1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) 646 { 647 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 648 int batch; 649 bool writable = pte_dirty(pteval); 650 651 if (!pte_accessible(mm, pteval)) 652 return; 653 654 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 655 tlb_ubc->flush_required = true; 656 657 /* 658 * Ensure compiler does not re-order the setting of tlb_flush_batched 659 * before the PTE is cleared. 660 */ 661 barrier(); 662 batch = atomic_read(&mm->tlb_flush_batched); 663 retry: 664 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 665 /* 666 * Prevent `pending' from catching up with `flushed' because of 667 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 668 * `pending' becomes large. 669 */ 670 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 671 goto retry; 672 } else { 673 atomic_inc(&mm->tlb_flush_batched); 674 } 675 676 /* 677 * If the PTE was dirty then it's best to assume it's writable. The 678 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 679 * before the page is queued for IO. 680 */ 681 if (writable) 682 tlb_ubc->writable = true; 683 } 684 685 /* 686 * Returns true if the TLB flush should be deferred to the end of a batch of 687 * unmap operations to reduce IPIs. 688 */ 689 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 690 { 691 bool should_defer = false; 692 693 if (!(flags & TTU_BATCH_FLUSH)) 694 return false; 695 696 /* If remote CPUs need to be flushed then defer batch the flush */ 697 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 698 should_defer = true; 699 put_cpu(); 700 701 return should_defer; 702 } 703 704 /* 705 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 706 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 707 * operation such as mprotect or munmap to race between reclaim unmapping 708 * the page and flushing the page. If this race occurs, it potentially allows 709 * access to data via a stale TLB entry. Tracking all mm's that have TLB 710 * batching in flight would be expensive during reclaim so instead track 711 * whether TLB batching occurred in the past and if so then do a flush here 712 * if required. This will cost one additional flush per reclaim cycle paid 713 * by the first operation at risk such as mprotect and mumap. 714 * 715 * This must be called under the PTL so that an access to tlb_flush_batched 716 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 717 * via the PTL. 718 */ 719 void flush_tlb_batched_pending(struct mm_struct *mm) 720 { 721 int batch = atomic_read(&mm->tlb_flush_batched); 722 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 723 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 724 725 if (pending != flushed) { 726 flush_tlb_mm(mm); 727 /* 728 * If the new TLB flushing is pending during flushing, leave 729 * mm->tlb_flush_batched as is, to avoid losing flushing. 730 */ 731 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 732 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 733 } 734 } 735 #else 736 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval) 737 { 738 } 739 740 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 741 { 742 return false; 743 } 744 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 745 746 /* 747 * At what user virtual address is page expected in vma? 748 * Caller should check the page is actually part of the vma. 749 */ 750 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 751 { 752 struct folio *folio = page_folio(page); 753 if (folio_test_anon(folio)) { 754 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 755 /* 756 * Note: swapoff's unuse_vma() is more efficient with this 757 * check, and needs it to match anon_vma when KSM is active. 758 */ 759 if (!vma->anon_vma || !page__anon_vma || 760 vma->anon_vma->root != page__anon_vma->root) 761 return -EFAULT; 762 } else if (!vma->vm_file) { 763 return -EFAULT; 764 } else if (vma->vm_file->f_mapping != folio->mapping) { 765 return -EFAULT; 766 } 767 768 return vma_address(page, vma); 769 } 770 771 /* 772 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 773 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 774 * represents. 775 */ 776 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 777 { 778 pgd_t *pgd; 779 p4d_t *p4d; 780 pud_t *pud; 781 pmd_t *pmd = NULL; 782 783 pgd = pgd_offset(mm, address); 784 if (!pgd_present(*pgd)) 785 goto out; 786 787 p4d = p4d_offset(pgd, address); 788 if (!p4d_present(*p4d)) 789 goto out; 790 791 pud = pud_offset(p4d, address); 792 if (!pud_present(*pud)) 793 goto out; 794 795 pmd = pmd_offset(pud, address); 796 out: 797 return pmd; 798 } 799 800 struct folio_referenced_arg { 801 int mapcount; 802 int referenced; 803 unsigned long vm_flags; 804 struct mem_cgroup *memcg; 805 }; 806 /* 807 * arg: folio_referenced_arg will be passed 808 */ 809 static bool folio_referenced_one(struct folio *folio, 810 struct vm_area_struct *vma, unsigned long address, void *arg) 811 { 812 struct folio_referenced_arg *pra = arg; 813 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 814 int referenced = 0; 815 816 while (page_vma_mapped_walk(&pvmw)) { 817 address = pvmw.address; 818 819 if ((vma->vm_flags & VM_LOCKED) && 820 (!folio_test_large(folio) || !pvmw.pte)) { 821 /* Restore the mlock which got missed */ 822 mlock_vma_folio(folio, vma, !pvmw.pte); 823 page_vma_mapped_walk_done(&pvmw); 824 pra->vm_flags |= VM_LOCKED; 825 return false; /* To break the loop */ 826 } 827 828 if (pvmw.pte) { 829 if (lru_gen_enabled() && pte_young(*pvmw.pte)) { 830 lru_gen_look_around(&pvmw); 831 referenced++; 832 } 833 834 if (ptep_clear_flush_young_notify(vma, address, 835 pvmw.pte)) 836 referenced++; 837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 838 if (pmdp_clear_flush_young_notify(vma, address, 839 pvmw.pmd)) 840 referenced++; 841 } else { 842 /* unexpected pmd-mapped folio? */ 843 WARN_ON_ONCE(1); 844 } 845 846 pra->mapcount--; 847 } 848 849 if (referenced) 850 folio_clear_idle(folio); 851 if (folio_test_clear_young(folio)) 852 referenced++; 853 854 if (referenced) { 855 pra->referenced++; 856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 857 } 858 859 if (!pra->mapcount) 860 return false; /* To break the loop */ 861 862 return true; 863 } 864 865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 866 { 867 struct folio_referenced_arg *pra = arg; 868 struct mem_cgroup *memcg = pra->memcg; 869 870 /* 871 * Ignore references from this mapping if it has no recency. If the 872 * folio has been used in another mapping, we will catch it; if this 873 * other mapping is already gone, the unmap path will have set the 874 * referenced flag or activated the folio in zap_pte_range(). 875 */ 876 if (!vma_has_recency(vma)) 877 return true; 878 879 /* 880 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 881 * of references from different cgroups. 882 */ 883 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 884 return true; 885 886 return false; 887 } 888 889 /** 890 * folio_referenced() - Test if the folio was referenced. 891 * @folio: The folio to test. 892 * @is_locked: Caller holds lock on the folio. 893 * @memcg: target memory cgroup 894 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 895 * 896 * Quick test_and_clear_referenced for all mappings of a folio, 897 * 898 * Return: The number of mappings which referenced the folio. Return -1 if 899 * the function bailed out due to rmap lock contention. 900 */ 901 int folio_referenced(struct folio *folio, int is_locked, 902 struct mem_cgroup *memcg, unsigned long *vm_flags) 903 { 904 int we_locked = 0; 905 struct folio_referenced_arg pra = { 906 .mapcount = folio_mapcount(folio), 907 .memcg = memcg, 908 }; 909 struct rmap_walk_control rwc = { 910 .rmap_one = folio_referenced_one, 911 .arg = (void *)&pra, 912 .anon_lock = folio_lock_anon_vma_read, 913 .try_lock = true, 914 .invalid_vma = invalid_folio_referenced_vma, 915 }; 916 917 *vm_flags = 0; 918 if (!pra.mapcount) 919 return 0; 920 921 if (!folio_raw_mapping(folio)) 922 return 0; 923 924 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 925 we_locked = folio_trylock(folio); 926 if (!we_locked) 927 return 1; 928 } 929 930 rmap_walk(folio, &rwc); 931 *vm_flags = pra.vm_flags; 932 933 if (we_locked) 934 folio_unlock(folio); 935 936 return rwc.contended ? -1 : pra.referenced; 937 } 938 939 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 940 { 941 int cleaned = 0; 942 struct vm_area_struct *vma = pvmw->vma; 943 struct mmu_notifier_range range; 944 unsigned long address = pvmw->address; 945 946 /* 947 * We have to assume the worse case ie pmd for invalidation. Note that 948 * the folio can not be freed from this function. 949 */ 950 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 951 vma->vm_mm, address, vma_address_end(pvmw)); 952 mmu_notifier_invalidate_range_start(&range); 953 954 while (page_vma_mapped_walk(pvmw)) { 955 int ret = 0; 956 957 address = pvmw->address; 958 if (pvmw->pte) { 959 pte_t entry; 960 pte_t *pte = pvmw->pte; 961 962 if (!pte_dirty(*pte) && !pte_write(*pte)) 963 continue; 964 965 flush_cache_page(vma, address, pte_pfn(*pte)); 966 entry = ptep_clear_flush(vma, address, pte); 967 entry = pte_wrprotect(entry); 968 entry = pte_mkclean(entry); 969 set_pte_at(vma->vm_mm, address, pte, entry); 970 ret = 1; 971 } else { 972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 973 pmd_t *pmd = pvmw->pmd; 974 pmd_t entry; 975 976 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 977 continue; 978 979 flush_cache_range(vma, address, 980 address + HPAGE_PMD_SIZE); 981 entry = pmdp_invalidate(vma, address, pmd); 982 entry = pmd_wrprotect(entry); 983 entry = pmd_mkclean(entry); 984 set_pmd_at(vma->vm_mm, address, pmd, entry); 985 ret = 1; 986 #else 987 /* unexpected pmd-mapped folio? */ 988 WARN_ON_ONCE(1); 989 #endif 990 } 991 992 /* 993 * No need to call mmu_notifier_invalidate_range() as we are 994 * downgrading page table protection not changing it to point 995 * to a new page. 996 * 997 * See Documentation/mm/mmu_notifier.rst 998 */ 999 if (ret) 1000 cleaned++; 1001 } 1002 1003 mmu_notifier_invalidate_range_end(&range); 1004 1005 return cleaned; 1006 } 1007 1008 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1009 unsigned long address, void *arg) 1010 { 1011 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1012 int *cleaned = arg; 1013 1014 *cleaned += page_vma_mkclean_one(&pvmw); 1015 1016 return true; 1017 } 1018 1019 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1020 { 1021 if (vma->vm_flags & VM_SHARED) 1022 return false; 1023 1024 return true; 1025 } 1026 1027 int folio_mkclean(struct folio *folio) 1028 { 1029 int cleaned = 0; 1030 struct address_space *mapping; 1031 struct rmap_walk_control rwc = { 1032 .arg = (void *)&cleaned, 1033 .rmap_one = page_mkclean_one, 1034 .invalid_vma = invalid_mkclean_vma, 1035 }; 1036 1037 BUG_ON(!folio_test_locked(folio)); 1038 1039 if (!folio_mapped(folio)) 1040 return 0; 1041 1042 mapping = folio_mapping(folio); 1043 if (!mapping) 1044 return 0; 1045 1046 rmap_walk(folio, &rwc); 1047 1048 return cleaned; 1049 } 1050 EXPORT_SYMBOL_GPL(folio_mkclean); 1051 1052 /** 1053 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1054 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1055 * within the @vma of shared mappings. And since clean PTEs 1056 * should also be readonly, write protects them too. 1057 * @pfn: start pfn. 1058 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1059 * @pgoff: page offset that the @pfn mapped with. 1060 * @vma: vma that @pfn mapped within. 1061 * 1062 * Returns the number of cleaned PTEs (including PMDs). 1063 */ 1064 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1065 struct vm_area_struct *vma) 1066 { 1067 struct page_vma_mapped_walk pvmw = { 1068 .pfn = pfn, 1069 .nr_pages = nr_pages, 1070 .pgoff = pgoff, 1071 .vma = vma, 1072 .flags = PVMW_SYNC, 1073 }; 1074 1075 if (invalid_mkclean_vma(vma, NULL)) 1076 return 0; 1077 1078 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1079 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1080 1081 return page_vma_mkclean_one(&pvmw); 1082 } 1083 1084 int folio_total_mapcount(struct folio *folio) 1085 { 1086 int mapcount = folio_entire_mapcount(folio); 1087 int nr_pages; 1088 int i; 1089 1090 /* In the common case, avoid the loop when no pages mapped by PTE */ 1091 if (folio_nr_pages_mapped(folio) == 0) 1092 return mapcount; 1093 /* 1094 * Add all the PTE mappings of those pages mapped by PTE. 1095 * Limit the loop to folio_nr_pages_mapped()? 1096 * Perhaps: given all the raciness, that may be a good or a bad idea. 1097 */ 1098 nr_pages = folio_nr_pages(folio); 1099 for (i = 0; i < nr_pages; i++) 1100 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1101 1102 /* But each of those _mapcounts was based on -1 */ 1103 mapcount += nr_pages; 1104 return mapcount; 1105 } 1106 1107 /** 1108 * page_move_anon_rmap - move a page to our anon_vma 1109 * @page: the page to move to our anon_vma 1110 * @vma: the vma the page belongs to 1111 * 1112 * When a page belongs exclusively to one process after a COW event, 1113 * that page can be moved into the anon_vma that belongs to just that 1114 * process, so the rmap code will not search the parent or sibling 1115 * processes. 1116 */ 1117 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1118 { 1119 void *anon_vma = vma->anon_vma; 1120 struct folio *folio = page_folio(page); 1121 1122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1123 VM_BUG_ON_VMA(!anon_vma, vma); 1124 1125 anon_vma += PAGE_MAPPING_ANON; 1126 /* 1127 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1128 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1129 * folio_test_anon()) will not see one without the other. 1130 */ 1131 WRITE_ONCE(folio->mapping, anon_vma); 1132 SetPageAnonExclusive(page); 1133 } 1134 1135 /** 1136 * __page_set_anon_rmap - set up new anonymous rmap 1137 * @folio: Folio which contains page. 1138 * @page: Page to add to rmap. 1139 * @vma: VM area to add page to. 1140 * @address: User virtual address of the mapping 1141 * @exclusive: the page is exclusively owned by the current process 1142 */ 1143 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1144 struct vm_area_struct *vma, unsigned long address, int exclusive) 1145 { 1146 struct anon_vma *anon_vma = vma->anon_vma; 1147 1148 BUG_ON(!anon_vma); 1149 1150 if (folio_test_anon(folio)) 1151 goto out; 1152 1153 /* 1154 * If the page isn't exclusively mapped into this vma, 1155 * we must use the _oldest_ possible anon_vma for the 1156 * page mapping! 1157 */ 1158 if (!exclusive) 1159 anon_vma = anon_vma->root; 1160 1161 /* 1162 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1163 * Make sure the compiler doesn't split the stores of anon_vma and 1164 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1165 * could mistake the mapping for a struct address_space and crash. 1166 */ 1167 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1168 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1169 folio->index = linear_page_index(vma, address); 1170 out: 1171 if (exclusive) 1172 SetPageAnonExclusive(page); 1173 } 1174 1175 /** 1176 * __page_check_anon_rmap - sanity check anonymous rmap addition 1177 * @page: the page to add the mapping to 1178 * @vma: the vm area in which the mapping is added 1179 * @address: the user virtual address mapped 1180 */ 1181 static void __page_check_anon_rmap(struct page *page, 1182 struct vm_area_struct *vma, unsigned long address) 1183 { 1184 struct folio *folio = page_folio(page); 1185 /* 1186 * The page's anon-rmap details (mapping and index) are guaranteed to 1187 * be set up correctly at this point. 1188 * 1189 * We have exclusion against page_add_anon_rmap because the caller 1190 * always holds the page locked. 1191 * 1192 * We have exclusion against page_add_new_anon_rmap because those pages 1193 * are initially only visible via the pagetables, and the pte is locked 1194 * over the call to page_add_new_anon_rmap. 1195 */ 1196 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1197 folio); 1198 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1199 page); 1200 } 1201 1202 /** 1203 * page_add_anon_rmap - add pte mapping to an anonymous page 1204 * @page: the page to add the mapping to 1205 * @vma: the vm area in which the mapping is added 1206 * @address: the user virtual address mapped 1207 * @flags: the rmap flags 1208 * 1209 * The caller needs to hold the pte lock, and the page must be locked in 1210 * the anon_vma case: to serialize mapping,index checking after setting, 1211 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1212 * (but PageKsm is never downgraded to PageAnon). 1213 */ 1214 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1215 unsigned long address, rmap_t flags) 1216 { 1217 struct folio *folio = page_folio(page); 1218 atomic_t *mapped = &folio->_nr_pages_mapped; 1219 int nr = 0, nr_pmdmapped = 0; 1220 bool compound = flags & RMAP_COMPOUND; 1221 bool first = true; 1222 1223 /* Is page being mapped by PTE? Is this its first map to be added? */ 1224 if (likely(!compound)) { 1225 first = atomic_inc_and_test(&page->_mapcount); 1226 nr = first; 1227 if (first && folio_test_large(folio)) { 1228 nr = atomic_inc_return_relaxed(mapped); 1229 nr = (nr < COMPOUND_MAPPED); 1230 } 1231 } else if (folio_test_pmd_mappable(folio)) { 1232 /* That test is redundant: it's for safety or to optimize out */ 1233 1234 first = atomic_inc_and_test(&folio->_entire_mapcount); 1235 if (first) { 1236 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1237 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1238 nr_pmdmapped = folio_nr_pages(folio); 1239 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1240 /* Raced ahead of a remove and another add? */ 1241 if (unlikely(nr < 0)) 1242 nr = 0; 1243 } else { 1244 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1245 nr = 0; 1246 } 1247 } 1248 } 1249 1250 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1251 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1252 1253 if (nr_pmdmapped) 1254 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1255 if (nr) 1256 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1257 1258 if (likely(!folio_test_ksm(folio))) { 1259 /* address might be in next vma when migration races vma_merge */ 1260 if (first) 1261 __page_set_anon_rmap(folio, page, vma, address, 1262 !!(flags & RMAP_EXCLUSIVE)); 1263 else 1264 __page_check_anon_rmap(page, vma, address); 1265 } 1266 1267 mlock_vma_folio(folio, vma, compound); 1268 } 1269 1270 /** 1271 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1272 * @folio: The folio to add the mapping to. 1273 * @vma: the vm area in which the mapping is added 1274 * @address: the user virtual address mapped 1275 * 1276 * Like page_add_anon_rmap() but must only be called on *new* folios. 1277 * This means the inc-and-test can be bypassed. 1278 * The folio does not have to be locked. 1279 * 1280 * If the folio is large, it is accounted as a THP. As the folio 1281 * is new, it's assumed to be mapped exclusively by a single process. 1282 */ 1283 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1284 unsigned long address) 1285 { 1286 int nr; 1287 1288 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1289 __folio_set_swapbacked(folio); 1290 1291 if (likely(!folio_test_pmd_mappable(folio))) { 1292 /* increment count (starts at -1) */ 1293 atomic_set(&folio->_mapcount, 0); 1294 nr = 1; 1295 } else { 1296 /* increment count (starts at -1) */ 1297 atomic_set(&folio->_entire_mapcount, 0); 1298 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1299 nr = folio_nr_pages(folio); 1300 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1301 } 1302 1303 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1304 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1305 } 1306 1307 /** 1308 * page_add_file_rmap - add pte mapping to a file page 1309 * @page: the page to add the mapping to 1310 * @vma: the vm area in which the mapping is added 1311 * @compound: charge the page as compound or small page 1312 * 1313 * The caller needs to hold the pte lock. 1314 */ 1315 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1316 bool compound) 1317 { 1318 struct folio *folio = page_folio(page); 1319 atomic_t *mapped = &folio->_nr_pages_mapped; 1320 int nr = 0, nr_pmdmapped = 0; 1321 bool first; 1322 1323 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1324 1325 /* Is page being mapped by PTE? Is this its first map to be added? */ 1326 if (likely(!compound)) { 1327 first = atomic_inc_and_test(&page->_mapcount); 1328 nr = first; 1329 if (first && folio_test_large(folio)) { 1330 nr = atomic_inc_return_relaxed(mapped); 1331 nr = (nr < COMPOUND_MAPPED); 1332 } 1333 } else if (folio_test_pmd_mappable(folio)) { 1334 /* That test is redundant: it's for safety or to optimize out */ 1335 1336 first = atomic_inc_and_test(&folio->_entire_mapcount); 1337 if (first) { 1338 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1339 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1340 nr_pmdmapped = folio_nr_pages(folio); 1341 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1342 /* Raced ahead of a remove and another add? */ 1343 if (unlikely(nr < 0)) 1344 nr = 0; 1345 } else { 1346 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1347 nr = 0; 1348 } 1349 } 1350 } 1351 1352 if (nr_pmdmapped) 1353 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1354 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1355 if (nr) 1356 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1357 1358 mlock_vma_folio(folio, vma, compound); 1359 } 1360 1361 /** 1362 * page_remove_rmap - take down pte mapping from a page 1363 * @page: page to remove mapping from 1364 * @vma: the vm area from which the mapping is removed 1365 * @compound: uncharge the page as compound or small page 1366 * 1367 * The caller needs to hold the pte lock. 1368 */ 1369 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1370 bool compound) 1371 { 1372 struct folio *folio = page_folio(page); 1373 atomic_t *mapped = &folio->_nr_pages_mapped; 1374 int nr = 0, nr_pmdmapped = 0; 1375 bool last; 1376 enum node_stat_item idx; 1377 1378 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1379 1380 /* Hugetlb pages are not counted in NR_*MAPPED */ 1381 if (unlikely(folio_test_hugetlb(folio))) { 1382 /* hugetlb pages are always mapped with pmds */ 1383 atomic_dec(&folio->_entire_mapcount); 1384 return; 1385 } 1386 1387 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1388 if (likely(!compound)) { 1389 last = atomic_add_negative(-1, &page->_mapcount); 1390 nr = last; 1391 if (last && folio_test_large(folio)) { 1392 nr = atomic_dec_return_relaxed(mapped); 1393 nr = (nr < COMPOUND_MAPPED); 1394 } 1395 } else if (folio_test_pmd_mappable(folio)) { 1396 /* That test is redundant: it's for safety or to optimize out */ 1397 1398 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1399 if (last) { 1400 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1401 if (likely(nr < COMPOUND_MAPPED)) { 1402 nr_pmdmapped = folio_nr_pages(folio); 1403 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1404 /* Raced ahead of another remove and an add? */ 1405 if (unlikely(nr < 0)) 1406 nr = 0; 1407 } else { 1408 /* An add of COMPOUND_MAPPED raced ahead */ 1409 nr = 0; 1410 } 1411 } 1412 } 1413 1414 if (nr_pmdmapped) { 1415 if (folio_test_anon(folio)) 1416 idx = NR_ANON_THPS; 1417 else if (folio_test_swapbacked(folio)) 1418 idx = NR_SHMEM_PMDMAPPED; 1419 else 1420 idx = NR_FILE_PMDMAPPED; 1421 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1422 } 1423 if (nr) { 1424 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1425 __lruvec_stat_mod_folio(folio, idx, -nr); 1426 1427 /* 1428 * Queue anon THP for deferred split if at least one 1429 * page of the folio is unmapped and at least one page 1430 * is still mapped. 1431 */ 1432 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1433 if (!compound || nr < nr_pmdmapped) 1434 deferred_split_folio(folio); 1435 } 1436 1437 /* 1438 * It would be tidy to reset folio_test_anon mapping when fully 1439 * unmapped, but that might overwrite a racing page_add_anon_rmap 1440 * which increments mapcount after us but sets mapping before us: 1441 * so leave the reset to free_pages_prepare, and remember that 1442 * it's only reliable while mapped. 1443 */ 1444 1445 munlock_vma_folio(folio, vma, compound); 1446 } 1447 1448 /* 1449 * @arg: enum ttu_flags will be passed to this argument 1450 */ 1451 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1452 unsigned long address, void *arg) 1453 { 1454 struct mm_struct *mm = vma->vm_mm; 1455 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1456 pte_t pteval; 1457 struct page *subpage; 1458 bool anon_exclusive, ret = true; 1459 struct mmu_notifier_range range; 1460 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1461 1462 /* 1463 * When racing against e.g. zap_pte_range() on another cpu, 1464 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1465 * try_to_unmap() may return before page_mapped() has become false, 1466 * if page table locking is skipped: use TTU_SYNC to wait for that. 1467 */ 1468 if (flags & TTU_SYNC) 1469 pvmw.flags = PVMW_SYNC; 1470 1471 if (flags & TTU_SPLIT_HUGE_PMD) 1472 split_huge_pmd_address(vma, address, false, folio); 1473 1474 /* 1475 * For THP, we have to assume the worse case ie pmd for invalidation. 1476 * For hugetlb, it could be much worse if we need to do pud 1477 * invalidation in the case of pmd sharing. 1478 * 1479 * Note that the folio can not be freed in this function as call of 1480 * try_to_unmap() must hold a reference on the folio. 1481 */ 1482 range.end = vma_address_end(&pvmw); 1483 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1484 address, range.end); 1485 if (folio_test_hugetlb(folio)) { 1486 /* 1487 * If sharing is possible, start and end will be adjusted 1488 * accordingly. 1489 */ 1490 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1491 &range.end); 1492 } 1493 mmu_notifier_invalidate_range_start(&range); 1494 1495 while (page_vma_mapped_walk(&pvmw)) { 1496 /* Unexpected PMD-mapped THP? */ 1497 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1498 1499 /* 1500 * If the folio is in an mlock()d vma, we must not swap it out. 1501 */ 1502 if (!(flags & TTU_IGNORE_MLOCK) && 1503 (vma->vm_flags & VM_LOCKED)) { 1504 /* Restore the mlock which got missed */ 1505 mlock_vma_folio(folio, vma, false); 1506 page_vma_mapped_walk_done(&pvmw); 1507 ret = false; 1508 break; 1509 } 1510 1511 subpage = folio_page(folio, 1512 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1513 address = pvmw.address; 1514 anon_exclusive = folio_test_anon(folio) && 1515 PageAnonExclusive(subpage); 1516 1517 if (folio_test_hugetlb(folio)) { 1518 bool anon = folio_test_anon(folio); 1519 1520 /* 1521 * The try_to_unmap() is only passed a hugetlb page 1522 * in the case where the hugetlb page is poisoned. 1523 */ 1524 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1525 /* 1526 * huge_pmd_unshare may unmap an entire PMD page. 1527 * There is no way of knowing exactly which PMDs may 1528 * be cached for this mm, so we must flush them all. 1529 * start/end were already adjusted above to cover this 1530 * range. 1531 */ 1532 flush_cache_range(vma, range.start, range.end); 1533 1534 /* 1535 * To call huge_pmd_unshare, i_mmap_rwsem must be 1536 * held in write mode. Caller needs to explicitly 1537 * do this outside rmap routines. 1538 * 1539 * We also must hold hugetlb vma_lock in write mode. 1540 * Lock order dictates acquiring vma_lock BEFORE 1541 * i_mmap_rwsem. We can only try lock here and fail 1542 * if unsuccessful. 1543 */ 1544 if (!anon) { 1545 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1546 if (!hugetlb_vma_trylock_write(vma)) { 1547 page_vma_mapped_walk_done(&pvmw); 1548 ret = false; 1549 break; 1550 } 1551 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1552 hugetlb_vma_unlock_write(vma); 1553 flush_tlb_range(vma, 1554 range.start, range.end); 1555 mmu_notifier_invalidate_range(mm, 1556 range.start, range.end); 1557 /* 1558 * The ref count of the PMD page was 1559 * dropped which is part of the way map 1560 * counting is done for shared PMDs. 1561 * Return 'true' here. When there is 1562 * no other sharing, huge_pmd_unshare 1563 * returns false and we will unmap the 1564 * actual page and drop map count 1565 * to zero. 1566 */ 1567 page_vma_mapped_walk_done(&pvmw); 1568 break; 1569 } 1570 hugetlb_vma_unlock_write(vma); 1571 } 1572 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1573 } else { 1574 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1575 /* Nuke the page table entry. */ 1576 if (should_defer_flush(mm, flags)) { 1577 /* 1578 * We clear the PTE but do not flush so potentially 1579 * a remote CPU could still be writing to the folio. 1580 * If the entry was previously clean then the 1581 * architecture must guarantee that a clear->dirty 1582 * transition on a cached TLB entry is written through 1583 * and traps if the PTE is unmapped. 1584 */ 1585 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1586 1587 set_tlb_ubc_flush_pending(mm, pteval); 1588 } else { 1589 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1590 } 1591 } 1592 1593 /* 1594 * Now the pte is cleared. If this pte was uffd-wp armed, 1595 * we may want to replace a none pte with a marker pte if 1596 * it's file-backed, so we don't lose the tracking info. 1597 */ 1598 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1599 1600 /* Set the dirty flag on the folio now the pte is gone. */ 1601 if (pte_dirty(pteval)) 1602 folio_mark_dirty(folio); 1603 1604 /* Update high watermark before we lower rss */ 1605 update_hiwater_rss(mm); 1606 1607 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1608 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1609 if (folio_test_hugetlb(folio)) { 1610 hugetlb_count_sub(folio_nr_pages(folio), mm); 1611 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1612 } else { 1613 dec_mm_counter(mm, mm_counter(&folio->page)); 1614 set_pte_at(mm, address, pvmw.pte, pteval); 1615 } 1616 1617 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1618 /* 1619 * The guest indicated that the page content is of no 1620 * interest anymore. Simply discard the pte, vmscan 1621 * will take care of the rest. 1622 * A future reference will then fault in a new zero 1623 * page. When userfaultfd is active, we must not drop 1624 * this page though, as its main user (postcopy 1625 * migration) will not expect userfaults on already 1626 * copied pages. 1627 */ 1628 dec_mm_counter(mm, mm_counter(&folio->page)); 1629 /* We have to invalidate as we cleared the pte */ 1630 mmu_notifier_invalidate_range(mm, address, 1631 address + PAGE_SIZE); 1632 } else if (folio_test_anon(folio)) { 1633 swp_entry_t entry = { .val = page_private(subpage) }; 1634 pte_t swp_pte; 1635 /* 1636 * Store the swap location in the pte. 1637 * See handle_pte_fault() ... 1638 */ 1639 if (unlikely(folio_test_swapbacked(folio) != 1640 folio_test_swapcache(folio))) { 1641 WARN_ON_ONCE(1); 1642 ret = false; 1643 /* We have to invalidate as we cleared the pte */ 1644 mmu_notifier_invalidate_range(mm, address, 1645 address + PAGE_SIZE); 1646 page_vma_mapped_walk_done(&pvmw); 1647 break; 1648 } 1649 1650 /* MADV_FREE page check */ 1651 if (!folio_test_swapbacked(folio)) { 1652 int ref_count, map_count; 1653 1654 /* 1655 * Synchronize with gup_pte_range(): 1656 * - clear PTE; barrier; read refcount 1657 * - inc refcount; barrier; read PTE 1658 */ 1659 smp_mb(); 1660 1661 ref_count = folio_ref_count(folio); 1662 map_count = folio_mapcount(folio); 1663 1664 /* 1665 * Order reads for page refcount and dirty flag 1666 * (see comments in __remove_mapping()). 1667 */ 1668 smp_rmb(); 1669 1670 /* 1671 * The only page refs must be one from isolation 1672 * plus the rmap(s) (dropped by discard:). 1673 */ 1674 if (ref_count == 1 + map_count && 1675 !folio_test_dirty(folio)) { 1676 /* Invalidate as we cleared the pte */ 1677 mmu_notifier_invalidate_range(mm, 1678 address, address + PAGE_SIZE); 1679 dec_mm_counter(mm, MM_ANONPAGES); 1680 goto discard; 1681 } 1682 1683 /* 1684 * If the folio was redirtied, it cannot be 1685 * discarded. Remap the page to page table. 1686 */ 1687 set_pte_at(mm, address, pvmw.pte, pteval); 1688 folio_set_swapbacked(folio); 1689 ret = false; 1690 page_vma_mapped_walk_done(&pvmw); 1691 break; 1692 } 1693 1694 if (swap_duplicate(entry) < 0) { 1695 set_pte_at(mm, address, pvmw.pte, pteval); 1696 ret = false; 1697 page_vma_mapped_walk_done(&pvmw); 1698 break; 1699 } 1700 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1701 swap_free(entry); 1702 set_pte_at(mm, address, pvmw.pte, pteval); 1703 ret = false; 1704 page_vma_mapped_walk_done(&pvmw); 1705 break; 1706 } 1707 1708 /* See page_try_share_anon_rmap(): clear PTE first. */ 1709 if (anon_exclusive && 1710 page_try_share_anon_rmap(subpage)) { 1711 swap_free(entry); 1712 set_pte_at(mm, address, pvmw.pte, pteval); 1713 ret = false; 1714 page_vma_mapped_walk_done(&pvmw); 1715 break; 1716 } 1717 if (list_empty(&mm->mmlist)) { 1718 spin_lock(&mmlist_lock); 1719 if (list_empty(&mm->mmlist)) 1720 list_add(&mm->mmlist, &init_mm.mmlist); 1721 spin_unlock(&mmlist_lock); 1722 } 1723 dec_mm_counter(mm, MM_ANONPAGES); 1724 inc_mm_counter(mm, MM_SWAPENTS); 1725 swp_pte = swp_entry_to_pte(entry); 1726 if (anon_exclusive) 1727 swp_pte = pte_swp_mkexclusive(swp_pte); 1728 if (pte_soft_dirty(pteval)) 1729 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1730 if (pte_uffd_wp(pteval)) 1731 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1732 set_pte_at(mm, address, pvmw.pte, swp_pte); 1733 /* Invalidate as we cleared the pte */ 1734 mmu_notifier_invalidate_range(mm, address, 1735 address + PAGE_SIZE); 1736 } else { 1737 /* 1738 * This is a locked file-backed folio, 1739 * so it cannot be removed from the page 1740 * cache and replaced by a new folio before 1741 * mmu_notifier_invalidate_range_end, so no 1742 * concurrent thread might update its page table 1743 * to point at a new folio while a device is 1744 * still using this folio. 1745 * 1746 * See Documentation/mm/mmu_notifier.rst 1747 */ 1748 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1749 } 1750 discard: 1751 /* 1752 * No need to call mmu_notifier_invalidate_range() it has be 1753 * done above for all cases requiring it to happen under page 1754 * table lock before mmu_notifier_invalidate_range_end() 1755 * 1756 * See Documentation/mm/mmu_notifier.rst 1757 */ 1758 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1759 if (vma->vm_flags & VM_LOCKED) 1760 mlock_drain_local(); 1761 folio_put(folio); 1762 } 1763 1764 mmu_notifier_invalidate_range_end(&range); 1765 1766 return ret; 1767 } 1768 1769 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1770 { 1771 return vma_is_temporary_stack(vma); 1772 } 1773 1774 static int folio_not_mapped(struct folio *folio) 1775 { 1776 return !folio_mapped(folio); 1777 } 1778 1779 /** 1780 * try_to_unmap - Try to remove all page table mappings to a folio. 1781 * @folio: The folio to unmap. 1782 * @flags: action and flags 1783 * 1784 * Tries to remove all the page table entries which are mapping this 1785 * folio. It is the caller's responsibility to check if the folio is 1786 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1787 * 1788 * Context: Caller must hold the folio lock. 1789 */ 1790 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1791 { 1792 struct rmap_walk_control rwc = { 1793 .rmap_one = try_to_unmap_one, 1794 .arg = (void *)flags, 1795 .done = folio_not_mapped, 1796 .anon_lock = folio_lock_anon_vma_read, 1797 }; 1798 1799 if (flags & TTU_RMAP_LOCKED) 1800 rmap_walk_locked(folio, &rwc); 1801 else 1802 rmap_walk(folio, &rwc); 1803 } 1804 1805 /* 1806 * @arg: enum ttu_flags will be passed to this argument. 1807 * 1808 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1809 * containing migration entries. 1810 */ 1811 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1812 unsigned long address, void *arg) 1813 { 1814 struct mm_struct *mm = vma->vm_mm; 1815 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1816 pte_t pteval; 1817 struct page *subpage; 1818 bool anon_exclusive, ret = true; 1819 struct mmu_notifier_range range; 1820 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1821 1822 /* 1823 * When racing against e.g. zap_pte_range() on another cpu, 1824 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1825 * try_to_migrate() may return before page_mapped() has become false, 1826 * if page table locking is skipped: use TTU_SYNC to wait for that. 1827 */ 1828 if (flags & TTU_SYNC) 1829 pvmw.flags = PVMW_SYNC; 1830 1831 /* 1832 * unmap_page() in mm/huge_memory.c is the only user of migration with 1833 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1834 */ 1835 if (flags & TTU_SPLIT_HUGE_PMD) 1836 split_huge_pmd_address(vma, address, true, folio); 1837 1838 /* 1839 * For THP, we have to assume the worse case ie pmd for invalidation. 1840 * For hugetlb, it could be much worse if we need to do pud 1841 * invalidation in the case of pmd sharing. 1842 * 1843 * Note that the page can not be free in this function as call of 1844 * try_to_unmap() must hold a reference on the page. 1845 */ 1846 range.end = vma_address_end(&pvmw); 1847 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1848 address, range.end); 1849 if (folio_test_hugetlb(folio)) { 1850 /* 1851 * If sharing is possible, start and end will be adjusted 1852 * accordingly. 1853 */ 1854 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1855 &range.end); 1856 } 1857 mmu_notifier_invalidate_range_start(&range); 1858 1859 while (page_vma_mapped_walk(&pvmw)) { 1860 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1861 /* PMD-mapped THP migration entry */ 1862 if (!pvmw.pte) { 1863 subpage = folio_page(folio, 1864 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1865 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1866 !folio_test_pmd_mappable(folio), folio); 1867 1868 if (set_pmd_migration_entry(&pvmw, subpage)) { 1869 ret = false; 1870 page_vma_mapped_walk_done(&pvmw); 1871 break; 1872 } 1873 continue; 1874 } 1875 #endif 1876 1877 /* Unexpected PMD-mapped THP? */ 1878 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1879 1880 if (folio_is_zone_device(folio)) { 1881 /* 1882 * Our PTE is a non-present device exclusive entry and 1883 * calculating the subpage as for the common case would 1884 * result in an invalid pointer. 1885 * 1886 * Since only PAGE_SIZE pages can currently be 1887 * migrated, just set it to page. This will need to be 1888 * changed when hugepage migrations to device private 1889 * memory are supported. 1890 */ 1891 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1892 subpage = &folio->page; 1893 } else { 1894 subpage = folio_page(folio, 1895 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1896 } 1897 address = pvmw.address; 1898 anon_exclusive = folio_test_anon(folio) && 1899 PageAnonExclusive(subpage); 1900 1901 if (folio_test_hugetlb(folio)) { 1902 bool anon = folio_test_anon(folio); 1903 1904 /* 1905 * huge_pmd_unshare may unmap an entire PMD page. 1906 * There is no way of knowing exactly which PMDs may 1907 * be cached for this mm, so we must flush them all. 1908 * start/end were already adjusted above to cover this 1909 * range. 1910 */ 1911 flush_cache_range(vma, range.start, range.end); 1912 1913 /* 1914 * To call huge_pmd_unshare, i_mmap_rwsem must be 1915 * held in write mode. Caller needs to explicitly 1916 * do this outside rmap routines. 1917 * 1918 * We also must hold hugetlb vma_lock in write mode. 1919 * Lock order dictates acquiring vma_lock BEFORE 1920 * i_mmap_rwsem. We can only try lock here and 1921 * fail if unsuccessful. 1922 */ 1923 if (!anon) { 1924 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1925 if (!hugetlb_vma_trylock_write(vma)) { 1926 page_vma_mapped_walk_done(&pvmw); 1927 ret = false; 1928 break; 1929 } 1930 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1931 hugetlb_vma_unlock_write(vma); 1932 flush_tlb_range(vma, 1933 range.start, range.end); 1934 mmu_notifier_invalidate_range(mm, 1935 range.start, range.end); 1936 1937 /* 1938 * The ref count of the PMD page was 1939 * dropped which is part of the way map 1940 * counting is done for shared PMDs. 1941 * Return 'true' here. When there is 1942 * no other sharing, huge_pmd_unshare 1943 * returns false and we will unmap the 1944 * actual page and drop map count 1945 * to zero. 1946 */ 1947 page_vma_mapped_walk_done(&pvmw); 1948 break; 1949 } 1950 hugetlb_vma_unlock_write(vma); 1951 } 1952 /* Nuke the hugetlb page table entry */ 1953 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1954 } else { 1955 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1956 /* Nuke the page table entry. */ 1957 if (should_defer_flush(mm, flags)) { 1958 /* 1959 * We clear the PTE but do not flush so potentially 1960 * a remote CPU could still be writing to the folio. 1961 * If the entry was previously clean then the 1962 * architecture must guarantee that a clear->dirty 1963 * transition on a cached TLB entry is written through 1964 * and traps if the PTE is unmapped. 1965 */ 1966 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1967 1968 set_tlb_ubc_flush_pending(mm, pteval); 1969 } else { 1970 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1971 } 1972 } 1973 1974 /* Set the dirty flag on the folio now the pte is gone. */ 1975 if (pte_dirty(pteval)) 1976 folio_mark_dirty(folio); 1977 1978 /* Update high watermark before we lower rss */ 1979 update_hiwater_rss(mm); 1980 1981 if (folio_is_device_private(folio)) { 1982 unsigned long pfn = folio_pfn(folio); 1983 swp_entry_t entry; 1984 pte_t swp_pte; 1985 1986 if (anon_exclusive) 1987 BUG_ON(page_try_share_anon_rmap(subpage)); 1988 1989 /* 1990 * Store the pfn of the page in a special migration 1991 * pte. do_swap_page() will wait until the migration 1992 * pte is removed and then restart fault handling. 1993 */ 1994 entry = pte_to_swp_entry(pteval); 1995 if (is_writable_device_private_entry(entry)) 1996 entry = make_writable_migration_entry(pfn); 1997 else if (anon_exclusive) 1998 entry = make_readable_exclusive_migration_entry(pfn); 1999 else 2000 entry = make_readable_migration_entry(pfn); 2001 swp_pte = swp_entry_to_pte(entry); 2002 2003 /* 2004 * pteval maps a zone device page and is therefore 2005 * a swap pte. 2006 */ 2007 if (pte_swp_soft_dirty(pteval)) 2008 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2009 if (pte_swp_uffd_wp(pteval)) 2010 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2011 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2012 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2013 compound_order(&folio->page)); 2014 /* 2015 * No need to invalidate here it will synchronize on 2016 * against the special swap migration pte. 2017 */ 2018 } else if (PageHWPoison(subpage)) { 2019 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2020 if (folio_test_hugetlb(folio)) { 2021 hugetlb_count_sub(folio_nr_pages(folio), mm); 2022 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2023 } else { 2024 dec_mm_counter(mm, mm_counter(&folio->page)); 2025 set_pte_at(mm, address, pvmw.pte, pteval); 2026 } 2027 2028 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2029 /* 2030 * The guest indicated that the page content is of no 2031 * interest anymore. Simply discard the pte, vmscan 2032 * will take care of the rest. 2033 * A future reference will then fault in a new zero 2034 * page. When userfaultfd is active, we must not drop 2035 * this page though, as its main user (postcopy 2036 * migration) will not expect userfaults on already 2037 * copied pages. 2038 */ 2039 dec_mm_counter(mm, mm_counter(&folio->page)); 2040 /* We have to invalidate as we cleared the pte */ 2041 mmu_notifier_invalidate_range(mm, address, 2042 address + PAGE_SIZE); 2043 } else { 2044 swp_entry_t entry; 2045 pte_t swp_pte; 2046 2047 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2048 if (folio_test_hugetlb(folio)) 2049 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2050 else 2051 set_pte_at(mm, address, pvmw.pte, pteval); 2052 ret = false; 2053 page_vma_mapped_walk_done(&pvmw); 2054 break; 2055 } 2056 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2057 !anon_exclusive, subpage); 2058 2059 /* See page_try_share_anon_rmap(): clear PTE first. */ 2060 if (anon_exclusive && 2061 page_try_share_anon_rmap(subpage)) { 2062 if (folio_test_hugetlb(folio)) 2063 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2064 else 2065 set_pte_at(mm, address, pvmw.pte, pteval); 2066 ret = false; 2067 page_vma_mapped_walk_done(&pvmw); 2068 break; 2069 } 2070 2071 /* 2072 * Store the pfn of the page in a special migration 2073 * pte. do_swap_page() will wait until the migration 2074 * pte is removed and then restart fault handling. 2075 */ 2076 if (pte_write(pteval)) 2077 entry = make_writable_migration_entry( 2078 page_to_pfn(subpage)); 2079 else if (anon_exclusive) 2080 entry = make_readable_exclusive_migration_entry( 2081 page_to_pfn(subpage)); 2082 else 2083 entry = make_readable_migration_entry( 2084 page_to_pfn(subpage)); 2085 if (pte_young(pteval)) 2086 entry = make_migration_entry_young(entry); 2087 if (pte_dirty(pteval)) 2088 entry = make_migration_entry_dirty(entry); 2089 swp_pte = swp_entry_to_pte(entry); 2090 if (pte_soft_dirty(pteval)) 2091 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2092 if (pte_uffd_wp(pteval)) 2093 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2094 if (folio_test_hugetlb(folio)) 2095 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2096 else 2097 set_pte_at(mm, address, pvmw.pte, swp_pte); 2098 trace_set_migration_pte(address, pte_val(swp_pte), 2099 compound_order(&folio->page)); 2100 /* 2101 * No need to invalidate here it will synchronize on 2102 * against the special swap migration pte. 2103 */ 2104 } 2105 2106 /* 2107 * No need to call mmu_notifier_invalidate_range() it has be 2108 * done above for all cases requiring it to happen under page 2109 * table lock before mmu_notifier_invalidate_range_end() 2110 * 2111 * See Documentation/mm/mmu_notifier.rst 2112 */ 2113 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2114 if (vma->vm_flags & VM_LOCKED) 2115 mlock_drain_local(); 2116 folio_put(folio); 2117 } 2118 2119 mmu_notifier_invalidate_range_end(&range); 2120 2121 return ret; 2122 } 2123 2124 /** 2125 * try_to_migrate - try to replace all page table mappings with swap entries 2126 * @folio: the folio to replace page table entries for 2127 * @flags: action and flags 2128 * 2129 * Tries to remove all the page table entries which are mapping this folio and 2130 * replace them with special swap entries. Caller must hold the folio lock. 2131 */ 2132 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2133 { 2134 struct rmap_walk_control rwc = { 2135 .rmap_one = try_to_migrate_one, 2136 .arg = (void *)flags, 2137 .done = folio_not_mapped, 2138 .anon_lock = folio_lock_anon_vma_read, 2139 }; 2140 2141 /* 2142 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2143 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2144 */ 2145 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2146 TTU_SYNC | TTU_BATCH_FLUSH))) 2147 return; 2148 2149 if (folio_is_zone_device(folio) && 2150 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2151 return; 2152 2153 /* 2154 * During exec, a temporary VMA is setup and later moved. 2155 * The VMA is moved under the anon_vma lock but not the 2156 * page tables leading to a race where migration cannot 2157 * find the migration ptes. Rather than increasing the 2158 * locking requirements of exec(), migration skips 2159 * temporary VMAs until after exec() completes. 2160 */ 2161 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2162 rwc.invalid_vma = invalid_migration_vma; 2163 2164 if (flags & TTU_RMAP_LOCKED) 2165 rmap_walk_locked(folio, &rwc); 2166 else 2167 rmap_walk(folio, &rwc); 2168 } 2169 2170 #ifdef CONFIG_DEVICE_PRIVATE 2171 struct make_exclusive_args { 2172 struct mm_struct *mm; 2173 unsigned long address; 2174 void *owner; 2175 bool valid; 2176 }; 2177 2178 static bool page_make_device_exclusive_one(struct folio *folio, 2179 struct vm_area_struct *vma, unsigned long address, void *priv) 2180 { 2181 struct mm_struct *mm = vma->vm_mm; 2182 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2183 struct make_exclusive_args *args = priv; 2184 pte_t pteval; 2185 struct page *subpage; 2186 bool ret = true; 2187 struct mmu_notifier_range range; 2188 swp_entry_t entry; 2189 pte_t swp_pte; 2190 2191 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2192 vma->vm_mm, address, min(vma->vm_end, 2193 address + folio_size(folio)), 2194 args->owner); 2195 mmu_notifier_invalidate_range_start(&range); 2196 2197 while (page_vma_mapped_walk(&pvmw)) { 2198 /* Unexpected PMD-mapped THP? */ 2199 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2200 2201 if (!pte_present(*pvmw.pte)) { 2202 ret = false; 2203 page_vma_mapped_walk_done(&pvmw); 2204 break; 2205 } 2206 2207 subpage = folio_page(folio, 2208 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2209 address = pvmw.address; 2210 2211 /* Nuke the page table entry. */ 2212 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2213 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2214 2215 /* Set the dirty flag on the folio now the pte is gone. */ 2216 if (pte_dirty(pteval)) 2217 folio_mark_dirty(folio); 2218 2219 /* 2220 * Check that our target page is still mapped at the expected 2221 * address. 2222 */ 2223 if (args->mm == mm && args->address == address && 2224 pte_write(pteval)) 2225 args->valid = true; 2226 2227 /* 2228 * Store the pfn of the page in a special migration 2229 * pte. do_swap_page() will wait until the migration 2230 * pte is removed and then restart fault handling. 2231 */ 2232 if (pte_write(pteval)) 2233 entry = make_writable_device_exclusive_entry( 2234 page_to_pfn(subpage)); 2235 else 2236 entry = make_readable_device_exclusive_entry( 2237 page_to_pfn(subpage)); 2238 swp_pte = swp_entry_to_pte(entry); 2239 if (pte_soft_dirty(pteval)) 2240 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2241 if (pte_uffd_wp(pteval)) 2242 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2243 2244 set_pte_at(mm, address, pvmw.pte, swp_pte); 2245 2246 /* 2247 * There is a reference on the page for the swap entry which has 2248 * been removed, so shouldn't take another. 2249 */ 2250 page_remove_rmap(subpage, vma, false); 2251 } 2252 2253 mmu_notifier_invalidate_range_end(&range); 2254 2255 return ret; 2256 } 2257 2258 /** 2259 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2260 * @folio: The folio to replace page table entries for. 2261 * @mm: The mm_struct where the folio is expected to be mapped. 2262 * @address: Address where the folio is expected to be mapped. 2263 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2264 * 2265 * Tries to remove all the page table entries which are mapping this 2266 * folio and replace them with special device exclusive swap entries to 2267 * grant a device exclusive access to the folio. 2268 * 2269 * Context: Caller must hold the folio lock. 2270 * Return: false if the page is still mapped, or if it could not be unmapped 2271 * from the expected address. Otherwise returns true (success). 2272 */ 2273 static bool folio_make_device_exclusive(struct folio *folio, 2274 struct mm_struct *mm, unsigned long address, void *owner) 2275 { 2276 struct make_exclusive_args args = { 2277 .mm = mm, 2278 .address = address, 2279 .owner = owner, 2280 .valid = false, 2281 }; 2282 struct rmap_walk_control rwc = { 2283 .rmap_one = page_make_device_exclusive_one, 2284 .done = folio_not_mapped, 2285 .anon_lock = folio_lock_anon_vma_read, 2286 .arg = &args, 2287 }; 2288 2289 /* 2290 * Restrict to anonymous folios for now to avoid potential writeback 2291 * issues. 2292 */ 2293 if (!folio_test_anon(folio)) 2294 return false; 2295 2296 rmap_walk(folio, &rwc); 2297 2298 return args.valid && !folio_mapcount(folio); 2299 } 2300 2301 /** 2302 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2303 * @mm: mm_struct of associated target process 2304 * @start: start of the region to mark for exclusive device access 2305 * @end: end address of region 2306 * @pages: returns the pages which were successfully marked for exclusive access 2307 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2308 * 2309 * Returns: number of pages found in the range by GUP. A page is marked for 2310 * exclusive access only if the page pointer is non-NULL. 2311 * 2312 * This function finds ptes mapping page(s) to the given address range, locks 2313 * them and replaces mappings with special swap entries preventing userspace CPU 2314 * access. On fault these entries are replaced with the original mapping after 2315 * calling MMU notifiers. 2316 * 2317 * A driver using this to program access from a device must use a mmu notifier 2318 * critical section to hold a device specific lock during programming. Once 2319 * programming is complete it should drop the page lock and reference after 2320 * which point CPU access to the page will revoke the exclusive access. 2321 */ 2322 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2323 unsigned long end, struct page **pages, 2324 void *owner) 2325 { 2326 long npages = (end - start) >> PAGE_SHIFT; 2327 long i; 2328 2329 npages = get_user_pages_remote(mm, start, npages, 2330 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2331 pages, NULL, NULL); 2332 if (npages < 0) 2333 return npages; 2334 2335 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2336 struct folio *folio = page_folio(pages[i]); 2337 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2338 folio_put(folio); 2339 pages[i] = NULL; 2340 continue; 2341 } 2342 2343 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2344 folio_unlock(folio); 2345 folio_put(folio); 2346 pages[i] = NULL; 2347 } 2348 } 2349 2350 return npages; 2351 } 2352 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2353 #endif 2354 2355 void __put_anon_vma(struct anon_vma *anon_vma) 2356 { 2357 struct anon_vma *root = anon_vma->root; 2358 2359 anon_vma_free(anon_vma); 2360 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2361 anon_vma_free(root); 2362 } 2363 2364 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2365 struct rmap_walk_control *rwc) 2366 { 2367 struct anon_vma *anon_vma; 2368 2369 if (rwc->anon_lock) 2370 return rwc->anon_lock(folio, rwc); 2371 2372 /* 2373 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2374 * because that depends on page_mapped(); but not all its usages 2375 * are holding mmap_lock. Users without mmap_lock are required to 2376 * take a reference count to prevent the anon_vma disappearing 2377 */ 2378 anon_vma = folio_anon_vma(folio); 2379 if (!anon_vma) 2380 return NULL; 2381 2382 if (anon_vma_trylock_read(anon_vma)) 2383 goto out; 2384 2385 if (rwc->try_lock) { 2386 anon_vma = NULL; 2387 rwc->contended = true; 2388 goto out; 2389 } 2390 2391 anon_vma_lock_read(anon_vma); 2392 out: 2393 return anon_vma; 2394 } 2395 2396 /* 2397 * rmap_walk_anon - do something to anonymous page using the object-based 2398 * rmap method 2399 * @page: the page to be handled 2400 * @rwc: control variable according to each walk type 2401 * 2402 * Find all the mappings of a page using the mapping pointer and the vma chains 2403 * contained in the anon_vma struct it points to. 2404 */ 2405 static void rmap_walk_anon(struct folio *folio, 2406 struct rmap_walk_control *rwc, bool locked) 2407 { 2408 struct anon_vma *anon_vma; 2409 pgoff_t pgoff_start, pgoff_end; 2410 struct anon_vma_chain *avc; 2411 2412 if (locked) { 2413 anon_vma = folio_anon_vma(folio); 2414 /* anon_vma disappear under us? */ 2415 VM_BUG_ON_FOLIO(!anon_vma, folio); 2416 } else { 2417 anon_vma = rmap_walk_anon_lock(folio, rwc); 2418 } 2419 if (!anon_vma) 2420 return; 2421 2422 pgoff_start = folio_pgoff(folio); 2423 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2424 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2425 pgoff_start, pgoff_end) { 2426 struct vm_area_struct *vma = avc->vma; 2427 unsigned long address = vma_address(&folio->page, vma); 2428 2429 VM_BUG_ON_VMA(address == -EFAULT, vma); 2430 cond_resched(); 2431 2432 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2433 continue; 2434 2435 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2436 break; 2437 if (rwc->done && rwc->done(folio)) 2438 break; 2439 } 2440 2441 if (!locked) 2442 anon_vma_unlock_read(anon_vma); 2443 } 2444 2445 /* 2446 * rmap_walk_file - do something to file page using the object-based rmap method 2447 * @page: the page to be handled 2448 * @rwc: control variable according to each walk type 2449 * 2450 * Find all the mappings of a page using the mapping pointer and the vma chains 2451 * contained in the address_space struct it points to. 2452 */ 2453 static void rmap_walk_file(struct folio *folio, 2454 struct rmap_walk_control *rwc, bool locked) 2455 { 2456 struct address_space *mapping = folio_mapping(folio); 2457 pgoff_t pgoff_start, pgoff_end; 2458 struct vm_area_struct *vma; 2459 2460 /* 2461 * The page lock not only makes sure that page->mapping cannot 2462 * suddenly be NULLified by truncation, it makes sure that the 2463 * structure at mapping cannot be freed and reused yet, 2464 * so we can safely take mapping->i_mmap_rwsem. 2465 */ 2466 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2467 2468 if (!mapping) 2469 return; 2470 2471 pgoff_start = folio_pgoff(folio); 2472 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2473 if (!locked) { 2474 if (i_mmap_trylock_read(mapping)) 2475 goto lookup; 2476 2477 if (rwc->try_lock) { 2478 rwc->contended = true; 2479 return; 2480 } 2481 2482 i_mmap_lock_read(mapping); 2483 } 2484 lookup: 2485 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2486 pgoff_start, pgoff_end) { 2487 unsigned long address = vma_address(&folio->page, vma); 2488 2489 VM_BUG_ON_VMA(address == -EFAULT, vma); 2490 cond_resched(); 2491 2492 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2493 continue; 2494 2495 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2496 goto done; 2497 if (rwc->done && rwc->done(folio)) 2498 goto done; 2499 } 2500 2501 done: 2502 if (!locked) 2503 i_mmap_unlock_read(mapping); 2504 } 2505 2506 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2507 { 2508 if (unlikely(folio_test_ksm(folio))) 2509 rmap_walk_ksm(folio, rwc); 2510 else if (folio_test_anon(folio)) 2511 rmap_walk_anon(folio, rwc, false); 2512 else 2513 rmap_walk_file(folio, rwc, false); 2514 } 2515 2516 /* Like rmap_walk, but caller holds relevant rmap lock */ 2517 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2518 { 2519 /* no ksm support for now */ 2520 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2521 if (folio_test_anon(folio)) 2522 rmap_walk_anon(folio, rwc, true); 2523 else 2524 rmap_walk_file(folio, rwc, true); 2525 } 2526 2527 #ifdef CONFIG_HUGETLB_PAGE 2528 /* 2529 * The following two functions are for anonymous (private mapped) hugepages. 2530 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2531 * and no lru code, because we handle hugepages differently from common pages. 2532 * 2533 * RMAP_COMPOUND is ignored. 2534 */ 2535 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2536 unsigned long address, rmap_t flags) 2537 { 2538 struct folio *folio = page_folio(page); 2539 struct anon_vma *anon_vma = vma->anon_vma; 2540 int first; 2541 2542 BUG_ON(!folio_test_locked(folio)); 2543 BUG_ON(!anon_vma); 2544 /* address might be in next vma when migration races vma_merge */ 2545 first = atomic_inc_and_test(&folio->_entire_mapcount); 2546 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2547 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2548 if (first) 2549 __page_set_anon_rmap(folio, page, vma, address, 2550 !!(flags & RMAP_EXCLUSIVE)); 2551 } 2552 2553 void hugepage_add_new_anon_rmap(struct folio *folio, 2554 struct vm_area_struct *vma, unsigned long address) 2555 { 2556 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2557 /* increment count (starts at -1) */ 2558 atomic_set(&folio->_entire_mapcount, 0); 2559 folio_clear_hugetlb_restore_reserve(folio); 2560 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2561 } 2562 #endif /* CONFIG_HUGETLB_PAGE */ 2563