1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 646 unsigned long uaddr) 647 { 648 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 649 int batch; 650 bool writable = pte_dirty(pteval); 651 652 if (!pte_accessible(mm, pteval)) 653 return; 654 655 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 656 tlb_ubc->flush_required = true; 657 658 /* 659 * Ensure compiler does not re-order the setting of tlb_flush_batched 660 * before the PTE is cleared. 661 */ 662 barrier(); 663 batch = atomic_read(&mm->tlb_flush_batched); 664 retry: 665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 666 /* 667 * Prevent `pending' from catching up with `flushed' because of 668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 669 * `pending' becomes large. 670 */ 671 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 672 goto retry; 673 } else { 674 atomic_inc(&mm->tlb_flush_batched); 675 } 676 677 /* 678 * If the PTE was dirty then it's best to assume it's writable. The 679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 680 * before the page is queued for IO. 681 */ 682 if (writable) 683 tlb_ubc->writable = true; 684 } 685 686 /* 687 * Returns true if the TLB flush should be deferred to the end of a batch of 688 * unmap operations to reduce IPIs. 689 */ 690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 691 { 692 if (!(flags & TTU_BATCH_FLUSH)) 693 return false; 694 695 return arch_tlbbatch_should_defer(mm); 696 } 697 698 /* 699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 701 * operation such as mprotect or munmap to race between reclaim unmapping 702 * the page and flushing the page. If this race occurs, it potentially allows 703 * access to data via a stale TLB entry. Tracking all mm's that have TLB 704 * batching in flight would be expensive during reclaim so instead track 705 * whether TLB batching occurred in the past and if so then do a flush here 706 * if required. This will cost one additional flush per reclaim cycle paid 707 * by the first operation at risk such as mprotect and mumap. 708 * 709 * This must be called under the PTL so that an access to tlb_flush_batched 710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 711 * via the PTL. 712 */ 713 void flush_tlb_batched_pending(struct mm_struct *mm) 714 { 715 int batch = atomic_read(&mm->tlb_flush_batched); 716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 718 719 if (pending != flushed) { 720 arch_flush_tlb_batched_pending(mm); 721 /* 722 * If the new TLB flushing is pending during flushing, leave 723 * mm->tlb_flush_batched as is, to avoid losing flushing. 724 */ 725 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 726 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 727 } 728 } 729 #else 730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 731 unsigned long uaddr) 732 { 733 } 734 735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 736 { 737 return false; 738 } 739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 740 741 /* 742 * At what user virtual address is page expected in vma? 743 * Caller should check the page is actually part of the vma. 744 */ 745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 746 { 747 struct folio *folio = page_folio(page); 748 if (folio_test_anon(folio)) { 749 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 750 /* 751 * Note: swapoff's unuse_vma() is more efficient with this 752 * check, and needs it to match anon_vma when KSM is active. 753 */ 754 if (!vma->anon_vma || !page__anon_vma || 755 vma->anon_vma->root != page__anon_vma->root) 756 return -EFAULT; 757 } else if (!vma->vm_file) { 758 return -EFAULT; 759 } else if (vma->vm_file->f_mapping != folio->mapping) { 760 return -EFAULT; 761 } 762 763 return vma_address(page, vma); 764 } 765 766 /* 767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 769 * represents. 770 */ 771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 772 { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 pud_t *pud; 776 pmd_t *pmd = NULL; 777 778 pgd = pgd_offset(mm, address); 779 if (!pgd_present(*pgd)) 780 goto out; 781 782 p4d = p4d_offset(pgd, address); 783 if (!p4d_present(*p4d)) 784 goto out; 785 786 pud = pud_offset(p4d, address); 787 if (!pud_present(*pud)) 788 goto out; 789 790 pmd = pmd_offset(pud, address); 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 802 /* 803 * arg: folio_referenced_arg will be passed 804 */ 805 static bool folio_referenced_one(struct folio *folio, 806 struct vm_area_struct *vma, unsigned long address, void *arg) 807 { 808 struct folio_referenced_arg *pra = arg; 809 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 810 int referenced = 0; 811 unsigned long start = address, ptes = 0; 812 813 while (page_vma_mapped_walk(&pvmw)) { 814 address = pvmw.address; 815 816 if (vma->vm_flags & VM_LOCKED) { 817 if (!folio_test_large(folio) || !pvmw.pte) { 818 /* Restore the mlock which got missed */ 819 mlock_vma_folio(folio, vma); 820 page_vma_mapped_walk_done(&pvmw); 821 pra->vm_flags |= VM_LOCKED; 822 return false; /* To break the loop */ 823 } 824 /* 825 * For large folio fully mapped to VMA, will 826 * be handled after the pvmw loop. 827 * 828 * For large folio cross VMA boundaries, it's 829 * expected to be picked by page reclaim. But 830 * should skip reference of pages which are in 831 * the range of VM_LOCKED vma. As page reclaim 832 * should just count the reference of pages out 833 * the range of VM_LOCKED vma. 834 */ 835 ptes++; 836 pra->mapcount--; 837 continue; 838 } 839 840 if (pvmw.pte) { 841 if (lru_gen_enabled() && 842 pte_young(ptep_get(pvmw.pte))) { 843 lru_gen_look_around(&pvmw); 844 referenced++; 845 } 846 847 if (ptep_clear_flush_young_notify(vma, address, 848 pvmw.pte)) 849 referenced++; 850 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 851 if (pmdp_clear_flush_young_notify(vma, address, 852 pvmw.pmd)) 853 referenced++; 854 } else { 855 /* unexpected pmd-mapped folio? */ 856 WARN_ON_ONCE(1); 857 } 858 859 pra->mapcount--; 860 } 861 862 if ((vma->vm_flags & VM_LOCKED) && 863 folio_test_large(folio) && 864 folio_within_vma(folio, vma)) { 865 unsigned long s_align, e_align; 866 867 s_align = ALIGN_DOWN(start, PMD_SIZE); 868 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 869 870 /* folio doesn't cross page table boundary and fully mapped */ 871 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 872 /* Restore the mlock which got missed */ 873 mlock_vma_folio(folio, vma); 874 pra->vm_flags |= VM_LOCKED; 875 return false; /* To break the loop */ 876 } 877 } 878 879 if (referenced) 880 folio_clear_idle(folio); 881 if (folio_test_clear_young(folio)) 882 referenced++; 883 884 if (referenced) { 885 pra->referenced++; 886 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 887 } 888 889 if (!pra->mapcount) 890 return false; /* To break the loop */ 891 892 return true; 893 } 894 895 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 896 { 897 struct folio_referenced_arg *pra = arg; 898 struct mem_cgroup *memcg = pra->memcg; 899 900 /* 901 * Ignore references from this mapping if it has no recency. If the 902 * folio has been used in another mapping, we will catch it; if this 903 * other mapping is already gone, the unmap path will have set the 904 * referenced flag or activated the folio in zap_pte_range(). 905 */ 906 if (!vma_has_recency(vma)) 907 return true; 908 909 /* 910 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 911 * of references from different cgroups. 912 */ 913 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 914 return true; 915 916 return false; 917 } 918 919 /** 920 * folio_referenced() - Test if the folio was referenced. 921 * @folio: The folio to test. 922 * @is_locked: Caller holds lock on the folio. 923 * @memcg: target memory cgroup 924 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 925 * 926 * Quick test_and_clear_referenced for all mappings of a folio, 927 * 928 * Return: The number of mappings which referenced the folio. Return -1 if 929 * the function bailed out due to rmap lock contention. 930 */ 931 int folio_referenced(struct folio *folio, int is_locked, 932 struct mem_cgroup *memcg, unsigned long *vm_flags) 933 { 934 int we_locked = 0; 935 struct folio_referenced_arg pra = { 936 .mapcount = folio_mapcount(folio), 937 .memcg = memcg, 938 }; 939 struct rmap_walk_control rwc = { 940 .rmap_one = folio_referenced_one, 941 .arg = (void *)&pra, 942 .anon_lock = folio_lock_anon_vma_read, 943 .try_lock = true, 944 .invalid_vma = invalid_folio_referenced_vma, 945 }; 946 947 *vm_flags = 0; 948 if (!pra.mapcount) 949 return 0; 950 951 if (!folio_raw_mapping(folio)) 952 return 0; 953 954 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 955 we_locked = folio_trylock(folio); 956 if (!we_locked) 957 return 1; 958 } 959 960 rmap_walk(folio, &rwc); 961 *vm_flags = pra.vm_flags; 962 963 if (we_locked) 964 folio_unlock(folio); 965 966 return rwc.contended ? -1 : pra.referenced; 967 } 968 969 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 970 { 971 int cleaned = 0; 972 struct vm_area_struct *vma = pvmw->vma; 973 struct mmu_notifier_range range; 974 unsigned long address = pvmw->address; 975 976 /* 977 * We have to assume the worse case ie pmd for invalidation. Note that 978 * the folio can not be freed from this function. 979 */ 980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 981 vma->vm_mm, address, vma_address_end(pvmw)); 982 mmu_notifier_invalidate_range_start(&range); 983 984 while (page_vma_mapped_walk(pvmw)) { 985 int ret = 0; 986 987 address = pvmw->address; 988 if (pvmw->pte) { 989 pte_t *pte = pvmw->pte; 990 pte_t entry = ptep_get(pte); 991 992 if (!pte_dirty(entry) && !pte_write(entry)) 993 continue; 994 995 flush_cache_page(vma, address, pte_pfn(entry)); 996 entry = ptep_clear_flush(vma, address, pte); 997 entry = pte_wrprotect(entry); 998 entry = pte_mkclean(entry); 999 set_pte_at(vma->vm_mm, address, pte, entry); 1000 ret = 1; 1001 } else { 1002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1003 pmd_t *pmd = pvmw->pmd; 1004 pmd_t entry; 1005 1006 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1007 continue; 1008 1009 flush_cache_range(vma, address, 1010 address + HPAGE_PMD_SIZE); 1011 entry = pmdp_invalidate(vma, address, pmd); 1012 entry = pmd_wrprotect(entry); 1013 entry = pmd_mkclean(entry); 1014 set_pmd_at(vma->vm_mm, address, pmd, entry); 1015 ret = 1; 1016 #else 1017 /* unexpected pmd-mapped folio? */ 1018 WARN_ON_ONCE(1); 1019 #endif 1020 } 1021 1022 if (ret) 1023 cleaned++; 1024 } 1025 1026 mmu_notifier_invalidate_range_end(&range); 1027 1028 return cleaned; 1029 } 1030 1031 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1032 unsigned long address, void *arg) 1033 { 1034 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1035 int *cleaned = arg; 1036 1037 *cleaned += page_vma_mkclean_one(&pvmw); 1038 1039 return true; 1040 } 1041 1042 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1043 { 1044 if (vma->vm_flags & VM_SHARED) 1045 return false; 1046 1047 return true; 1048 } 1049 1050 int folio_mkclean(struct folio *folio) 1051 { 1052 int cleaned = 0; 1053 struct address_space *mapping; 1054 struct rmap_walk_control rwc = { 1055 .arg = (void *)&cleaned, 1056 .rmap_one = page_mkclean_one, 1057 .invalid_vma = invalid_mkclean_vma, 1058 }; 1059 1060 BUG_ON(!folio_test_locked(folio)); 1061 1062 if (!folio_mapped(folio)) 1063 return 0; 1064 1065 mapping = folio_mapping(folio); 1066 if (!mapping) 1067 return 0; 1068 1069 rmap_walk(folio, &rwc); 1070 1071 return cleaned; 1072 } 1073 EXPORT_SYMBOL_GPL(folio_mkclean); 1074 1075 /** 1076 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1077 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1078 * within the @vma of shared mappings. And since clean PTEs 1079 * should also be readonly, write protects them too. 1080 * @pfn: start pfn. 1081 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1082 * @pgoff: page offset that the @pfn mapped with. 1083 * @vma: vma that @pfn mapped within. 1084 * 1085 * Returns the number of cleaned PTEs (including PMDs). 1086 */ 1087 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1088 struct vm_area_struct *vma) 1089 { 1090 struct page_vma_mapped_walk pvmw = { 1091 .pfn = pfn, 1092 .nr_pages = nr_pages, 1093 .pgoff = pgoff, 1094 .vma = vma, 1095 .flags = PVMW_SYNC, 1096 }; 1097 1098 if (invalid_mkclean_vma(vma, NULL)) 1099 return 0; 1100 1101 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1102 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1103 1104 return page_vma_mkclean_one(&pvmw); 1105 } 1106 1107 int folio_total_mapcount(struct folio *folio) 1108 { 1109 int mapcount = folio_entire_mapcount(folio); 1110 int nr_pages; 1111 int i; 1112 1113 /* In the common case, avoid the loop when no pages mapped by PTE */ 1114 if (folio_nr_pages_mapped(folio) == 0) 1115 return mapcount; 1116 /* 1117 * Add all the PTE mappings of those pages mapped by PTE. 1118 * Limit the loop to folio_nr_pages_mapped()? 1119 * Perhaps: given all the raciness, that may be a good or a bad idea. 1120 */ 1121 nr_pages = folio_nr_pages(folio); 1122 for (i = 0; i < nr_pages; i++) 1123 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1124 1125 /* But each of those _mapcounts was based on -1 */ 1126 mapcount += nr_pages; 1127 return mapcount; 1128 } 1129 1130 /** 1131 * folio_move_anon_rmap - move a folio to our anon_vma 1132 * @folio: The folio to move to our anon_vma 1133 * @vma: The vma the folio belongs to 1134 * 1135 * When a folio belongs exclusively to one process after a COW event, 1136 * that folio can be moved into the anon_vma that belongs to just that 1137 * process, so the rmap code will not search the parent or sibling processes. 1138 */ 1139 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1140 { 1141 void *anon_vma = vma->anon_vma; 1142 1143 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1144 VM_BUG_ON_VMA(!anon_vma, vma); 1145 1146 anon_vma += PAGE_MAPPING_ANON; 1147 /* 1148 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1149 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1150 * folio_test_anon()) will not see one without the other. 1151 */ 1152 WRITE_ONCE(folio->mapping, anon_vma); 1153 } 1154 1155 /** 1156 * __folio_set_anon - set up a new anonymous rmap for a folio 1157 * @folio: The folio to set up the new anonymous rmap for. 1158 * @vma: VM area to add the folio to. 1159 * @address: User virtual address of the mapping 1160 * @exclusive: Whether the folio is exclusive to the process. 1161 */ 1162 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1163 unsigned long address, bool exclusive) 1164 { 1165 struct anon_vma *anon_vma = vma->anon_vma; 1166 1167 BUG_ON(!anon_vma); 1168 1169 /* 1170 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1171 * possible anon_vma for the folio mapping! 1172 */ 1173 if (!exclusive) 1174 anon_vma = anon_vma->root; 1175 1176 /* 1177 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1178 * Make sure the compiler doesn't split the stores of anon_vma and 1179 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1180 * could mistake the mapping for a struct address_space and crash. 1181 */ 1182 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1183 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1184 folio->index = linear_page_index(vma, address); 1185 } 1186 1187 /** 1188 * __page_check_anon_rmap - sanity check anonymous rmap addition 1189 * @folio: The folio containing @page. 1190 * @page: the page to check the mapping of 1191 * @vma: the vm area in which the mapping is added 1192 * @address: the user virtual address mapped 1193 */ 1194 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1195 struct vm_area_struct *vma, unsigned long address) 1196 { 1197 /* 1198 * The page's anon-rmap details (mapping and index) are guaranteed to 1199 * be set up correctly at this point. 1200 * 1201 * We have exclusion against page_add_anon_rmap because the caller 1202 * always holds the page locked. 1203 * 1204 * We have exclusion against page_add_new_anon_rmap because those pages 1205 * are initially only visible via the pagetables, and the pte is locked 1206 * over the call to page_add_new_anon_rmap. 1207 */ 1208 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1209 folio); 1210 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1211 page); 1212 } 1213 1214 /** 1215 * page_add_anon_rmap - add pte mapping to an anonymous page 1216 * @page: the page to add the mapping to 1217 * @vma: the vm area in which the mapping is added 1218 * @address: the user virtual address mapped 1219 * @flags: the rmap flags 1220 * 1221 * The caller needs to hold the pte lock, and the page must be locked in 1222 * the anon_vma case: to serialize mapping,index checking after setting, 1223 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1224 * (but PageKsm is never downgraded to PageAnon). 1225 */ 1226 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1227 unsigned long address, rmap_t flags) 1228 { 1229 struct folio *folio = page_folio(page); 1230 atomic_t *mapped = &folio->_nr_pages_mapped; 1231 int nr = 0, nr_pmdmapped = 0; 1232 bool compound = flags & RMAP_COMPOUND; 1233 bool first; 1234 1235 /* Is page being mapped by PTE? Is this its first map to be added? */ 1236 if (likely(!compound)) { 1237 first = atomic_inc_and_test(&page->_mapcount); 1238 nr = first; 1239 if (first && folio_test_large(folio)) { 1240 nr = atomic_inc_return_relaxed(mapped); 1241 nr = (nr < COMPOUND_MAPPED); 1242 } 1243 } else if (folio_test_pmd_mappable(folio)) { 1244 /* That test is redundant: it's for safety or to optimize out */ 1245 1246 first = atomic_inc_and_test(&folio->_entire_mapcount); 1247 if (first) { 1248 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1249 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1250 nr_pmdmapped = folio_nr_pages(folio); 1251 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1252 /* Raced ahead of a remove and another add? */ 1253 if (unlikely(nr < 0)) 1254 nr = 0; 1255 } else { 1256 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1257 nr = 0; 1258 } 1259 } 1260 } 1261 1262 if (nr_pmdmapped) 1263 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1264 if (nr) 1265 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1266 1267 if (unlikely(!folio_test_anon(folio))) { 1268 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 1269 /* 1270 * For a PTE-mapped large folio, we only know that the single 1271 * PTE is exclusive. Further, __folio_set_anon() might not get 1272 * folio->index right when not given the address of the head 1273 * page. 1274 */ 1275 VM_WARN_ON_FOLIO(folio_test_large(folio) && !compound, folio); 1276 __folio_set_anon(folio, vma, address, 1277 !!(flags & RMAP_EXCLUSIVE)); 1278 } else if (likely(!folio_test_ksm(folio))) { 1279 __page_check_anon_rmap(folio, page, vma, address); 1280 } 1281 if (flags & RMAP_EXCLUSIVE) 1282 SetPageAnonExclusive(page); 1283 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1284 VM_WARN_ON_FOLIO((atomic_read(&page->_mapcount) > 0 || 1285 (folio_test_large(folio) && folio_entire_mapcount(folio) > 1)) && 1286 PageAnonExclusive(page), folio); 1287 1288 /* 1289 * For large folio, only mlock it if it's fully mapped to VMA. It's 1290 * not easy to check whether the large folio is fully mapped to VMA 1291 * here. Only mlock normal 4K folio and leave page reclaim to handle 1292 * large folio. 1293 */ 1294 if (!folio_test_large(folio)) 1295 mlock_vma_folio(folio, vma); 1296 } 1297 1298 /** 1299 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1300 * @folio: The folio to add the mapping to. 1301 * @vma: the vm area in which the mapping is added 1302 * @address: the user virtual address mapped 1303 * 1304 * Like page_add_anon_rmap() but must only be called on *new* folios. 1305 * This means the inc-and-test can be bypassed. 1306 * The folio does not have to be locked. 1307 * 1308 * If the folio is large, it is accounted as a THP. As the folio 1309 * is new, it's assumed to be mapped exclusively by a single process. 1310 */ 1311 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1312 unsigned long address) 1313 { 1314 int nr; 1315 1316 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1317 __folio_set_swapbacked(folio); 1318 1319 if (likely(!folio_test_pmd_mappable(folio))) { 1320 /* increment count (starts at -1) */ 1321 atomic_set(&folio->_mapcount, 0); 1322 nr = 1; 1323 } else { 1324 /* increment count (starts at -1) */ 1325 atomic_set(&folio->_entire_mapcount, 0); 1326 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1327 nr = folio_nr_pages(folio); 1328 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1329 } 1330 1331 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1332 __folio_set_anon(folio, vma, address, true); 1333 SetPageAnonExclusive(&folio->page); 1334 } 1335 1336 /** 1337 * folio_add_file_rmap_range - add pte mapping to page range of a folio 1338 * @folio: The folio to add the mapping to 1339 * @page: The first page to add 1340 * @nr_pages: The number of pages which will be mapped 1341 * @vma: the vm area in which the mapping is added 1342 * @compound: charge the page as compound or small page 1343 * 1344 * The page range of folio is defined by [first_page, first_page + nr_pages) 1345 * 1346 * The caller needs to hold the pte lock. 1347 */ 1348 void folio_add_file_rmap_range(struct folio *folio, struct page *page, 1349 unsigned int nr_pages, struct vm_area_struct *vma, 1350 bool compound) 1351 { 1352 atomic_t *mapped = &folio->_nr_pages_mapped; 1353 unsigned int nr_pmdmapped = 0, first; 1354 int nr = 0; 1355 1356 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio); 1357 1358 /* Is page being mapped by PTE? Is this its first map to be added? */ 1359 if (likely(!compound)) { 1360 do { 1361 first = atomic_inc_and_test(&page->_mapcount); 1362 if (first && folio_test_large(folio)) { 1363 first = atomic_inc_return_relaxed(mapped); 1364 first = (first < COMPOUND_MAPPED); 1365 } 1366 1367 if (first) 1368 nr++; 1369 } while (page++, --nr_pages > 0); 1370 } else if (folio_test_pmd_mappable(folio)) { 1371 /* That test is redundant: it's for safety or to optimize out */ 1372 1373 first = atomic_inc_and_test(&folio->_entire_mapcount); 1374 if (first) { 1375 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1376 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1377 nr_pmdmapped = folio_nr_pages(folio); 1378 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1379 /* Raced ahead of a remove and another add? */ 1380 if (unlikely(nr < 0)) 1381 nr = 0; 1382 } else { 1383 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1384 nr = 0; 1385 } 1386 } 1387 } 1388 1389 if (nr_pmdmapped) 1390 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1391 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1392 if (nr) 1393 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1394 1395 /* See comments in page_add_anon_rmap() */ 1396 if (!folio_test_large(folio)) 1397 mlock_vma_folio(folio, vma); 1398 } 1399 1400 /** 1401 * page_add_file_rmap - add pte mapping to a file page 1402 * @page: the page to add the mapping to 1403 * @vma: the vm area in which the mapping is added 1404 * @compound: charge the page as compound or small page 1405 * 1406 * The caller needs to hold the pte lock. 1407 */ 1408 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1409 bool compound) 1410 { 1411 struct folio *folio = page_folio(page); 1412 unsigned int nr_pages; 1413 1414 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page); 1415 1416 if (likely(!compound)) 1417 nr_pages = 1; 1418 else 1419 nr_pages = folio_nr_pages(folio); 1420 1421 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound); 1422 } 1423 1424 /** 1425 * page_remove_rmap - take down pte mapping from a page 1426 * @page: page to remove mapping from 1427 * @vma: the vm area from which the mapping is removed 1428 * @compound: uncharge the page as compound or small page 1429 * 1430 * The caller needs to hold the pte lock. 1431 */ 1432 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1433 bool compound) 1434 { 1435 struct folio *folio = page_folio(page); 1436 atomic_t *mapped = &folio->_nr_pages_mapped; 1437 int nr = 0, nr_pmdmapped = 0; 1438 bool last; 1439 enum node_stat_item idx; 1440 1441 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1442 1443 /* Hugetlb pages are not counted in NR_*MAPPED */ 1444 if (unlikely(folio_test_hugetlb(folio))) { 1445 /* hugetlb pages are always mapped with pmds */ 1446 atomic_dec(&folio->_entire_mapcount); 1447 return; 1448 } 1449 1450 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1451 if (likely(!compound)) { 1452 last = atomic_add_negative(-1, &page->_mapcount); 1453 nr = last; 1454 if (last && folio_test_large(folio)) { 1455 nr = atomic_dec_return_relaxed(mapped); 1456 nr = (nr < COMPOUND_MAPPED); 1457 } 1458 } else if (folio_test_pmd_mappable(folio)) { 1459 /* That test is redundant: it's for safety or to optimize out */ 1460 1461 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1462 if (last) { 1463 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1464 if (likely(nr < COMPOUND_MAPPED)) { 1465 nr_pmdmapped = folio_nr_pages(folio); 1466 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1467 /* Raced ahead of another remove and an add? */ 1468 if (unlikely(nr < 0)) 1469 nr = 0; 1470 } else { 1471 /* An add of COMPOUND_MAPPED raced ahead */ 1472 nr = 0; 1473 } 1474 } 1475 } 1476 1477 if (nr_pmdmapped) { 1478 if (folio_test_anon(folio)) 1479 idx = NR_ANON_THPS; 1480 else if (folio_test_swapbacked(folio)) 1481 idx = NR_SHMEM_PMDMAPPED; 1482 else 1483 idx = NR_FILE_PMDMAPPED; 1484 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1485 } 1486 if (nr) { 1487 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1488 __lruvec_stat_mod_folio(folio, idx, -nr); 1489 1490 /* 1491 * Queue anon THP for deferred split if at least one 1492 * page of the folio is unmapped and at least one page 1493 * is still mapped. 1494 */ 1495 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1496 if (!compound || nr < nr_pmdmapped) 1497 deferred_split_folio(folio); 1498 } 1499 1500 /* 1501 * It would be tidy to reset folio_test_anon mapping when fully 1502 * unmapped, but that might overwrite a racing page_add_anon_rmap 1503 * which increments mapcount after us but sets mapping before us: 1504 * so leave the reset to free_pages_prepare, and remember that 1505 * it's only reliable while mapped. 1506 */ 1507 1508 munlock_vma_folio(folio, vma); 1509 } 1510 1511 /* 1512 * @arg: enum ttu_flags will be passed to this argument 1513 */ 1514 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1515 unsigned long address, void *arg) 1516 { 1517 struct mm_struct *mm = vma->vm_mm; 1518 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1519 pte_t pteval; 1520 struct page *subpage; 1521 bool anon_exclusive, ret = true; 1522 struct mmu_notifier_range range; 1523 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1524 unsigned long pfn; 1525 unsigned long hsz = 0; 1526 1527 /* 1528 * When racing against e.g. zap_pte_range() on another cpu, 1529 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1530 * try_to_unmap() may return before page_mapped() has become false, 1531 * if page table locking is skipped: use TTU_SYNC to wait for that. 1532 */ 1533 if (flags & TTU_SYNC) 1534 pvmw.flags = PVMW_SYNC; 1535 1536 if (flags & TTU_SPLIT_HUGE_PMD) 1537 split_huge_pmd_address(vma, address, false, folio); 1538 1539 /* 1540 * For THP, we have to assume the worse case ie pmd for invalidation. 1541 * For hugetlb, it could be much worse if we need to do pud 1542 * invalidation in the case of pmd sharing. 1543 * 1544 * Note that the folio can not be freed in this function as call of 1545 * try_to_unmap() must hold a reference on the folio. 1546 */ 1547 range.end = vma_address_end(&pvmw); 1548 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1549 address, range.end); 1550 if (folio_test_hugetlb(folio)) { 1551 /* 1552 * If sharing is possible, start and end will be adjusted 1553 * accordingly. 1554 */ 1555 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1556 &range.end); 1557 1558 /* We need the huge page size for set_huge_pte_at() */ 1559 hsz = huge_page_size(hstate_vma(vma)); 1560 } 1561 mmu_notifier_invalidate_range_start(&range); 1562 1563 while (page_vma_mapped_walk(&pvmw)) { 1564 /* Unexpected PMD-mapped THP? */ 1565 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1566 1567 /* 1568 * If the folio is in an mlock()d vma, we must not swap it out. 1569 */ 1570 if (!(flags & TTU_IGNORE_MLOCK) && 1571 (vma->vm_flags & VM_LOCKED)) { 1572 /* Restore the mlock which got missed */ 1573 if (!folio_test_large(folio)) 1574 mlock_vma_folio(folio, vma); 1575 page_vma_mapped_walk_done(&pvmw); 1576 ret = false; 1577 break; 1578 } 1579 1580 pfn = pte_pfn(ptep_get(pvmw.pte)); 1581 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1582 address = pvmw.address; 1583 anon_exclusive = folio_test_anon(folio) && 1584 PageAnonExclusive(subpage); 1585 1586 if (folio_test_hugetlb(folio)) { 1587 bool anon = folio_test_anon(folio); 1588 1589 /* 1590 * The try_to_unmap() is only passed a hugetlb page 1591 * in the case where the hugetlb page is poisoned. 1592 */ 1593 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1594 /* 1595 * huge_pmd_unshare may unmap an entire PMD page. 1596 * There is no way of knowing exactly which PMDs may 1597 * be cached for this mm, so we must flush them all. 1598 * start/end were already adjusted above to cover this 1599 * range. 1600 */ 1601 flush_cache_range(vma, range.start, range.end); 1602 1603 /* 1604 * To call huge_pmd_unshare, i_mmap_rwsem must be 1605 * held in write mode. Caller needs to explicitly 1606 * do this outside rmap routines. 1607 * 1608 * We also must hold hugetlb vma_lock in write mode. 1609 * Lock order dictates acquiring vma_lock BEFORE 1610 * i_mmap_rwsem. We can only try lock here and fail 1611 * if unsuccessful. 1612 */ 1613 if (!anon) { 1614 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1615 if (!hugetlb_vma_trylock_write(vma)) { 1616 page_vma_mapped_walk_done(&pvmw); 1617 ret = false; 1618 break; 1619 } 1620 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1621 hugetlb_vma_unlock_write(vma); 1622 flush_tlb_range(vma, 1623 range.start, range.end); 1624 /* 1625 * The ref count of the PMD page was 1626 * dropped which is part of the way map 1627 * counting is done for shared PMDs. 1628 * Return 'true' here. When there is 1629 * no other sharing, huge_pmd_unshare 1630 * returns false and we will unmap the 1631 * actual page and drop map count 1632 * to zero. 1633 */ 1634 page_vma_mapped_walk_done(&pvmw); 1635 break; 1636 } 1637 hugetlb_vma_unlock_write(vma); 1638 } 1639 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1640 } else { 1641 flush_cache_page(vma, address, pfn); 1642 /* Nuke the page table entry. */ 1643 if (should_defer_flush(mm, flags)) { 1644 /* 1645 * We clear the PTE but do not flush so potentially 1646 * a remote CPU could still be writing to the folio. 1647 * If the entry was previously clean then the 1648 * architecture must guarantee that a clear->dirty 1649 * transition on a cached TLB entry is written through 1650 * and traps if the PTE is unmapped. 1651 */ 1652 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1653 1654 set_tlb_ubc_flush_pending(mm, pteval, address); 1655 } else { 1656 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1657 } 1658 } 1659 1660 /* 1661 * Now the pte is cleared. If this pte was uffd-wp armed, 1662 * we may want to replace a none pte with a marker pte if 1663 * it's file-backed, so we don't lose the tracking info. 1664 */ 1665 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1666 1667 /* Set the dirty flag on the folio now the pte is gone. */ 1668 if (pte_dirty(pteval)) 1669 folio_mark_dirty(folio); 1670 1671 /* Update high watermark before we lower rss */ 1672 update_hiwater_rss(mm); 1673 1674 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1675 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1676 if (folio_test_hugetlb(folio)) { 1677 hugetlb_count_sub(folio_nr_pages(folio), mm); 1678 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1679 hsz); 1680 } else { 1681 dec_mm_counter(mm, mm_counter(&folio->page)); 1682 set_pte_at(mm, address, pvmw.pte, pteval); 1683 } 1684 1685 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1686 /* 1687 * The guest indicated that the page content is of no 1688 * interest anymore. Simply discard the pte, vmscan 1689 * will take care of the rest. 1690 * A future reference will then fault in a new zero 1691 * page. When userfaultfd is active, we must not drop 1692 * this page though, as its main user (postcopy 1693 * migration) will not expect userfaults on already 1694 * copied pages. 1695 */ 1696 dec_mm_counter(mm, mm_counter(&folio->page)); 1697 } else if (folio_test_anon(folio)) { 1698 swp_entry_t entry = page_swap_entry(subpage); 1699 pte_t swp_pte; 1700 /* 1701 * Store the swap location in the pte. 1702 * See handle_pte_fault() ... 1703 */ 1704 if (unlikely(folio_test_swapbacked(folio) != 1705 folio_test_swapcache(folio))) { 1706 WARN_ON_ONCE(1); 1707 ret = false; 1708 page_vma_mapped_walk_done(&pvmw); 1709 break; 1710 } 1711 1712 /* MADV_FREE page check */ 1713 if (!folio_test_swapbacked(folio)) { 1714 int ref_count, map_count; 1715 1716 /* 1717 * Synchronize with gup_pte_range(): 1718 * - clear PTE; barrier; read refcount 1719 * - inc refcount; barrier; read PTE 1720 */ 1721 smp_mb(); 1722 1723 ref_count = folio_ref_count(folio); 1724 map_count = folio_mapcount(folio); 1725 1726 /* 1727 * Order reads for page refcount and dirty flag 1728 * (see comments in __remove_mapping()). 1729 */ 1730 smp_rmb(); 1731 1732 /* 1733 * The only page refs must be one from isolation 1734 * plus the rmap(s) (dropped by discard:). 1735 */ 1736 if (ref_count == 1 + map_count && 1737 !folio_test_dirty(folio)) { 1738 dec_mm_counter(mm, MM_ANONPAGES); 1739 goto discard; 1740 } 1741 1742 /* 1743 * If the folio was redirtied, it cannot be 1744 * discarded. Remap the page to page table. 1745 */ 1746 set_pte_at(mm, address, pvmw.pte, pteval); 1747 folio_set_swapbacked(folio); 1748 ret = false; 1749 page_vma_mapped_walk_done(&pvmw); 1750 break; 1751 } 1752 1753 if (swap_duplicate(entry) < 0) { 1754 set_pte_at(mm, address, pvmw.pte, pteval); 1755 ret = false; 1756 page_vma_mapped_walk_done(&pvmw); 1757 break; 1758 } 1759 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1760 swap_free(entry); 1761 set_pte_at(mm, address, pvmw.pte, pteval); 1762 ret = false; 1763 page_vma_mapped_walk_done(&pvmw); 1764 break; 1765 } 1766 1767 /* See page_try_share_anon_rmap(): clear PTE first. */ 1768 if (anon_exclusive && 1769 page_try_share_anon_rmap(subpage)) { 1770 swap_free(entry); 1771 set_pte_at(mm, address, pvmw.pte, pteval); 1772 ret = false; 1773 page_vma_mapped_walk_done(&pvmw); 1774 break; 1775 } 1776 if (list_empty(&mm->mmlist)) { 1777 spin_lock(&mmlist_lock); 1778 if (list_empty(&mm->mmlist)) 1779 list_add(&mm->mmlist, &init_mm.mmlist); 1780 spin_unlock(&mmlist_lock); 1781 } 1782 dec_mm_counter(mm, MM_ANONPAGES); 1783 inc_mm_counter(mm, MM_SWAPENTS); 1784 swp_pte = swp_entry_to_pte(entry); 1785 if (anon_exclusive) 1786 swp_pte = pte_swp_mkexclusive(swp_pte); 1787 if (pte_soft_dirty(pteval)) 1788 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1789 if (pte_uffd_wp(pteval)) 1790 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1791 set_pte_at(mm, address, pvmw.pte, swp_pte); 1792 } else { 1793 /* 1794 * This is a locked file-backed folio, 1795 * so it cannot be removed from the page 1796 * cache and replaced by a new folio before 1797 * mmu_notifier_invalidate_range_end, so no 1798 * concurrent thread might update its page table 1799 * to point at a new folio while a device is 1800 * still using this folio. 1801 * 1802 * See Documentation/mm/mmu_notifier.rst 1803 */ 1804 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1805 } 1806 discard: 1807 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1808 if (vma->vm_flags & VM_LOCKED) 1809 mlock_drain_local(); 1810 folio_put(folio); 1811 } 1812 1813 mmu_notifier_invalidate_range_end(&range); 1814 1815 return ret; 1816 } 1817 1818 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1819 { 1820 return vma_is_temporary_stack(vma); 1821 } 1822 1823 static int folio_not_mapped(struct folio *folio) 1824 { 1825 return !folio_mapped(folio); 1826 } 1827 1828 /** 1829 * try_to_unmap - Try to remove all page table mappings to a folio. 1830 * @folio: The folio to unmap. 1831 * @flags: action and flags 1832 * 1833 * Tries to remove all the page table entries which are mapping this 1834 * folio. It is the caller's responsibility to check if the folio is 1835 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1836 * 1837 * Context: Caller must hold the folio lock. 1838 */ 1839 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1840 { 1841 struct rmap_walk_control rwc = { 1842 .rmap_one = try_to_unmap_one, 1843 .arg = (void *)flags, 1844 .done = folio_not_mapped, 1845 .anon_lock = folio_lock_anon_vma_read, 1846 }; 1847 1848 if (flags & TTU_RMAP_LOCKED) 1849 rmap_walk_locked(folio, &rwc); 1850 else 1851 rmap_walk(folio, &rwc); 1852 } 1853 1854 /* 1855 * @arg: enum ttu_flags will be passed to this argument. 1856 * 1857 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1858 * containing migration entries. 1859 */ 1860 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1861 unsigned long address, void *arg) 1862 { 1863 struct mm_struct *mm = vma->vm_mm; 1864 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1865 pte_t pteval; 1866 struct page *subpage; 1867 bool anon_exclusive, ret = true; 1868 struct mmu_notifier_range range; 1869 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1870 unsigned long pfn; 1871 unsigned long hsz = 0; 1872 1873 /* 1874 * When racing against e.g. zap_pte_range() on another cpu, 1875 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1876 * try_to_migrate() may return before page_mapped() has become false, 1877 * if page table locking is skipped: use TTU_SYNC to wait for that. 1878 */ 1879 if (flags & TTU_SYNC) 1880 pvmw.flags = PVMW_SYNC; 1881 1882 /* 1883 * unmap_page() in mm/huge_memory.c is the only user of migration with 1884 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1885 */ 1886 if (flags & TTU_SPLIT_HUGE_PMD) 1887 split_huge_pmd_address(vma, address, true, folio); 1888 1889 /* 1890 * For THP, we have to assume the worse case ie pmd for invalidation. 1891 * For hugetlb, it could be much worse if we need to do pud 1892 * invalidation in the case of pmd sharing. 1893 * 1894 * Note that the page can not be free in this function as call of 1895 * try_to_unmap() must hold a reference on the page. 1896 */ 1897 range.end = vma_address_end(&pvmw); 1898 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1899 address, range.end); 1900 if (folio_test_hugetlb(folio)) { 1901 /* 1902 * If sharing is possible, start and end will be adjusted 1903 * accordingly. 1904 */ 1905 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1906 &range.end); 1907 1908 /* We need the huge page size for set_huge_pte_at() */ 1909 hsz = huge_page_size(hstate_vma(vma)); 1910 } 1911 mmu_notifier_invalidate_range_start(&range); 1912 1913 while (page_vma_mapped_walk(&pvmw)) { 1914 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1915 /* PMD-mapped THP migration entry */ 1916 if (!pvmw.pte) { 1917 subpage = folio_page(folio, 1918 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1919 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1920 !folio_test_pmd_mappable(folio), folio); 1921 1922 if (set_pmd_migration_entry(&pvmw, subpage)) { 1923 ret = false; 1924 page_vma_mapped_walk_done(&pvmw); 1925 break; 1926 } 1927 continue; 1928 } 1929 #endif 1930 1931 /* Unexpected PMD-mapped THP? */ 1932 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1933 1934 pfn = pte_pfn(ptep_get(pvmw.pte)); 1935 1936 if (folio_is_zone_device(folio)) { 1937 /* 1938 * Our PTE is a non-present device exclusive entry and 1939 * calculating the subpage as for the common case would 1940 * result in an invalid pointer. 1941 * 1942 * Since only PAGE_SIZE pages can currently be 1943 * migrated, just set it to page. This will need to be 1944 * changed when hugepage migrations to device private 1945 * memory are supported. 1946 */ 1947 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1948 subpage = &folio->page; 1949 } else { 1950 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1951 } 1952 address = pvmw.address; 1953 anon_exclusive = folio_test_anon(folio) && 1954 PageAnonExclusive(subpage); 1955 1956 if (folio_test_hugetlb(folio)) { 1957 bool anon = folio_test_anon(folio); 1958 1959 /* 1960 * huge_pmd_unshare may unmap an entire PMD page. 1961 * There is no way of knowing exactly which PMDs may 1962 * be cached for this mm, so we must flush them all. 1963 * start/end were already adjusted above to cover this 1964 * range. 1965 */ 1966 flush_cache_range(vma, range.start, range.end); 1967 1968 /* 1969 * To call huge_pmd_unshare, i_mmap_rwsem must be 1970 * held in write mode. Caller needs to explicitly 1971 * do this outside rmap routines. 1972 * 1973 * We also must hold hugetlb vma_lock in write mode. 1974 * Lock order dictates acquiring vma_lock BEFORE 1975 * i_mmap_rwsem. We can only try lock here and 1976 * fail if unsuccessful. 1977 */ 1978 if (!anon) { 1979 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1980 if (!hugetlb_vma_trylock_write(vma)) { 1981 page_vma_mapped_walk_done(&pvmw); 1982 ret = false; 1983 break; 1984 } 1985 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1986 hugetlb_vma_unlock_write(vma); 1987 flush_tlb_range(vma, 1988 range.start, range.end); 1989 1990 /* 1991 * The ref count of the PMD page was 1992 * dropped which is part of the way map 1993 * counting is done for shared PMDs. 1994 * Return 'true' here. When there is 1995 * no other sharing, huge_pmd_unshare 1996 * returns false and we will unmap the 1997 * actual page and drop map count 1998 * to zero. 1999 */ 2000 page_vma_mapped_walk_done(&pvmw); 2001 break; 2002 } 2003 hugetlb_vma_unlock_write(vma); 2004 } 2005 /* Nuke the hugetlb page table entry */ 2006 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2007 } else { 2008 flush_cache_page(vma, address, pfn); 2009 /* Nuke the page table entry. */ 2010 if (should_defer_flush(mm, flags)) { 2011 /* 2012 * We clear the PTE but do not flush so potentially 2013 * a remote CPU could still be writing to the folio. 2014 * If the entry was previously clean then the 2015 * architecture must guarantee that a clear->dirty 2016 * transition on a cached TLB entry is written through 2017 * and traps if the PTE is unmapped. 2018 */ 2019 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2020 2021 set_tlb_ubc_flush_pending(mm, pteval, address); 2022 } else { 2023 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2024 } 2025 } 2026 2027 /* Set the dirty flag on the folio now the pte is gone. */ 2028 if (pte_dirty(pteval)) 2029 folio_mark_dirty(folio); 2030 2031 /* Update high watermark before we lower rss */ 2032 update_hiwater_rss(mm); 2033 2034 if (folio_is_device_private(folio)) { 2035 unsigned long pfn = folio_pfn(folio); 2036 swp_entry_t entry; 2037 pte_t swp_pte; 2038 2039 if (anon_exclusive) 2040 BUG_ON(page_try_share_anon_rmap(subpage)); 2041 2042 /* 2043 * Store the pfn of the page in a special migration 2044 * pte. do_swap_page() will wait until the migration 2045 * pte is removed and then restart fault handling. 2046 */ 2047 entry = pte_to_swp_entry(pteval); 2048 if (is_writable_device_private_entry(entry)) 2049 entry = make_writable_migration_entry(pfn); 2050 else if (anon_exclusive) 2051 entry = make_readable_exclusive_migration_entry(pfn); 2052 else 2053 entry = make_readable_migration_entry(pfn); 2054 swp_pte = swp_entry_to_pte(entry); 2055 2056 /* 2057 * pteval maps a zone device page and is therefore 2058 * a swap pte. 2059 */ 2060 if (pte_swp_soft_dirty(pteval)) 2061 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2062 if (pte_swp_uffd_wp(pteval)) 2063 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2064 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2065 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2066 compound_order(&folio->page)); 2067 /* 2068 * No need to invalidate here it will synchronize on 2069 * against the special swap migration pte. 2070 */ 2071 } else if (PageHWPoison(subpage)) { 2072 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2073 if (folio_test_hugetlb(folio)) { 2074 hugetlb_count_sub(folio_nr_pages(folio), mm); 2075 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2076 hsz); 2077 } else { 2078 dec_mm_counter(mm, mm_counter(&folio->page)); 2079 set_pte_at(mm, address, pvmw.pte, pteval); 2080 } 2081 2082 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2083 /* 2084 * The guest indicated that the page content is of no 2085 * interest anymore. Simply discard the pte, vmscan 2086 * will take care of the rest. 2087 * A future reference will then fault in a new zero 2088 * page. When userfaultfd is active, we must not drop 2089 * this page though, as its main user (postcopy 2090 * migration) will not expect userfaults on already 2091 * copied pages. 2092 */ 2093 dec_mm_counter(mm, mm_counter(&folio->page)); 2094 } else { 2095 swp_entry_t entry; 2096 pte_t swp_pte; 2097 2098 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2099 if (folio_test_hugetlb(folio)) 2100 set_huge_pte_at(mm, address, pvmw.pte, 2101 pteval, hsz); 2102 else 2103 set_pte_at(mm, address, pvmw.pte, pteval); 2104 ret = false; 2105 page_vma_mapped_walk_done(&pvmw); 2106 break; 2107 } 2108 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2109 !anon_exclusive, subpage); 2110 2111 /* See page_try_share_anon_rmap(): clear PTE first. */ 2112 if (anon_exclusive && 2113 page_try_share_anon_rmap(subpage)) { 2114 if (folio_test_hugetlb(folio)) 2115 set_huge_pte_at(mm, address, pvmw.pte, 2116 pteval, hsz); 2117 else 2118 set_pte_at(mm, address, pvmw.pte, pteval); 2119 ret = false; 2120 page_vma_mapped_walk_done(&pvmw); 2121 break; 2122 } 2123 2124 /* 2125 * Store the pfn of the page in a special migration 2126 * pte. do_swap_page() will wait until the migration 2127 * pte is removed and then restart fault handling. 2128 */ 2129 if (pte_write(pteval)) 2130 entry = make_writable_migration_entry( 2131 page_to_pfn(subpage)); 2132 else if (anon_exclusive) 2133 entry = make_readable_exclusive_migration_entry( 2134 page_to_pfn(subpage)); 2135 else 2136 entry = make_readable_migration_entry( 2137 page_to_pfn(subpage)); 2138 if (pte_young(pteval)) 2139 entry = make_migration_entry_young(entry); 2140 if (pte_dirty(pteval)) 2141 entry = make_migration_entry_dirty(entry); 2142 swp_pte = swp_entry_to_pte(entry); 2143 if (pte_soft_dirty(pteval)) 2144 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2145 if (pte_uffd_wp(pteval)) 2146 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2147 if (folio_test_hugetlb(folio)) 2148 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2149 hsz); 2150 else 2151 set_pte_at(mm, address, pvmw.pte, swp_pte); 2152 trace_set_migration_pte(address, pte_val(swp_pte), 2153 compound_order(&folio->page)); 2154 /* 2155 * No need to invalidate here it will synchronize on 2156 * against the special swap migration pte. 2157 */ 2158 } 2159 2160 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2161 if (vma->vm_flags & VM_LOCKED) 2162 mlock_drain_local(); 2163 folio_put(folio); 2164 } 2165 2166 mmu_notifier_invalidate_range_end(&range); 2167 2168 return ret; 2169 } 2170 2171 /** 2172 * try_to_migrate - try to replace all page table mappings with swap entries 2173 * @folio: the folio to replace page table entries for 2174 * @flags: action and flags 2175 * 2176 * Tries to remove all the page table entries which are mapping this folio and 2177 * replace them with special swap entries. Caller must hold the folio lock. 2178 */ 2179 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2180 { 2181 struct rmap_walk_control rwc = { 2182 .rmap_one = try_to_migrate_one, 2183 .arg = (void *)flags, 2184 .done = folio_not_mapped, 2185 .anon_lock = folio_lock_anon_vma_read, 2186 }; 2187 2188 /* 2189 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2190 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2191 */ 2192 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2193 TTU_SYNC | TTU_BATCH_FLUSH))) 2194 return; 2195 2196 if (folio_is_zone_device(folio) && 2197 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2198 return; 2199 2200 /* 2201 * During exec, a temporary VMA is setup and later moved. 2202 * The VMA is moved under the anon_vma lock but not the 2203 * page tables leading to a race where migration cannot 2204 * find the migration ptes. Rather than increasing the 2205 * locking requirements of exec(), migration skips 2206 * temporary VMAs until after exec() completes. 2207 */ 2208 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2209 rwc.invalid_vma = invalid_migration_vma; 2210 2211 if (flags & TTU_RMAP_LOCKED) 2212 rmap_walk_locked(folio, &rwc); 2213 else 2214 rmap_walk(folio, &rwc); 2215 } 2216 2217 #ifdef CONFIG_DEVICE_PRIVATE 2218 struct make_exclusive_args { 2219 struct mm_struct *mm; 2220 unsigned long address; 2221 void *owner; 2222 bool valid; 2223 }; 2224 2225 static bool page_make_device_exclusive_one(struct folio *folio, 2226 struct vm_area_struct *vma, unsigned long address, void *priv) 2227 { 2228 struct mm_struct *mm = vma->vm_mm; 2229 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2230 struct make_exclusive_args *args = priv; 2231 pte_t pteval; 2232 struct page *subpage; 2233 bool ret = true; 2234 struct mmu_notifier_range range; 2235 swp_entry_t entry; 2236 pte_t swp_pte; 2237 pte_t ptent; 2238 2239 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2240 vma->vm_mm, address, min(vma->vm_end, 2241 address + folio_size(folio)), 2242 args->owner); 2243 mmu_notifier_invalidate_range_start(&range); 2244 2245 while (page_vma_mapped_walk(&pvmw)) { 2246 /* Unexpected PMD-mapped THP? */ 2247 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2248 2249 ptent = ptep_get(pvmw.pte); 2250 if (!pte_present(ptent)) { 2251 ret = false; 2252 page_vma_mapped_walk_done(&pvmw); 2253 break; 2254 } 2255 2256 subpage = folio_page(folio, 2257 pte_pfn(ptent) - folio_pfn(folio)); 2258 address = pvmw.address; 2259 2260 /* Nuke the page table entry. */ 2261 flush_cache_page(vma, address, pte_pfn(ptent)); 2262 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2263 2264 /* Set the dirty flag on the folio now the pte is gone. */ 2265 if (pte_dirty(pteval)) 2266 folio_mark_dirty(folio); 2267 2268 /* 2269 * Check that our target page is still mapped at the expected 2270 * address. 2271 */ 2272 if (args->mm == mm && args->address == address && 2273 pte_write(pteval)) 2274 args->valid = true; 2275 2276 /* 2277 * Store the pfn of the page in a special migration 2278 * pte. do_swap_page() will wait until the migration 2279 * pte is removed and then restart fault handling. 2280 */ 2281 if (pte_write(pteval)) 2282 entry = make_writable_device_exclusive_entry( 2283 page_to_pfn(subpage)); 2284 else 2285 entry = make_readable_device_exclusive_entry( 2286 page_to_pfn(subpage)); 2287 swp_pte = swp_entry_to_pte(entry); 2288 if (pte_soft_dirty(pteval)) 2289 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2290 if (pte_uffd_wp(pteval)) 2291 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2292 2293 set_pte_at(mm, address, pvmw.pte, swp_pte); 2294 2295 /* 2296 * There is a reference on the page for the swap entry which has 2297 * been removed, so shouldn't take another. 2298 */ 2299 page_remove_rmap(subpage, vma, false); 2300 } 2301 2302 mmu_notifier_invalidate_range_end(&range); 2303 2304 return ret; 2305 } 2306 2307 /** 2308 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2309 * @folio: The folio to replace page table entries for. 2310 * @mm: The mm_struct where the folio is expected to be mapped. 2311 * @address: Address where the folio is expected to be mapped. 2312 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2313 * 2314 * Tries to remove all the page table entries which are mapping this 2315 * folio and replace them with special device exclusive swap entries to 2316 * grant a device exclusive access to the folio. 2317 * 2318 * Context: Caller must hold the folio lock. 2319 * Return: false if the page is still mapped, or if it could not be unmapped 2320 * from the expected address. Otherwise returns true (success). 2321 */ 2322 static bool folio_make_device_exclusive(struct folio *folio, 2323 struct mm_struct *mm, unsigned long address, void *owner) 2324 { 2325 struct make_exclusive_args args = { 2326 .mm = mm, 2327 .address = address, 2328 .owner = owner, 2329 .valid = false, 2330 }; 2331 struct rmap_walk_control rwc = { 2332 .rmap_one = page_make_device_exclusive_one, 2333 .done = folio_not_mapped, 2334 .anon_lock = folio_lock_anon_vma_read, 2335 .arg = &args, 2336 }; 2337 2338 /* 2339 * Restrict to anonymous folios for now to avoid potential writeback 2340 * issues. 2341 */ 2342 if (!folio_test_anon(folio)) 2343 return false; 2344 2345 rmap_walk(folio, &rwc); 2346 2347 return args.valid && !folio_mapcount(folio); 2348 } 2349 2350 /** 2351 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2352 * @mm: mm_struct of associated target process 2353 * @start: start of the region to mark for exclusive device access 2354 * @end: end address of region 2355 * @pages: returns the pages which were successfully marked for exclusive access 2356 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2357 * 2358 * Returns: number of pages found in the range by GUP. A page is marked for 2359 * exclusive access only if the page pointer is non-NULL. 2360 * 2361 * This function finds ptes mapping page(s) to the given address range, locks 2362 * them and replaces mappings with special swap entries preventing userspace CPU 2363 * access. On fault these entries are replaced with the original mapping after 2364 * calling MMU notifiers. 2365 * 2366 * A driver using this to program access from a device must use a mmu notifier 2367 * critical section to hold a device specific lock during programming. Once 2368 * programming is complete it should drop the page lock and reference after 2369 * which point CPU access to the page will revoke the exclusive access. 2370 */ 2371 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2372 unsigned long end, struct page **pages, 2373 void *owner) 2374 { 2375 long npages = (end - start) >> PAGE_SHIFT; 2376 long i; 2377 2378 npages = get_user_pages_remote(mm, start, npages, 2379 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2380 pages, NULL); 2381 if (npages < 0) 2382 return npages; 2383 2384 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2385 struct folio *folio = page_folio(pages[i]); 2386 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2387 folio_put(folio); 2388 pages[i] = NULL; 2389 continue; 2390 } 2391 2392 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2393 folio_unlock(folio); 2394 folio_put(folio); 2395 pages[i] = NULL; 2396 } 2397 } 2398 2399 return npages; 2400 } 2401 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2402 #endif 2403 2404 void __put_anon_vma(struct anon_vma *anon_vma) 2405 { 2406 struct anon_vma *root = anon_vma->root; 2407 2408 anon_vma_free(anon_vma); 2409 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2410 anon_vma_free(root); 2411 } 2412 2413 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2414 struct rmap_walk_control *rwc) 2415 { 2416 struct anon_vma *anon_vma; 2417 2418 if (rwc->anon_lock) 2419 return rwc->anon_lock(folio, rwc); 2420 2421 /* 2422 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2423 * because that depends on page_mapped(); but not all its usages 2424 * are holding mmap_lock. Users without mmap_lock are required to 2425 * take a reference count to prevent the anon_vma disappearing 2426 */ 2427 anon_vma = folio_anon_vma(folio); 2428 if (!anon_vma) 2429 return NULL; 2430 2431 if (anon_vma_trylock_read(anon_vma)) 2432 goto out; 2433 2434 if (rwc->try_lock) { 2435 anon_vma = NULL; 2436 rwc->contended = true; 2437 goto out; 2438 } 2439 2440 anon_vma_lock_read(anon_vma); 2441 out: 2442 return anon_vma; 2443 } 2444 2445 /* 2446 * rmap_walk_anon - do something to anonymous page using the object-based 2447 * rmap method 2448 * @folio: the folio to be handled 2449 * @rwc: control variable according to each walk type 2450 * @locked: caller holds relevant rmap lock 2451 * 2452 * Find all the mappings of a folio using the mapping pointer and the vma 2453 * chains contained in the anon_vma struct it points to. 2454 */ 2455 static void rmap_walk_anon(struct folio *folio, 2456 struct rmap_walk_control *rwc, bool locked) 2457 { 2458 struct anon_vma *anon_vma; 2459 pgoff_t pgoff_start, pgoff_end; 2460 struct anon_vma_chain *avc; 2461 2462 if (locked) { 2463 anon_vma = folio_anon_vma(folio); 2464 /* anon_vma disappear under us? */ 2465 VM_BUG_ON_FOLIO(!anon_vma, folio); 2466 } else { 2467 anon_vma = rmap_walk_anon_lock(folio, rwc); 2468 } 2469 if (!anon_vma) 2470 return; 2471 2472 pgoff_start = folio_pgoff(folio); 2473 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2474 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2475 pgoff_start, pgoff_end) { 2476 struct vm_area_struct *vma = avc->vma; 2477 unsigned long address = vma_address(&folio->page, vma); 2478 2479 VM_BUG_ON_VMA(address == -EFAULT, vma); 2480 cond_resched(); 2481 2482 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2483 continue; 2484 2485 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2486 break; 2487 if (rwc->done && rwc->done(folio)) 2488 break; 2489 } 2490 2491 if (!locked) 2492 anon_vma_unlock_read(anon_vma); 2493 } 2494 2495 /* 2496 * rmap_walk_file - do something to file page using the object-based rmap method 2497 * @folio: the folio to be handled 2498 * @rwc: control variable according to each walk type 2499 * @locked: caller holds relevant rmap lock 2500 * 2501 * Find all the mappings of a folio using the mapping pointer and the vma chains 2502 * contained in the address_space struct it points to. 2503 */ 2504 static void rmap_walk_file(struct folio *folio, 2505 struct rmap_walk_control *rwc, bool locked) 2506 { 2507 struct address_space *mapping = folio_mapping(folio); 2508 pgoff_t pgoff_start, pgoff_end; 2509 struct vm_area_struct *vma; 2510 2511 /* 2512 * The page lock not only makes sure that page->mapping cannot 2513 * suddenly be NULLified by truncation, it makes sure that the 2514 * structure at mapping cannot be freed and reused yet, 2515 * so we can safely take mapping->i_mmap_rwsem. 2516 */ 2517 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2518 2519 if (!mapping) 2520 return; 2521 2522 pgoff_start = folio_pgoff(folio); 2523 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2524 if (!locked) { 2525 if (i_mmap_trylock_read(mapping)) 2526 goto lookup; 2527 2528 if (rwc->try_lock) { 2529 rwc->contended = true; 2530 return; 2531 } 2532 2533 i_mmap_lock_read(mapping); 2534 } 2535 lookup: 2536 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2537 pgoff_start, pgoff_end) { 2538 unsigned long address = vma_address(&folio->page, vma); 2539 2540 VM_BUG_ON_VMA(address == -EFAULT, vma); 2541 cond_resched(); 2542 2543 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2544 continue; 2545 2546 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2547 goto done; 2548 if (rwc->done && rwc->done(folio)) 2549 goto done; 2550 } 2551 2552 done: 2553 if (!locked) 2554 i_mmap_unlock_read(mapping); 2555 } 2556 2557 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2558 { 2559 if (unlikely(folio_test_ksm(folio))) 2560 rmap_walk_ksm(folio, rwc); 2561 else if (folio_test_anon(folio)) 2562 rmap_walk_anon(folio, rwc, false); 2563 else 2564 rmap_walk_file(folio, rwc, false); 2565 } 2566 2567 /* Like rmap_walk, but caller holds relevant rmap lock */ 2568 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2569 { 2570 /* no ksm support for now */ 2571 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2572 if (folio_test_anon(folio)) 2573 rmap_walk_anon(folio, rwc, true); 2574 else 2575 rmap_walk_file(folio, rwc, true); 2576 } 2577 2578 #ifdef CONFIG_HUGETLB_PAGE 2579 /* 2580 * The following two functions are for anonymous (private mapped) hugepages. 2581 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2582 * and no lru code, because we handle hugepages differently from common pages. 2583 * 2584 * RMAP_COMPOUND is ignored. 2585 */ 2586 void hugepage_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2587 unsigned long address, rmap_t flags) 2588 { 2589 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2590 2591 atomic_inc(&folio->_entire_mapcount); 2592 if (flags & RMAP_EXCLUSIVE) 2593 SetPageAnonExclusive(&folio->page); 2594 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2595 PageAnonExclusive(&folio->page), folio); 2596 } 2597 2598 void hugepage_add_new_anon_rmap(struct folio *folio, 2599 struct vm_area_struct *vma, unsigned long address) 2600 { 2601 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2602 /* increment count (starts at -1) */ 2603 atomic_set(&folio->_entire_mapcount, 0); 2604 folio_clear_hugetlb_restore_reserve(folio); 2605 __folio_set_anon(folio, vma, address, true); 2606 SetPageAnonExclusive(&folio->page); 2607 } 2608 #endif /* CONFIG_HUGETLB_PAGE */ 2609