xref: /linux/mm/rmap.c (revision 724ba6751532055db75992fc6ae21c3e322e94a7)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         page->flags PG_locked (lock_page)
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against page_remove_rmap()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  */
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	rcu_read_lock();
500 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 		goto out;
503 	if (!folio_mapped(folio))
504 		goto out;
505 
506 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 		anon_vma = NULL;
509 		goto out;
510 	}
511 
512 	/*
513 	 * If this folio is still mapped, then its anon_vma cannot have been
514 	 * freed.  But if it has been unmapped, we have no security against the
515 	 * anon_vma structure being freed and reused (for another anon_vma:
516 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 	 * above cannot corrupt).
518 	 */
519 	if (!folio_mapped(folio)) {
520 		rcu_read_unlock();
521 		put_anon_vma(anon_vma);
522 		return NULL;
523 	}
524 out:
525 	rcu_read_unlock();
526 
527 	return anon_vma;
528 }
529 
530 /*
531  * Similar to folio_get_anon_vma() except it locks the anon_vma.
532  *
533  * Its a little more complex as it tries to keep the fast path to a single
534  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535  * reference like with folio_get_anon_vma() and then block on the mutex
536  * on !rwc->try_lock case.
537  */
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 					  struct rmap_walk_control *rwc)
540 {
541 	struct anon_vma *anon_vma = NULL;
542 	struct anon_vma *root_anon_vma;
543 	unsigned long anon_mapping;
544 
545 	rcu_read_lock();
546 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 		goto out;
549 	if (!folio_mapped(folio))
550 		goto out;
551 
552 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 	root_anon_vma = READ_ONCE(anon_vma->root);
554 	if (down_read_trylock(&root_anon_vma->rwsem)) {
555 		/*
556 		 * If the folio is still mapped, then this anon_vma is still
557 		 * its anon_vma, and holding the mutex ensures that it will
558 		 * not go away, see anon_vma_free().
559 		 */
560 		if (!folio_mapped(folio)) {
561 			up_read(&root_anon_vma->rwsem);
562 			anon_vma = NULL;
563 		}
564 		goto out;
565 	}
566 
567 	if (rwc && rwc->try_lock) {
568 		anon_vma = NULL;
569 		rwc->contended = true;
570 		goto out;
571 	}
572 
573 	/* trylock failed, we got to sleep */
574 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 		anon_vma = NULL;
576 		goto out;
577 	}
578 
579 	if (!folio_mapped(folio)) {
580 		rcu_read_unlock();
581 		put_anon_vma(anon_vma);
582 		return NULL;
583 	}
584 
585 	/* we pinned the anon_vma, its safe to sleep */
586 	rcu_read_unlock();
587 	anon_vma_lock_read(anon_vma);
588 
589 	if (atomic_dec_and_test(&anon_vma->refcount)) {
590 		/*
591 		 * Oops, we held the last refcount, release the lock
592 		 * and bail -- can't simply use put_anon_vma() because
593 		 * we'll deadlock on the anon_vma_lock_write() recursion.
594 		 */
595 		anon_vma_unlock_read(anon_vma);
596 		__put_anon_vma(anon_vma);
597 		anon_vma = NULL;
598 	}
599 
600 	return anon_vma;
601 
602 out:
603 	rcu_read_unlock();
604 	return anon_vma;
605 }
606 
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610  * important if a PTE was dirty when it was unmapped that it's flushed
611  * before any IO is initiated on the page to prevent lost writes. Similarly,
612  * it must be flushed before freeing to prevent data leakage.
613  */
614 void try_to_unmap_flush(void)
615 {
616 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617 
618 	if (!tlb_ubc->flush_required)
619 		return;
620 
621 	arch_tlbbatch_flush(&tlb_ubc->arch);
622 	tlb_ubc->flush_required = false;
623 	tlb_ubc->writable = false;
624 }
625 
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	if (tlb_ubc->writable)
632 		try_to_unmap_flush();
633 }
634 
635 /*
636  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638  */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
640 #define TLB_FLUSH_BATCH_PENDING_MASK			\
641 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
643 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
646 {
647 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
648 	int batch;
649 	bool writable = pte_dirty(pteval);
650 
651 	if (!pte_accessible(mm, pteval))
652 		return;
653 
654 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
655 	tlb_ubc->flush_required = true;
656 
657 	/*
658 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
659 	 * before the PTE is cleared.
660 	 */
661 	barrier();
662 	batch = atomic_read(&mm->tlb_flush_batched);
663 retry:
664 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
665 		/*
666 		 * Prevent `pending' from catching up with `flushed' because of
667 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
668 		 * `pending' becomes large.
669 		 */
670 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
671 			goto retry;
672 	} else {
673 		atomic_inc(&mm->tlb_flush_batched);
674 	}
675 
676 	/*
677 	 * If the PTE was dirty then it's best to assume it's writable. The
678 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
679 	 * before the page is queued for IO.
680 	 */
681 	if (writable)
682 		tlb_ubc->writable = true;
683 }
684 
685 /*
686  * Returns true if the TLB flush should be deferred to the end of a batch of
687  * unmap operations to reduce IPIs.
688  */
689 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
690 {
691 	bool should_defer = false;
692 
693 	if (!(flags & TTU_BATCH_FLUSH))
694 		return false;
695 
696 	/* If remote CPUs need to be flushed then defer batch the flush */
697 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
698 		should_defer = true;
699 	put_cpu();
700 
701 	return should_defer;
702 }
703 
704 /*
705  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
706  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
707  * operation such as mprotect or munmap to race between reclaim unmapping
708  * the page and flushing the page. If this race occurs, it potentially allows
709  * access to data via a stale TLB entry. Tracking all mm's that have TLB
710  * batching in flight would be expensive during reclaim so instead track
711  * whether TLB batching occurred in the past and if so then do a flush here
712  * if required. This will cost one additional flush per reclaim cycle paid
713  * by the first operation at risk such as mprotect and mumap.
714  *
715  * This must be called under the PTL so that an access to tlb_flush_batched
716  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
717  * via the PTL.
718  */
719 void flush_tlb_batched_pending(struct mm_struct *mm)
720 {
721 	int batch = atomic_read(&mm->tlb_flush_batched);
722 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
723 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
724 
725 	if (pending != flushed) {
726 		flush_tlb_mm(mm);
727 		/*
728 		 * If the new TLB flushing is pending during flushing, leave
729 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
730 		 */
731 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
732 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
733 	}
734 }
735 #else
736 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
737 {
738 }
739 
740 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
741 {
742 	return false;
743 }
744 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
745 
746 /*
747  * At what user virtual address is page expected in vma?
748  * Caller should check the page is actually part of the vma.
749  */
750 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
751 {
752 	struct folio *folio = page_folio(page);
753 	if (folio_test_anon(folio)) {
754 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
755 		/*
756 		 * Note: swapoff's unuse_vma() is more efficient with this
757 		 * check, and needs it to match anon_vma when KSM is active.
758 		 */
759 		if (!vma->anon_vma || !page__anon_vma ||
760 		    vma->anon_vma->root != page__anon_vma->root)
761 			return -EFAULT;
762 	} else if (!vma->vm_file) {
763 		return -EFAULT;
764 	} else if (vma->vm_file->f_mapping != folio->mapping) {
765 		return -EFAULT;
766 	}
767 
768 	return vma_address(page, vma);
769 }
770 
771 /*
772  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
773  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
774  * represents.
775  */
776 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
777 {
778 	pgd_t *pgd;
779 	p4d_t *p4d;
780 	pud_t *pud;
781 	pmd_t *pmd = NULL;
782 
783 	pgd = pgd_offset(mm, address);
784 	if (!pgd_present(*pgd))
785 		goto out;
786 
787 	p4d = p4d_offset(pgd, address);
788 	if (!p4d_present(*p4d))
789 		goto out;
790 
791 	pud = pud_offset(p4d, address);
792 	if (!pud_present(*pud))
793 		goto out;
794 
795 	pmd = pmd_offset(pud, address);
796 out:
797 	return pmd;
798 }
799 
800 struct folio_referenced_arg {
801 	int mapcount;
802 	int referenced;
803 	unsigned long vm_flags;
804 	struct mem_cgroup *memcg;
805 };
806 /*
807  * arg: folio_referenced_arg will be passed
808  */
809 static bool folio_referenced_one(struct folio *folio,
810 		struct vm_area_struct *vma, unsigned long address, void *arg)
811 {
812 	struct folio_referenced_arg *pra = arg;
813 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
814 	int referenced = 0;
815 
816 	while (page_vma_mapped_walk(&pvmw)) {
817 		address = pvmw.address;
818 
819 		if ((vma->vm_flags & VM_LOCKED) &&
820 		    (!folio_test_large(folio) || !pvmw.pte)) {
821 			/* Restore the mlock which got missed */
822 			mlock_vma_folio(folio, vma, !pvmw.pte);
823 			page_vma_mapped_walk_done(&pvmw);
824 			pra->vm_flags |= VM_LOCKED;
825 			return false; /* To break the loop */
826 		}
827 
828 		if (pvmw.pte) {
829 			if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
830 				lru_gen_look_around(&pvmw);
831 				referenced++;
832 			}
833 
834 			if (ptep_clear_flush_young_notify(vma, address,
835 						pvmw.pte))
836 				referenced++;
837 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 			if (pmdp_clear_flush_young_notify(vma, address,
839 						pvmw.pmd))
840 				referenced++;
841 		} else {
842 			/* unexpected pmd-mapped folio? */
843 			WARN_ON_ONCE(1);
844 		}
845 
846 		pra->mapcount--;
847 	}
848 
849 	if (referenced)
850 		folio_clear_idle(folio);
851 	if (folio_test_clear_young(folio))
852 		referenced++;
853 
854 	if (referenced) {
855 		pra->referenced++;
856 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
857 	}
858 
859 	if (!pra->mapcount)
860 		return false; /* To break the loop */
861 
862 	return true;
863 }
864 
865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
866 {
867 	struct folio_referenced_arg *pra = arg;
868 	struct mem_cgroup *memcg = pra->memcg;
869 
870 	/*
871 	 * Ignore references from this mapping if it has no recency. If the
872 	 * folio has been used in another mapping, we will catch it; if this
873 	 * other mapping is already gone, the unmap path will have set the
874 	 * referenced flag or activated the folio in zap_pte_range().
875 	 */
876 	if (!vma_has_recency(vma))
877 		return true;
878 
879 	/*
880 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
881 	 * of references from different cgroups.
882 	 */
883 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
884 		return true;
885 
886 	return false;
887 }
888 
889 /**
890  * folio_referenced() - Test if the folio was referenced.
891  * @folio: The folio to test.
892  * @is_locked: Caller holds lock on the folio.
893  * @memcg: target memory cgroup
894  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
895  *
896  * Quick test_and_clear_referenced for all mappings of a folio,
897  *
898  * Return: The number of mappings which referenced the folio. Return -1 if
899  * the function bailed out due to rmap lock contention.
900  */
901 int folio_referenced(struct folio *folio, int is_locked,
902 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
903 {
904 	int we_locked = 0;
905 	struct folio_referenced_arg pra = {
906 		.mapcount = folio_mapcount(folio),
907 		.memcg = memcg,
908 	};
909 	struct rmap_walk_control rwc = {
910 		.rmap_one = folio_referenced_one,
911 		.arg = (void *)&pra,
912 		.anon_lock = folio_lock_anon_vma_read,
913 		.try_lock = true,
914 		.invalid_vma = invalid_folio_referenced_vma,
915 	};
916 
917 	*vm_flags = 0;
918 	if (!pra.mapcount)
919 		return 0;
920 
921 	if (!folio_raw_mapping(folio))
922 		return 0;
923 
924 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
925 		we_locked = folio_trylock(folio);
926 		if (!we_locked)
927 			return 1;
928 	}
929 
930 	rmap_walk(folio, &rwc);
931 	*vm_flags = pra.vm_flags;
932 
933 	if (we_locked)
934 		folio_unlock(folio);
935 
936 	return rwc.contended ? -1 : pra.referenced;
937 }
938 
939 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
940 {
941 	int cleaned = 0;
942 	struct vm_area_struct *vma = pvmw->vma;
943 	struct mmu_notifier_range range;
944 	unsigned long address = pvmw->address;
945 
946 	/*
947 	 * We have to assume the worse case ie pmd for invalidation. Note that
948 	 * the folio can not be freed from this function.
949 	 */
950 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
951 				vma->vm_mm, address, vma_address_end(pvmw));
952 	mmu_notifier_invalidate_range_start(&range);
953 
954 	while (page_vma_mapped_walk(pvmw)) {
955 		int ret = 0;
956 
957 		address = pvmw->address;
958 		if (pvmw->pte) {
959 			pte_t entry;
960 			pte_t *pte = pvmw->pte;
961 
962 			if (!pte_dirty(*pte) && !pte_write(*pte))
963 				continue;
964 
965 			flush_cache_page(vma, address, pte_pfn(*pte));
966 			entry = ptep_clear_flush(vma, address, pte);
967 			entry = pte_wrprotect(entry);
968 			entry = pte_mkclean(entry);
969 			set_pte_at(vma->vm_mm, address, pte, entry);
970 			ret = 1;
971 		} else {
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 			pmd_t *pmd = pvmw->pmd;
974 			pmd_t entry;
975 
976 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
977 				continue;
978 
979 			flush_cache_range(vma, address,
980 					  address + HPAGE_PMD_SIZE);
981 			entry = pmdp_invalidate(vma, address, pmd);
982 			entry = pmd_wrprotect(entry);
983 			entry = pmd_mkclean(entry);
984 			set_pmd_at(vma->vm_mm, address, pmd, entry);
985 			ret = 1;
986 #else
987 			/* unexpected pmd-mapped folio? */
988 			WARN_ON_ONCE(1);
989 #endif
990 		}
991 
992 		/*
993 		 * No need to call mmu_notifier_invalidate_range() as we are
994 		 * downgrading page table protection not changing it to point
995 		 * to a new page.
996 		 *
997 		 * See Documentation/mm/mmu_notifier.rst
998 		 */
999 		if (ret)
1000 			cleaned++;
1001 	}
1002 
1003 	mmu_notifier_invalidate_range_end(&range);
1004 
1005 	return cleaned;
1006 }
1007 
1008 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1009 			     unsigned long address, void *arg)
1010 {
1011 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1012 	int *cleaned = arg;
1013 
1014 	*cleaned += page_vma_mkclean_one(&pvmw);
1015 
1016 	return true;
1017 }
1018 
1019 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1020 {
1021 	if (vma->vm_flags & VM_SHARED)
1022 		return false;
1023 
1024 	return true;
1025 }
1026 
1027 int folio_mkclean(struct folio *folio)
1028 {
1029 	int cleaned = 0;
1030 	struct address_space *mapping;
1031 	struct rmap_walk_control rwc = {
1032 		.arg = (void *)&cleaned,
1033 		.rmap_one = page_mkclean_one,
1034 		.invalid_vma = invalid_mkclean_vma,
1035 	};
1036 
1037 	BUG_ON(!folio_test_locked(folio));
1038 
1039 	if (!folio_mapped(folio))
1040 		return 0;
1041 
1042 	mapping = folio_mapping(folio);
1043 	if (!mapping)
1044 		return 0;
1045 
1046 	rmap_walk(folio, &rwc);
1047 
1048 	return cleaned;
1049 }
1050 EXPORT_SYMBOL_GPL(folio_mkclean);
1051 
1052 /**
1053  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1054  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1055  *                     within the @vma of shared mappings. And since clean PTEs
1056  *                     should also be readonly, write protects them too.
1057  * @pfn: start pfn.
1058  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1059  * @pgoff: page offset that the @pfn mapped with.
1060  * @vma: vma that @pfn mapped within.
1061  *
1062  * Returns the number of cleaned PTEs (including PMDs).
1063  */
1064 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1065 		      struct vm_area_struct *vma)
1066 {
1067 	struct page_vma_mapped_walk pvmw = {
1068 		.pfn		= pfn,
1069 		.nr_pages	= nr_pages,
1070 		.pgoff		= pgoff,
1071 		.vma		= vma,
1072 		.flags		= PVMW_SYNC,
1073 	};
1074 
1075 	if (invalid_mkclean_vma(vma, NULL))
1076 		return 0;
1077 
1078 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1079 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1080 
1081 	return page_vma_mkclean_one(&pvmw);
1082 }
1083 
1084 int folio_total_mapcount(struct folio *folio)
1085 {
1086 	int mapcount = folio_entire_mapcount(folio);
1087 	int nr_pages;
1088 	int i;
1089 
1090 	/* In the common case, avoid the loop when no pages mapped by PTE */
1091 	if (folio_nr_pages_mapped(folio) == 0)
1092 		return mapcount;
1093 	/*
1094 	 * Add all the PTE mappings of those pages mapped by PTE.
1095 	 * Limit the loop to folio_nr_pages_mapped()?
1096 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1097 	 */
1098 	nr_pages = folio_nr_pages(folio);
1099 	for (i = 0; i < nr_pages; i++)
1100 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1101 
1102 	/* But each of those _mapcounts was based on -1 */
1103 	mapcount += nr_pages;
1104 	return mapcount;
1105 }
1106 
1107 /**
1108  * page_move_anon_rmap - move a page to our anon_vma
1109  * @page:	the page to move to our anon_vma
1110  * @vma:	the vma the page belongs to
1111  *
1112  * When a page belongs exclusively to one process after a COW event,
1113  * that page can be moved into the anon_vma that belongs to just that
1114  * process, so the rmap code will not search the parent or sibling
1115  * processes.
1116  */
1117 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1118 {
1119 	void *anon_vma = vma->anon_vma;
1120 	struct folio *folio = page_folio(page);
1121 
1122 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1123 	VM_BUG_ON_VMA(!anon_vma, vma);
1124 
1125 	anon_vma += PAGE_MAPPING_ANON;
1126 	/*
1127 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1128 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1129 	 * folio_test_anon()) will not see one without the other.
1130 	 */
1131 	WRITE_ONCE(folio->mapping, anon_vma);
1132 	SetPageAnonExclusive(page);
1133 }
1134 
1135 /**
1136  * __page_set_anon_rmap - set up new anonymous rmap
1137  * @folio:	Folio which contains page.
1138  * @page:	Page to add to rmap.
1139  * @vma:	VM area to add page to.
1140  * @address:	User virtual address of the mapping
1141  * @exclusive:	the page is exclusively owned by the current process
1142  */
1143 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1144 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1145 {
1146 	struct anon_vma *anon_vma = vma->anon_vma;
1147 
1148 	BUG_ON(!anon_vma);
1149 
1150 	if (folio_test_anon(folio))
1151 		goto out;
1152 
1153 	/*
1154 	 * If the page isn't exclusively mapped into this vma,
1155 	 * we must use the _oldest_ possible anon_vma for the
1156 	 * page mapping!
1157 	 */
1158 	if (!exclusive)
1159 		anon_vma = anon_vma->root;
1160 
1161 	/*
1162 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1163 	 * Make sure the compiler doesn't split the stores of anon_vma and
1164 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1165 	 * could mistake the mapping for a struct address_space and crash.
1166 	 */
1167 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1168 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1169 	folio->index = linear_page_index(vma, address);
1170 out:
1171 	if (exclusive)
1172 		SetPageAnonExclusive(page);
1173 }
1174 
1175 /**
1176  * __page_check_anon_rmap - sanity check anonymous rmap addition
1177  * @page:	the page to add the mapping to
1178  * @vma:	the vm area in which the mapping is added
1179  * @address:	the user virtual address mapped
1180  */
1181 static void __page_check_anon_rmap(struct page *page,
1182 	struct vm_area_struct *vma, unsigned long address)
1183 {
1184 	struct folio *folio = page_folio(page);
1185 	/*
1186 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1187 	 * be set up correctly at this point.
1188 	 *
1189 	 * We have exclusion against page_add_anon_rmap because the caller
1190 	 * always holds the page locked.
1191 	 *
1192 	 * We have exclusion against page_add_new_anon_rmap because those pages
1193 	 * are initially only visible via the pagetables, and the pte is locked
1194 	 * over the call to page_add_new_anon_rmap.
1195 	 */
1196 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1197 			folio);
1198 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1199 		       page);
1200 }
1201 
1202 /**
1203  * page_add_anon_rmap - add pte mapping to an anonymous page
1204  * @page:	the page to add the mapping to
1205  * @vma:	the vm area in which the mapping is added
1206  * @address:	the user virtual address mapped
1207  * @flags:	the rmap flags
1208  *
1209  * The caller needs to hold the pte lock, and the page must be locked in
1210  * the anon_vma case: to serialize mapping,index checking after setting,
1211  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1212  * (but PageKsm is never downgraded to PageAnon).
1213  */
1214 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1215 		unsigned long address, rmap_t flags)
1216 {
1217 	struct folio *folio = page_folio(page);
1218 	atomic_t *mapped = &folio->_nr_pages_mapped;
1219 	int nr = 0, nr_pmdmapped = 0;
1220 	bool compound = flags & RMAP_COMPOUND;
1221 	bool first = true;
1222 
1223 	/* Is page being mapped by PTE? Is this its first map to be added? */
1224 	if (likely(!compound)) {
1225 		first = atomic_inc_and_test(&page->_mapcount);
1226 		nr = first;
1227 		if (first && folio_test_large(folio)) {
1228 			nr = atomic_inc_return_relaxed(mapped);
1229 			nr = (nr < COMPOUND_MAPPED);
1230 		}
1231 	} else if (folio_test_pmd_mappable(folio)) {
1232 		/* That test is redundant: it's for safety or to optimize out */
1233 
1234 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1235 		if (first) {
1236 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1237 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1238 				nr_pmdmapped = folio_nr_pages(folio);
1239 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1240 				/* Raced ahead of a remove and another add? */
1241 				if (unlikely(nr < 0))
1242 					nr = 0;
1243 			} else {
1244 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1245 				nr = 0;
1246 			}
1247 		}
1248 	}
1249 
1250 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1251 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1252 
1253 	if (nr_pmdmapped)
1254 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1255 	if (nr)
1256 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1257 
1258 	if (likely(!folio_test_ksm(folio))) {
1259 		/* address might be in next vma when migration races vma_merge */
1260 		if (first)
1261 			__page_set_anon_rmap(folio, page, vma, address,
1262 					     !!(flags & RMAP_EXCLUSIVE));
1263 		else
1264 			__page_check_anon_rmap(page, vma, address);
1265 	}
1266 
1267 	mlock_vma_folio(folio, vma, compound);
1268 }
1269 
1270 /**
1271  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1272  * @folio:	The folio to add the mapping to.
1273  * @vma:	the vm area in which the mapping is added
1274  * @address:	the user virtual address mapped
1275  *
1276  * Like page_add_anon_rmap() but must only be called on *new* folios.
1277  * This means the inc-and-test can be bypassed.
1278  * The folio does not have to be locked.
1279  *
1280  * If the folio is large, it is accounted as a THP.  As the folio
1281  * is new, it's assumed to be mapped exclusively by a single process.
1282  */
1283 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1284 		unsigned long address)
1285 {
1286 	int nr;
1287 
1288 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1289 	__folio_set_swapbacked(folio);
1290 
1291 	if (likely(!folio_test_pmd_mappable(folio))) {
1292 		/* increment count (starts at -1) */
1293 		atomic_set(&folio->_mapcount, 0);
1294 		nr = 1;
1295 	} else {
1296 		/* increment count (starts at -1) */
1297 		atomic_set(&folio->_entire_mapcount, 0);
1298 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1299 		nr = folio_nr_pages(folio);
1300 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1301 	}
1302 
1303 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1304 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1305 }
1306 
1307 /**
1308  * page_add_file_rmap - add pte mapping to a file page
1309  * @page:	the page to add the mapping to
1310  * @vma:	the vm area in which the mapping is added
1311  * @compound:	charge the page as compound or small page
1312  *
1313  * The caller needs to hold the pte lock.
1314  */
1315 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1316 		bool compound)
1317 {
1318 	struct folio *folio = page_folio(page);
1319 	atomic_t *mapped = &folio->_nr_pages_mapped;
1320 	int nr = 0, nr_pmdmapped = 0;
1321 	bool first;
1322 
1323 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1324 
1325 	/* Is page being mapped by PTE? Is this its first map to be added? */
1326 	if (likely(!compound)) {
1327 		first = atomic_inc_and_test(&page->_mapcount);
1328 		nr = first;
1329 		if (first && folio_test_large(folio)) {
1330 			nr = atomic_inc_return_relaxed(mapped);
1331 			nr = (nr < COMPOUND_MAPPED);
1332 		}
1333 	} else if (folio_test_pmd_mappable(folio)) {
1334 		/* That test is redundant: it's for safety or to optimize out */
1335 
1336 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1337 		if (first) {
1338 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1339 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1340 				nr_pmdmapped = folio_nr_pages(folio);
1341 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1342 				/* Raced ahead of a remove and another add? */
1343 				if (unlikely(nr < 0))
1344 					nr = 0;
1345 			} else {
1346 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1347 				nr = 0;
1348 			}
1349 		}
1350 	}
1351 
1352 	if (nr_pmdmapped)
1353 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1354 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1355 	if (nr)
1356 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1357 
1358 	mlock_vma_folio(folio, vma, compound);
1359 }
1360 
1361 /**
1362  * page_remove_rmap - take down pte mapping from a page
1363  * @page:	page to remove mapping from
1364  * @vma:	the vm area from which the mapping is removed
1365  * @compound:	uncharge the page as compound or small page
1366  *
1367  * The caller needs to hold the pte lock.
1368  */
1369 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1370 		bool compound)
1371 {
1372 	struct folio *folio = page_folio(page);
1373 	atomic_t *mapped = &folio->_nr_pages_mapped;
1374 	int nr = 0, nr_pmdmapped = 0;
1375 	bool last;
1376 	enum node_stat_item idx;
1377 
1378 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1379 
1380 	/* Hugetlb pages are not counted in NR_*MAPPED */
1381 	if (unlikely(folio_test_hugetlb(folio))) {
1382 		/* hugetlb pages are always mapped with pmds */
1383 		atomic_dec(&folio->_entire_mapcount);
1384 		return;
1385 	}
1386 
1387 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1388 	if (likely(!compound)) {
1389 		last = atomic_add_negative(-1, &page->_mapcount);
1390 		nr = last;
1391 		if (last && folio_test_large(folio)) {
1392 			nr = atomic_dec_return_relaxed(mapped);
1393 			nr = (nr < COMPOUND_MAPPED);
1394 		}
1395 	} else if (folio_test_pmd_mappable(folio)) {
1396 		/* That test is redundant: it's for safety or to optimize out */
1397 
1398 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1399 		if (last) {
1400 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1401 			if (likely(nr < COMPOUND_MAPPED)) {
1402 				nr_pmdmapped = folio_nr_pages(folio);
1403 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1404 				/* Raced ahead of another remove and an add? */
1405 				if (unlikely(nr < 0))
1406 					nr = 0;
1407 			} else {
1408 				/* An add of COMPOUND_MAPPED raced ahead */
1409 				nr = 0;
1410 			}
1411 		}
1412 	}
1413 
1414 	if (nr_pmdmapped) {
1415 		if (folio_test_anon(folio))
1416 			idx = NR_ANON_THPS;
1417 		else if (folio_test_swapbacked(folio))
1418 			idx = NR_SHMEM_PMDMAPPED;
1419 		else
1420 			idx = NR_FILE_PMDMAPPED;
1421 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1422 	}
1423 	if (nr) {
1424 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1425 		__lruvec_stat_mod_folio(folio, idx, -nr);
1426 
1427 		/*
1428 		 * Queue anon THP for deferred split if at least one
1429 		 * page of the folio is unmapped and at least one page
1430 		 * is still mapped.
1431 		 */
1432 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1433 			if (!compound || nr < nr_pmdmapped)
1434 				deferred_split_folio(folio);
1435 	}
1436 
1437 	/*
1438 	 * It would be tidy to reset folio_test_anon mapping when fully
1439 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1440 	 * which increments mapcount after us but sets mapping before us:
1441 	 * so leave the reset to free_pages_prepare, and remember that
1442 	 * it's only reliable while mapped.
1443 	 */
1444 
1445 	munlock_vma_folio(folio, vma, compound);
1446 }
1447 
1448 /*
1449  * @arg: enum ttu_flags will be passed to this argument
1450  */
1451 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1452 		     unsigned long address, void *arg)
1453 {
1454 	struct mm_struct *mm = vma->vm_mm;
1455 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1456 	pte_t pteval;
1457 	struct page *subpage;
1458 	bool anon_exclusive, ret = true;
1459 	struct mmu_notifier_range range;
1460 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1461 
1462 	/*
1463 	 * When racing against e.g. zap_pte_range() on another cpu,
1464 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1465 	 * try_to_unmap() may return before page_mapped() has become false,
1466 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1467 	 */
1468 	if (flags & TTU_SYNC)
1469 		pvmw.flags = PVMW_SYNC;
1470 
1471 	if (flags & TTU_SPLIT_HUGE_PMD)
1472 		split_huge_pmd_address(vma, address, false, folio);
1473 
1474 	/*
1475 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1476 	 * For hugetlb, it could be much worse if we need to do pud
1477 	 * invalidation in the case of pmd sharing.
1478 	 *
1479 	 * Note that the folio can not be freed in this function as call of
1480 	 * try_to_unmap() must hold a reference on the folio.
1481 	 */
1482 	range.end = vma_address_end(&pvmw);
1483 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1484 				address, range.end);
1485 	if (folio_test_hugetlb(folio)) {
1486 		/*
1487 		 * If sharing is possible, start and end will be adjusted
1488 		 * accordingly.
1489 		 */
1490 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1491 						     &range.end);
1492 	}
1493 	mmu_notifier_invalidate_range_start(&range);
1494 
1495 	while (page_vma_mapped_walk(&pvmw)) {
1496 		/* Unexpected PMD-mapped THP? */
1497 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1498 
1499 		/*
1500 		 * If the folio is in an mlock()d vma, we must not swap it out.
1501 		 */
1502 		if (!(flags & TTU_IGNORE_MLOCK) &&
1503 		    (vma->vm_flags & VM_LOCKED)) {
1504 			/* Restore the mlock which got missed */
1505 			mlock_vma_folio(folio, vma, false);
1506 			page_vma_mapped_walk_done(&pvmw);
1507 			ret = false;
1508 			break;
1509 		}
1510 
1511 		subpage = folio_page(folio,
1512 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1513 		address = pvmw.address;
1514 		anon_exclusive = folio_test_anon(folio) &&
1515 				 PageAnonExclusive(subpage);
1516 
1517 		if (folio_test_hugetlb(folio)) {
1518 			bool anon = folio_test_anon(folio);
1519 
1520 			/*
1521 			 * The try_to_unmap() is only passed a hugetlb page
1522 			 * in the case where the hugetlb page is poisoned.
1523 			 */
1524 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1525 			/*
1526 			 * huge_pmd_unshare may unmap an entire PMD page.
1527 			 * There is no way of knowing exactly which PMDs may
1528 			 * be cached for this mm, so we must flush them all.
1529 			 * start/end were already adjusted above to cover this
1530 			 * range.
1531 			 */
1532 			flush_cache_range(vma, range.start, range.end);
1533 
1534 			/*
1535 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1536 			 * held in write mode.  Caller needs to explicitly
1537 			 * do this outside rmap routines.
1538 			 *
1539 			 * We also must hold hugetlb vma_lock in write mode.
1540 			 * Lock order dictates acquiring vma_lock BEFORE
1541 			 * i_mmap_rwsem.  We can only try lock here and fail
1542 			 * if unsuccessful.
1543 			 */
1544 			if (!anon) {
1545 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1546 				if (!hugetlb_vma_trylock_write(vma)) {
1547 					page_vma_mapped_walk_done(&pvmw);
1548 					ret = false;
1549 					break;
1550 				}
1551 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1552 					hugetlb_vma_unlock_write(vma);
1553 					flush_tlb_range(vma,
1554 						range.start, range.end);
1555 					mmu_notifier_invalidate_range(mm,
1556 						range.start, range.end);
1557 					/*
1558 					 * The ref count of the PMD page was
1559 					 * dropped which is part of the way map
1560 					 * counting is done for shared PMDs.
1561 					 * Return 'true' here.  When there is
1562 					 * no other sharing, huge_pmd_unshare
1563 					 * returns false and we will unmap the
1564 					 * actual page and drop map count
1565 					 * to zero.
1566 					 */
1567 					page_vma_mapped_walk_done(&pvmw);
1568 					break;
1569 				}
1570 				hugetlb_vma_unlock_write(vma);
1571 			}
1572 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1573 		} else {
1574 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1575 			/* Nuke the page table entry. */
1576 			if (should_defer_flush(mm, flags)) {
1577 				/*
1578 				 * We clear the PTE but do not flush so potentially
1579 				 * a remote CPU could still be writing to the folio.
1580 				 * If the entry was previously clean then the
1581 				 * architecture must guarantee that a clear->dirty
1582 				 * transition on a cached TLB entry is written through
1583 				 * and traps if the PTE is unmapped.
1584 				 */
1585 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1586 
1587 				set_tlb_ubc_flush_pending(mm, pteval);
1588 			} else {
1589 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1590 			}
1591 		}
1592 
1593 		/*
1594 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1595 		 * we may want to replace a none pte with a marker pte if
1596 		 * it's file-backed, so we don't lose the tracking info.
1597 		 */
1598 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1599 
1600 		/* Set the dirty flag on the folio now the pte is gone. */
1601 		if (pte_dirty(pteval))
1602 			folio_mark_dirty(folio);
1603 
1604 		/* Update high watermark before we lower rss */
1605 		update_hiwater_rss(mm);
1606 
1607 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1608 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1609 			if (folio_test_hugetlb(folio)) {
1610 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1611 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1612 			} else {
1613 				dec_mm_counter(mm, mm_counter(&folio->page));
1614 				set_pte_at(mm, address, pvmw.pte, pteval);
1615 			}
1616 
1617 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1618 			/*
1619 			 * The guest indicated that the page content is of no
1620 			 * interest anymore. Simply discard the pte, vmscan
1621 			 * will take care of the rest.
1622 			 * A future reference will then fault in a new zero
1623 			 * page. When userfaultfd is active, we must not drop
1624 			 * this page though, as its main user (postcopy
1625 			 * migration) will not expect userfaults on already
1626 			 * copied pages.
1627 			 */
1628 			dec_mm_counter(mm, mm_counter(&folio->page));
1629 			/* We have to invalidate as we cleared the pte */
1630 			mmu_notifier_invalidate_range(mm, address,
1631 						      address + PAGE_SIZE);
1632 		} else if (folio_test_anon(folio)) {
1633 			swp_entry_t entry = { .val = page_private(subpage) };
1634 			pte_t swp_pte;
1635 			/*
1636 			 * Store the swap location in the pte.
1637 			 * See handle_pte_fault() ...
1638 			 */
1639 			if (unlikely(folio_test_swapbacked(folio) !=
1640 					folio_test_swapcache(folio))) {
1641 				WARN_ON_ONCE(1);
1642 				ret = false;
1643 				/* We have to invalidate as we cleared the pte */
1644 				mmu_notifier_invalidate_range(mm, address,
1645 							address + PAGE_SIZE);
1646 				page_vma_mapped_walk_done(&pvmw);
1647 				break;
1648 			}
1649 
1650 			/* MADV_FREE page check */
1651 			if (!folio_test_swapbacked(folio)) {
1652 				int ref_count, map_count;
1653 
1654 				/*
1655 				 * Synchronize with gup_pte_range():
1656 				 * - clear PTE; barrier; read refcount
1657 				 * - inc refcount; barrier; read PTE
1658 				 */
1659 				smp_mb();
1660 
1661 				ref_count = folio_ref_count(folio);
1662 				map_count = folio_mapcount(folio);
1663 
1664 				/*
1665 				 * Order reads for page refcount and dirty flag
1666 				 * (see comments in __remove_mapping()).
1667 				 */
1668 				smp_rmb();
1669 
1670 				/*
1671 				 * The only page refs must be one from isolation
1672 				 * plus the rmap(s) (dropped by discard:).
1673 				 */
1674 				if (ref_count == 1 + map_count &&
1675 				    !folio_test_dirty(folio)) {
1676 					/* Invalidate as we cleared the pte */
1677 					mmu_notifier_invalidate_range(mm,
1678 						address, address + PAGE_SIZE);
1679 					dec_mm_counter(mm, MM_ANONPAGES);
1680 					goto discard;
1681 				}
1682 
1683 				/*
1684 				 * If the folio was redirtied, it cannot be
1685 				 * discarded. Remap the page to page table.
1686 				 */
1687 				set_pte_at(mm, address, pvmw.pte, pteval);
1688 				folio_set_swapbacked(folio);
1689 				ret = false;
1690 				page_vma_mapped_walk_done(&pvmw);
1691 				break;
1692 			}
1693 
1694 			if (swap_duplicate(entry) < 0) {
1695 				set_pte_at(mm, address, pvmw.pte, pteval);
1696 				ret = false;
1697 				page_vma_mapped_walk_done(&pvmw);
1698 				break;
1699 			}
1700 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1701 				swap_free(entry);
1702 				set_pte_at(mm, address, pvmw.pte, pteval);
1703 				ret = false;
1704 				page_vma_mapped_walk_done(&pvmw);
1705 				break;
1706 			}
1707 
1708 			/* See page_try_share_anon_rmap(): clear PTE first. */
1709 			if (anon_exclusive &&
1710 			    page_try_share_anon_rmap(subpage)) {
1711 				swap_free(entry);
1712 				set_pte_at(mm, address, pvmw.pte, pteval);
1713 				ret = false;
1714 				page_vma_mapped_walk_done(&pvmw);
1715 				break;
1716 			}
1717 			if (list_empty(&mm->mmlist)) {
1718 				spin_lock(&mmlist_lock);
1719 				if (list_empty(&mm->mmlist))
1720 					list_add(&mm->mmlist, &init_mm.mmlist);
1721 				spin_unlock(&mmlist_lock);
1722 			}
1723 			dec_mm_counter(mm, MM_ANONPAGES);
1724 			inc_mm_counter(mm, MM_SWAPENTS);
1725 			swp_pte = swp_entry_to_pte(entry);
1726 			if (anon_exclusive)
1727 				swp_pte = pte_swp_mkexclusive(swp_pte);
1728 			if (pte_soft_dirty(pteval))
1729 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1730 			if (pte_uffd_wp(pteval))
1731 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1732 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1733 			/* Invalidate as we cleared the pte */
1734 			mmu_notifier_invalidate_range(mm, address,
1735 						      address + PAGE_SIZE);
1736 		} else {
1737 			/*
1738 			 * This is a locked file-backed folio,
1739 			 * so it cannot be removed from the page
1740 			 * cache and replaced by a new folio before
1741 			 * mmu_notifier_invalidate_range_end, so no
1742 			 * concurrent thread might update its page table
1743 			 * to point at a new folio while a device is
1744 			 * still using this folio.
1745 			 *
1746 			 * See Documentation/mm/mmu_notifier.rst
1747 			 */
1748 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1749 		}
1750 discard:
1751 		/*
1752 		 * No need to call mmu_notifier_invalidate_range() it has be
1753 		 * done above for all cases requiring it to happen under page
1754 		 * table lock before mmu_notifier_invalidate_range_end()
1755 		 *
1756 		 * See Documentation/mm/mmu_notifier.rst
1757 		 */
1758 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1759 		if (vma->vm_flags & VM_LOCKED)
1760 			mlock_drain_local();
1761 		folio_put(folio);
1762 	}
1763 
1764 	mmu_notifier_invalidate_range_end(&range);
1765 
1766 	return ret;
1767 }
1768 
1769 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1770 {
1771 	return vma_is_temporary_stack(vma);
1772 }
1773 
1774 static int folio_not_mapped(struct folio *folio)
1775 {
1776 	return !folio_mapped(folio);
1777 }
1778 
1779 /**
1780  * try_to_unmap - Try to remove all page table mappings to a folio.
1781  * @folio: The folio to unmap.
1782  * @flags: action and flags
1783  *
1784  * Tries to remove all the page table entries which are mapping this
1785  * folio.  It is the caller's responsibility to check if the folio is
1786  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1787  *
1788  * Context: Caller must hold the folio lock.
1789  */
1790 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1791 {
1792 	struct rmap_walk_control rwc = {
1793 		.rmap_one = try_to_unmap_one,
1794 		.arg = (void *)flags,
1795 		.done = folio_not_mapped,
1796 		.anon_lock = folio_lock_anon_vma_read,
1797 	};
1798 
1799 	if (flags & TTU_RMAP_LOCKED)
1800 		rmap_walk_locked(folio, &rwc);
1801 	else
1802 		rmap_walk(folio, &rwc);
1803 }
1804 
1805 /*
1806  * @arg: enum ttu_flags will be passed to this argument.
1807  *
1808  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1809  * containing migration entries.
1810  */
1811 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1812 		     unsigned long address, void *arg)
1813 {
1814 	struct mm_struct *mm = vma->vm_mm;
1815 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1816 	pte_t pteval;
1817 	struct page *subpage;
1818 	bool anon_exclusive, ret = true;
1819 	struct mmu_notifier_range range;
1820 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1821 
1822 	/*
1823 	 * When racing against e.g. zap_pte_range() on another cpu,
1824 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1825 	 * try_to_migrate() may return before page_mapped() has become false,
1826 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1827 	 */
1828 	if (flags & TTU_SYNC)
1829 		pvmw.flags = PVMW_SYNC;
1830 
1831 	/*
1832 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1833 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1834 	 */
1835 	if (flags & TTU_SPLIT_HUGE_PMD)
1836 		split_huge_pmd_address(vma, address, true, folio);
1837 
1838 	/*
1839 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1840 	 * For hugetlb, it could be much worse if we need to do pud
1841 	 * invalidation in the case of pmd sharing.
1842 	 *
1843 	 * Note that the page can not be free in this function as call of
1844 	 * try_to_unmap() must hold a reference on the page.
1845 	 */
1846 	range.end = vma_address_end(&pvmw);
1847 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1848 				address, range.end);
1849 	if (folio_test_hugetlb(folio)) {
1850 		/*
1851 		 * If sharing is possible, start and end will be adjusted
1852 		 * accordingly.
1853 		 */
1854 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1855 						     &range.end);
1856 	}
1857 	mmu_notifier_invalidate_range_start(&range);
1858 
1859 	while (page_vma_mapped_walk(&pvmw)) {
1860 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861 		/* PMD-mapped THP migration entry */
1862 		if (!pvmw.pte) {
1863 			subpage = folio_page(folio,
1864 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1865 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1866 					!folio_test_pmd_mappable(folio), folio);
1867 
1868 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1869 				ret = false;
1870 				page_vma_mapped_walk_done(&pvmw);
1871 				break;
1872 			}
1873 			continue;
1874 		}
1875 #endif
1876 
1877 		/* Unexpected PMD-mapped THP? */
1878 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1879 
1880 		if (folio_is_zone_device(folio)) {
1881 			/*
1882 			 * Our PTE is a non-present device exclusive entry and
1883 			 * calculating the subpage as for the common case would
1884 			 * result in an invalid pointer.
1885 			 *
1886 			 * Since only PAGE_SIZE pages can currently be
1887 			 * migrated, just set it to page. This will need to be
1888 			 * changed when hugepage migrations to device private
1889 			 * memory are supported.
1890 			 */
1891 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1892 			subpage = &folio->page;
1893 		} else {
1894 			subpage = folio_page(folio,
1895 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1896 		}
1897 		address = pvmw.address;
1898 		anon_exclusive = folio_test_anon(folio) &&
1899 				 PageAnonExclusive(subpage);
1900 
1901 		if (folio_test_hugetlb(folio)) {
1902 			bool anon = folio_test_anon(folio);
1903 
1904 			/*
1905 			 * huge_pmd_unshare may unmap an entire PMD page.
1906 			 * There is no way of knowing exactly which PMDs may
1907 			 * be cached for this mm, so we must flush them all.
1908 			 * start/end were already adjusted above to cover this
1909 			 * range.
1910 			 */
1911 			flush_cache_range(vma, range.start, range.end);
1912 
1913 			/*
1914 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1915 			 * held in write mode.  Caller needs to explicitly
1916 			 * do this outside rmap routines.
1917 			 *
1918 			 * We also must hold hugetlb vma_lock in write mode.
1919 			 * Lock order dictates acquiring vma_lock BEFORE
1920 			 * i_mmap_rwsem.  We can only try lock here and
1921 			 * fail if unsuccessful.
1922 			 */
1923 			if (!anon) {
1924 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1925 				if (!hugetlb_vma_trylock_write(vma)) {
1926 					page_vma_mapped_walk_done(&pvmw);
1927 					ret = false;
1928 					break;
1929 				}
1930 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1931 					hugetlb_vma_unlock_write(vma);
1932 					flush_tlb_range(vma,
1933 						range.start, range.end);
1934 					mmu_notifier_invalidate_range(mm,
1935 						range.start, range.end);
1936 
1937 					/*
1938 					 * The ref count of the PMD page was
1939 					 * dropped which is part of the way map
1940 					 * counting is done for shared PMDs.
1941 					 * Return 'true' here.  When there is
1942 					 * no other sharing, huge_pmd_unshare
1943 					 * returns false and we will unmap the
1944 					 * actual page and drop map count
1945 					 * to zero.
1946 					 */
1947 					page_vma_mapped_walk_done(&pvmw);
1948 					break;
1949 				}
1950 				hugetlb_vma_unlock_write(vma);
1951 			}
1952 			/* Nuke the hugetlb page table entry */
1953 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1954 		} else {
1955 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1956 			/* Nuke the page table entry. */
1957 			if (should_defer_flush(mm, flags)) {
1958 				/*
1959 				 * We clear the PTE but do not flush so potentially
1960 				 * a remote CPU could still be writing to the folio.
1961 				 * If the entry was previously clean then the
1962 				 * architecture must guarantee that a clear->dirty
1963 				 * transition on a cached TLB entry is written through
1964 				 * and traps if the PTE is unmapped.
1965 				 */
1966 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1967 
1968 				set_tlb_ubc_flush_pending(mm, pteval);
1969 			} else {
1970 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1971 			}
1972 		}
1973 
1974 		/* Set the dirty flag on the folio now the pte is gone. */
1975 		if (pte_dirty(pteval))
1976 			folio_mark_dirty(folio);
1977 
1978 		/* Update high watermark before we lower rss */
1979 		update_hiwater_rss(mm);
1980 
1981 		if (folio_is_device_private(folio)) {
1982 			unsigned long pfn = folio_pfn(folio);
1983 			swp_entry_t entry;
1984 			pte_t swp_pte;
1985 
1986 			if (anon_exclusive)
1987 				BUG_ON(page_try_share_anon_rmap(subpage));
1988 
1989 			/*
1990 			 * Store the pfn of the page in a special migration
1991 			 * pte. do_swap_page() will wait until the migration
1992 			 * pte is removed and then restart fault handling.
1993 			 */
1994 			entry = pte_to_swp_entry(pteval);
1995 			if (is_writable_device_private_entry(entry))
1996 				entry = make_writable_migration_entry(pfn);
1997 			else if (anon_exclusive)
1998 				entry = make_readable_exclusive_migration_entry(pfn);
1999 			else
2000 				entry = make_readable_migration_entry(pfn);
2001 			swp_pte = swp_entry_to_pte(entry);
2002 
2003 			/*
2004 			 * pteval maps a zone device page and is therefore
2005 			 * a swap pte.
2006 			 */
2007 			if (pte_swp_soft_dirty(pteval))
2008 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2009 			if (pte_swp_uffd_wp(pteval))
2010 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2011 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2012 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2013 						compound_order(&folio->page));
2014 			/*
2015 			 * No need to invalidate here it will synchronize on
2016 			 * against the special swap migration pte.
2017 			 */
2018 		} else if (PageHWPoison(subpage)) {
2019 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2020 			if (folio_test_hugetlb(folio)) {
2021 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2022 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2023 			} else {
2024 				dec_mm_counter(mm, mm_counter(&folio->page));
2025 				set_pte_at(mm, address, pvmw.pte, pteval);
2026 			}
2027 
2028 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2029 			/*
2030 			 * The guest indicated that the page content is of no
2031 			 * interest anymore. Simply discard the pte, vmscan
2032 			 * will take care of the rest.
2033 			 * A future reference will then fault in a new zero
2034 			 * page. When userfaultfd is active, we must not drop
2035 			 * this page though, as its main user (postcopy
2036 			 * migration) will not expect userfaults on already
2037 			 * copied pages.
2038 			 */
2039 			dec_mm_counter(mm, mm_counter(&folio->page));
2040 			/* We have to invalidate as we cleared the pte */
2041 			mmu_notifier_invalidate_range(mm, address,
2042 						      address + PAGE_SIZE);
2043 		} else {
2044 			swp_entry_t entry;
2045 			pte_t swp_pte;
2046 
2047 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2048 				if (folio_test_hugetlb(folio))
2049 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2050 				else
2051 					set_pte_at(mm, address, pvmw.pte, pteval);
2052 				ret = false;
2053 				page_vma_mapped_walk_done(&pvmw);
2054 				break;
2055 			}
2056 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2057 				       !anon_exclusive, subpage);
2058 
2059 			/* See page_try_share_anon_rmap(): clear PTE first. */
2060 			if (anon_exclusive &&
2061 			    page_try_share_anon_rmap(subpage)) {
2062 				if (folio_test_hugetlb(folio))
2063 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2064 				else
2065 					set_pte_at(mm, address, pvmw.pte, pteval);
2066 				ret = false;
2067 				page_vma_mapped_walk_done(&pvmw);
2068 				break;
2069 			}
2070 
2071 			/*
2072 			 * Store the pfn of the page in a special migration
2073 			 * pte. do_swap_page() will wait until the migration
2074 			 * pte is removed and then restart fault handling.
2075 			 */
2076 			if (pte_write(pteval))
2077 				entry = make_writable_migration_entry(
2078 							page_to_pfn(subpage));
2079 			else if (anon_exclusive)
2080 				entry = make_readable_exclusive_migration_entry(
2081 							page_to_pfn(subpage));
2082 			else
2083 				entry = make_readable_migration_entry(
2084 							page_to_pfn(subpage));
2085 			if (pte_young(pteval))
2086 				entry = make_migration_entry_young(entry);
2087 			if (pte_dirty(pteval))
2088 				entry = make_migration_entry_dirty(entry);
2089 			swp_pte = swp_entry_to_pte(entry);
2090 			if (pte_soft_dirty(pteval))
2091 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2092 			if (pte_uffd_wp(pteval))
2093 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2094 			if (folio_test_hugetlb(folio))
2095 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2096 			else
2097 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2098 			trace_set_migration_pte(address, pte_val(swp_pte),
2099 						compound_order(&folio->page));
2100 			/*
2101 			 * No need to invalidate here it will synchronize on
2102 			 * against the special swap migration pte.
2103 			 */
2104 		}
2105 
2106 		/*
2107 		 * No need to call mmu_notifier_invalidate_range() it has be
2108 		 * done above for all cases requiring it to happen under page
2109 		 * table lock before mmu_notifier_invalidate_range_end()
2110 		 *
2111 		 * See Documentation/mm/mmu_notifier.rst
2112 		 */
2113 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2114 		if (vma->vm_flags & VM_LOCKED)
2115 			mlock_drain_local();
2116 		folio_put(folio);
2117 	}
2118 
2119 	mmu_notifier_invalidate_range_end(&range);
2120 
2121 	return ret;
2122 }
2123 
2124 /**
2125  * try_to_migrate - try to replace all page table mappings with swap entries
2126  * @folio: the folio to replace page table entries for
2127  * @flags: action and flags
2128  *
2129  * Tries to remove all the page table entries which are mapping this folio and
2130  * replace them with special swap entries. Caller must hold the folio lock.
2131  */
2132 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2133 {
2134 	struct rmap_walk_control rwc = {
2135 		.rmap_one = try_to_migrate_one,
2136 		.arg = (void *)flags,
2137 		.done = folio_not_mapped,
2138 		.anon_lock = folio_lock_anon_vma_read,
2139 	};
2140 
2141 	/*
2142 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2143 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2144 	 */
2145 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2146 					TTU_SYNC | TTU_BATCH_FLUSH)))
2147 		return;
2148 
2149 	if (folio_is_zone_device(folio) &&
2150 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2151 		return;
2152 
2153 	/*
2154 	 * During exec, a temporary VMA is setup and later moved.
2155 	 * The VMA is moved under the anon_vma lock but not the
2156 	 * page tables leading to a race where migration cannot
2157 	 * find the migration ptes. Rather than increasing the
2158 	 * locking requirements of exec(), migration skips
2159 	 * temporary VMAs until after exec() completes.
2160 	 */
2161 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2162 		rwc.invalid_vma = invalid_migration_vma;
2163 
2164 	if (flags & TTU_RMAP_LOCKED)
2165 		rmap_walk_locked(folio, &rwc);
2166 	else
2167 		rmap_walk(folio, &rwc);
2168 }
2169 
2170 #ifdef CONFIG_DEVICE_PRIVATE
2171 struct make_exclusive_args {
2172 	struct mm_struct *mm;
2173 	unsigned long address;
2174 	void *owner;
2175 	bool valid;
2176 };
2177 
2178 static bool page_make_device_exclusive_one(struct folio *folio,
2179 		struct vm_area_struct *vma, unsigned long address, void *priv)
2180 {
2181 	struct mm_struct *mm = vma->vm_mm;
2182 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2183 	struct make_exclusive_args *args = priv;
2184 	pte_t pteval;
2185 	struct page *subpage;
2186 	bool ret = true;
2187 	struct mmu_notifier_range range;
2188 	swp_entry_t entry;
2189 	pte_t swp_pte;
2190 
2191 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2192 				      vma->vm_mm, address, min(vma->vm_end,
2193 				      address + folio_size(folio)),
2194 				      args->owner);
2195 	mmu_notifier_invalidate_range_start(&range);
2196 
2197 	while (page_vma_mapped_walk(&pvmw)) {
2198 		/* Unexpected PMD-mapped THP? */
2199 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2200 
2201 		if (!pte_present(*pvmw.pte)) {
2202 			ret = false;
2203 			page_vma_mapped_walk_done(&pvmw);
2204 			break;
2205 		}
2206 
2207 		subpage = folio_page(folio,
2208 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2209 		address = pvmw.address;
2210 
2211 		/* Nuke the page table entry. */
2212 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2213 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2214 
2215 		/* Set the dirty flag on the folio now the pte is gone. */
2216 		if (pte_dirty(pteval))
2217 			folio_mark_dirty(folio);
2218 
2219 		/*
2220 		 * Check that our target page is still mapped at the expected
2221 		 * address.
2222 		 */
2223 		if (args->mm == mm && args->address == address &&
2224 		    pte_write(pteval))
2225 			args->valid = true;
2226 
2227 		/*
2228 		 * Store the pfn of the page in a special migration
2229 		 * pte. do_swap_page() will wait until the migration
2230 		 * pte is removed and then restart fault handling.
2231 		 */
2232 		if (pte_write(pteval))
2233 			entry = make_writable_device_exclusive_entry(
2234 							page_to_pfn(subpage));
2235 		else
2236 			entry = make_readable_device_exclusive_entry(
2237 							page_to_pfn(subpage));
2238 		swp_pte = swp_entry_to_pte(entry);
2239 		if (pte_soft_dirty(pteval))
2240 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2241 		if (pte_uffd_wp(pteval))
2242 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2243 
2244 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2245 
2246 		/*
2247 		 * There is a reference on the page for the swap entry which has
2248 		 * been removed, so shouldn't take another.
2249 		 */
2250 		page_remove_rmap(subpage, vma, false);
2251 	}
2252 
2253 	mmu_notifier_invalidate_range_end(&range);
2254 
2255 	return ret;
2256 }
2257 
2258 /**
2259  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2260  * @folio: The folio to replace page table entries for.
2261  * @mm: The mm_struct where the folio is expected to be mapped.
2262  * @address: Address where the folio is expected to be mapped.
2263  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2264  *
2265  * Tries to remove all the page table entries which are mapping this
2266  * folio and replace them with special device exclusive swap entries to
2267  * grant a device exclusive access to the folio.
2268  *
2269  * Context: Caller must hold the folio lock.
2270  * Return: false if the page is still mapped, or if it could not be unmapped
2271  * from the expected address. Otherwise returns true (success).
2272  */
2273 static bool folio_make_device_exclusive(struct folio *folio,
2274 		struct mm_struct *mm, unsigned long address, void *owner)
2275 {
2276 	struct make_exclusive_args args = {
2277 		.mm = mm,
2278 		.address = address,
2279 		.owner = owner,
2280 		.valid = false,
2281 	};
2282 	struct rmap_walk_control rwc = {
2283 		.rmap_one = page_make_device_exclusive_one,
2284 		.done = folio_not_mapped,
2285 		.anon_lock = folio_lock_anon_vma_read,
2286 		.arg = &args,
2287 	};
2288 
2289 	/*
2290 	 * Restrict to anonymous folios for now to avoid potential writeback
2291 	 * issues.
2292 	 */
2293 	if (!folio_test_anon(folio))
2294 		return false;
2295 
2296 	rmap_walk(folio, &rwc);
2297 
2298 	return args.valid && !folio_mapcount(folio);
2299 }
2300 
2301 /**
2302  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2303  * @mm: mm_struct of associated target process
2304  * @start: start of the region to mark for exclusive device access
2305  * @end: end address of region
2306  * @pages: returns the pages which were successfully marked for exclusive access
2307  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2308  *
2309  * Returns: number of pages found in the range by GUP. A page is marked for
2310  * exclusive access only if the page pointer is non-NULL.
2311  *
2312  * This function finds ptes mapping page(s) to the given address range, locks
2313  * them and replaces mappings with special swap entries preventing userspace CPU
2314  * access. On fault these entries are replaced with the original mapping after
2315  * calling MMU notifiers.
2316  *
2317  * A driver using this to program access from a device must use a mmu notifier
2318  * critical section to hold a device specific lock during programming. Once
2319  * programming is complete it should drop the page lock and reference after
2320  * which point CPU access to the page will revoke the exclusive access.
2321  */
2322 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2323 				unsigned long end, struct page **pages,
2324 				void *owner)
2325 {
2326 	long npages = (end - start) >> PAGE_SHIFT;
2327 	long i;
2328 
2329 	npages = get_user_pages_remote(mm, start, npages,
2330 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2331 				       pages, NULL, NULL);
2332 	if (npages < 0)
2333 		return npages;
2334 
2335 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2336 		struct folio *folio = page_folio(pages[i]);
2337 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2338 			folio_put(folio);
2339 			pages[i] = NULL;
2340 			continue;
2341 		}
2342 
2343 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2344 			folio_unlock(folio);
2345 			folio_put(folio);
2346 			pages[i] = NULL;
2347 		}
2348 	}
2349 
2350 	return npages;
2351 }
2352 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2353 #endif
2354 
2355 void __put_anon_vma(struct anon_vma *anon_vma)
2356 {
2357 	struct anon_vma *root = anon_vma->root;
2358 
2359 	anon_vma_free(anon_vma);
2360 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2361 		anon_vma_free(root);
2362 }
2363 
2364 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2365 					    struct rmap_walk_control *rwc)
2366 {
2367 	struct anon_vma *anon_vma;
2368 
2369 	if (rwc->anon_lock)
2370 		return rwc->anon_lock(folio, rwc);
2371 
2372 	/*
2373 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2374 	 * because that depends on page_mapped(); but not all its usages
2375 	 * are holding mmap_lock. Users without mmap_lock are required to
2376 	 * take a reference count to prevent the anon_vma disappearing
2377 	 */
2378 	anon_vma = folio_anon_vma(folio);
2379 	if (!anon_vma)
2380 		return NULL;
2381 
2382 	if (anon_vma_trylock_read(anon_vma))
2383 		goto out;
2384 
2385 	if (rwc->try_lock) {
2386 		anon_vma = NULL;
2387 		rwc->contended = true;
2388 		goto out;
2389 	}
2390 
2391 	anon_vma_lock_read(anon_vma);
2392 out:
2393 	return anon_vma;
2394 }
2395 
2396 /*
2397  * rmap_walk_anon - do something to anonymous page using the object-based
2398  * rmap method
2399  * @page: the page to be handled
2400  * @rwc: control variable according to each walk type
2401  *
2402  * Find all the mappings of a page using the mapping pointer and the vma chains
2403  * contained in the anon_vma struct it points to.
2404  */
2405 static void rmap_walk_anon(struct folio *folio,
2406 		struct rmap_walk_control *rwc, bool locked)
2407 {
2408 	struct anon_vma *anon_vma;
2409 	pgoff_t pgoff_start, pgoff_end;
2410 	struct anon_vma_chain *avc;
2411 
2412 	if (locked) {
2413 		anon_vma = folio_anon_vma(folio);
2414 		/* anon_vma disappear under us? */
2415 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2416 	} else {
2417 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2418 	}
2419 	if (!anon_vma)
2420 		return;
2421 
2422 	pgoff_start = folio_pgoff(folio);
2423 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2424 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2425 			pgoff_start, pgoff_end) {
2426 		struct vm_area_struct *vma = avc->vma;
2427 		unsigned long address = vma_address(&folio->page, vma);
2428 
2429 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2430 		cond_resched();
2431 
2432 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2433 			continue;
2434 
2435 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2436 			break;
2437 		if (rwc->done && rwc->done(folio))
2438 			break;
2439 	}
2440 
2441 	if (!locked)
2442 		anon_vma_unlock_read(anon_vma);
2443 }
2444 
2445 /*
2446  * rmap_walk_file - do something to file page using the object-based rmap method
2447  * @page: the page to be handled
2448  * @rwc: control variable according to each walk type
2449  *
2450  * Find all the mappings of a page using the mapping pointer and the vma chains
2451  * contained in the address_space struct it points to.
2452  */
2453 static void rmap_walk_file(struct folio *folio,
2454 		struct rmap_walk_control *rwc, bool locked)
2455 {
2456 	struct address_space *mapping = folio_mapping(folio);
2457 	pgoff_t pgoff_start, pgoff_end;
2458 	struct vm_area_struct *vma;
2459 
2460 	/*
2461 	 * The page lock not only makes sure that page->mapping cannot
2462 	 * suddenly be NULLified by truncation, it makes sure that the
2463 	 * structure at mapping cannot be freed and reused yet,
2464 	 * so we can safely take mapping->i_mmap_rwsem.
2465 	 */
2466 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2467 
2468 	if (!mapping)
2469 		return;
2470 
2471 	pgoff_start = folio_pgoff(folio);
2472 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2473 	if (!locked) {
2474 		if (i_mmap_trylock_read(mapping))
2475 			goto lookup;
2476 
2477 		if (rwc->try_lock) {
2478 			rwc->contended = true;
2479 			return;
2480 		}
2481 
2482 		i_mmap_lock_read(mapping);
2483 	}
2484 lookup:
2485 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2486 			pgoff_start, pgoff_end) {
2487 		unsigned long address = vma_address(&folio->page, vma);
2488 
2489 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2490 		cond_resched();
2491 
2492 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2493 			continue;
2494 
2495 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2496 			goto done;
2497 		if (rwc->done && rwc->done(folio))
2498 			goto done;
2499 	}
2500 
2501 done:
2502 	if (!locked)
2503 		i_mmap_unlock_read(mapping);
2504 }
2505 
2506 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2507 {
2508 	if (unlikely(folio_test_ksm(folio)))
2509 		rmap_walk_ksm(folio, rwc);
2510 	else if (folio_test_anon(folio))
2511 		rmap_walk_anon(folio, rwc, false);
2512 	else
2513 		rmap_walk_file(folio, rwc, false);
2514 }
2515 
2516 /* Like rmap_walk, but caller holds relevant rmap lock */
2517 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2518 {
2519 	/* no ksm support for now */
2520 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2521 	if (folio_test_anon(folio))
2522 		rmap_walk_anon(folio, rwc, true);
2523 	else
2524 		rmap_walk_file(folio, rwc, true);
2525 }
2526 
2527 #ifdef CONFIG_HUGETLB_PAGE
2528 /*
2529  * The following two functions are for anonymous (private mapped) hugepages.
2530  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2531  * and no lru code, because we handle hugepages differently from common pages.
2532  *
2533  * RMAP_COMPOUND is ignored.
2534  */
2535 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2536 			    unsigned long address, rmap_t flags)
2537 {
2538 	struct folio *folio = page_folio(page);
2539 	struct anon_vma *anon_vma = vma->anon_vma;
2540 	int first;
2541 
2542 	BUG_ON(!folio_test_locked(folio));
2543 	BUG_ON(!anon_vma);
2544 	/* address might be in next vma when migration races vma_merge */
2545 	first = atomic_inc_and_test(&folio->_entire_mapcount);
2546 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2547 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2548 	if (first)
2549 		__page_set_anon_rmap(folio, page, vma, address,
2550 				     !!(flags & RMAP_EXCLUSIVE));
2551 }
2552 
2553 void hugepage_add_new_anon_rmap(struct folio *folio,
2554 			struct vm_area_struct *vma, unsigned long address)
2555 {
2556 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2557 	/* increment count (starts at -1) */
2558 	atomic_set(&folio->_entire_mapcount, 0);
2559 	folio_clear_hugetlb_restore_reserve(folio);
2560 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2561 }
2562 #endif /* CONFIG_HUGETLB_PAGE */
2563