1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against folio_remove_rmap_*() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 * 494 * NOTE: the caller should normally hold folio lock when calling this. If 495 * not, the caller needs to double check the anon_vma didn't change after 496 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 497 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 498 * which has already covered that, and comment above remap_pages(). 499 */ 500 struct anon_vma *folio_get_anon_vma(struct folio *folio) 501 { 502 struct anon_vma *anon_vma = NULL; 503 unsigned long anon_mapping; 504 505 rcu_read_lock(); 506 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 507 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 508 goto out; 509 if (!folio_mapped(folio)) 510 goto out; 511 512 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 513 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 514 anon_vma = NULL; 515 goto out; 516 } 517 518 /* 519 * If this folio is still mapped, then its anon_vma cannot have been 520 * freed. But if it has been unmapped, we have no security against the 521 * anon_vma structure being freed and reused (for another anon_vma: 522 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 523 * above cannot corrupt). 524 */ 525 if (!folio_mapped(folio)) { 526 rcu_read_unlock(); 527 put_anon_vma(anon_vma); 528 return NULL; 529 } 530 out: 531 rcu_read_unlock(); 532 533 return anon_vma; 534 } 535 536 /* 537 * Similar to folio_get_anon_vma() except it locks the anon_vma. 538 * 539 * Its a little more complex as it tries to keep the fast path to a single 540 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 541 * reference like with folio_get_anon_vma() and then block on the mutex 542 * on !rwc->try_lock case. 543 */ 544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 545 struct rmap_walk_control *rwc) 546 { 547 struct anon_vma *anon_vma = NULL; 548 struct anon_vma *root_anon_vma; 549 unsigned long anon_mapping; 550 551 retry: 552 rcu_read_lock(); 553 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 554 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 555 goto out; 556 if (!folio_mapped(folio)) 557 goto out; 558 559 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 560 root_anon_vma = READ_ONCE(anon_vma->root); 561 if (down_read_trylock(&root_anon_vma->rwsem)) { 562 /* 563 * folio_move_anon_rmap() might have changed the anon_vma as we 564 * might not hold the folio lock here. 565 */ 566 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 567 anon_mapping)) { 568 up_read(&root_anon_vma->rwsem); 569 rcu_read_unlock(); 570 goto retry; 571 } 572 573 /* 574 * If the folio is still mapped, then this anon_vma is still 575 * its anon_vma, and holding the mutex ensures that it will 576 * not go away, see anon_vma_free(). 577 */ 578 if (!folio_mapped(folio)) { 579 up_read(&root_anon_vma->rwsem); 580 anon_vma = NULL; 581 } 582 goto out; 583 } 584 585 if (rwc && rwc->try_lock) { 586 anon_vma = NULL; 587 rwc->contended = true; 588 goto out; 589 } 590 591 /* trylock failed, we got to sleep */ 592 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 593 anon_vma = NULL; 594 goto out; 595 } 596 597 if (!folio_mapped(folio)) { 598 rcu_read_unlock(); 599 put_anon_vma(anon_vma); 600 return NULL; 601 } 602 603 /* we pinned the anon_vma, its safe to sleep */ 604 rcu_read_unlock(); 605 anon_vma_lock_read(anon_vma); 606 607 /* 608 * folio_move_anon_rmap() might have changed the anon_vma as we might 609 * not hold the folio lock here. 610 */ 611 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 612 anon_mapping)) { 613 anon_vma_unlock_read(anon_vma); 614 put_anon_vma(anon_vma); 615 anon_vma = NULL; 616 goto retry; 617 } 618 619 if (atomic_dec_and_test(&anon_vma->refcount)) { 620 /* 621 * Oops, we held the last refcount, release the lock 622 * and bail -- can't simply use put_anon_vma() because 623 * we'll deadlock on the anon_vma_lock_write() recursion. 624 */ 625 anon_vma_unlock_read(anon_vma); 626 __put_anon_vma(anon_vma); 627 anon_vma = NULL; 628 } 629 630 return anon_vma; 631 632 out: 633 rcu_read_unlock(); 634 return anon_vma; 635 } 636 637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 638 /* 639 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 640 * important if a PTE was dirty when it was unmapped that it's flushed 641 * before any IO is initiated on the page to prevent lost writes. Similarly, 642 * it must be flushed before freeing to prevent data leakage. 643 */ 644 void try_to_unmap_flush(void) 645 { 646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 648 if (!tlb_ubc->flush_required) 649 return; 650 651 arch_tlbbatch_flush(&tlb_ubc->arch); 652 tlb_ubc->flush_required = false; 653 tlb_ubc->writable = false; 654 } 655 656 /* Flush iff there are potentially writable TLB entries that can race with IO */ 657 void try_to_unmap_flush_dirty(void) 658 { 659 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 660 661 if (tlb_ubc->writable) 662 try_to_unmap_flush(); 663 } 664 665 /* 666 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 667 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 668 */ 669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 670 #define TLB_FLUSH_BATCH_PENDING_MASK \ 671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 672 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 673 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 674 675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 676 unsigned long uaddr) 677 { 678 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 679 int batch; 680 bool writable = pte_dirty(pteval); 681 682 if (!pte_accessible(mm, pteval)) 683 return; 684 685 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 686 tlb_ubc->flush_required = true; 687 688 /* 689 * Ensure compiler does not re-order the setting of tlb_flush_batched 690 * before the PTE is cleared. 691 */ 692 barrier(); 693 batch = atomic_read(&mm->tlb_flush_batched); 694 retry: 695 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 696 /* 697 * Prevent `pending' from catching up with `flushed' because of 698 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 699 * `pending' becomes large. 700 */ 701 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 702 goto retry; 703 } else { 704 atomic_inc(&mm->tlb_flush_batched); 705 } 706 707 /* 708 * If the PTE was dirty then it's best to assume it's writable. The 709 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 710 * before the page is queued for IO. 711 */ 712 if (writable) 713 tlb_ubc->writable = true; 714 } 715 716 /* 717 * Returns true if the TLB flush should be deferred to the end of a batch of 718 * unmap operations to reduce IPIs. 719 */ 720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 721 { 722 if (!(flags & TTU_BATCH_FLUSH)) 723 return false; 724 725 return arch_tlbbatch_should_defer(mm); 726 } 727 728 /* 729 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 730 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 731 * operation such as mprotect or munmap to race between reclaim unmapping 732 * the page and flushing the page. If this race occurs, it potentially allows 733 * access to data via a stale TLB entry. Tracking all mm's that have TLB 734 * batching in flight would be expensive during reclaim so instead track 735 * whether TLB batching occurred in the past and if so then do a flush here 736 * if required. This will cost one additional flush per reclaim cycle paid 737 * by the first operation at risk such as mprotect and mumap. 738 * 739 * This must be called under the PTL so that an access to tlb_flush_batched 740 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 741 * via the PTL. 742 */ 743 void flush_tlb_batched_pending(struct mm_struct *mm) 744 { 745 int batch = atomic_read(&mm->tlb_flush_batched); 746 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 747 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 748 749 if (pending != flushed) { 750 arch_flush_tlb_batched_pending(mm); 751 /* 752 * If the new TLB flushing is pending during flushing, leave 753 * mm->tlb_flush_batched as is, to avoid losing flushing. 754 */ 755 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 756 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 757 } 758 } 759 #else 760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 761 unsigned long uaddr) 762 { 763 } 764 765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 766 { 767 return false; 768 } 769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 770 771 /* 772 * At what user virtual address is page expected in vma? 773 * Caller should check the page is actually part of the vma. 774 */ 775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 776 { 777 struct folio *folio = page_folio(page); 778 if (folio_test_anon(folio)) { 779 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 780 /* 781 * Note: swapoff's unuse_vma() is more efficient with this 782 * check, and needs it to match anon_vma when KSM is active. 783 */ 784 if (!vma->anon_vma || !page__anon_vma || 785 vma->anon_vma->root != page__anon_vma->root) 786 return -EFAULT; 787 } else if (!vma->vm_file) { 788 return -EFAULT; 789 } else if (vma->vm_file->f_mapping != folio->mapping) { 790 return -EFAULT; 791 } 792 793 return vma_address(page, vma); 794 } 795 796 /* 797 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 798 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 799 * represents. 800 */ 801 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 802 { 803 pgd_t *pgd; 804 p4d_t *p4d; 805 pud_t *pud; 806 pmd_t *pmd = NULL; 807 808 pgd = pgd_offset(mm, address); 809 if (!pgd_present(*pgd)) 810 goto out; 811 812 p4d = p4d_offset(pgd, address); 813 if (!p4d_present(*p4d)) 814 goto out; 815 816 pud = pud_offset(p4d, address); 817 if (!pud_present(*pud)) 818 goto out; 819 820 pmd = pmd_offset(pud, address); 821 out: 822 return pmd; 823 } 824 825 struct folio_referenced_arg { 826 int mapcount; 827 int referenced; 828 unsigned long vm_flags; 829 struct mem_cgroup *memcg; 830 }; 831 832 /* 833 * arg: folio_referenced_arg will be passed 834 */ 835 static bool folio_referenced_one(struct folio *folio, 836 struct vm_area_struct *vma, unsigned long address, void *arg) 837 { 838 struct folio_referenced_arg *pra = arg; 839 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 840 int referenced = 0; 841 unsigned long start = address, ptes = 0; 842 843 while (page_vma_mapped_walk(&pvmw)) { 844 address = pvmw.address; 845 846 if (vma->vm_flags & VM_LOCKED) { 847 if (!folio_test_large(folio) || !pvmw.pte) { 848 /* Restore the mlock which got missed */ 849 mlock_vma_folio(folio, vma); 850 page_vma_mapped_walk_done(&pvmw); 851 pra->vm_flags |= VM_LOCKED; 852 return false; /* To break the loop */ 853 } 854 /* 855 * For large folio fully mapped to VMA, will 856 * be handled after the pvmw loop. 857 * 858 * For large folio cross VMA boundaries, it's 859 * expected to be picked by page reclaim. But 860 * should skip reference of pages which are in 861 * the range of VM_LOCKED vma. As page reclaim 862 * should just count the reference of pages out 863 * the range of VM_LOCKED vma. 864 */ 865 ptes++; 866 pra->mapcount--; 867 continue; 868 } 869 870 if (pvmw.pte) { 871 if (lru_gen_enabled() && 872 pte_young(ptep_get(pvmw.pte))) { 873 lru_gen_look_around(&pvmw); 874 referenced++; 875 } 876 877 if (ptep_clear_flush_young_notify(vma, address, 878 pvmw.pte)) 879 referenced++; 880 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 881 if (pmdp_clear_flush_young_notify(vma, address, 882 pvmw.pmd)) 883 referenced++; 884 } else { 885 /* unexpected pmd-mapped folio? */ 886 WARN_ON_ONCE(1); 887 } 888 889 pra->mapcount--; 890 } 891 892 if ((vma->vm_flags & VM_LOCKED) && 893 folio_test_large(folio) && 894 folio_within_vma(folio, vma)) { 895 unsigned long s_align, e_align; 896 897 s_align = ALIGN_DOWN(start, PMD_SIZE); 898 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 899 900 /* folio doesn't cross page table boundary and fully mapped */ 901 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 902 /* Restore the mlock which got missed */ 903 mlock_vma_folio(folio, vma); 904 pra->vm_flags |= VM_LOCKED; 905 return false; /* To break the loop */ 906 } 907 } 908 909 if (referenced) 910 folio_clear_idle(folio); 911 if (folio_test_clear_young(folio)) 912 referenced++; 913 914 if (referenced) { 915 pra->referenced++; 916 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 917 } 918 919 if (!pra->mapcount) 920 return false; /* To break the loop */ 921 922 return true; 923 } 924 925 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 926 { 927 struct folio_referenced_arg *pra = arg; 928 struct mem_cgroup *memcg = pra->memcg; 929 930 /* 931 * Ignore references from this mapping if it has no recency. If the 932 * folio has been used in another mapping, we will catch it; if this 933 * other mapping is already gone, the unmap path will have set the 934 * referenced flag or activated the folio in zap_pte_range(). 935 */ 936 if (!vma_has_recency(vma)) 937 return true; 938 939 /* 940 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 941 * of references from different cgroups. 942 */ 943 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 944 return true; 945 946 return false; 947 } 948 949 /** 950 * folio_referenced() - Test if the folio was referenced. 951 * @folio: The folio to test. 952 * @is_locked: Caller holds lock on the folio. 953 * @memcg: target memory cgroup 954 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 955 * 956 * Quick test_and_clear_referenced for all mappings of a folio, 957 * 958 * Return: The number of mappings which referenced the folio. Return -1 if 959 * the function bailed out due to rmap lock contention. 960 */ 961 int folio_referenced(struct folio *folio, int is_locked, 962 struct mem_cgroup *memcg, unsigned long *vm_flags) 963 { 964 int we_locked = 0; 965 struct folio_referenced_arg pra = { 966 .mapcount = folio_mapcount(folio), 967 .memcg = memcg, 968 }; 969 struct rmap_walk_control rwc = { 970 .rmap_one = folio_referenced_one, 971 .arg = (void *)&pra, 972 .anon_lock = folio_lock_anon_vma_read, 973 .try_lock = true, 974 .invalid_vma = invalid_folio_referenced_vma, 975 }; 976 977 *vm_flags = 0; 978 if (!pra.mapcount) 979 return 0; 980 981 if (!folio_raw_mapping(folio)) 982 return 0; 983 984 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 985 we_locked = folio_trylock(folio); 986 if (!we_locked) 987 return 1; 988 } 989 990 rmap_walk(folio, &rwc); 991 *vm_flags = pra.vm_flags; 992 993 if (we_locked) 994 folio_unlock(folio); 995 996 return rwc.contended ? -1 : pra.referenced; 997 } 998 999 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1000 { 1001 int cleaned = 0; 1002 struct vm_area_struct *vma = pvmw->vma; 1003 struct mmu_notifier_range range; 1004 unsigned long address = pvmw->address; 1005 1006 /* 1007 * We have to assume the worse case ie pmd for invalidation. Note that 1008 * the folio can not be freed from this function. 1009 */ 1010 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1011 vma->vm_mm, address, vma_address_end(pvmw)); 1012 mmu_notifier_invalidate_range_start(&range); 1013 1014 while (page_vma_mapped_walk(pvmw)) { 1015 int ret = 0; 1016 1017 address = pvmw->address; 1018 if (pvmw->pte) { 1019 pte_t *pte = pvmw->pte; 1020 pte_t entry = ptep_get(pte); 1021 1022 if (!pte_dirty(entry) && !pte_write(entry)) 1023 continue; 1024 1025 flush_cache_page(vma, address, pte_pfn(entry)); 1026 entry = ptep_clear_flush(vma, address, pte); 1027 entry = pte_wrprotect(entry); 1028 entry = pte_mkclean(entry); 1029 set_pte_at(vma->vm_mm, address, pte, entry); 1030 ret = 1; 1031 } else { 1032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1033 pmd_t *pmd = pvmw->pmd; 1034 pmd_t entry; 1035 1036 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1037 continue; 1038 1039 flush_cache_range(vma, address, 1040 address + HPAGE_PMD_SIZE); 1041 entry = pmdp_invalidate(vma, address, pmd); 1042 entry = pmd_wrprotect(entry); 1043 entry = pmd_mkclean(entry); 1044 set_pmd_at(vma->vm_mm, address, pmd, entry); 1045 ret = 1; 1046 #else 1047 /* unexpected pmd-mapped folio? */ 1048 WARN_ON_ONCE(1); 1049 #endif 1050 } 1051 1052 if (ret) 1053 cleaned++; 1054 } 1055 1056 mmu_notifier_invalidate_range_end(&range); 1057 1058 return cleaned; 1059 } 1060 1061 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1062 unsigned long address, void *arg) 1063 { 1064 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1065 int *cleaned = arg; 1066 1067 *cleaned += page_vma_mkclean_one(&pvmw); 1068 1069 return true; 1070 } 1071 1072 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1073 { 1074 if (vma->vm_flags & VM_SHARED) 1075 return false; 1076 1077 return true; 1078 } 1079 1080 int folio_mkclean(struct folio *folio) 1081 { 1082 int cleaned = 0; 1083 struct address_space *mapping; 1084 struct rmap_walk_control rwc = { 1085 .arg = (void *)&cleaned, 1086 .rmap_one = page_mkclean_one, 1087 .invalid_vma = invalid_mkclean_vma, 1088 }; 1089 1090 BUG_ON(!folio_test_locked(folio)); 1091 1092 if (!folio_mapped(folio)) 1093 return 0; 1094 1095 mapping = folio_mapping(folio); 1096 if (!mapping) 1097 return 0; 1098 1099 rmap_walk(folio, &rwc); 1100 1101 return cleaned; 1102 } 1103 EXPORT_SYMBOL_GPL(folio_mkclean); 1104 1105 /** 1106 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1107 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1108 * within the @vma of shared mappings. And since clean PTEs 1109 * should also be readonly, write protects them too. 1110 * @pfn: start pfn. 1111 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1112 * @pgoff: page offset that the @pfn mapped with. 1113 * @vma: vma that @pfn mapped within. 1114 * 1115 * Returns the number of cleaned PTEs (including PMDs). 1116 */ 1117 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1118 struct vm_area_struct *vma) 1119 { 1120 struct page_vma_mapped_walk pvmw = { 1121 .pfn = pfn, 1122 .nr_pages = nr_pages, 1123 .pgoff = pgoff, 1124 .vma = vma, 1125 .flags = PVMW_SYNC, 1126 }; 1127 1128 if (invalid_mkclean_vma(vma, NULL)) 1129 return 0; 1130 1131 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1132 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1133 1134 return page_vma_mkclean_one(&pvmw); 1135 } 1136 1137 int folio_total_mapcount(struct folio *folio) 1138 { 1139 int mapcount = folio_entire_mapcount(folio); 1140 int nr_pages; 1141 int i; 1142 1143 /* In the common case, avoid the loop when no pages mapped by PTE */ 1144 if (folio_nr_pages_mapped(folio) == 0) 1145 return mapcount; 1146 /* 1147 * Add all the PTE mappings of those pages mapped by PTE. 1148 * Limit the loop to folio_nr_pages_mapped()? 1149 * Perhaps: given all the raciness, that may be a good or a bad idea. 1150 */ 1151 nr_pages = folio_nr_pages(folio); 1152 for (i = 0; i < nr_pages; i++) 1153 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1154 1155 /* But each of those _mapcounts was based on -1 */ 1156 mapcount += nr_pages; 1157 return mapcount; 1158 } 1159 1160 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1161 struct page *page, int nr_pages, enum rmap_level level, 1162 int *nr_pmdmapped) 1163 { 1164 atomic_t *mapped = &folio->_nr_pages_mapped; 1165 int first, nr = 0; 1166 1167 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1168 1169 switch (level) { 1170 case RMAP_LEVEL_PTE: 1171 do { 1172 first = atomic_inc_and_test(&page->_mapcount); 1173 if (first && folio_test_large(folio)) { 1174 first = atomic_inc_return_relaxed(mapped); 1175 first = (first < ENTIRELY_MAPPED); 1176 } 1177 1178 if (first) 1179 nr++; 1180 } while (page++, --nr_pages > 0); 1181 break; 1182 case RMAP_LEVEL_PMD: 1183 first = atomic_inc_and_test(&folio->_entire_mapcount); 1184 if (first) { 1185 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1186 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1187 *nr_pmdmapped = folio_nr_pages(folio); 1188 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1189 /* Raced ahead of a remove and another add? */ 1190 if (unlikely(nr < 0)) 1191 nr = 0; 1192 } else { 1193 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1194 nr = 0; 1195 } 1196 } 1197 break; 1198 } 1199 return nr; 1200 } 1201 1202 /** 1203 * folio_move_anon_rmap - move a folio to our anon_vma 1204 * @folio: The folio to move to our anon_vma 1205 * @vma: The vma the folio belongs to 1206 * 1207 * When a folio belongs exclusively to one process after a COW event, 1208 * that folio can be moved into the anon_vma that belongs to just that 1209 * process, so the rmap code will not search the parent or sibling processes. 1210 */ 1211 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1212 { 1213 void *anon_vma = vma->anon_vma; 1214 1215 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1216 VM_BUG_ON_VMA(!anon_vma, vma); 1217 1218 anon_vma += PAGE_MAPPING_ANON; 1219 /* 1220 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1221 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1222 * folio_test_anon()) will not see one without the other. 1223 */ 1224 WRITE_ONCE(folio->mapping, anon_vma); 1225 } 1226 1227 /** 1228 * __folio_set_anon - set up a new anonymous rmap for a folio 1229 * @folio: The folio to set up the new anonymous rmap for. 1230 * @vma: VM area to add the folio to. 1231 * @address: User virtual address of the mapping 1232 * @exclusive: Whether the folio is exclusive to the process. 1233 */ 1234 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1235 unsigned long address, bool exclusive) 1236 { 1237 struct anon_vma *anon_vma = vma->anon_vma; 1238 1239 BUG_ON(!anon_vma); 1240 1241 /* 1242 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1243 * possible anon_vma for the folio mapping! 1244 */ 1245 if (!exclusive) 1246 anon_vma = anon_vma->root; 1247 1248 /* 1249 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1250 * Make sure the compiler doesn't split the stores of anon_vma and 1251 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1252 * could mistake the mapping for a struct address_space and crash. 1253 */ 1254 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1255 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1256 folio->index = linear_page_index(vma, address); 1257 } 1258 1259 /** 1260 * __page_check_anon_rmap - sanity check anonymous rmap addition 1261 * @folio: The folio containing @page. 1262 * @page: the page to check the mapping of 1263 * @vma: the vm area in which the mapping is added 1264 * @address: the user virtual address mapped 1265 */ 1266 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1267 struct vm_area_struct *vma, unsigned long address) 1268 { 1269 /* 1270 * The page's anon-rmap details (mapping and index) are guaranteed to 1271 * be set up correctly at this point. 1272 * 1273 * We have exclusion against folio_add_anon_rmap_*() because the caller 1274 * always holds the page locked. 1275 * 1276 * We have exclusion against folio_add_new_anon_rmap because those pages 1277 * are initially only visible via the pagetables, and the pte is locked 1278 * over the call to folio_add_new_anon_rmap. 1279 */ 1280 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1281 folio); 1282 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1283 page); 1284 } 1285 1286 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1287 struct page *page, int nr_pages, struct vm_area_struct *vma, 1288 unsigned long address, rmap_t flags, enum rmap_level level) 1289 { 1290 int i, nr, nr_pmdmapped = 0; 1291 1292 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1293 if (nr_pmdmapped) 1294 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1295 if (nr) 1296 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1297 1298 if (unlikely(!folio_test_anon(folio))) { 1299 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 1300 /* 1301 * For a PTE-mapped large folio, we only know that the single 1302 * PTE is exclusive. Further, __folio_set_anon() might not get 1303 * folio->index right when not given the address of the head 1304 * page. 1305 */ 1306 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1307 level != RMAP_LEVEL_PMD, folio); 1308 __folio_set_anon(folio, vma, address, 1309 !!(flags & RMAP_EXCLUSIVE)); 1310 } else if (likely(!folio_test_ksm(folio))) { 1311 __page_check_anon_rmap(folio, page, vma, address); 1312 } 1313 1314 if (flags & RMAP_EXCLUSIVE) { 1315 switch (level) { 1316 case RMAP_LEVEL_PTE: 1317 for (i = 0; i < nr_pages; i++) 1318 SetPageAnonExclusive(page + i); 1319 break; 1320 case RMAP_LEVEL_PMD: 1321 SetPageAnonExclusive(page); 1322 break; 1323 } 1324 } 1325 for (i = 0; i < nr_pages; i++) { 1326 struct page *cur_page = page + i; 1327 1328 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1329 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1330 (folio_test_large(folio) && 1331 folio_entire_mapcount(folio) > 1)) && 1332 PageAnonExclusive(cur_page), folio); 1333 } 1334 1335 /* 1336 * For large folio, only mlock it if it's fully mapped to VMA. It's 1337 * not easy to check whether the large folio is fully mapped to VMA 1338 * here. Only mlock normal 4K folio and leave page reclaim to handle 1339 * large folio. 1340 */ 1341 if (!folio_test_large(folio)) 1342 mlock_vma_folio(folio, vma); 1343 } 1344 1345 /** 1346 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1347 * @folio: The folio to add the mappings to 1348 * @page: The first page to add 1349 * @nr_pages: The number of pages which will be mapped 1350 * @vma: The vm area in which the mappings are added 1351 * @address: The user virtual address of the first page to map 1352 * @flags: The rmap flags 1353 * 1354 * The page range of folio is defined by [first_page, first_page + nr_pages) 1355 * 1356 * The caller needs to hold the page table lock, and the page must be locked in 1357 * the anon_vma case: to serialize mapping,index checking after setting, 1358 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1359 * (but KSM folios are never downgraded). 1360 */ 1361 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1362 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1363 rmap_t flags) 1364 { 1365 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1366 RMAP_LEVEL_PTE); 1367 } 1368 1369 /** 1370 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1371 * @folio: The folio to add the mapping to 1372 * @page: The first page to add 1373 * @vma: The vm area in which the mapping is added 1374 * @address: The user virtual address of the first page to map 1375 * @flags: The rmap flags 1376 * 1377 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1378 * 1379 * The caller needs to hold the page table lock, and the page must be locked in 1380 * the anon_vma case: to serialize mapping,index checking after setting. 1381 */ 1382 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1383 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1384 { 1385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1386 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1387 RMAP_LEVEL_PMD); 1388 #else 1389 WARN_ON_ONCE(true); 1390 #endif 1391 } 1392 1393 /** 1394 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1395 * @folio: The folio to add the mapping to. 1396 * @vma: the vm area in which the mapping is added 1397 * @address: the user virtual address mapped 1398 * 1399 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1400 * This means the inc-and-test can be bypassed. 1401 * The folio does not have to be locked. 1402 * 1403 * If the folio is pmd-mappable, it is accounted as a THP. As the folio 1404 * is new, it's assumed to be mapped exclusively by a single process. 1405 */ 1406 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1407 unsigned long address) 1408 { 1409 int nr = folio_nr_pages(folio); 1410 1411 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1412 VM_BUG_ON_VMA(address < vma->vm_start || 1413 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1414 __folio_set_swapbacked(folio); 1415 __folio_set_anon(folio, vma, address, true); 1416 1417 if (likely(!folio_test_large(folio))) { 1418 /* increment count (starts at -1) */ 1419 atomic_set(&folio->_mapcount, 0); 1420 SetPageAnonExclusive(&folio->page); 1421 } else if (!folio_test_pmd_mappable(folio)) { 1422 int i; 1423 1424 for (i = 0; i < nr; i++) { 1425 struct page *page = folio_page(folio, i); 1426 1427 /* increment count (starts at -1) */ 1428 atomic_set(&page->_mapcount, 0); 1429 SetPageAnonExclusive(page); 1430 } 1431 1432 atomic_set(&folio->_nr_pages_mapped, nr); 1433 } else { 1434 /* increment count (starts at -1) */ 1435 atomic_set(&folio->_entire_mapcount, 0); 1436 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1437 SetPageAnonExclusive(&folio->page); 1438 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1439 } 1440 1441 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1442 } 1443 1444 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1445 struct page *page, int nr_pages, struct vm_area_struct *vma, 1446 enum rmap_level level) 1447 { 1448 int nr, nr_pmdmapped = 0; 1449 1450 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1451 1452 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1453 if (nr_pmdmapped) 1454 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1455 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1456 if (nr) 1457 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1458 1459 /* See comments in folio_add_anon_rmap_*() */ 1460 if (!folio_test_large(folio)) 1461 mlock_vma_folio(folio, vma); 1462 } 1463 1464 /** 1465 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1466 * @folio: The folio to add the mappings to 1467 * @page: The first page to add 1468 * @nr_pages: The number of pages that will be mapped using PTEs 1469 * @vma: The vm area in which the mappings are added 1470 * 1471 * The page range of the folio is defined by [page, page + nr_pages) 1472 * 1473 * The caller needs to hold the page table lock. 1474 */ 1475 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1476 int nr_pages, struct vm_area_struct *vma) 1477 { 1478 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1479 } 1480 1481 /** 1482 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1483 * @folio: The folio to add the mapping to 1484 * @page: The first page to add 1485 * @vma: The vm area in which the mapping is added 1486 * 1487 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1488 * 1489 * The caller needs to hold the page table lock. 1490 */ 1491 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1492 struct vm_area_struct *vma) 1493 { 1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1495 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1496 #else 1497 WARN_ON_ONCE(true); 1498 #endif 1499 } 1500 1501 static __always_inline void __folio_remove_rmap(struct folio *folio, 1502 struct page *page, int nr_pages, struct vm_area_struct *vma, 1503 enum rmap_level level) 1504 { 1505 atomic_t *mapped = &folio->_nr_pages_mapped; 1506 int last, nr = 0, nr_pmdmapped = 0; 1507 enum node_stat_item idx; 1508 1509 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1510 1511 switch (level) { 1512 case RMAP_LEVEL_PTE: 1513 do { 1514 last = atomic_add_negative(-1, &page->_mapcount); 1515 if (last && folio_test_large(folio)) { 1516 last = atomic_dec_return_relaxed(mapped); 1517 last = (last < ENTIRELY_MAPPED); 1518 } 1519 1520 if (last) 1521 nr++; 1522 } while (page++, --nr_pages > 0); 1523 break; 1524 case RMAP_LEVEL_PMD: 1525 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1526 if (last) { 1527 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1528 if (likely(nr < ENTIRELY_MAPPED)) { 1529 nr_pmdmapped = folio_nr_pages(folio); 1530 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1531 /* Raced ahead of another remove and an add? */ 1532 if (unlikely(nr < 0)) 1533 nr = 0; 1534 } else { 1535 /* An add of ENTIRELY_MAPPED raced ahead */ 1536 nr = 0; 1537 } 1538 } 1539 break; 1540 } 1541 1542 if (nr_pmdmapped) { 1543 if (folio_test_anon(folio)) 1544 idx = NR_ANON_THPS; 1545 else if (folio_test_swapbacked(folio)) 1546 idx = NR_SHMEM_PMDMAPPED; 1547 else 1548 idx = NR_FILE_PMDMAPPED; 1549 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1550 } 1551 if (nr) { 1552 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1553 __lruvec_stat_mod_folio(folio, idx, -nr); 1554 1555 /* 1556 * Queue anon large folio for deferred split if at least one 1557 * page of the folio is unmapped and at least one page 1558 * is still mapped. 1559 */ 1560 if (folio_test_large(folio) && folio_test_anon(folio)) 1561 if (level == RMAP_LEVEL_PTE || nr < nr_pmdmapped) 1562 deferred_split_folio(folio); 1563 } 1564 1565 /* 1566 * It would be tidy to reset folio_test_anon mapping when fully 1567 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1568 * which increments mapcount after us but sets mapping before us: 1569 * so leave the reset to free_pages_prepare, and remember that 1570 * it's only reliable while mapped. 1571 */ 1572 1573 munlock_vma_folio(folio, vma); 1574 } 1575 1576 /** 1577 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1578 * @folio: The folio to remove the mappings from 1579 * @page: The first page to remove 1580 * @nr_pages: The number of pages that will be removed from the mapping 1581 * @vma: The vm area from which the mappings are removed 1582 * 1583 * The page range of the folio is defined by [page, page + nr_pages) 1584 * 1585 * The caller needs to hold the page table lock. 1586 */ 1587 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1588 int nr_pages, struct vm_area_struct *vma) 1589 { 1590 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1591 } 1592 1593 /** 1594 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1595 * @folio: The folio to remove the mapping from 1596 * @page: The first page to remove 1597 * @vma: The vm area from which the mapping is removed 1598 * 1599 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1600 * 1601 * The caller needs to hold the page table lock. 1602 */ 1603 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1604 struct vm_area_struct *vma) 1605 { 1606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1607 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1608 #else 1609 WARN_ON_ONCE(true); 1610 #endif 1611 } 1612 1613 /* 1614 * @arg: enum ttu_flags will be passed to this argument 1615 */ 1616 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1617 unsigned long address, void *arg) 1618 { 1619 struct mm_struct *mm = vma->vm_mm; 1620 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1621 pte_t pteval; 1622 struct page *subpage; 1623 bool anon_exclusive, ret = true; 1624 struct mmu_notifier_range range; 1625 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1626 unsigned long pfn; 1627 unsigned long hsz = 0; 1628 1629 /* 1630 * When racing against e.g. zap_pte_range() on another cpu, 1631 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1632 * try_to_unmap() may return before page_mapped() has become false, 1633 * if page table locking is skipped: use TTU_SYNC to wait for that. 1634 */ 1635 if (flags & TTU_SYNC) 1636 pvmw.flags = PVMW_SYNC; 1637 1638 if (flags & TTU_SPLIT_HUGE_PMD) 1639 split_huge_pmd_address(vma, address, false, folio); 1640 1641 /* 1642 * For THP, we have to assume the worse case ie pmd for invalidation. 1643 * For hugetlb, it could be much worse if we need to do pud 1644 * invalidation in the case of pmd sharing. 1645 * 1646 * Note that the folio can not be freed in this function as call of 1647 * try_to_unmap() must hold a reference on the folio. 1648 */ 1649 range.end = vma_address_end(&pvmw); 1650 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1651 address, range.end); 1652 if (folio_test_hugetlb(folio)) { 1653 /* 1654 * If sharing is possible, start and end will be adjusted 1655 * accordingly. 1656 */ 1657 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1658 &range.end); 1659 1660 /* We need the huge page size for set_huge_pte_at() */ 1661 hsz = huge_page_size(hstate_vma(vma)); 1662 } 1663 mmu_notifier_invalidate_range_start(&range); 1664 1665 while (page_vma_mapped_walk(&pvmw)) { 1666 /* Unexpected PMD-mapped THP? */ 1667 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1668 1669 /* 1670 * If the folio is in an mlock()d vma, we must not swap it out. 1671 */ 1672 if (!(flags & TTU_IGNORE_MLOCK) && 1673 (vma->vm_flags & VM_LOCKED)) { 1674 /* Restore the mlock which got missed */ 1675 if (!folio_test_large(folio)) 1676 mlock_vma_folio(folio, vma); 1677 page_vma_mapped_walk_done(&pvmw); 1678 ret = false; 1679 break; 1680 } 1681 1682 pfn = pte_pfn(ptep_get(pvmw.pte)); 1683 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1684 address = pvmw.address; 1685 anon_exclusive = folio_test_anon(folio) && 1686 PageAnonExclusive(subpage); 1687 1688 if (folio_test_hugetlb(folio)) { 1689 bool anon = folio_test_anon(folio); 1690 1691 /* 1692 * The try_to_unmap() is only passed a hugetlb page 1693 * in the case where the hugetlb page is poisoned. 1694 */ 1695 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1696 /* 1697 * huge_pmd_unshare may unmap an entire PMD page. 1698 * There is no way of knowing exactly which PMDs may 1699 * be cached for this mm, so we must flush them all. 1700 * start/end were already adjusted above to cover this 1701 * range. 1702 */ 1703 flush_cache_range(vma, range.start, range.end); 1704 1705 /* 1706 * To call huge_pmd_unshare, i_mmap_rwsem must be 1707 * held in write mode. Caller needs to explicitly 1708 * do this outside rmap routines. 1709 * 1710 * We also must hold hugetlb vma_lock in write mode. 1711 * Lock order dictates acquiring vma_lock BEFORE 1712 * i_mmap_rwsem. We can only try lock here and fail 1713 * if unsuccessful. 1714 */ 1715 if (!anon) { 1716 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1717 if (!hugetlb_vma_trylock_write(vma)) { 1718 page_vma_mapped_walk_done(&pvmw); 1719 ret = false; 1720 break; 1721 } 1722 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1723 hugetlb_vma_unlock_write(vma); 1724 flush_tlb_range(vma, 1725 range.start, range.end); 1726 /* 1727 * The ref count of the PMD page was 1728 * dropped which is part of the way map 1729 * counting is done for shared PMDs. 1730 * Return 'true' here. When there is 1731 * no other sharing, huge_pmd_unshare 1732 * returns false and we will unmap the 1733 * actual page and drop map count 1734 * to zero. 1735 */ 1736 page_vma_mapped_walk_done(&pvmw); 1737 break; 1738 } 1739 hugetlb_vma_unlock_write(vma); 1740 } 1741 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1742 } else { 1743 flush_cache_page(vma, address, pfn); 1744 /* Nuke the page table entry. */ 1745 if (should_defer_flush(mm, flags)) { 1746 /* 1747 * We clear the PTE but do not flush so potentially 1748 * a remote CPU could still be writing to the folio. 1749 * If the entry was previously clean then the 1750 * architecture must guarantee that a clear->dirty 1751 * transition on a cached TLB entry is written through 1752 * and traps if the PTE is unmapped. 1753 */ 1754 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1755 1756 set_tlb_ubc_flush_pending(mm, pteval, address); 1757 } else { 1758 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1759 } 1760 } 1761 1762 /* 1763 * Now the pte is cleared. If this pte was uffd-wp armed, 1764 * we may want to replace a none pte with a marker pte if 1765 * it's file-backed, so we don't lose the tracking info. 1766 */ 1767 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1768 1769 /* Set the dirty flag on the folio now the pte is gone. */ 1770 if (pte_dirty(pteval)) 1771 folio_mark_dirty(folio); 1772 1773 /* Update high watermark before we lower rss */ 1774 update_hiwater_rss(mm); 1775 1776 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1777 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1778 if (folio_test_hugetlb(folio)) { 1779 hugetlb_count_sub(folio_nr_pages(folio), mm); 1780 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1781 hsz); 1782 } else { 1783 dec_mm_counter(mm, mm_counter(folio)); 1784 set_pte_at(mm, address, pvmw.pte, pteval); 1785 } 1786 1787 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1788 /* 1789 * The guest indicated that the page content is of no 1790 * interest anymore. Simply discard the pte, vmscan 1791 * will take care of the rest. 1792 * A future reference will then fault in a new zero 1793 * page. When userfaultfd is active, we must not drop 1794 * this page though, as its main user (postcopy 1795 * migration) will not expect userfaults on already 1796 * copied pages. 1797 */ 1798 dec_mm_counter(mm, mm_counter(folio)); 1799 } else if (folio_test_anon(folio)) { 1800 swp_entry_t entry = page_swap_entry(subpage); 1801 pte_t swp_pte; 1802 /* 1803 * Store the swap location in the pte. 1804 * See handle_pte_fault() ... 1805 */ 1806 if (unlikely(folio_test_swapbacked(folio) != 1807 folio_test_swapcache(folio))) { 1808 WARN_ON_ONCE(1); 1809 ret = false; 1810 page_vma_mapped_walk_done(&pvmw); 1811 break; 1812 } 1813 1814 /* MADV_FREE page check */ 1815 if (!folio_test_swapbacked(folio)) { 1816 int ref_count, map_count; 1817 1818 /* 1819 * Synchronize with gup_pte_range(): 1820 * - clear PTE; barrier; read refcount 1821 * - inc refcount; barrier; read PTE 1822 */ 1823 smp_mb(); 1824 1825 ref_count = folio_ref_count(folio); 1826 map_count = folio_mapcount(folio); 1827 1828 /* 1829 * Order reads for page refcount and dirty flag 1830 * (see comments in __remove_mapping()). 1831 */ 1832 smp_rmb(); 1833 1834 /* 1835 * The only page refs must be one from isolation 1836 * plus the rmap(s) (dropped by discard:). 1837 */ 1838 if (ref_count == 1 + map_count && 1839 !folio_test_dirty(folio)) { 1840 dec_mm_counter(mm, MM_ANONPAGES); 1841 goto discard; 1842 } 1843 1844 /* 1845 * If the folio was redirtied, it cannot be 1846 * discarded. Remap the page to page table. 1847 */ 1848 set_pte_at(mm, address, pvmw.pte, pteval); 1849 folio_set_swapbacked(folio); 1850 ret = false; 1851 page_vma_mapped_walk_done(&pvmw); 1852 break; 1853 } 1854 1855 if (swap_duplicate(entry) < 0) { 1856 set_pte_at(mm, address, pvmw.pte, pteval); 1857 ret = false; 1858 page_vma_mapped_walk_done(&pvmw); 1859 break; 1860 } 1861 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1862 swap_free(entry); 1863 set_pte_at(mm, address, pvmw.pte, pteval); 1864 ret = false; 1865 page_vma_mapped_walk_done(&pvmw); 1866 break; 1867 } 1868 1869 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1870 if (anon_exclusive && 1871 folio_try_share_anon_rmap_pte(folio, subpage)) { 1872 swap_free(entry); 1873 set_pte_at(mm, address, pvmw.pte, pteval); 1874 ret = false; 1875 page_vma_mapped_walk_done(&pvmw); 1876 break; 1877 } 1878 if (list_empty(&mm->mmlist)) { 1879 spin_lock(&mmlist_lock); 1880 if (list_empty(&mm->mmlist)) 1881 list_add(&mm->mmlist, &init_mm.mmlist); 1882 spin_unlock(&mmlist_lock); 1883 } 1884 dec_mm_counter(mm, MM_ANONPAGES); 1885 inc_mm_counter(mm, MM_SWAPENTS); 1886 swp_pte = swp_entry_to_pte(entry); 1887 if (anon_exclusive) 1888 swp_pte = pte_swp_mkexclusive(swp_pte); 1889 if (pte_soft_dirty(pteval)) 1890 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1891 if (pte_uffd_wp(pteval)) 1892 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1893 set_pte_at(mm, address, pvmw.pte, swp_pte); 1894 } else { 1895 /* 1896 * This is a locked file-backed folio, 1897 * so it cannot be removed from the page 1898 * cache and replaced by a new folio before 1899 * mmu_notifier_invalidate_range_end, so no 1900 * concurrent thread might update its page table 1901 * to point at a new folio while a device is 1902 * still using this folio. 1903 * 1904 * See Documentation/mm/mmu_notifier.rst 1905 */ 1906 dec_mm_counter(mm, mm_counter_file(folio)); 1907 } 1908 discard: 1909 if (unlikely(folio_test_hugetlb(folio))) 1910 hugetlb_remove_rmap(folio); 1911 else 1912 folio_remove_rmap_pte(folio, subpage, vma); 1913 if (vma->vm_flags & VM_LOCKED) 1914 mlock_drain_local(); 1915 folio_put(folio); 1916 } 1917 1918 mmu_notifier_invalidate_range_end(&range); 1919 1920 return ret; 1921 } 1922 1923 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1924 { 1925 return vma_is_temporary_stack(vma); 1926 } 1927 1928 static int folio_not_mapped(struct folio *folio) 1929 { 1930 return !folio_mapped(folio); 1931 } 1932 1933 /** 1934 * try_to_unmap - Try to remove all page table mappings to a folio. 1935 * @folio: The folio to unmap. 1936 * @flags: action and flags 1937 * 1938 * Tries to remove all the page table entries which are mapping this 1939 * folio. It is the caller's responsibility to check if the folio is 1940 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1941 * 1942 * Context: Caller must hold the folio lock. 1943 */ 1944 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1945 { 1946 struct rmap_walk_control rwc = { 1947 .rmap_one = try_to_unmap_one, 1948 .arg = (void *)flags, 1949 .done = folio_not_mapped, 1950 .anon_lock = folio_lock_anon_vma_read, 1951 }; 1952 1953 if (flags & TTU_RMAP_LOCKED) 1954 rmap_walk_locked(folio, &rwc); 1955 else 1956 rmap_walk(folio, &rwc); 1957 } 1958 1959 /* 1960 * @arg: enum ttu_flags will be passed to this argument. 1961 * 1962 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1963 * containing migration entries. 1964 */ 1965 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1966 unsigned long address, void *arg) 1967 { 1968 struct mm_struct *mm = vma->vm_mm; 1969 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1970 pte_t pteval; 1971 struct page *subpage; 1972 bool anon_exclusive, ret = true; 1973 struct mmu_notifier_range range; 1974 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1975 unsigned long pfn; 1976 unsigned long hsz = 0; 1977 1978 /* 1979 * When racing against e.g. zap_pte_range() on another cpu, 1980 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1981 * try_to_migrate() may return before page_mapped() has become false, 1982 * if page table locking is skipped: use TTU_SYNC to wait for that. 1983 */ 1984 if (flags & TTU_SYNC) 1985 pvmw.flags = PVMW_SYNC; 1986 1987 /* 1988 * unmap_page() in mm/huge_memory.c is the only user of migration with 1989 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1990 */ 1991 if (flags & TTU_SPLIT_HUGE_PMD) 1992 split_huge_pmd_address(vma, address, true, folio); 1993 1994 /* 1995 * For THP, we have to assume the worse case ie pmd for invalidation. 1996 * For hugetlb, it could be much worse if we need to do pud 1997 * invalidation in the case of pmd sharing. 1998 * 1999 * Note that the page can not be free in this function as call of 2000 * try_to_unmap() must hold a reference on the page. 2001 */ 2002 range.end = vma_address_end(&pvmw); 2003 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2004 address, range.end); 2005 if (folio_test_hugetlb(folio)) { 2006 /* 2007 * If sharing is possible, start and end will be adjusted 2008 * accordingly. 2009 */ 2010 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2011 &range.end); 2012 2013 /* We need the huge page size for set_huge_pte_at() */ 2014 hsz = huge_page_size(hstate_vma(vma)); 2015 } 2016 mmu_notifier_invalidate_range_start(&range); 2017 2018 while (page_vma_mapped_walk(&pvmw)) { 2019 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2020 /* PMD-mapped THP migration entry */ 2021 if (!pvmw.pte) { 2022 subpage = folio_page(folio, 2023 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2024 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2025 !folio_test_pmd_mappable(folio), folio); 2026 2027 if (set_pmd_migration_entry(&pvmw, subpage)) { 2028 ret = false; 2029 page_vma_mapped_walk_done(&pvmw); 2030 break; 2031 } 2032 continue; 2033 } 2034 #endif 2035 2036 /* Unexpected PMD-mapped THP? */ 2037 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2038 2039 pfn = pte_pfn(ptep_get(pvmw.pte)); 2040 2041 if (folio_is_zone_device(folio)) { 2042 /* 2043 * Our PTE is a non-present device exclusive entry and 2044 * calculating the subpage as for the common case would 2045 * result in an invalid pointer. 2046 * 2047 * Since only PAGE_SIZE pages can currently be 2048 * migrated, just set it to page. This will need to be 2049 * changed when hugepage migrations to device private 2050 * memory are supported. 2051 */ 2052 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2053 subpage = &folio->page; 2054 } else { 2055 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2056 } 2057 address = pvmw.address; 2058 anon_exclusive = folio_test_anon(folio) && 2059 PageAnonExclusive(subpage); 2060 2061 if (folio_test_hugetlb(folio)) { 2062 bool anon = folio_test_anon(folio); 2063 2064 /* 2065 * huge_pmd_unshare may unmap an entire PMD page. 2066 * There is no way of knowing exactly which PMDs may 2067 * be cached for this mm, so we must flush them all. 2068 * start/end were already adjusted above to cover this 2069 * range. 2070 */ 2071 flush_cache_range(vma, range.start, range.end); 2072 2073 /* 2074 * To call huge_pmd_unshare, i_mmap_rwsem must be 2075 * held in write mode. Caller needs to explicitly 2076 * do this outside rmap routines. 2077 * 2078 * We also must hold hugetlb vma_lock in write mode. 2079 * Lock order dictates acquiring vma_lock BEFORE 2080 * i_mmap_rwsem. We can only try lock here and 2081 * fail if unsuccessful. 2082 */ 2083 if (!anon) { 2084 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2085 if (!hugetlb_vma_trylock_write(vma)) { 2086 page_vma_mapped_walk_done(&pvmw); 2087 ret = false; 2088 break; 2089 } 2090 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2091 hugetlb_vma_unlock_write(vma); 2092 flush_tlb_range(vma, 2093 range.start, range.end); 2094 2095 /* 2096 * The ref count of the PMD page was 2097 * dropped which is part of the way map 2098 * counting is done for shared PMDs. 2099 * Return 'true' here. When there is 2100 * no other sharing, huge_pmd_unshare 2101 * returns false and we will unmap the 2102 * actual page and drop map count 2103 * to zero. 2104 */ 2105 page_vma_mapped_walk_done(&pvmw); 2106 break; 2107 } 2108 hugetlb_vma_unlock_write(vma); 2109 } 2110 /* Nuke the hugetlb page table entry */ 2111 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2112 } else { 2113 flush_cache_page(vma, address, pfn); 2114 /* Nuke the page table entry. */ 2115 if (should_defer_flush(mm, flags)) { 2116 /* 2117 * We clear the PTE but do not flush so potentially 2118 * a remote CPU could still be writing to the folio. 2119 * If the entry was previously clean then the 2120 * architecture must guarantee that a clear->dirty 2121 * transition on a cached TLB entry is written through 2122 * and traps if the PTE is unmapped. 2123 */ 2124 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2125 2126 set_tlb_ubc_flush_pending(mm, pteval, address); 2127 } else { 2128 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2129 } 2130 } 2131 2132 /* Set the dirty flag on the folio now the pte is gone. */ 2133 if (pte_dirty(pteval)) 2134 folio_mark_dirty(folio); 2135 2136 /* Update high watermark before we lower rss */ 2137 update_hiwater_rss(mm); 2138 2139 if (folio_is_device_private(folio)) { 2140 unsigned long pfn = folio_pfn(folio); 2141 swp_entry_t entry; 2142 pte_t swp_pte; 2143 2144 if (anon_exclusive) 2145 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2146 subpage)); 2147 2148 /* 2149 * Store the pfn of the page in a special migration 2150 * pte. do_swap_page() will wait until the migration 2151 * pte is removed and then restart fault handling. 2152 */ 2153 entry = pte_to_swp_entry(pteval); 2154 if (is_writable_device_private_entry(entry)) 2155 entry = make_writable_migration_entry(pfn); 2156 else if (anon_exclusive) 2157 entry = make_readable_exclusive_migration_entry(pfn); 2158 else 2159 entry = make_readable_migration_entry(pfn); 2160 swp_pte = swp_entry_to_pte(entry); 2161 2162 /* 2163 * pteval maps a zone device page and is therefore 2164 * a swap pte. 2165 */ 2166 if (pte_swp_soft_dirty(pteval)) 2167 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2168 if (pte_swp_uffd_wp(pteval)) 2169 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2170 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2171 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2172 folio_order(folio)); 2173 /* 2174 * No need to invalidate here it will synchronize on 2175 * against the special swap migration pte. 2176 */ 2177 } else if (PageHWPoison(subpage)) { 2178 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2179 if (folio_test_hugetlb(folio)) { 2180 hugetlb_count_sub(folio_nr_pages(folio), mm); 2181 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2182 hsz); 2183 } else { 2184 dec_mm_counter(mm, mm_counter(folio)); 2185 set_pte_at(mm, address, pvmw.pte, pteval); 2186 } 2187 2188 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2189 /* 2190 * The guest indicated that the page content is of no 2191 * interest anymore. Simply discard the pte, vmscan 2192 * will take care of the rest. 2193 * A future reference will then fault in a new zero 2194 * page. When userfaultfd is active, we must not drop 2195 * this page though, as its main user (postcopy 2196 * migration) will not expect userfaults on already 2197 * copied pages. 2198 */ 2199 dec_mm_counter(mm, mm_counter(folio)); 2200 } else { 2201 swp_entry_t entry; 2202 pte_t swp_pte; 2203 2204 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2205 if (folio_test_hugetlb(folio)) 2206 set_huge_pte_at(mm, address, pvmw.pte, 2207 pteval, hsz); 2208 else 2209 set_pte_at(mm, address, pvmw.pte, pteval); 2210 ret = false; 2211 page_vma_mapped_walk_done(&pvmw); 2212 break; 2213 } 2214 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2215 !anon_exclusive, subpage); 2216 2217 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2218 if (folio_test_hugetlb(folio)) { 2219 if (anon_exclusive && 2220 hugetlb_try_share_anon_rmap(folio)) { 2221 set_huge_pte_at(mm, address, pvmw.pte, 2222 pteval, hsz); 2223 ret = false; 2224 page_vma_mapped_walk_done(&pvmw); 2225 break; 2226 } 2227 } else if (anon_exclusive && 2228 folio_try_share_anon_rmap_pte(folio, subpage)) { 2229 set_pte_at(mm, address, pvmw.pte, pteval); 2230 ret = false; 2231 page_vma_mapped_walk_done(&pvmw); 2232 break; 2233 } 2234 2235 /* 2236 * Store the pfn of the page in a special migration 2237 * pte. do_swap_page() will wait until the migration 2238 * pte is removed and then restart fault handling. 2239 */ 2240 if (pte_write(pteval)) 2241 entry = make_writable_migration_entry( 2242 page_to_pfn(subpage)); 2243 else if (anon_exclusive) 2244 entry = make_readable_exclusive_migration_entry( 2245 page_to_pfn(subpage)); 2246 else 2247 entry = make_readable_migration_entry( 2248 page_to_pfn(subpage)); 2249 if (pte_young(pteval)) 2250 entry = make_migration_entry_young(entry); 2251 if (pte_dirty(pteval)) 2252 entry = make_migration_entry_dirty(entry); 2253 swp_pte = swp_entry_to_pte(entry); 2254 if (pte_soft_dirty(pteval)) 2255 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2256 if (pte_uffd_wp(pteval)) 2257 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2258 if (folio_test_hugetlb(folio)) 2259 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2260 hsz); 2261 else 2262 set_pte_at(mm, address, pvmw.pte, swp_pte); 2263 trace_set_migration_pte(address, pte_val(swp_pte), 2264 folio_order(folio)); 2265 /* 2266 * No need to invalidate here it will synchronize on 2267 * against the special swap migration pte. 2268 */ 2269 } 2270 2271 if (unlikely(folio_test_hugetlb(folio))) 2272 hugetlb_remove_rmap(folio); 2273 else 2274 folio_remove_rmap_pte(folio, subpage, vma); 2275 if (vma->vm_flags & VM_LOCKED) 2276 mlock_drain_local(); 2277 folio_put(folio); 2278 } 2279 2280 mmu_notifier_invalidate_range_end(&range); 2281 2282 return ret; 2283 } 2284 2285 /** 2286 * try_to_migrate - try to replace all page table mappings with swap entries 2287 * @folio: the folio to replace page table entries for 2288 * @flags: action and flags 2289 * 2290 * Tries to remove all the page table entries which are mapping this folio and 2291 * replace them with special swap entries. Caller must hold the folio lock. 2292 */ 2293 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2294 { 2295 struct rmap_walk_control rwc = { 2296 .rmap_one = try_to_migrate_one, 2297 .arg = (void *)flags, 2298 .done = folio_not_mapped, 2299 .anon_lock = folio_lock_anon_vma_read, 2300 }; 2301 2302 /* 2303 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2304 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2305 */ 2306 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2307 TTU_SYNC | TTU_BATCH_FLUSH))) 2308 return; 2309 2310 if (folio_is_zone_device(folio) && 2311 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2312 return; 2313 2314 /* 2315 * During exec, a temporary VMA is setup and later moved. 2316 * The VMA is moved under the anon_vma lock but not the 2317 * page tables leading to a race where migration cannot 2318 * find the migration ptes. Rather than increasing the 2319 * locking requirements of exec(), migration skips 2320 * temporary VMAs until after exec() completes. 2321 */ 2322 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2323 rwc.invalid_vma = invalid_migration_vma; 2324 2325 if (flags & TTU_RMAP_LOCKED) 2326 rmap_walk_locked(folio, &rwc); 2327 else 2328 rmap_walk(folio, &rwc); 2329 } 2330 2331 #ifdef CONFIG_DEVICE_PRIVATE 2332 struct make_exclusive_args { 2333 struct mm_struct *mm; 2334 unsigned long address; 2335 void *owner; 2336 bool valid; 2337 }; 2338 2339 static bool page_make_device_exclusive_one(struct folio *folio, 2340 struct vm_area_struct *vma, unsigned long address, void *priv) 2341 { 2342 struct mm_struct *mm = vma->vm_mm; 2343 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2344 struct make_exclusive_args *args = priv; 2345 pte_t pteval; 2346 struct page *subpage; 2347 bool ret = true; 2348 struct mmu_notifier_range range; 2349 swp_entry_t entry; 2350 pte_t swp_pte; 2351 pte_t ptent; 2352 2353 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2354 vma->vm_mm, address, min(vma->vm_end, 2355 address + folio_size(folio)), 2356 args->owner); 2357 mmu_notifier_invalidate_range_start(&range); 2358 2359 while (page_vma_mapped_walk(&pvmw)) { 2360 /* Unexpected PMD-mapped THP? */ 2361 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2362 2363 ptent = ptep_get(pvmw.pte); 2364 if (!pte_present(ptent)) { 2365 ret = false; 2366 page_vma_mapped_walk_done(&pvmw); 2367 break; 2368 } 2369 2370 subpage = folio_page(folio, 2371 pte_pfn(ptent) - folio_pfn(folio)); 2372 address = pvmw.address; 2373 2374 /* Nuke the page table entry. */ 2375 flush_cache_page(vma, address, pte_pfn(ptent)); 2376 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2377 2378 /* Set the dirty flag on the folio now the pte is gone. */ 2379 if (pte_dirty(pteval)) 2380 folio_mark_dirty(folio); 2381 2382 /* 2383 * Check that our target page is still mapped at the expected 2384 * address. 2385 */ 2386 if (args->mm == mm && args->address == address && 2387 pte_write(pteval)) 2388 args->valid = true; 2389 2390 /* 2391 * Store the pfn of the page in a special migration 2392 * pte. do_swap_page() will wait until the migration 2393 * pte is removed and then restart fault handling. 2394 */ 2395 if (pte_write(pteval)) 2396 entry = make_writable_device_exclusive_entry( 2397 page_to_pfn(subpage)); 2398 else 2399 entry = make_readable_device_exclusive_entry( 2400 page_to_pfn(subpage)); 2401 swp_pte = swp_entry_to_pte(entry); 2402 if (pte_soft_dirty(pteval)) 2403 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2404 if (pte_uffd_wp(pteval)) 2405 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2406 2407 set_pte_at(mm, address, pvmw.pte, swp_pte); 2408 2409 /* 2410 * There is a reference on the page for the swap entry which has 2411 * been removed, so shouldn't take another. 2412 */ 2413 folio_remove_rmap_pte(folio, subpage, vma); 2414 } 2415 2416 mmu_notifier_invalidate_range_end(&range); 2417 2418 return ret; 2419 } 2420 2421 /** 2422 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2423 * @folio: The folio to replace page table entries for. 2424 * @mm: The mm_struct where the folio is expected to be mapped. 2425 * @address: Address where the folio is expected to be mapped. 2426 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2427 * 2428 * Tries to remove all the page table entries which are mapping this 2429 * folio and replace them with special device exclusive swap entries to 2430 * grant a device exclusive access to the folio. 2431 * 2432 * Context: Caller must hold the folio lock. 2433 * Return: false if the page is still mapped, or if it could not be unmapped 2434 * from the expected address. Otherwise returns true (success). 2435 */ 2436 static bool folio_make_device_exclusive(struct folio *folio, 2437 struct mm_struct *mm, unsigned long address, void *owner) 2438 { 2439 struct make_exclusive_args args = { 2440 .mm = mm, 2441 .address = address, 2442 .owner = owner, 2443 .valid = false, 2444 }; 2445 struct rmap_walk_control rwc = { 2446 .rmap_one = page_make_device_exclusive_one, 2447 .done = folio_not_mapped, 2448 .anon_lock = folio_lock_anon_vma_read, 2449 .arg = &args, 2450 }; 2451 2452 /* 2453 * Restrict to anonymous folios for now to avoid potential writeback 2454 * issues. 2455 */ 2456 if (!folio_test_anon(folio)) 2457 return false; 2458 2459 rmap_walk(folio, &rwc); 2460 2461 return args.valid && !folio_mapcount(folio); 2462 } 2463 2464 /** 2465 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2466 * @mm: mm_struct of associated target process 2467 * @start: start of the region to mark for exclusive device access 2468 * @end: end address of region 2469 * @pages: returns the pages which were successfully marked for exclusive access 2470 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2471 * 2472 * Returns: number of pages found in the range by GUP. A page is marked for 2473 * exclusive access only if the page pointer is non-NULL. 2474 * 2475 * This function finds ptes mapping page(s) to the given address range, locks 2476 * them and replaces mappings with special swap entries preventing userspace CPU 2477 * access. On fault these entries are replaced with the original mapping after 2478 * calling MMU notifiers. 2479 * 2480 * A driver using this to program access from a device must use a mmu notifier 2481 * critical section to hold a device specific lock during programming. Once 2482 * programming is complete it should drop the page lock and reference after 2483 * which point CPU access to the page will revoke the exclusive access. 2484 */ 2485 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2486 unsigned long end, struct page **pages, 2487 void *owner) 2488 { 2489 long npages = (end - start) >> PAGE_SHIFT; 2490 long i; 2491 2492 npages = get_user_pages_remote(mm, start, npages, 2493 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2494 pages, NULL); 2495 if (npages < 0) 2496 return npages; 2497 2498 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2499 struct folio *folio = page_folio(pages[i]); 2500 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2501 folio_put(folio); 2502 pages[i] = NULL; 2503 continue; 2504 } 2505 2506 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2507 folio_unlock(folio); 2508 folio_put(folio); 2509 pages[i] = NULL; 2510 } 2511 } 2512 2513 return npages; 2514 } 2515 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2516 #endif 2517 2518 void __put_anon_vma(struct anon_vma *anon_vma) 2519 { 2520 struct anon_vma *root = anon_vma->root; 2521 2522 anon_vma_free(anon_vma); 2523 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2524 anon_vma_free(root); 2525 } 2526 2527 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2528 struct rmap_walk_control *rwc) 2529 { 2530 struct anon_vma *anon_vma; 2531 2532 if (rwc->anon_lock) 2533 return rwc->anon_lock(folio, rwc); 2534 2535 /* 2536 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2537 * because that depends on page_mapped(); but not all its usages 2538 * are holding mmap_lock. Users without mmap_lock are required to 2539 * take a reference count to prevent the anon_vma disappearing 2540 */ 2541 anon_vma = folio_anon_vma(folio); 2542 if (!anon_vma) 2543 return NULL; 2544 2545 if (anon_vma_trylock_read(anon_vma)) 2546 goto out; 2547 2548 if (rwc->try_lock) { 2549 anon_vma = NULL; 2550 rwc->contended = true; 2551 goto out; 2552 } 2553 2554 anon_vma_lock_read(anon_vma); 2555 out: 2556 return anon_vma; 2557 } 2558 2559 /* 2560 * rmap_walk_anon - do something to anonymous page using the object-based 2561 * rmap method 2562 * @folio: the folio to be handled 2563 * @rwc: control variable according to each walk type 2564 * @locked: caller holds relevant rmap lock 2565 * 2566 * Find all the mappings of a folio using the mapping pointer and the vma 2567 * chains contained in the anon_vma struct it points to. 2568 */ 2569 static void rmap_walk_anon(struct folio *folio, 2570 struct rmap_walk_control *rwc, bool locked) 2571 { 2572 struct anon_vma *anon_vma; 2573 pgoff_t pgoff_start, pgoff_end; 2574 struct anon_vma_chain *avc; 2575 2576 if (locked) { 2577 anon_vma = folio_anon_vma(folio); 2578 /* anon_vma disappear under us? */ 2579 VM_BUG_ON_FOLIO(!anon_vma, folio); 2580 } else { 2581 anon_vma = rmap_walk_anon_lock(folio, rwc); 2582 } 2583 if (!anon_vma) 2584 return; 2585 2586 pgoff_start = folio_pgoff(folio); 2587 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2588 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2589 pgoff_start, pgoff_end) { 2590 struct vm_area_struct *vma = avc->vma; 2591 unsigned long address = vma_address(&folio->page, vma); 2592 2593 VM_BUG_ON_VMA(address == -EFAULT, vma); 2594 cond_resched(); 2595 2596 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2597 continue; 2598 2599 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2600 break; 2601 if (rwc->done && rwc->done(folio)) 2602 break; 2603 } 2604 2605 if (!locked) 2606 anon_vma_unlock_read(anon_vma); 2607 } 2608 2609 /* 2610 * rmap_walk_file - do something to file page using the object-based rmap method 2611 * @folio: the folio to be handled 2612 * @rwc: control variable according to each walk type 2613 * @locked: caller holds relevant rmap lock 2614 * 2615 * Find all the mappings of a folio using the mapping pointer and the vma chains 2616 * contained in the address_space struct it points to. 2617 */ 2618 static void rmap_walk_file(struct folio *folio, 2619 struct rmap_walk_control *rwc, bool locked) 2620 { 2621 struct address_space *mapping = folio_mapping(folio); 2622 pgoff_t pgoff_start, pgoff_end; 2623 struct vm_area_struct *vma; 2624 2625 /* 2626 * The page lock not only makes sure that page->mapping cannot 2627 * suddenly be NULLified by truncation, it makes sure that the 2628 * structure at mapping cannot be freed and reused yet, 2629 * so we can safely take mapping->i_mmap_rwsem. 2630 */ 2631 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2632 2633 if (!mapping) 2634 return; 2635 2636 pgoff_start = folio_pgoff(folio); 2637 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2638 if (!locked) { 2639 if (i_mmap_trylock_read(mapping)) 2640 goto lookup; 2641 2642 if (rwc->try_lock) { 2643 rwc->contended = true; 2644 return; 2645 } 2646 2647 i_mmap_lock_read(mapping); 2648 } 2649 lookup: 2650 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2651 pgoff_start, pgoff_end) { 2652 unsigned long address = vma_address(&folio->page, vma); 2653 2654 VM_BUG_ON_VMA(address == -EFAULT, vma); 2655 cond_resched(); 2656 2657 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2658 continue; 2659 2660 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2661 goto done; 2662 if (rwc->done && rwc->done(folio)) 2663 goto done; 2664 } 2665 2666 done: 2667 if (!locked) 2668 i_mmap_unlock_read(mapping); 2669 } 2670 2671 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2672 { 2673 if (unlikely(folio_test_ksm(folio))) 2674 rmap_walk_ksm(folio, rwc); 2675 else if (folio_test_anon(folio)) 2676 rmap_walk_anon(folio, rwc, false); 2677 else 2678 rmap_walk_file(folio, rwc, false); 2679 } 2680 2681 /* Like rmap_walk, but caller holds relevant rmap lock */ 2682 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2683 { 2684 /* no ksm support for now */ 2685 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2686 if (folio_test_anon(folio)) 2687 rmap_walk_anon(folio, rwc, true); 2688 else 2689 rmap_walk_file(folio, rwc, true); 2690 } 2691 2692 #ifdef CONFIG_HUGETLB_PAGE 2693 /* 2694 * The following two functions are for anonymous (private mapped) hugepages. 2695 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2696 * and no lru code, because we handle hugepages differently from common pages. 2697 */ 2698 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2699 unsigned long address, rmap_t flags) 2700 { 2701 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2702 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2703 2704 atomic_inc(&folio->_entire_mapcount); 2705 if (flags & RMAP_EXCLUSIVE) 2706 SetPageAnonExclusive(&folio->page); 2707 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2708 PageAnonExclusive(&folio->page), folio); 2709 } 2710 2711 void hugetlb_add_new_anon_rmap(struct folio *folio, 2712 struct vm_area_struct *vma, unsigned long address) 2713 { 2714 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2715 2716 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2717 /* increment count (starts at -1) */ 2718 atomic_set(&folio->_entire_mapcount, 0); 2719 folio_clear_hugetlb_restore_reserve(folio); 2720 __folio_set_anon(folio, vma, address, true); 2721 SetPageAnonExclusive(&folio->page); 2722 } 2723 #endif /* CONFIG_HUGETLB_PAGE */ 2724