folio->mapping, anon_vma);
1153 }
1154 
1155 /**
1156  * __folio_set_anon - set up a new anonymous rmap for a folio
1157  * @folio:	The folio to set up the new anonymous rmap for.
1158  * @vma:	VM area to add the folio to.
1159  * @address:	User virtual address of the mapping
1160  * @exclusive:	Whether the folio is exclusive to the process.
1161  */
1162 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1163 			     unsigned long address, bool exclusive)
1164 {
1165 	struct anon_vma *anon_vma = vma->anon_vma;
1166 
1167 	BUG_ON(!anon_vma);
1168 
1169 	/*
1170 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1171 	 * possible anon_vma for the folio mapping!
1172 	 */
1173 	if (!exclusive)
1174 		anon_vma = anon_vma->root;
1175 
1176 	/*
1177 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1178 	 * Make sure the compiler doesn't split the stores of anon_vma and
1179 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1180 	 * could mistake the mapping for a struct address_space and crash.
1181 	 */
1182 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1183 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1184 	folio->index = linear_page_index(vma, address);
1185 }
1186 
1187 /**
1188  * __page_check_anon_rmap - sanity check anonymous rmap addition
1189  * @folio:	The folio containing @page.
1190  * @page:	the page to check the mapping of
1191  * @vma:	the vm area in which the mapping is added
1192  * @address:	the user virtual address mapped
1193  */
1194 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1195 	struct vm_area_struct *vma, unsigned long address)
1196 {
1197 	/*
1198 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1199 	 * be set up correctly at this point.
1200 	 *
1201 	 * We have exclusion against page_add_anon_rmap because the caller
1202 	 * always holds the page locked.
1203 	 *
1204 	 * We have exclusion against page_add_new_anon_rmap because those pages
1205 	 * are initially only visible via the pagetables, and the pte is locked
1206 	 * over the call to page_add_new_anon_rmap.
1207 	 */
1208 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1209 			folio);
1210 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1211 		       page);
1212 }
1213 
1214 /**
1215  * page_add_anon_rmap - add pte mapping to an anonymous page
1216  * @page:	the page to add the mapping to
1217  * @vma:	the vm area in which the mapping is added
1218  * @address:	the user virtual address mapped
1219  * @flags:	the rmap flags
1220  *
1221  * The caller needs to hold the pte lock, and the page must be locked in
1222  * the anon_vma case: to serialize mapping,index checking after setting,
1223  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1224  * (but PageKsm is never downgraded to PageAnon).
1225  */
1226 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1227 		unsigned long address, rmap_t flags)
1228 {
1229 	struct folio *folio = page_folio(page);
1230 	atomic_t *mapped = &folio->_nr_pages_mapped;
1231 	int nr = 0, nr_pmdmapped = 0;
1232 	bool compound = flags & RMAP_COMPOUND;
1233 	bool first;
1234 
1235 	/* Is page being mapped by PTE? Is this its first map to be added? */
1236 	if (likely(!compound)) {
1237 		first = atomic_inc_and_test(&page->_mapcount);
1238 		nr = first;
1239 		if (first && folio_test_large(folio)) {
1240 			nr = atomic_inc_return_relaxed(mapped);
1241 			nr = (nr < COMPOUND_MAPPED);
1242 		}
1243 	} else if (folio_test_pmd_mappable(folio)) {
1244 		/* That test is redundant: it's for safety or to optimize out */
1245 
1246 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1247 		if (first) {
1248 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1249 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1250 				nr_pmdmapped = folio_nr_pages(folio);
1251 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1252 				/* Raced ahead of a remove and another add? */
1253 				if (unlikely(nr < 0))
1254 					nr = 0;
1255 			} else {
1256 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1257 				nr = 0;
1258 			}
1259 		}
1260 	}
1261 
1262 	if (nr_pmdmapped)
1263 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1264 	if (nr)
1265 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1266 
1267 	if (unlikely(!folio_test_anon(folio))) {
1268 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1269 		/*
1270 		 * For a PTE-mapped large folio, we only know that the single
1271 		 * PTE is exclusive. Further, __folio_set_anon() might not get
1272 		 * folio->index right when not given the address of the head
1273 		 * page.
1274 		 */
1275 		VM_WARN_ON_FOLIO(folio_test_large(folio) && !compound, folio);
1276 		__folio_set_anon(folio, vma, address,
1277 				 !!(flags & RMAP_EXCLUSIVE));
1278 	} else if (likely(!folio_test_ksm(folio))) {
1279 		__page_check_anon_rmap(folio, page, vma, address);
1280 	}
1281 	if (flags & RMAP_EXCLUSIVE)
1282 		SetPageAnonExclusive(page);
1283 	/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1284 	VM_WARN_ON_FOLIO((atomic_read(&page->_mapcount) > 0 ||
1285 			  (folio_test_large(folio) && folio_entire_mapcount(folio) > 1)) &&
1286 			 PageAnonExclusive(page), folio);
1287 
1288 	/*
1289 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1290 	 * not easy to check whether the large folio is fully mapped to VMA
1291 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1292 	 * large folio.
1293 	 */
1294 	if (!folio_test_large(folio))
1295 		mlock_vma_folio(folio, vma);
1296 }
1297 
1298 /**
1299  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1300  * @folio:	The folio to add the mapping to.
1301  * @vma:	the vm area in which the mapping is added
1302  * @address:	the user virtual address mapped
1303  *
1304  * Like page_add_anon_rmap() but must only be called on *new* folios.
1305  * This means the inc-and-test can be bypassed.
1306  * The folio does not have to be locked.
1307  *
1308  * If the folio is large, it is accounted as a THP.  As the folio
1309  * is new, it's assumed to be mapped exclusively by a single process.
1310  */
1311 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1312 		unsigned long address)
1313 {
1314 	int nr;
1315 
1316 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1317 	__folio_set_swapbacked(folio);
1318 
1319 	if (likely(!folio_test_pmd_mappable(folio))) {
1320 		/* increment count (starts at -1) */
1321 		atomic_set(&folio->_mapcount, 0);
1322 		nr = 1;
1323 	} else {
1324 		/* increment count (starts at -1) */
1325 		atomic_set(&folio->_entire_mapcount, 0);
1326 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1327 		nr = folio_nr_pages(folio);
1328 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1329 	}
1330 
1331 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1332 	__folio_set_anon(folio, vma, address, true);
1333 	SetPageAnonExclusive(&folio->page);
1334 }
1335 
1336 /**
1337  * folio_add_file_rmap_range - add pte mapping to page range of a folio
1338  * @folio:	The folio to add the mapping to
1339  * @page:	The first page to add
1340  * @nr_pages:	The number of pages which will be mapped
1341  * @vma:	the vm area in which the mapping is added
1342  * @compound:	charge the page as compound or small page
1343  *
1344  * The page range of folio is defined by [first_page, first_page + nr_pages)
1345  *
1346  * The caller needs to hold the pte lock.
1347  */
1348 void folio_add_file_rmap_range(struct folio *folio, struct page *page,
1349 			unsigned int nr_pages, struct vm_area_struct *vma,
1350 			bool compound)
1351 {
1352 	atomic_t *mapped = &folio->_nr_pages_mapped;
1353 	unsigned int nr_pmdmapped = 0, first;
1354 	int nr = 0;
1355 
1356 	VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio);
1357 
1358 	/* Is page being mapped by PTE? Is this its first map to be added? */
1359 	if (likely(!compound)) {
1360 		do {
1361 			first = atomic_inc_and_test(&page->_mapcount);
1362 			if (first && folio_test_large(folio)) {
1363 				first = atomic_inc_return_relaxed(mapped);
1364 				first = (first < COMPOUND_MAPPED);
1365 			}
1366 
1367 			if (first)
1368 				nr++;
1369 		} while (page++, --nr_pages > 0);
1370 	} else if (folio_test_pmd_mappable(folio)) {
1371 		/* That test is redundant: it's for safety or to optimize out */
1372 
1373 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1374 		if (first) {
1375 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1376 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1377 				nr_pmdmapped = folio_nr_pages(folio);
1378 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1379 				/* Raced ahead of a remove and another add? */
1380 				if (unlikely(nr < 0))
1381 					nr = 0;
1382 			} else {
1383 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1384 				nr = 0;
1385 			}
1386 		}
1387 	}
1388 
1389 	if (nr_pmdmapped)
1390 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1391 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1392 	if (nr)
1393 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1394 
1395 	/* See comments in page_add_anon_rmap() */
1396 	if (!folio_test_large(folio))
1397 		mlock_vma_folio(folio, vma);
1398 }
1399 
1400 /**
1401  * page_add_file_rmap - add pte mapping to a file page
1402  * @page:	the page to add the mapping to
1403  * @vma:	the vm area in which the mapping is added
1404  * @compound:	charge the page as compound or small page
1405  *
1406  * The caller needs to hold the pte lock.
1407  */
1408 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1409 		bool compound)
1410 {
1411 	struct folio *folio = page_folio(page);
1412 	unsigned int nr_pages;
1413 
1414 	VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page);
1415 
1416 	if (likely(!compound))
1417 		nr_pages = 1;
1418 	else
1419 		nr_pages = folio_nr_pages(folio);
1420 
1421 	folio_add_file_rmap_range(folio, page, nr_pages, vma, compound);
1422 }
1423 
1424 /**
1425  * page_remove_rmap - take down pte mapping from a page
1426  * @page:	page to remove mapping from
1427  * @vma:	the vm area from which the mapping is removed
1428  * @compound:	uncharge the page as compound or small page
1429  *
1430  * The caller needs to hold the pte lock.
1431  */
1432 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1433 		bool compound)
1434 {
1435 	struct folio *folio = page_folio(page);
1436 	atomic_t *mapped = &folio->_nr_pages_mapped;
1437 	int nr = 0, nr_pmdmapped = 0;
1438 	bool last;
1439 	enum node_stat_item idx;
1440 
1441 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1442 
1443 	/* Hugetlb pages are not counted in NR_*MAPPED */
1444 	if (unlikely(folio_test_hugetlb(folio))) {
1445 		/* hugetlb pages are always mapped with pmds */
1446 		atomic_dec(&folio->_entire_mapcount);
1447 		return;
1448 	}
1449 
1450 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1451 	if (likely(!compound)) {
1452 		last = atomic_add_negative(-1, &page->_mapcount);
1453 		nr = last;
1454 		if (last && folio_test_large(folio)) {
1455 			nr = atomic_dec_return_relaxed(mapped);
1456 			nr = (nr < COMPOUND_MAPPED);
1457 		}
1458 	} else if (folio_test_pmd_mappable(folio)) {
1459 		/* That test is redundant: it's for safety or to optimize out */
1460 
1461 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1462 		if (last) {
1463 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1464 			if (likely(nr < COMPOUND_MAPPED)) {
1465 				nr_pmdmapped = folio_nr_pages(folio);
1466 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1467 				/* Raced ahead of another remove and an add? */
1468 				if (unlikely(nr < 0))
1469 					nr = 0;
1470 			} else {
1471 				/* An add of COMPOUND_MAPPED raced ahead */
1472 				nr = 0;
1473 			}
1474 		}
1475 	}
1476 
1477 	if (nr_pmdmapped) {
1478 		if (folio_test_anon(folio))
1479 			idx = NR_ANON_THPS;
1480 		else if (folio_test_swapbacked(folio))
1481 			idx = NR_SHMEM_PMDMAPPED;
1482 		else
1483 			idx = NR_FILE_PMDMAPPED;
1484 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1485 	}
1486 	if (nr) {
1487 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1488 		__lruvec_stat_mod_folio(folio, idx, -nr);
1489 
1490 		/*
1491 		 * Queue anon THP for deferred split if at least one
1492 		 * page of the folio is unmapped and at least one page
1493 		 * is still mapped.
1494 		 */
1495 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1496 			if (!compound || nr < nr_pmdmapped)
1497 				deferred_split_folio(folio);
1498 	}
1499 
1500 	/*
1501 	 * It would be tidy to reset folio_test_anon mapping when fully
1502 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1503 	 * which increments mapcount after us but sets mapping before us:
1504 	 * so leave the reset to free_pages_prepare, and remember that
1505 	 * it's only reliable while mapped.
1506 	 */
1507 
1508 	munlock_vma_folio(folio, vma);
1509 }
1510 
1511 /*
1512  * @arg: enum ttu_flags will be passed to this argument
1513  */
1514 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1515 		     unsigned long address, void *arg)
1516 {
1517 	struct mm_struct *mm = vma->vm_mm;
1518 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1519 	pte_t pteval;
1520 	struct page *subpage;
1521 	bool anon_exclusive, ret = true;
1522 	struct mmu_notifier_range range;
1523 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1524 	unsigned long pfn;
1525 	unsigned long hsz = 0;
1526 
1527 	/*
1528 	 * When racing against e.g. zap_pte_range() on another cpu,
1529 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1530 	 * try_to_unmap() may return before page_mapped() has become false,
1531 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1532 	 */
1533 	if (flags & TTU_SYNC)
1534 		pvmw.flags = PVMW_SYNC;
1535 
1536 	if (flags & TTU_SPLIT_HUGE_PMD)
1537 		split_huge_pmd_address(vma, address, false, folio);
1538 
1539 	/*
1540 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1541 	 * For hugetlb, it could be much worse if we need to do pud
1542 	 * invalidation in the case of pmd sharing.
1543 	 *
1544 	 * Note that the folio can not be freed in this function as call of
1545 	 * try_to_unmap() must hold a reference on the folio.
1546 	 */
1547 	range.end = vma_address_end(&pvmw);
1548 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1549 				address, range.end);
1550 	if (folio_test_hugetlb(folio)) {
1551 		/*
1552 		 * If sharing is possible, start and end will be adjusted
1553 		 * accordingly.
1554 		 */
1555 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1556 						     &range.end);
1557 
1558 		/* We need the huge page size for set_huge_pte_at() */
1559 		hsz = huge_page_size(hstate_vma(vma));
1560 	}
1561 	mmu_notifier_invalidate_range_start(&range);
1562 
1563 	while (page_vma_mapped_walk(&pvmw)) {
1564 		/* Unexpected PMD-mapped THP? */
1565 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1566 
1567 		/*
1568 		 * If the folio is in an mlock()d vma, we must not swap it out.
1569 		 */
1570 		if (!(flags & TTU_IGNORE_MLOCK) &&
1571 		    (vma->vm_flags & VM_LOCKED)) {
1572 			/* Restore the mlock which got missed */
1573 			if (!folio_test_large(folio))
1574 				mlock_vma_folio(folio, vma);
1575 			page_vma_mapped_walk_done(&pvmw);
1576 			ret = false;
1577 			break;
1578 		}
1579 
1580 		pfn = pte_pfn(ptep_get(pvmw.pte));
1581 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1582 		address = pvmw.address;
1583 		anon_exclusive = folio_test_anon(folio) &&
1584 				 PageAnonExclusive(subpage);
1585 
1586 		if (folio_test_hugetlb(folio)) {
1587 			bool anon = folio_test_anon(folio);
1588 
1589 			/*
1590 			 * The try_to_unmap() is only passed a hugetlb page
1591 			 * in the case where the hugetlb page is poisoned.
1592 			 */
1593 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1594 			/*
1595 			 * huge_pmd_unshare may unmap an entire PMD page.
1596 			 * There is no way of knowing exactly which PMDs may
1597 			 * be cached for this mm, so we must flush them all.
1598 			 * start/end were already adjusted above to cover this
1599 			 * range.
1600 			 */
1601 			flush_cache_range(vma, range.start, range.end);
1602 
1603 			/*
1604 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1605 			 * held in write mode.  Caller needs to explicitly
1606 			 * do this outside rmap routines.
1607 			 *
1608 			 * We also must hold hugetlb vma_lock in write mode.
1609 			 * Lock order dictates acquiring vma_lock BEFORE
1610 			 * i_mmap_rwsem.  We can only try lock here and fail
1611 			 * if unsuccessful.
1612 			 */
1613 			if (!anon) {
1614 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1615 				if (!hugetlb_vma_trylock_write(vma)) {
1616 					page_vma_mapped_walk_done(&pvmw);
1617 					ret = false;
1618 					break;
1619 				}
1620 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1621 					hugetlb_vma_unlock_write(vma);
1622 					flush_tlb_range(vma,
1623 						range.start, range.end);
1624 					/*
1625 					 * The ref count of the PMD page was
1626 					 * dropped which is part of the way map
1627 					 * counting is done for shared PMDs.
1628 					 * Return 'true' here.  When there is
1629 					 * no other sharing, huge_pmd_unshare
1630 					 * returns false and we will unmap the
1631 					 * actual page and drop map count
1632 					 * to zero.
1633 					 */
1634 					page_vma_mapped_walk_done(&pvmw);
1635 					break;
1636 				}
1637 				hugetlb_vma_unlock_write(vma);
1638 			}
1639 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1640 		} else {
1641 			flush_cache_page(vma, address, pfn);
1642 			/* Nuke the page table entry. */
1643 			if (should_defer_flush(mm, flags)) {
1644 				/*
1645 				 * We clear the PTE but do not flush so potentially
1646 				 * a remote CPU could still be writing to the folio.
1647 				 * If the entry was previously clean then the
1648 				 * architecture must guarantee that a clear->dirty
1649 				 * transition on a cached TLB entry is written through
1650 				 * and traps if the PTE is unmapped.
1651 				 */
1652 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1653 
1654 				set_tlb_ubc_flush_pending(mm, pteval, address);
1655 			} else {
1656 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1657 			}
1658 		}
1659 
1660 		/*
1661 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1662 		 * we may want to replace a none pte with a marker pte if
1663 		 * it's file-backed, so we don't lose the tracking info.
1664 		 */
1665 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1666 
1667 		/* Set the dirty flag on the folio now the pte is gone. */
1668 		if (pte_dirty(pteval))
1669 			folio_mark_dirty(folio);
1670 
1671 		/* Update high watermark before we lower rss */
1672 		update_hiwater_rss(mm);
1673 
1674 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1675 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1676 			if (folio_test_hugetlb(folio)) {
1677 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1678 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1679 						hsz);
1680 			} else {
1681 				dec_mm_counter(mm, mm_counter(&folio->page));
1682 				set_pte_at(mm, address, pvmw.pte, pteval);
1683 			}
1684 
1685 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1686 			/*
1687 			 * The guest indicated that the page content is of no
1688 			 * interest anymore. Simply discard the pte, vmscan
1689 			 * will take care of the rest.
1690 			 * A future reference will then fault in a new zero
1691 			 * page. When userfaultfd is active, we must not drop
1692 			 * this page though, as its main user (postcopy
1693 			 * migration) will not expect userfaults on already
1694 			 * copied pages.
1695 			 */
1696 			dec_mm_counter(mm, mm_counter(&folio->page));
1697 		} else if (folio_test_anon(folio)) {
1698 			swp_entry_t entry = page_swap_entry(subpage);
1699 			pte_t swp_pte;
1700 			/*
1701 			 * Store the swap location in the pte.
1702 			 * See handle_pte_fault() ...
1703 			 */
1704 			if (unlikely(folio_test_swapbacked(folio) !=
1705 					folio_test_swapcache(folio))) {
1706 				WARN_ON_ONCE(1);
1707 				ret = false;
1708 				page_vma_mapped_walk_done(&pvmw);
1709 				break;
1710 			}
1711 
1712 			/* MADV_FREE page check */
1713 			if (!folio_test_swapbacked(folio)) {
1714 				int ref_count, map_count;
1715 
1716 				/*
1717 				 * Synchronize with gup_pte_range():
1718 				 * - clear PTE; barrier; read refcount
1719 				 * - inc refcount; barrier; read PTE
1720 				 */
1721 				smp_mb();
1722 
1723 				ref_count = folio_ref_count(folio);
1724 				map_count = folio_mapcount(folio);
1725 
1726 				/*
1727 				 * Order reads for page refcount and dirty flag
1728 				 * (see comments in __remove_mapping()).
1729 				 */
1730 				smp_rmb();
1731 
1732 				/*
1733 				 * The only page refs must be one from isolation
1734 				 * plus the rmap(s) (dropped by discard:).
1735 				 */
1736 				if (ref_count == 1 + map_count &&
1737 				    !folio_test_dirty(folio)) {
1738 					dec_mm_counter(mm, MM_ANONPAGES);
1739 					goto discard;
1740 				}
1741 
1742 				/*
1743 				 * If the folio was redirtied, it cannot be
1744 				 * discarded. Remap the page to page table.
1745 				 */
1746 				set_pte_at(mm, address, pvmw.pte, pteval);
1747 				folio_set_swapbacked(folio);
1748 				ret = false;
1749 				page_vma_mapped_walk_done(&pvmw);
1750 				break;
1751 			}
1752 
1753 			if (swap_duplicate(entry) < 0) {
1754 				set_pte_at(mm, address, pvmw.pte, pteval);
1755 				ret = false;
1756 				page_vma_mapped_walk_done(&pvmw);
1757 				break;
1758 			}
1759 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1760 				swap_free(entry);
1761 				set_pte_at(mm, address, pvmw.pte, pteval);
1762 				ret = false;
1763 				page_vma_mapped_walk_done(&pvmw);
1764 				break;
1765 			}
1766 
1767 			/* See page_try_share_anon_rmap(): clear PTE first. */
1768 			if (anon_exclusive &&
1769 			    page_try_share_anon_rmap(subpage)) {
1770 				swap_free(entry);
1771 				set_pte_at(mm, address, pvmw.pte, pteval);
1772 				ret = false;
1773 				page_vma_mapped_walk_done(&pvmw);
1774 				break;
1775 			}
1776 			if (list_empty(&mm->mmlist)) {
1777 				spin_lock(&mmlist_lock);
1778 				if (list_empty(&mm->mmlist))
1779 					list_add(&mm->mmlist, &init_mm.mmlist);
1780 				spin_unlock(&mmlist_lock);
1781 			}
1782 			dec_mm_counter(mm, MM_ANONPAGES);
1783 			inc_mm_counter(mm, MM_SWAPENTS);
1784 			swp_pte = swp_entry_to_pte(entry);
1785 			if (anon_exclusive)
1786 				swp_pte = pte_swp_mkexclusive(swp_pte);
1787 			if (pte_soft_dirty(pteval))
1788 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1789 			if (pte_uffd_wp(pteval))
1790 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1791 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1792 		} else {
1793 			/*
1794 			 * This is a locked file-backed folio,
1795 			 * so it cannot be removed from the page
1796 			 * cache and replaced by a new folio before
1797 			 * mmu_notifier_invalidate_range_end, so no
1798 			 * concurrent thread might update its page table
1799 			 * to point at a new folio while a device is
1800 			 * still using this folio.
1801 			 *
1802 			 * See Documentation/mm/mmu_notifier.rst
1803 			 */
1804 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1805 		}
1806 discard:
1807 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1808 		if (vma->vm_flags & VM_LOCKED)
1809 			mlock_drain_local();
1810 		folio_put(folio);
1811 	}
1812 
1813 	mmu_notifier_invalidate_range_end(&range);
1814 
1815 	return ret;
1816 }
1817 
1818 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1819 {
1820 	return vma_is_temporary_stack(vma);
1821 }
1822 
1823 static int folio_not_mapped(struct folio *folio)
1824 {
1825 	return !folio_mapped(folio);
1826 }
1827 
1828 /**
1829  * try_to_unmap - Try to remove all page table mappings to a folio.
1830  * @folio: The folio to unmap.
1831  * @flags: action and flags
1832  *
1833  * Tries to remove all the page table entries which are mapping this
1834  * folio.  It is the caller's responsibility to check if the folio is
1835  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1836  *
1837  * Context: Caller must hold the folio lock.
1838  */
1839 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1840 {
1841 	struct rmap_walk_control rwc = {
1842 		.rmap_one = try_to_unmap_one,
1843 		.arg = (void *)flags,
1844 		.done = folio_not_mapped,
1845 		.anon_lock = folio_lock_anon_vma_read,
1846 	};
1847 
1848 	if (flags & TTU_RMAP_LOCKED)
1849 		rmap_walk_locked(folio, &rwc);
1850 	else
1851 		rmap_walk(folio, &rwc);
1852 }
1853 
1854 /*
1855  * @arg: enum ttu_flags will be passed to this argument.
1856  *
1857  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1858  * containing migration entries.
1859  */
1860 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1861 		     unsigned long address, void *arg)
1862 {
1863 	struct mm_struct *mm = vma->vm_mm;
1864 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1865 	pte_t pteval;
1866 	struct page *subpage;
1867 	bool anon_exclusive, ret = true;
1868 	struct mmu_notifier_range range;
1869 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1870 	unsigned long pfn;
1871 	unsigned long hsz = 0;
1872 
1873 	/*
1874 	 * When racing against e.g. zap_pte_range() on another cpu,
1875 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1876 	 * try_to_migrate() may return before page_mapped() has become false,
1877 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1878 	 */
1879 	if (flags & TTU_SYNC)
1880 		pvmw.flags = PVMW_SYNC;
1881 
1882 	/*
1883 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1884 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1885 	 */
1886 	if (flags & TTU_SPLIT_HUGE_PMD)
1887 		split_huge_pmd_address(vma, address, true, folio);
1888 
1889 	/*
1890 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1891 	 * For hugetlb, it could be much worse if we need to do pud
1892 	 * invalidation in the case of pmd sharing.
1893 	 *
1894 	 * Note that the page can not be free in this function as call of
1895 	 * try_to_unmap() must hold a reference on the page.
1896 	 */
1897 	range.end = vma_address_end(&pvmw);
1898 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1899 				address, range.end);
1900 	if (folio_test_hugetlb(folio)) {
1901 		/*
1902 		 * If sharing is possible, start and end will be adjusted
1903 		 * accordingly.
1904 		 */
1905 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1906 						     &range.end);
1907 
1908 		/* We need the huge page size for set_huge_pte_at() */
1909 		hsz = huge_page_size(hstate_vma(vma));
1910 	}
1911 	mmu_notifier_invalidate_range_start(&range);
1912 
1913 	while (page_vma_mapped_walk(&pvmw)) {
1914 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1915 		/* PMD-mapped THP migration entry */
1916 		if (!pvmw.pte) {
1917 			subpage = folio_page(folio,
1918 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1919 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1920 					!folio_test_pmd_mappable(folio), folio);
1921 
1922 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1923 				ret = false;
1924 				page_vma_mapped_walk_done(&pvmw);
1925 				break;
1926 			}
1927 			continue;
1928 		}
1929 #endif
1930 
1931 		/* Unexpected PMD-mapped THP? */
1932 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1933 
1934 		pfn = pte_pfn(ptep_get(pvmw.pte));
1935 
1936 		if (folio_is_zone_device(folio)) {
1937 			/*
1938 			 * Our PTE is a non-present device exclusive entry and
1939 			 * calculating the subpage as for the common case would
1940 			 * result in an invalid pointer.
1941 			 *
1942 			 * Since only PAGE_SIZE pages can currently be
1943 			 * migrated, just set it to page. This will need to be
1944 			 * changed when hugepage migrations to device private
1945 			 * memory are supported.
1946 			 */
1947 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1948 			subpage = &folio->page;
1949 		} else {
1950 			subpage = folio_page(folio, pfn - folio_pfn(folio));
1951 		}
1952 		address = pvmw.address;
1953 		anon_exclusive = folio_test_anon(folio) &&
1954 				 PageAnonExclusive(subpage);
1955 
1956 		if (folio_test_hugetlb(folio)) {
1957 			bool anon = folio_test_anon(folio);
1958 
1959 			/*
1960 			 * huge_pmd_unshare may unmap an entire PMD page.
1961 			 * There is no way of knowing exactly which PMDs may
1962 			 * be cached for this mm, so we must flush them all.
1963 			 * start/end were already adjusted above to cover this
1964 			 * range.
1965 			 */
1966 			flush_cache_range(vma, range.start, range.end);
1967 
1968 			/*
1969 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1970 			 * held in write mode.  Caller needs to explicitly
1971 			 * do this outside rmap routines.
1972 			 *
1973 			 * We also must hold hugetlb vma_lock in write mode.
1974 			 * Lock order dictates acquiring vma_lock BEFORE
1975 			 * i_mmap_rwsem.  We can only try lock here and
1976 			 * fail if unsuccessful.
1977 			 */
1978 			if (!anon) {
1979 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1980 				if (!hugetlb_vma_trylock_write(vma)) {
1981 					page_vma_mapped_walk_done(&pvmw);
1982 					ret = false;
1983 					break;
1984 				}
1985 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1986 					hugetlb_vma_unlock_write(vma);
1987 					flush_tlb_range(vma,
1988 						range.start, range.end);
1989 
1990 					/*
1991 					 * The ref count of the PMD page was
1992 					 * dropped which is part of the way map
1993 					 * counting is done for shared PMDs.
1994 					 * Return 'true' here.  When there is
1995 					 * no other sharing, huge_pmd_unshare
1996 					 * returns false and we will unmap the
1997 					 * actual page and drop map count
1998 					 * to zero.
1999 					 */
2000 					page_vma_mapped_walk_done(&pvmw);
2001 					break;
2002 				}
2003 				hugetlb_vma_unlock_write(vma);
2004 			}
2005 			/* Nuke the hugetlb page table entry */
2006 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2007 		} else {
2008 			flush_cache_page(vma, address, pfn);
2009 			/* Nuke the page table entry. */
2010 			if (should_defer_flush(mm, flags)) {
2011 				/*
2012 				 * We clear the PTE but do not flush so potentially
2013 				 * a remote CPU could still be writing to the folio.
2014 				 * If the entry was previously clean then the
2015 				 * architecture must guarantee that a clear->dirty
2016 				 * transition on a cached TLB entry is written through
2017 				 * and traps if the PTE is unmapped.
2018 				 */
2019 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2020 
2021 				set_tlb_ubc_flush_pending(mm, pteval, address);
2022 			} else {
2023 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2024 			}
2025 		}
2026 
2027 		/* Set the dirty flag on the folio now the pte is gone. */
2028 		if (pte_dirty(pteval))
2029 			folio_mark_dirty(folio);
2030 
2031 		/* Update high watermark before we lower rss */
2032 		update_hiwater_rss(mm);
2033 
2034 		if (folio_is_device_private(folio)) {
2035 			unsigned long pfn = folio_pfn(folio);
2036 			swp_entry_t entry;
2037 			pte_t swp_pte;
2038 
2039 			if (anon_exclusive)
2040 				BUG_ON(page_try_share_anon_rmap(subpage));
2041 
2042 			/*
2043 			 * Store the pfn of the page in a special migration
2044 			 * pte. do_swap_page() will wait until the migration
2045 			 * pte is removed and then restart fault handling.
2046 			 */
2047 			entry = pte_to_swp_entry(pteval);
2048 			if (is_writable_device_private_entry(entry))
2049 				entry = make_writable_migration_entry(pfn);
2050 			else if (anon_exclusive)
2051 				entry = make_readable_exclusive_migration_entry(pfn);
2052 			else
2053 				entry = make_readable_migration_entry(pfn);
2054 			swp_pte = swp_entry_to_pte(entry);
2055 
2056 			/*
2057 			 * pteval maps a zone device page and is therefore
2058 			 * a swap pte.
2059 			 */
2060 			if (pte_swp_soft_dirty(pteval))
2061 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2062 			if (pte_swp_uffd_wp(pteval))
2063 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2064 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2065 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2066 						compound_order(&folio->page));
2067 			/*
2068 			 * No need to invalidate here it will synchronize on
2069 			 * against the special swap migration pte.
2070 			 */
2071 		} else if (PageHWPoison(subpage)) {
2072 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2073 			if (folio_test_hugetlb(folio)) {
2074 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2075 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2076 						hsz);
2077 			} else {
2078 				dec_mm_counter(mm, mm_counter(&folio->page));
2079 				set_pte_at(mm, address, pvmw.pte, pteval);
2080 			}
2081 
2082 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2083 			/*
2084 			 * The guest indicated that the page content is of no
2085 			 * interest anymore. Simply discard the pte, vmscan
2086 			 * will take care of the rest.
2087 			 * A future reference will then fault in a new zero
2088 			 * page. When userfaultfd is active, we must not drop
2089 			 * this page though, as its main user (postcopy
2090 			 * migration) will not expect userfaults on already
2091 			 * copied pages.
2092 			 */
2093 			dec_mm_counter(mm, mm_counter(&folio->page));
2094 		} else {
2095 			swp_entry_t entry;
2096 			pte_t swp_pte;
2097 
2098 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2099 				if (folio_test_hugetlb(folio))
2100 					set_huge_pte_at(mm, address, pvmw.pte,
2101 							pteval, hsz);
2102 				else
2103 					set_pte_at(mm, address, pvmw.pte, pteval);
2104 				ret = false;
2105 				page_vma_mapped_walk_done(&pvmw);
2106 				break;
2107 			}
2108 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2109 				       !anon_exclusive, subpage);
2110 
2111 			/* See page_try_share_anon_rmap(): clear PTE first. */
2112 			if (anon_exclusive &&
2113 			    page_try_share_anon_rmap(subpage)) {
2114 				if (folio_test_hugetlb(folio))
2115 					set_huge_pte_at(mm, address, pvmw.pte,
2116 							pteval, hsz);
2117 				else
2118 					set_pte_at(mm, address, pvmw.pte, pteval);
2119 				ret = false;
2120 				page_vma_mapped_walk_done(&pvmw);
2121 				break;
2122 			}
2123 
2124 			/*
2125 			 * Store the pfn of the page in a special migration
2126 			 * pte. do_swap_page() will wait until the migration
2127 			 * pte is removed and then restart fault handling.
2128 			 */
2129 			if (pte_write(pteval))
2130 				entry = make_writable_migration_entry(
2131 							page_to_pfn(subpage));
2132 			else if (anon_exclusive)
2133 				entry = make_readable_exclusive_migration_entry(
2134 							page_to_pfn(subpage));
2135 			else
2136 				entry = make_readable_migration_entry(
2137 							page_to_pfn(subpage));
2138 			if (pte_young(pteval))
2139 				entry = make_migration_entry_young(entry);
2140 			if (pte_dirty(pteval))
2141 				entry = make_migration_entry_dirty(entry);
2142 			swp_pte = swp_entry_to_pte(entry);
2143 			if (pte_soft_dirty(pteval))
2144 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2145 			if (pte_uffd_wp(pteval))
2146 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2147 			if (folio_test_hugetlb(folio))
2148 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2149 						hsz);
2150 			else
2151 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2152 			trace_set_migration_pte(address, pte_val(swp_pte),
2153 						compound_order(&folio->page));
2154 			/*
2155 			 * No need to invalidate here it will synchronize on
2156 			 * against the special swap migration pte.
2157 			 */
2158 		}
2159 
2160 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2161 		if (vma->vm_flags & VM_LOCKED)
2162 			mlock_drain_local();
2163 		folio_put(folio);
2164 	}
2165 
2166 	mmu_notifier_invalidate_range_end(&range);
2167 
2168 	return ret;
2169 }
2170 
2171 /**
2172  * try_to_migrate - try to replace all page table mappings with swap entries
2173  * @folio: the folio to replace page table entries for
2174  * @flags: action and flags
2175  *
2176  * Tries to remove all the page table entries which are mapping this folio and
2177  * replace them with special swap entries. Caller must hold the folio lock.
2178  */
2179 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2180 {
2181 	struct rmap_walk_control rwc = {
2182 		.rmap_one = try_to_migrate_one,
2183 		.arg = (void *)flags,
2184 		.done = folio_not_mapped,
2185 		.anon_lock = folio_lock_anon_vma_read,
2186 	};
2187 
2188 	/*
2189 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2190 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2191 	 */
2192 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2193 					TTU_SYNC | TTU_BATCH_FLUSH)))
2194 		return;
2195 
2196 	if (folio_is_zone_device(folio) &&
2197 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2198 		return;
2199 
2200 	/*
2201 	 * During exec, a temporary VMA is setup and later moved.
2202 	 * The VMA is moved under the anon_vma lock but not the
2203 	 * page tables leading to a race where migration cannot
2204 	 * find the migration ptes. Rather than increasing the
2205 	 * locking requirements of exec(), migration skips
2206 	 * temporary VMAs until after exec() completes.
2207 	 */
2208 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2209 		rwc.invalid_vma = invalid_migration_vma;
2210 
2211 	if (flags & TTU_RMAP_LOCKED)
2212 		rmap_walk_locked(folio, &rwc);
2213 	else
2214 		rmap_walk(folio, &rwc);
2215 }
2216 
2217 #ifdef CONFIG_DEVICE_PRIVATE
2218 struct make_exclusive_args {
2219 	struct mm_struct *mm;
2220 	unsigned long address;
2221 	void *owner;
2222 	bool valid;
2223 };
2224 
2225 static bool page_make_device_exclusive_one(struct folio *folio,
2226 		struct vm_area_struct *vma, unsigned long address, void *priv)
2227 {
2228 	struct mm_struct *mm = vma->vm_mm;
2229 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2230 	struct make_exclusive_args *args = priv;
2231 	pte_t pteval;
2232 	struct page *subpage;
2233 	bool ret = true;
2234 	struct mmu_notifier_range range;
2235 	swp_entry_t entry;
2236 	pte_t swp_pte;
2237 	pte_t ptent;
2238 
2239 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2240 				      vma->vm_mm, address, min(vma->vm_end,
2241 				      address + folio_size(folio)),
2242 				      args->owner);
2243 	mmu_notifier_invalidate_range_start(&range);
2244 
2245 	while (page_vma_mapped_walk(&pvmw)) {
2246 		/* Unexpected PMD-mapped THP? */
2247 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2248 
2249 		ptent = ptep_get(pvmw.pte);
2250 		if (!pte_present(ptent)) {
2251 			ret = false;
2252 			page_vma_mapped_walk_done(&pvmw);
2253 			break;
2254 		}
2255 
2256 		subpage = folio_page(folio,
2257 				pte_pfn(ptent) - folio_pfn(folio));
2258 		address = pvmw.address;
2259 
2260 		/* Nuke the page table entry. */
2261 		flush_cache_page(vma, address, pte_pfn(ptent));
2262 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2263 
2264 		/* Set the dirty flag on the folio now the pte is gone. */
2265 		if (pte_dirty(pteval))
2266 			folio_mark_dirty(folio);
2267 
2268 		/*
2269 		 * Check that our target page is still mapped at the expected
2270 		 * address.
2271 		 */
2272 		if (args->mm == mm && args->address == address &&
2273 		    pte_write(pteval))
2274 			args->valid = true;
2275 
2276 		/*
2277 		 * Store the pfn of the page in a special migration
2278 		 * pte. do_swap_page() will wait until the migration
2279 		 * pte is removed and then restart fault handling.
2280 		 */
2281 		if (pte_write(pteval))
2282 			entry = make_writable_device_exclusive_entry(
2283 							page_to_pfn(subpage));
2284 		else
2285 			entry = make_readable_device_exclusive_entry(
2286 							page_to_pfn(subpage));
2287 		swp_pte = swp_entry_to_pte(entry);
2288 		if (pte_soft_dirty(pteval))
2289 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2290 		if (pte_uffd_wp(pteval))
2291 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2292 
2293 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2294 
2295 		/*
2296 		 * There is a reference on the page for the swap entry which has
2297 		 * been removed, so shouldn't take another.
2298 		 */
2299 		page_remove_rmap(subpage, vma, false);
2300 	}
2301 
2302 	mmu_notifier_invalidate_range_end(&range);
2303 
2304 	return ret;
2305 }
2306 
2307 /**
2308  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2309  * @folio: The folio to replace page table entries for.
2310  * @mm: The mm_struct where the folio is expected to be mapped.
2311  * @address: Address where the folio is expected to be mapped.
2312  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2313  *
2314  * Tries to remove all the page table entries which are mapping this
2315  * folio and replace them with special device exclusive swap entries to
2316  * grant a device exclusive access to the folio.
2317  *
2318  * Context: Caller must hold the folio lock.
2319  * Return: false if the page is still mapped, or if it could not be unmapped
2320  * from the expected address. Otherwise returns true (success).
2321  */
2322 static bool folio_make_device_exclusive(struct folio *folio,
2323 		struct mm_struct *mm, unsigned long address, void *owner)
2324 {
2325 	struct make_exclusive_args args = {
2326 		.mm = mm,
2327 		.address = address,
2328 		.owner = owner,
2329 		.valid = false,
2330 	};
2331 	struct rmap_walk_control rwc = {
2332 		.rmap_one = page_make_device_exclusive_one,
2333 		.done = folio_not_mapped,
2334 		.anon_lock = folio_lock_anon_vma_read,
2335 		.arg = &args,
2336 	};
2337 
2338 	/*
2339 	 * Restrict to anonymous folios for now to avoid potential writeback
2340 	 * issues.
2341 	 */
2342 	if (!folio_test_anon(folio))
2343 		return false;
2344 
2345 	rmap_walk(folio, &rwc);
2346 
2347 	return args.valid && !folio_mapcount(folio);
2348 }
2349 
2350 /**
2351  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2352  * @mm: mm_struct of associated target process
2353  * @start: start of the region to mark for exclusive device access
2354  * @end: end address of region
2355  * @pages: returns the pages which were successfully marked for exclusive access
2356  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2357  *
2358  * Returns: number of pages found in the range by GUP. A page is marked for
2359  * exclusive access only if the page pointer is non-NULL.
2360  *
2361  * This function finds ptes mapping page(s) to the given address range, locks
2362  * them and replaces mappings with special swap entries preventing userspace CPU
2363  * access. On fault these entries are replaced with the original mapping after
2364  * calling MMU notifiers.
2365  *
2366  * A driver using this to program access from a device must use a mmu notifier
2367  * critical section to hold a device specific lock during programming. Once
2368  * programming is complete it should drop the page lock and reference after
2369  * which point CPU access to the page will revoke the exclusive access.
2370  */
2371 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2372 				unsigned long end, struct page **pages,
2373 				void *owner)
2374 {
2375 	long npages = (end - start) >> PAGE_SHIFT;
2376 	long i;
2377 
2378 	npages = get_user_pages_remote(mm, start, npages,
2379 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2380 				       pages, NULL);
2381 	if (npages < 0)
2382 		return npages;
2383 
2384 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2385 		struct folio *folio = page_folio(pages[i]);
2386 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2387 			folio_put(folio);
2388 			pages[i] = NULL;
2389 			continue;
2390 		}
2391 
2392 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2393 			folio_unlock(folio);
2394 			folio_put(folio);
2395 			pages[i] = NULL;
2396 		}
2397 	}
2398 
2399 	return npages;
2400 }
2401 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2402 #endif
2403 
2404 void __put_anon_vma(struct anon_vma *anon_vma)
2405 {
2406 	struct anon_vma *root = anon_vma->root;
2407 
2408 	anon_vma_free(anon_vma);
2409 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2410 		anon_vma_free(root);
2411 }
2412 
2413 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2414 					    struct rmap_walk_control *rwc)
2415 {
2416 	struct anon_vma *anon_vma;
2417 
2418 	if (rwc->anon_lock)
2419 		return rwc->anon_lock(folio, rwc);
2420 
2421 	/*
2422 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2423 	 * because that depends on page_mapped(); but not all its usages
2424 	 * are holding mmap_lock. Users without mmap_lock are required to
2425 	 * take a reference count to prevent the anon_vma disappearing
2426 	 */
2427 	anon_vma = folio_anon_vma(folio);
2428 	if (!anon_vma)
2429 		return NULL;
2430 
2431 	if (anon_vma_trylock_read(anon_vma))
2432 		goto out;
2433 
2434 	if (rwc->try_lock) {
2435 		anon_vma = NULL;
2436 		rwc->contended = true;
2437 		goto out;
2438 	}
2439 
2440 	anon_vma_lock_read(anon_vma);
2441 out:
2442 	return anon_vma;
2443 }
2444 
2445 /*
2446  * rmap_walk_anon - do something to anonymous page using the object-based
2447  * rmap method
2448  * @folio: the folio to be handled
2449  * @rwc: control variable according to each walk type
2450  * @locked: caller holds relevant rmap lock
2451  *
2452  * Find all the mappings of a folio using the mapping pointer and the vma
2453  * chains contained in the anon_vma struct it points to.
2454  */
2455 static void rmap_walk_anon(struct folio *folio,
2456 		struct rmap_walk_control *rwc, bool locked)
2457 {
2458 	struct anon_vma *anon_vma;
2459 	pgoff_t pgoff_start, pgoff_end;
2460 	struct anon_vma_chain *avc;
2461 
2462 	if (locked) {
2463 		anon_vma = folio_anon_vma(folio);
2464 		/* anon_vma disappear under us? */
2465 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2466 	} else {
2467 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2468 	}
2469 	if (!anon_vma)
2470 		return;
2471 
2472 	pgoff_start = folio_pgoff(folio);
2473 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2474 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2475 			pgoff_start, pgoff_end) {
2476 		struct vm_area_struct *vma = avc->vma;
2477 		unsigned long address = vma_address(&folio->page, vma);
2478 
2479 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2480 		cond_resched();
2481 
2482 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2483 			continue;
2484 
2485 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2486 			break;
2487 		if (rwc->done && rwc->done(folio))
2488 			break;
2489 	}
2490 
2491 	if (!locked)
2492 		anon_vma_unlock_read(anon_vma);
2493 }
2494 
2495 /*
2496  * rmap_walk_file - do something to file page using the object-based rmap method
2497  * @folio: the folio to be handled
2498  * @rwc: control variable according to each walk type
2499  * @locked: caller holds relevant rmap lock
2500  *
2501  * Find all the mappings of a folio using the mapping pointer and the vma chains
2502  * contained in the address_space struct it points to.
2503  */
2504 static void rmap_walk_file(struct folio *folio,
2505 		struct rmap_walk_control *rwc, bool locked)
2506 {
2507 	struct address_space *mapping = folio_mapping(folio);
2508 	pgoff_t pgoff_start, pgoff_end;
2509 	struct vm_area_struct *vma;
2510 
2511 	/*
2512 	 * The page lock not only makes sure that page->mapping cannot
2513 	 * suddenly be NULLified by truncation, it makes sure that the
2514 	 * structure at mapping cannot be freed and reused yet,
2515 	 * so we can safely take mapping->i_mmap_rwsem.
2516 	 */
2517 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2518 
2519 	if (!mapping)
2520 		return;
2521 
2522 	pgoff_start = folio_pgoff(folio);
2523 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2524 	if (!locked) {
2525 		if (i_mmap_trylock_read(mapping))
2526 			goto lookup;
2527 
2528 		if (rwc->try_lock) {
2529 			rwc->contended = true;
2530 			return;
2531 		}
2532 
2533 		i_mmap_lock_read(mapping);
2534 	}
2535 lookup:
2536 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2537 			pgoff_start, pgoff_end) {
2538 		unsigned long address = vma_address(&folio->page, vma);
2539 
2540 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2541 		cond_resched();
2542 
2543 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2544 			continue;
2545 
2546 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2547 			goto done;
2548 		if (rwc->done && rwc->done(folio))
2549 			goto done;
2550 	}
2551 
2552 done:
2553 	if (!locked)
2554 		i_mmap_unlock_read(mapping);
2555 }
2556 
2557 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2558 {
2559 	if (unlikely(folio_test_ksm(folio)))
2560 		rmap_walk_ksm(folio, rwc);
2561 	else if (folio_test_anon(folio))
2562 		rmap_walk_anon(folio, rwc, false);
2563 	else
2564 		rmap_walk_file(folio, rwc, false);
2565 }
2566 
2567 /* Like rmap_walk, but caller holds relevant rmap lock */
2568 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2569 {
2570 	/* no ksm support for now */
2571 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2572 	if (folio_test_anon(folio))
2573 		rmap_walk_anon(folio, rwc, true);
2574 	else
2575 		rmap_walk_file(folio, rwc, true);
2576 }
2577 
2578 #ifdef CONFIG_HUGETLB_PAGE
2579 /*
2580  * The following two functions are for anonymous (private mapped) hugepages.
2581  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2582  * and no lru code, because we handle hugepages differently from common pages.
2583  *
2584  * RMAP_COMPOUND is ignored.
2585  */
2586 void hugepage_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2587 			    unsigned long address, rmap_t flags)
2588 {
2589 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2590 
2591 	atomic_inc(&folio->_entire_mapcount);
2592 	if (flags & RMAP_EXCLUSIVE)
2593 		SetPageAnonExclusive(&folio->page);
2594 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2595 			 PageAnonExclusive(&folio->page), folio);
2596 }
2597 
2598 void hugepage_add_new_anon_rmap(struct folio *folio,
2599 			struct vm_area_struct *vma, unsigned long address)
2600 {
2601 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2602 	/* increment count (starts at -1) */
2603 	atomic_set(&folio->_entire_mapcount, 0);
2604 	folio_clear_hugetlb_restore_reserve(folio);
2605 	__folio_set_anon(folio, vma, address, true);
2606 	SetPageAnonExclusive(&folio->page);
2607 }
2608 #endif /* CONFIG_HUGETLB_PAGE */
2609