xref: /linux/mm/rmap.c (revision 7265706c8fd57722f622f336ec110cb35f83e739)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
53 
54 #include <asm/tlbflush.h>
55 
56 struct kmem_cache *anon_vma_cachep;
57 
58 /* This must be called under the mmap_sem. */
59 int anon_vma_prepare(struct vm_area_struct *vma)
60 {
61 	struct anon_vma *anon_vma = vma->anon_vma;
62 
63 	might_sleep();
64 	if (unlikely(!anon_vma)) {
65 		struct mm_struct *mm = vma->vm_mm;
66 		struct anon_vma *allocated, *locked;
67 
68 		anon_vma = find_mergeable_anon_vma(vma);
69 		if (anon_vma) {
70 			allocated = NULL;
71 			locked = anon_vma;
72 			spin_lock(&locked->lock);
73 		} else {
74 			anon_vma = anon_vma_alloc();
75 			if (unlikely(!anon_vma))
76 				return -ENOMEM;
77 			allocated = anon_vma;
78 			locked = NULL;
79 		}
80 
81 		/* page_table_lock to protect against threads */
82 		spin_lock(&mm->page_table_lock);
83 		if (likely(!vma->anon_vma)) {
84 			vma->anon_vma = anon_vma;
85 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
86 			allocated = NULL;
87 		}
88 		spin_unlock(&mm->page_table_lock);
89 
90 		if (locked)
91 			spin_unlock(&locked->lock);
92 		if (unlikely(allocated))
93 			anon_vma_free(allocated);
94 	}
95 	return 0;
96 }
97 
98 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99 {
100 	BUG_ON(vma->anon_vma != next->anon_vma);
101 	list_del(&next->anon_vma_node);
102 }
103 
104 void __anon_vma_link(struct vm_area_struct *vma)
105 {
106 	struct anon_vma *anon_vma = vma->anon_vma;
107 
108 	if (anon_vma)
109 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
110 }
111 
112 void anon_vma_link(struct vm_area_struct *vma)
113 {
114 	struct anon_vma *anon_vma = vma->anon_vma;
115 
116 	if (anon_vma) {
117 		spin_lock(&anon_vma->lock);
118 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
119 		spin_unlock(&anon_vma->lock);
120 	}
121 }
122 
123 void anon_vma_unlink(struct vm_area_struct *vma)
124 {
125 	struct anon_vma *anon_vma = vma->anon_vma;
126 	int empty;
127 
128 	if (!anon_vma)
129 		return;
130 
131 	spin_lock(&anon_vma->lock);
132 	list_del(&vma->anon_vma_node);
133 
134 	/* We must garbage collect the anon_vma if it's empty */
135 	empty = list_empty(&anon_vma->head);
136 	spin_unlock(&anon_vma->lock);
137 
138 	if (empty)
139 		anon_vma_free(anon_vma);
140 }
141 
142 static void anon_vma_ctor(void *data)
143 {
144 	struct anon_vma *anon_vma = data;
145 
146 	spin_lock_init(&anon_vma->lock);
147 	INIT_LIST_HEAD(&anon_vma->head);
148 }
149 
150 void __init anon_vma_init(void)
151 {
152 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
153 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
154 }
155 
156 /*
157  * Getting a lock on a stable anon_vma from a page off the LRU is
158  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159  */
160 static struct anon_vma *page_lock_anon_vma(struct page *page)
161 {
162 	struct anon_vma *anon_vma;
163 	unsigned long anon_mapping;
164 
165 	rcu_read_lock();
166 	anon_mapping = (unsigned long) page->mapping;
167 	if (!(anon_mapping & PAGE_MAPPING_ANON))
168 		goto out;
169 	if (!page_mapped(page))
170 		goto out;
171 
172 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
173 	spin_lock(&anon_vma->lock);
174 	return anon_vma;
175 out:
176 	rcu_read_unlock();
177 	return NULL;
178 }
179 
180 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181 {
182 	spin_unlock(&anon_vma->lock);
183 	rcu_read_unlock();
184 }
185 
186 /*
187  * At what user virtual address is page expected in @vma?
188  * Returns virtual address or -EFAULT if page's index/offset is not
189  * within the range mapped the @vma.
190  */
191 static inline unsigned long
192 vma_address(struct page *page, struct vm_area_struct *vma)
193 {
194 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195 	unsigned long address;
196 
197 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
198 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
199 		/* page should be within @vma mapping range */
200 		return -EFAULT;
201 	}
202 	return address;
203 }
204 
205 /*
206  * At what user virtual address is page expected in vma? checking that the
207  * page matches the vma: currently only used on anon pages, by unuse_vma;
208  */
209 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210 {
211 	if (PageAnon(page)) {
212 		if ((void *)vma->anon_vma !=
213 		    (void *)page->mapping - PAGE_MAPPING_ANON)
214 			return -EFAULT;
215 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
216 		if (!vma->vm_file ||
217 		    vma->vm_file->f_mapping != page->mapping)
218 			return -EFAULT;
219 	} else
220 		return -EFAULT;
221 	return vma_address(page, vma);
222 }
223 
224 /*
225  * Check that @page is mapped at @address into @mm.
226  *
227  * On success returns with pte mapped and locked.
228  */
229 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
230 			  unsigned long address, spinlock_t **ptlp)
231 {
232 	pgd_t *pgd;
233 	pud_t *pud;
234 	pmd_t *pmd;
235 	pte_t *pte;
236 	spinlock_t *ptl;
237 
238 	pgd = pgd_offset(mm, address);
239 	if (!pgd_present(*pgd))
240 		return NULL;
241 
242 	pud = pud_offset(pgd, address);
243 	if (!pud_present(*pud))
244 		return NULL;
245 
246 	pmd = pmd_offset(pud, address);
247 	if (!pmd_present(*pmd))
248 		return NULL;
249 
250 	pte = pte_offset_map(pmd, address);
251 	/* Make a quick check before getting the lock */
252 	if (!pte_present(*pte)) {
253 		pte_unmap(pte);
254 		return NULL;
255 	}
256 
257 	ptl = pte_lockptr(mm, pmd);
258 	spin_lock(ptl);
259 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
260 		*ptlp = ptl;
261 		return pte;
262 	}
263 	pte_unmap_unlock(pte, ptl);
264 	return NULL;
265 }
266 
267 /*
268  * Subfunctions of page_referenced: page_referenced_one called
269  * repeatedly from either page_referenced_anon or page_referenced_file.
270  */
271 static int page_referenced_one(struct page *page,
272 	struct vm_area_struct *vma, unsigned int *mapcount)
273 {
274 	struct mm_struct *mm = vma->vm_mm;
275 	unsigned long address;
276 	pte_t *pte;
277 	spinlock_t *ptl;
278 	int referenced = 0;
279 
280 	address = vma_address(page, vma);
281 	if (address == -EFAULT)
282 		goto out;
283 
284 	pte = page_check_address(page, mm, address, &ptl);
285 	if (!pte)
286 		goto out;
287 
288 	if (vma->vm_flags & VM_LOCKED) {
289 		referenced++;
290 		*mapcount = 1;	/* break early from loop */
291 	} else if (ptep_clear_flush_young_notify(vma, address, pte))
292 		referenced++;
293 
294 	/* Pretend the page is referenced if the task has the
295 	   swap token and is in the middle of a page fault. */
296 	if (mm != current->mm && has_swap_token(mm) &&
297 			rwsem_is_locked(&mm->mmap_sem))
298 		referenced++;
299 
300 	(*mapcount)--;
301 	pte_unmap_unlock(pte, ptl);
302 out:
303 	return referenced;
304 }
305 
306 static int page_referenced_anon(struct page *page,
307 				struct mem_cgroup *mem_cont)
308 {
309 	unsigned int mapcount;
310 	struct anon_vma *anon_vma;
311 	struct vm_area_struct *vma;
312 	int referenced = 0;
313 
314 	anon_vma = page_lock_anon_vma(page);
315 	if (!anon_vma)
316 		return referenced;
317 
318 	mapcount = page_mapcount(page);
319 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
320 		/*
321 		 * If we are reclaiming on behalf of a cgroup, skip
322 		 * counting on behalf of references from different
323 		 * cgroups
324 		 */
325 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
326 			continue;
327 		referenced += page_referenced_one(page, vma, &mapcount);
328 		if (!mapcount)
329 			break;
330 	}
331 
332 	page_unlock_anon_vma(anon_vma);
333 	return referenced;
334 }
335 
336 /**
337  * page_referenced_file - referenced check for object-based rmap
338  * @page: the page we're checking references on.
339  * @mem_cont: target memory controller
340  *
341  * For an object-based mapped page, find all the places it is mapped and
342  * check/clear the referenced flag.  This is done by following the page->mapping
343  * pointer, then walking the chain of vmas it holds.  It returns the number
344  * of references it found.
345  *
346  * This function is only called from page_referenced for object-based pages.
347  */
348 static int page_referenced_file(struct page *page,
349 				struct mem_cgroup *mem_cont)
350 {
351 	unsigned int mapcount;
352 	struct address_space *mapping = page->mapping;
353 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
354 	struct vm_area_struct *vma;
355 	struct prio_tree_iter iter;
356 	int referenced = 0;
357 
358 	/*
359 	 * The caller's checks on page->mapping and !PageAnon have made
360 	 * sure that this is a file page: the check for page->mapping
361 	 * excludes the case just before it gets set on an anon page.
362 	 */
363 	BUG_ON(PageAnon(page));
364 
365 	/*
366 	 * The page lock not only makes sure that page->mapping cannot
367 	 * suddenly be NULLified by truncation, it makes sure that the
368 	 * structure at mapping cannot be freed and reused yet,
369 	 * so we can safely take mapping->i_mmap_lock.
370 	 */
371 	BUG_ON(!PageLocked(page));
372 
373 	spin_lock(&mapping->i_mmap_lock);
374 
375 	/*
376 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
377 	 * is more likely to be accurate if we note it after spinning.
378 	 */
379 	mapcount = page_mapcount(page);
380 
381 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
382 		/*
383 		 * If we are reclaiming on behalf of a cgroup, skip
384 		 * counting on behalf of references from different
385 		 * cgroups
386 		 */
387 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
388 			continue;
389 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 				  == (VM_LOCKED|VM_MAYSHARE)) {
391 			referenced++;
392 			break;
393 		}
394 		referenced += page_referenced_one(page, vma, &mapcount);
395 		if (!mapcount)
396 			break;
397 	}
398 
399 	spin_unlock(&mapping->i_mmap_lock);
400 	return referenced;
401 }
402 
403 /**
404  * page_referenced - test if the page was referenced
405  * @page: the page to test
406  * @is_locked: caller holds lock on the page
407  * @mem_cont: target memory controller
408  *
409  * Quick test_and_clear_referenced for all mappings to a page,
410  * returns the number of ptes which referenced the page.
411  */
412 int page_referenced(struct page *page, int is_locked,
413 			struct mem_cgroup *mem_cont)
414 {
415 	int referenced = 0;
416 
417 	if (TestClearPageReferenced(page))
418 		referenced++;
419 
420 	if (page_mapped(page) && page->mapping) {
421 		if (PageAnon(page))
422 			referenced += page_referenced_anon(page, mem_cont);
423 		else if (is_locked)
424 			referenced += page_referenced_file(page, mem_cont);
425 		else if (!trylock_page(page))
426 			referenced++;
427 		else {
428 			if (page->mapping)
429 				referenced +=
430 					page_referenced_file(page, mem_cont);
431 			unlock_page(page);
432 		}
433 	}
434 
435 	if (page_test_and_clear_young(page))
436 		referenced++;
437 
438 	return referenced;
439 }
440 
441 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442 {
443 	struct mm_struct *mm = vma->vm_mm;
444 	unsigned long address;
445 	pte_t *pte;
446 	spinlock_t *ptl;
447 	int ret = 0;
448 
449 	address = vma_address(page, vma);
450 	if (address == -EFAULT)
451 		goto out;
452 
453 	pte = page_check_address(page, mm, address, &ptl);
454 	if (!pte)
455 		goto out;
456 
457 	if (pte_dirty(*pte) || pte_write(*pte)) {
458 		pte_t entry;
459 
460 		flush_cache_page(vma, address, pte_pfn(*pte));
461 		entry = ptep_clear_flush_notify(vma, address, pte);
462 		entry = pte_wrprotect(entry);
463 		entry = pte_mkclean(entry);
464 		set_pte_at(mm, address, pte, entry);
465 		ret = 1;
466 	}
467 
468 	pte_unmap_unlock(pte, ptl);
469 out:
470 	return ret;
471 }
472 
473 static int page_mkclean_file(struct address_space *mapping, struct page *page)
474 {
475 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 	struct vm_area_struct *vma;
477 	struct prio_tree_iter iter;
478 	int ret = 0;
479 
480 	BUG_ON(PageAnon(page));
481 
482 	spin_lock(&mapping->i_mmap_lock);
483 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 		if (vma->vm_flags & VM_SHARED)
485 			ret += page_mkclean_one(page, vma);
486 	}
487 	spin_unlock(&mapping->i_mmap_lock);
488 	return ret;
489 }
490 
491 int page_mkclean(struct page *page)
492 {
493 	int ret = 0;
494 
495 	BUG_ON(!PageLocked(page));
496 
497 	if (page_mapped(page)) {
498 		struct address_space *mapping = page_mapping(page);
499 		if (mapping) {
500 			ret = page_mkclean_file(mapping, page);
501 			if (page_test_dirty(page)) {
502 				page_clear_dirty(page);
503 				ret = 1;
504 			}
505 		}
506 	}
507 
508 	return ret;
509 }
510 EXPORT_SYMBOL_GPL(page_mkclean);
511 
512 /**
513  * __page_set_anon_rmap - setup new anonymous rmap
514  * @page:	the page to add the mapping to
515  * @vma:	the vm area in which the mapping is added
516  * @address:	the user virtual address mapped
517  */
518 static void __page_set_anon_rmap(struct page *page,
519 	struct vm_area_struct *vma, unsigned long address)
520 {
521 	struct anon_vma *anon_vma = vma->anon_vma;
522 
523 	BUG_ON(!anon_vma);
524 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
525 	page->mapping = (struct address_space *) anon_vma;
526 
527 	page->index = linear_page_index(vma, address);
528 
529 	/*
530 	 * nr_mapped state can be updated without turning off
531 	 * interrupts because it is not modified via interrupt.
532 	 */
533 	__inc_zone_page_state(page, NR_ANON_PAGES);
534 }
535 
536 /**
537  * __page_check_anon_rmap - sanity check anonymous rmap addition
538  * @page:	the page to add the mapping to
539  * @vma:	the vm area in which the mapping is added
540  * @address:	the user virtual address mapped
541  */
542 static void __page_check_anon_rmap(struct page *page,
543 	struct vm_area_struct *vma, unsigned long address)
544 {
545 #ifdef CONFIG_DEBUG_VM
546 	/*
547 	 * The page's anon-rmap details (mapping and index) are guaranteed to
548 	 * be set up correctly at this point.
549 	 *
550 	 * We have exclusion against page_add_anon_rmap because the caller
551 	 * always holds the page locked, except if called from page_dup_rmap,
552 	 * in which case the page is already known to be setup.
553 	 *
554 	 * We have exclusion against page_add_new_anon_rmap because those pages
555 	 * are initially only visible via the pagetables, and the pte is locked
556 	 * over the call to page_add_new_anon_rmap.
557 	 */
558 	struct anon_vma *anon_vma = vma->anon_vma;
559 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
560 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
561 	BUG_ON(page->index != linear_page_index(vma, address));
562 #endif
563 }
564 
565 /**
566  * page_add_anon_rmap - add pte mapping to an anonymous page
567  * @page:	the page to add the mapping to
568  * @vma:	the vm area in which the mapping is added
569  * @address:	the user virtual address mapped
570  *
571  * The caller needs to hold the pte lock and the page must be locked.
572  */
573 void page_add_anon_rmap(struct page *page,
574 	struct vm_area_struct *vma, unsigned long address)
575 {
576 	VM_BUG_ON(!PageLocked(page));
577 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
578 	if (atomic_inc_and_test(&page->_mapcount))
579 		__page_set_anon_rmap(page, vma, address);
580 	else
581 		__page_check_anon_rmap(page, vma, address);
582 }
583 
584 /**
585  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
586  * @page:	the page to add the mapping to
587  * @vma:	the vm area in which the mapping is added
588  * @address:	the user virtual address mapped
589  *
590  * Same as page_add_anon_rmap but must only be called on *new* pages.
591  * This means the inc-and-test can be bypassed.
592  * Page does not have to be locked.
593  */
594 void page_add_new_anon_rmap(struct page *page,
595 	struct vm_area_struct *vma, unsigned long address)
596 {
597 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
598 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
599 	__page_set_anon_rmap(page, vma, address);
600 }
601 
602 /**
603  * page_add_file_rmap - add pte mapping to a file page
604  * @page: the page to add the mapping to
605  *
606  * The caller needs to hold the pte lock.
607  */
608 void page_add_file_rmap(struct page *page)
609 {
610 	if (atomic_inc_and_test(&page->_mapcount))
611 		__inc_zone_page_state(page, NR_FILE_MAPPED);
612 }
613 
614 #ifdef CONFIG_DEBUG_VM
615 /**
616  * page_dup_rmap - duplicate pte mapping to a page
617  * @page:	the page to add the mapping to
618  * @vma:	the vm area being duplicated
619  * @address:	the user virtual address mapped
620  *
621  * For copy_page_range only: minimal extract from page_add_file_rmap /
622  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
623  * quicker.
624  *
625  * The caller needs to hold the pte lock.
626  */
627 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
628 {
629 	BUG_ON(page_mapcount(page) == 0);
630 	if (PageAnon(page))
631 		__page_check_anon_rmap(page, vma, address);
632 	atomic_inc(&page->_mapcount);
633 }
634 #endif
635 
636 /**
637  * page_remove_rmap - take down pte mapping from a page
638  * @page: page to remove mapping from
639  * @vma: the vm area in which the mapping is removed
640  *
641  * The caller needs to hold the pte lock.
642  */
643 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
644 {
645 	if (atomic_add_negative(-1, &page->_mapcount)) {
646 		if (unlikely(page_mapcount(page) < 0)) {
647 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
648 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
649 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
650 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
651 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
652 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
653 			if (vma->vm_ops) {
654 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
655 			}
656 			if (vma->vm_file && vma->vm_file->f_op)
657 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
658 			BUG();
659 		}
660 
661 		/*
662 		 * It would be tidy to reset the PageAnon mapping here,
663 		 * but that might overwrite a racing page_add_anon_rmap
664 		 * which increments mapcount after us but sets mapping
665 		 * before us: so leave the reset to free_hot_cold_page,
666 		 * and remember that it's only reliable while mapped.
667 		 * Leaving it set also helps swapoff to reinstate ptes
668 		 * faster for those pages still in swapcache.
669 		 */
670 		if ((!PageAnon(page) || PageSwapCache(page)) &&
671 		    page_test_dirty(page)) {
672 			page_clear_dirty(page);
673 			set_page_dirty(page);
674 		}
675 		mem_cgroup_uncharge_page(page);
676 
677 		__dec_zone_page_state(page,
678 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
679 	}
680 }
681 
682 /*
683  * Subfunctions of try_to_unmap: try_to_unmap_one called
684  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
685  */
686 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
687 				int migration)
688 {
689 	struct mm_struct *mm = vma->vm_mm;
690 	unsigned long address;
691 	pte_t *pte;
692 	pte_t pteval;
693 	spinlock_t *ptl;
694 	int ret = SWAP_AGAIN;
695 
696 	address = vma_address(page, vma);
697 	if (address == -EFAULT)
698 		goto out;
699 
700 	pte = page_check_address(page, mm, address, &ptl);
701 	if (!pte)
702 		goto out;
703 
704 	/*
705 	 * If the page is mlock()d, we cannot swap it out.
706 	 * If it's recently referenced (perhaps page_referenced
707 	 * skipped over this mm) then we should reactivate it.
708 	 */
709 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
710 			(ptep_clear_flush_young_notify(vma, address, pte)))) {
711 		ret = SWAP_FAIL;
712 		goto out_unmap;
713 	}
714 
715 	/* Nuke the page table entry. */
716 	flush_cache_page(vma, address, page_to_pfn(page));
717 	pteval = ptep_clear_flush_notify(vma, address, pte);
718 
719 	/* Move the dirty bit to the physical page now the pte is gone. */
720 	if (pte_dirty(pteval))
721 		set_page_dirty(page);
722 
723 	/* Update high watermark before we lower rss */
724 	update_hiwater_rss(mm);
725 
726 	if (PageAnon(page)) {
727 		swp_entry_t entry = { .val = page_private(page) };
728 
729 		if (PageSwapCache(page)) {
730 			/*
731 			 * Store the swap location in the pte.
732 			 * See handle_pte_fault() ...
733 			 */
734 			swap_duplicate(entry);
735 			if (list_empty(&mm->mmlist)) {
736 				spin_lock(&mmlist_lock);
737 				if (list_empty(&mm->mmlist))
738 					list_add(&mm->mmlist, &init_mm.mmlist);
739 				spin_unlock(&mmlist_lock);
740 			}
741 			dec_mm_counter(mm, anon_rss);
742 #ifdef CONFIG_MIGRATION
743 		} else {
744 			/*
745 			 * Store the pfn of the page in a special migration
746 			 * pte. do_swap_page() will wait until the migration
747 			 * pte is removed and then restart fault handling.
748 			 */
749 			BUG_ON(!migration);
750 			entry = make_migration_entry(page, pte_write(pteval));
751 #endif
752 		}
753 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
754 		BUG_ON(pte_file(*pte));
755 	} else
756 #ifdef CONFIG_MIGRATION
757 	if (migration) {
758 		/* Establish migration entry for a file page */
759 		swp_entry_t entry;
760 		entry = make_migration_entry(page, pte_write(pteval));
761 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
762 	} else
763 #endif
764 		dec_mm_counter(mm, file_rss);
765 
766 
767 	page_remove_rmap(page, vma);
768 	page_cache_release(page);
769 
770 out_unmap:
771 	pte_unmap_unlock(pte, ptl);
772 out:
773 	return ret;
774 }
775 
776 /*
777  * objrmap doesn't work for nonlinear VMAs because the assumption that
778  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
779  * Consequently, given a particular page and its ->index, we cannot locate the
780  * ptes which are mapping that page without an exhaustive linear search.
781  *
782  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
783  * maps the file to which the target page belongs.  The ->vm_private_data field
784  * holds the current cursor into that scan.  Successive searches will circulate
785  * around the vma's virtual address space.
786  *
787  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
788  * more scanning pressure is placed against them as well.   Eventually pages
789  * will become fully unmapped and are eligible for eviction.
790  *
791  * For very sparsely populated VMAs this is a little inefficient - chances are
792  * there there won't be many ptes located within the scan cluster.  In this case
793  * maybe we could scan further - to the end of the pte page, perhaps.
794  */
795 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
796 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
797 
798 static void try_to_unmap_cluster(unsigned long cursor,
799 	unsigned int *mapcount, struct vm_area_struct *vma)
800 {
801 	struct mm_struct *mm = vma->vm_mm;
802 	pgd_t *pgd;
803 	pud_t *pud;
804 	pmd_t *pmd;
805 	pte_t *pte;
806 	pte_t pteval;
807 	spinlock_t *ptl;
808 	struct page *page;
809 	unsigned long address;
810 	unsigned long end;
811 
812 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
813 	end = address + CLUSTER_SIZE;
814 	if (address < vma->vm_start)
815 		address = vma->vm_start;
816 	if (end > vma->vm_end)
817 		end = vma->vm_end;
818 
819 	pgd = pgd_offset(mm, address);
820 	if (!pgd_present(*pgd))
821 		return;
822 
823 	pud = pud_offset(pgd, address);
824 	if (!pud_present(*pud))
825 		return;
826 
827 	pmd = pmd_offset(pud, address);
828 	if (!pmd_present(*pmd))
829 		return;
830 
831 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
832 
833 	/* Update high watermark before we lower rss */
834 	update_hiwater_rss(mm);
835 
836 	for (; address < end; pte++, address += PAGE_SIZE) {
837 		if (!pte_present(*pte))
838 			continue;
839 		page = vm_normal_page(vma, address, *pte);
840 		BUG_ON(!page || PageAnon(page));
841 
842 		if (ptep_clear_flush_young_notify(vma, address, pte))
843 			continue;
844 
845 		/* Nuke the page table entry. */
846 		flush_cache_page(vma, address, pte_pfn(*pte));
847 		pteval = ptep_clear_flush_notify(vma, address, pte);
848 
849 		/* If nonlinear, store the file page offset in the pte. */
850 		if (page->index != linear_page_index(vma, address))
851 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
852 
853 		/* Move the dirty bit to the physical page now the pte is gone. */
854 		if (pte_dirty(pteval))
855 			set_page_dirty(page);
856 
857 		page_remove_rmap(page, vma);
858 		page_cache_release(page);
859 		dec_mm_counter(mm, file_rss);
860 		(*mapcount)--;
861 	}
862 	pte_unmap_unlock(pte - 1, ptl);
863 }
864 
865 static int try_to_unmap_anon(struct page *page, int migration)
866 {
867 	struct anon_vma *anon_vma;
868 	struct vm_area_struct *vma;
869 	int ret = SWAP_AGAIN;
870 
871 	anon_vma = page_lock_anon_vma(page);
872 	if (!anon_vma)
873 		return ret;
874 
875 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
876 		ret = try_to_unmap_one(page, vma, migration);
877 		if (ret == SWAP_FAIL || !page_mapped(page))
878 			break;
879 	}
880 
881 	page_unlock_anon_vma(anon_vma);
882 	return ret;
883 }
884 
885 /**
886  * try_to_unmap_file - unmap file page using the object-based rmap method
887  * @page: the page to unmap
888  * @migration: migration flag
889  *
890  * Find all the mappings of a page using the mapping pointer and the vma chains
891  * contained in the address_space struct it points to.
892  *
893  * This function is only called from try_to_unmap for object-based pages.
894  */
895 static int try_to_unmap_file(struct page *page, int migration)
896 {
897 	struct address_space *mapping = page->mapping;
898 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
899 	struct vm_area_struct *vma;
900 	struct prio_tree_iter iter;
901 	int ret = SWAP_AGAIN;
902 	unsigned long cursor;
903 	unsigned long max_nl_cursor = 0;
904 	unsigned long max_nl_size = 0;
905 	unsigned int mapcount;
906 
907 	spin_lock(&mapping->i_mmap_lock);
908 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
909 		ret = try_to_unmap_one(page, vma, migration);
910 		if (ret == SWAP_FAIL || !page_mapped(page))
911 			goto out;
912 	}
913 
914 	if (list_empty(&mapping->i_mmap_nonlinear))
915 		goto out;
916 
917 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
918 						shared.vm_set.list) {
919 		if ((vma->vm_flags & VM_LOCKED) && !migration)
920 			continue;
921 		cursor = (unsigned long) vma->vm_private_data;
922 		if (cursor > max_nl_cursor)
923 			max_nl_cursor = cursor;
924 		cursor = vma->vm_end - vma->vm_start;
925 		if (cursor > max_nl_size)
926 			max_nl_size = cursor;
927 	}
928 
929 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
930 		ret = SWAP_FAIL;
931 		goto out;
932 	}
933 
934 	/*
935 	 * We don't try to search for this page in the nonlinear vmas,
936 	 * and page_referenced wouldn't have found it anyway.  Instead
937 	 * just walk the nonlinear vmas trying to age and unmap some.
938 	 * The mapcount of the page we came in with is irrelevant,
939 	 * but even so use it as a guide to how hard we should try?
940 	 */
941 	mapcount = page_mapcount(page);
942 	if (!mapcount)
943 		goto out;
944 	cond_resched_lock(&mapping->i_mmap_lock);
945 
946 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
947 	if (max_nl_cursor == 0)
948 		max_nl_cursor = CLUSTER_SIZE;
949 
950 	do {
951 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
952 						shared.vm_set.list) {
953 			if ((vma->vm_flags & VM_LOCKED) && !migration)
954 				continue;
955 			cursor = (unsigned long) vma->vm_private_data;
956 			while ( cursor < max_nl_cursor &&
957 				cursor < vma->vm_end - vma->vm_start) {
958 				try_to_unmap_cluster(cursor, &mapcount, vma);
959 				cursor += CLUSTER_SIZE;
960 				vma->vm_private_data = (void *) cursor;
961 				if ((int)mapcount <= 0)
962 					goto out;
963 			}
964 			vma->vm_private_data = (void *) max_nl_cursor;
965 		}
966 		cond_resched_lock(&mapping->i_mmap_lock);
967 		max_nl_cursor += CLUSTER_SIZE;
968 	} while (max_nl_cursor <= max_nl_size);
969 
970 	/*
971 	 * Don't loop forever (perhaps all the remaining pages are
972 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
973 	 * vmas, now forgetting on which ones it had fallen behind.
974 	 */
975 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
976 		vma->vm_private_data = NULL;
977 out:
978 	spin_unlock(&mapping->i_mmap_lock);
979 	return ret;
980 }
981 
982 /**
983  * try_to_unmap - try to remove all page table mappings to a page
984  * @page: the page to get unmapped
985  * @migration: migration flag
986  *
987  * Tries to remove all the page table entries which are mapping this
988  * page, used in the pageout path.  Caller must hold the page lock.
989  * Return values are:
990  *
991  * SWAP_SUCCESS	- we succeeded in removing all mappings
992  * SWAP_AGAIN	- we missed a mapping, try again later
993  * SWAP_FAIL	- the page is unswappable
994  */
995 int try_to_unmap(struct page *page, int migration)
996 {
997 	int ret;
998 
999 	BUG_ON(!PageLocked(page));
1000 
1001 	if (PageAnon(page))
1002 		ret = try_to_unmap_anon(page, migration);
1003 	else
1004 		ret = try_to_unmap_file(page, migration);
1005 
1006 	if (!page_mapped(page))
1007 		ret = SWAP_SUCCESS;
1008 	return ret;
1009 }
1010 
1011