xref: /linux/mm/rmap.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     i_pages lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   i_pages lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/huge_mm.h>
65 #include <linux/backing-dev.h>
66 #include <linux/page_idle.h>
67 #include <linux/memremap.h>
68 #include <linux/userfaultfd_k.h>
69 
70 #include <asm/tlbflush.h>
71 
72 #include <trace/events/tlb.h>
73 
74 #include "internal.h"
75 
76 static struct kmem_cache *anon_vma_cachep;
77 static struct kmem_cache *anon_vma_chain_cachep;
78 
79 static inline struct anon_vma *anon_vma_alloc(void)
80 {
81 	struct anon_vma *anon_vma;
82 
83 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 	if (anon_vma) {
85 		atomic_set(&anon_vma->refcount, 1);
86 		anon_vma->degree = 1;	/* Reference for first vma */
87 		anon_vma->parent = anon_vma;
88 		/*
89 		 * Initialise the anon_vma root to point to itself. If called
90 		 * from fork, the root will be reset to the parents anon_vma.
91 		 */
92 		anon_vma->root = anon_vma;
93 	}
94 
95 	return anon_vma;
96 }
97 
98 static inline void anon_vma_free(struct anon_vma *anon_vma)
99 {
100 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
101 
102 	/*
103 	 * Synchronize against page_lock_anon_vma_read() such that
104 	 * we can safely hold the lock without the anon_vma getting
105 	 * freed.
106 	 *
107 	 * Relies on the full mb implied by the atomic_dec_and_test() from
108 	 * put_anon_vma() against the acquire barrier implied by
109 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
110 	 *
111 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
112 	 *   down_read_trylock()		  atomic_dec_and_test()
113 	 *   LOCK				  MB
114 	 *   atomic_read()			  rwsem_is_locked()
115 	 *
116 	 * LOCK should suffice since the actual taking of the lock must
117 	 * happen _before_ what follows.
118 	 */
119 	might_sleep();
120 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
121 		anon_vma_lock_write(anon_vma);
122 		anon_vma_unlock_write(anon_vma);
123 	}
124 
125 	kmem_cache_free(anon_vma_cachep, anon_vma);
126 }
127 
128 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
129 {
130 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
131 }
132 
133 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
134 {
135 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136 }
137 
138 static void anon_vma_chain_link(struct vm_area_struct *vma,
139 				struct anon_vma_chain *avc,
140 				struct anon_vma *anon_vma)
141 {
142 	avc->vma = vma;
143 	avc->anon_vma = anon_vma;
144 	list_add(&avc->same_vma, &vma->anon_vma_chain);
145 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
146 }
147 
148 /**
149  * __anon_vma_prepare - attach an anon_vma to a memory region
150  * @vma: the memory region in question
151  *
152  * This makes sure the memory mapping described by 'vma' has
153  * an 'anon_vma' attached to it, so that we can associate the
154  * anonymous pages mapped into it with that anon_vma.
155  *
156  * The common case will be that we already have one, which
157  * is handled inline by anon_vma_prepare(). But if
158  * not we either need to find an adjacent mapping that we
159  * can re-use the anon_vma from (very common when the only
160  * reason for splitting a vma has been mprotect()), or we
161  * allocate a new one.
162  *
163  * Anon-vma allocations are very subtle, because we may have
164  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
165  * and that may actually touch the spinlock even in the newly
166  * allocated vma (it depends on RCU to make sure that the
167  * anon_vma isn't actually destroyed).
168  *
169  * As a result, we need to do proper anon_vma locking even
170  * for the new allocation. At the same time, we do not want
171  * to do any locking for the common case of already having
172  * an anon_vma.
173  *
174  * This must be called with the mmap_sem held for reading.
175  */
176 int __anon_vma_prepare(struct vm_area_struct *vma)
177 {
178 	struct mm_struct *mm = vma->vm_mm;
179 	struct anon_vma *anon_vma, *allocated;
180 	struct anon_vma_chain *avc;
181 
182 	might_sleep();
183 
184 	avc = anon_vma_chain_alloc(GFP_KERNEL);
185 	if (!avc)
186 		goto out_enomem;
187 
188 	anon_vma = find_mergeable_anon_vma(vma);
189 	allocated = NULL;
190 	if (!anon_vma) {
191 		anon_vma = anon_vma_alloc();
192 		if (unlikely(!anon_vma))
193 			goto out_enomem_free_avc;
194 		allocated = anon_vma;
195 	}
196 
197 	anon_vma_lock_write(anon_vma);
198 	/* page_table_lock to protect against threads */
199 	spin_lock(&mm->page_table_lock);
200 	if (likely(!vma->anon_vma)) {
201 		vma->anon_vma = anon_vma;
202 		anon_vma_chain_link(vma, avc, anon_vma);
203 		/* vma reference or self-parent link for new root */
204 		anon_vma->degree++;
205 		allocated = NULL;
206 		avc = NULL;
207 	}
208 	spin_unlock(&mm->page_table_lock);
209 	anon_vma_unlock_write(anon_vma);
210 
211 	if (unlikely(allocated))
212 		put_anon_vma(allocated);
213 	if (unlikely(avc))
214 		anon_vma_chain_free(avc);
215 
216 	return 0;
217 
218  out_enomem_free_avc:
219 	anon_vma_chain_free(avc);
220  out_enomem:
221 	return -ENOMEM;
222 }
223 
224 /*
225  * This is a useful helper function for locking the anon_vma root as
226  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227  * have the same vma.
228  *
229  * Such anon_vma's should have the same root, so you'd expect to see
230  * just a single mutex_lock for the whole traversal.
231  */
232 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233 {
234 	struct anon_vma *new_root = anon_vma->root;
235 	if (new_root != root) {
236 		if (WARN_ON_ONCE(root))
237 			up_write(&root->rwsem);
238 		root = new_root;
239 		down_write(&root->rwsem);
240 	}
241 	return root;
242 }
243 
244 static inline void unlock_anon_vma_root(struct anon_vma *root)
245 {
246 	if (root)
247 		up_write(&root->rwsem);
248 }
249 
250 /*
251  * Attach the anon_vmas from src to dst.
252  * Returns 0 on success, -ENOMEM on failure.
253  *
254  * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
255  * anon_vma_fork(). The first three want an exact copy of src, while the last
256  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
257  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
258  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
259  *
260  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
261  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
262  * This prevents degradation of anon_vma hierarchy to endless linear chain in
263  * case of constantly forking task. On the other hand, an anon_vma with more
264  * than one child isn't reused even if there was no alive vma, thus rmap
265  * walker has a good chance of avoiding scanning the whole hierarchy when it
266  * searches where page is mapped.
267  */
268 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
269 {
270 	struct anon_vma_chain *avc, *pavc;
271 	struct anon_vma *root = NULL;
272 	struct vm_area_struct *prev = dst->vm_prev, *pprev = src->vm_prev;
273 
274 	/*
275 	 * If parent share anon_vma with its vm_prev, keep this sharing in in
276 	 * child.
277 	 *
278 	 * 1. Parent has vm_prev, which implies we have vm_prev.
279 	 * 2. Parent and its vm_prev have the same anon_vma.
280 	 */
281 	if (!dst->anon_vma && src->anon_vma &&
282 	    pprev && pprev->anon_vma == src->anon_vma)
283 		dst->anon_vma = prev->anon_vma;
284 
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if its degree lower than two,
303 		 * that means it has no vma and only one anon_vma child.
304 		 *
305 		 * Do not chose parent anon_vma, otherwise first child
306 		 * will always reuse it. Root anon_vma is never reused:
307 		 * it has self-parent reference and at least one child.
308 		 */
309 		if (!dst->anon_vma && src->anon_vma &&
310 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->degree++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
321 	 * decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's spinlock is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->degree++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->degree--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma)
424 		vma->anon_vma->degree--;
425 	unlock_anon_vma_root(root);
426 
427 	/*
428 	 * Iterate the list once more, it now only contains empty and unlinked
429 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 	 * needing to write-acquire the anon_vma->root->rwsem.
431 	 */
432 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 		struct anon_vma *anon_vma = avc->anon_vma;
434 
435 		VM_WARN_ON(anon_vma->degree);
436 		put_anon_vma(anon_vma);
437 
438 		list_del(&avc->same_vma);
439 		anon_vma_chain_free(avc);
440 	}
441 }
442 
443 static void anon_vma_ctor(void *data)
444 {
445 	struct anon_vma *anon_vma = data;
446 
447 	init_rwsem(&anon_vma->rwsem);
448 	atomic_set(&anon_vma->refcount, 0);
449 	anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451 
452 void __init anon_vma_init(void)
453 {
454 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 			anon_vma_ctor);
457 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 			SLAB_PANIC|SLAB_ACCOUNT);
459 }
460 
461 /*
462  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463  *
464  * Since there is no serialization what so ever against page_remove_rmap()
465  * the best this function can do is return a locked anon_vma that might
466  * have been relevant to this page.
467  *
468  * The page might have been remapped to a different anon_vma or the anon_vma
469  * returned may already be freed (and even reused).
470  *
471  * In case it was remapped to a different anon_vma, the new anon_vma will be a
472  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473  * ensure that any anon_vma obtained from the page will still be valid for as
474  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475  *
476  * All users of this function must be very careful when walking the anon_vma
477  * chain and verify that the page in question is indeed mapped in it
478  * [ something equivalent to page_mapped_in_vma() ].
479  *
480  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482  * if there is a mapcount, we can dereference the anon_vma after observing
483  * those.
484  */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 	struct anon_vma *anon_vma = NULL;
488 	unsigned long anon_mapping;
489 
490 	rcu_read_lock();
491 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 		goto out;
494 	if (!page_mapped(page))
495 		goto out;
496 
497 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 		anon_vma = NULL;
500 		goto out;
501 	}
502 
503 	/*
504 	 * If this page is still mapped, then its anon_vma cannot have been
505 	 * freed.  But if it has been unmapped, we have no security against the
506 	 * anon_vma structure being freed and reused (for another anon_vma:
507 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 	 * above cannot corrupt).
509 	 */
510 	if (!page_mapped(page)) {
511 		rcu_read_unlock();
512 		put_anon_vma(anon_vma);
513 		return NULL;
514 	}
515 out:
516 	rcu_read_unlock();
517 
518 	return anon_vma;
519 }
520 
521 /*
522  * Similar to page_get_anon_vma() except it locks the anon_vma.
523  *
524  * Its a little more complex as it tries to keep the fast path to a single
525  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526  * reference like with page_get_anon_vma() and then block on the mutex.
527  */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 	struct anon_vma *anon_vma = NULL;
531 	struct anon_vma *root_anon_vma;
532 	unsigned long anon_mapping;
533 
534 	rcu_read_lock();
535 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 		goto out;
538 	if (!page_mapped(page))
539 		goto out;
540 
541 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 	root_anon_vma = READ_ONCE(anon_vma->root);
543 	if (down_read_trylock(&root_anon_vma->rwsem)) {
544 		/*
545 		 * If the page is still mapped, then this anon_vma is still
546 		 * its anon_vma, and holding the mutex ensures that it will
547 		 * not go away, see anon_vma_free().
548 		 */
549 		if (!page_mapped(page)) {
550 			up_read(&root_anon_vma->rwsem);
551 			anon_vma = NULL;
552 		}
553 		goto out;
554 	}
555 
556 	/* trylock failed, we got to sleep */
557 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 		anon_vma = NULL;
559 		goto out;
560 	}
561 
562 	if (!page_mapped(page)) {
563 		rcu_read_unlock();
564 		put_anon_vma(anon_vma);
565 		return NULL;
566 	}
567 
568 	/* we pinned the anon_vma, its safe to sleep */
569 	rcu_read_unlock();
570 	anon_vma_lock_read(anon_vma);
571 
572 	if (atomic_dec_and_test(&anon_vma->refcount)) {
573 		/*
574 		 * Oops, we held the last refcount, release the lock
575 		 * and bail -- can't simply use put_anon_vma() because
576 		 * we'll deadlock on the anon_vma_lock_write() recursion.
577 		 */
578 		anon_vma_unlock_read(anon_vma);
579 		__put_anon_vma(anon_vma);
580 		anon_vma = NULL;
581 	}
582 
583 	return anon_vma;
584 
585 out:
586 	rcu_read_unlock();
587 	return anon_vma;
588 }
589 
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 	anon_vma_unlock_read(anon_vma);
593 }
594 
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598  * important if a PTE was dirty when it was unmapped that it's flushed
599  * before any IO is initiated on the page to prevent lost writes. Similarly,
600  * it must be flushed before freeing to prevent data leakage.
601  */
602 void try_to_unmap_flush(void)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	if (!tlb_ubc->flush_required)
607 		return;
608 
609 	arch_tlbbatch_flush(&tlb_ubc->arch);
610 	tlb_ubc->flush_required = false;
611 	tlb_ubc->writable = false;
612 }
613 
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618 
619 	if (tlb_ubc->writable)
620 		try_to_unmap_flush();
621 }
622 
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626 
627 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 	tlb_ubc->flush_required = true;
629 
630 	/*
631 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 	 * before the PTE is cleared.
633 	 */
634 	barrier();
635 	mm->tlb_flush_batched = true;
636 
637 	/*
638 	 * If the PTE was dirty then it's best to assume it's writable. The
639 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 	 * before the page is queued for IO.
641 	 */
642 	if (writable)
643 		tlb_ubc->writable = true;
644 }
645 
646 /*
647  * Returns true if the TLB flush should be deferred to the end of a batch of
648  * unmap operations to reduce IPIs.
649  */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 	bool should_defer = false;
653 
654 	if (!(flags & TTU_BATCH_FLUSH))
655 		return false;
656 
657 	/* If remote CPUs need to be flushed then defer batch the flush */
658 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 		should_defer = true;
660 	put_cpu();
661 
662 	return should_defer;
663 }
664 
665 /*
666  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668  * operation such as mprotect or munmap to race between reclaim unmapping
669  * the page and flushing the page. If this race occurs, it potentially allows
670  * access to data via a stale TLB entry. Tracking all mm's that have TLB
671  * batching in flight would be expensive during reclaim so instead track
672  * whether TLB batching occurred in the past and if so then do a flush here
673  * if required. This will cost one additional flush per reclaim cycle paid
674  * by the first operation at risk such as mprotect and mumap.
675  *
676  * This must be called under the PTL so that an access to tlb_flush_batched
677  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678  * via the PTL.
679  */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 	if (mm->tlb_flush_batched) {
683 		flush_tlb_mm(mm);
684 
685 		/*
686 		 * Do not allow the compiler to re-order the clearing of
687 		 * tlb_flush_batched before the tlb is flushed.
688 		 */
689 		barrier();
690 		mm->tlb_flush_batched = false;
691 	}
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697 
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 	return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703 
704 /*
705  * At what user virtual address is page expected in vma?
706  * Caller should check the page is actually part of the vma.
707  */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 	unsigned long address;
711 	if (PageAnon(page)) {
712 		struct anon_vma *page__anon_vma = page_anon_vma(page);
713 		/*
714 		 * Note: swapoff's unuse_vma() is more efficient with this
715 		 * check, and needs it to match anon_vma when KSM is active.
716 		 */
717 		if (!vma->anon_vma || !page__anon_vma ||
718 		    vma->anon_vma->root != page__anon_vma->root)
719 			return -EFAULT;
720 	} else if (page->mapping) {
721 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
722 			return -EFAULT;
723 	} else
724 		return -EFAULT;
725 	address = __vma_address(page, vma);
726 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 		return -EFAULT;
728 	return address;
729 }
730 
731 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732 {
733 	pgd_t *pgd;
734 	p4d_t *p4d;
735 	pud_t *pud;
736 	pmd_t *pmd = NULL;
737 	pmd_t pmde;
738 
739 	pgd = pgd_offset(mm, address);
740 	if (!pgd_present(*pgd))
741 		goto out;
742 
743 	p4d = p4d_offset(pgd, address);
744 	if (!p4d_present(*p4d))
745 		goto out;
746 
747 	pud = pud_offset(p4d, address);
748 	if (!pud_present(*pud))
749 		goto out;
750 
751 	pmd = pmd_offset(pud, address);
752 	/*
753 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
754 	 * without holding anon_vma lock for write.  So when looking for a
755 	 * genuine pmde (in which to find pte), test present and !THP together.
756 	 */
757 	pmde = *pmd;
758 	barrier();
759 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
760 		pmd = NULL;
761 out:
762 	return pmd;
763 }
764 
765 struct page_referenced_arg {
766 	int mapcount;
767 	int referenced;
768 	unsigned long vm_flags;
769 	struct mem_cgroup *memcg;
770 };
771 /*
772  * arg: page_referenced_arg will be passed
773  */
774 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
775 			unsigned long address, void *arg)
776 {
777 	struct page_referenced_arg *pra = arg;
778 	struct page_vma_mapped_walk pvmw = {
779 		.page = page,
780 		.vma = vma,
781 		.address = address,
782 	};
783 	int referenced = 0;
784 
785 	while (page_vma_mapped_walk(&pvmw)) {
786 		address = pvmw.address;
787 
788 		if (vma->vm_flags & VM_LOCKED) {
789 			page_vma_mapped_walk_done(&pvmw);
790 			pra->vm_flags |= VM_LOCKED;
791 			return false; /* To break the loop */
792 		}
793 
794 		if (pvmw.pte) {
795 			if (ptep_clear_flush_young_notify(vma, address,
796 						pvmw.pte)) {
797 				/*
798 				 * Don't treat a reference through
799 				 * a sequentially read mapping as such.
800 				 * If the page has been used in another mapping,
801 				 * we will catch it; if this other mapping is
802 				 * already gone, the unmap path will have set
803 				 * PG_referenced or activated the page.
804 				 */
805 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 					referenced++;
807 			}
808 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 			if (pmdp_clear_flush_young_notify(vma, address,
810 						pvmw.pmd))
811 				referenced++;
812 		} else {
813 			/* unexpected pmd-mapped page? */
814 			WARN_ON_ONCE(1);
815 		}
816 
817 		pra->mapcount--;
818 	}
819 
820 	if (referenced)
821 		clear_page_idle(page);
822 	if (test_and_clear_page_young(page))
823 		referenced++;
824 
825 	if (referenced) {
826 		pra->referenced++;
827 		pra->vm_flags |= vma->vm_flags;
828 	}
829 
830 	if (!pra->mapcount)
831 		return false; /* To break the loop */
832 
833 	return true;
834 }
835 
836 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
837 {
838 	struct page_referenced_arg *pra = arg;
839 	struct mem_cgroup *memcg = pra->memcg;
840 
841 	if (!mm_match_cgroup(vma->vm_mm, memcg))
842 		return true;
843 
844 	return false;
845 }
846 
847 /**
848  * page_referenced - test if the page was referenced
849  * @page: the page to test
850  * @is_locked: caller holds lock on the page
851  * @memcg: target memory cgroup
852  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
853  *
854  * Quick test_and_clear_referenced for all mappings to a page,
855  * returns the number of ptes which referenced the page.
856  */
857 int page_referenced(struct page *page,
858 		    int is_locked,
859 		    struct mem_cgroup *memcg,
860 		    unsigned long *vm_flags)
861 {
862 	int we_locked = 0;
863 	struct page_referenced_arg pra = {
864 		.mapcount = total_mapcount(page),
865 		.memcg = memcg,
866 	};
867 	struct rmap_walk_control rwc = {
868 		.rmap_one = page_referenced_one,
869 		.arg = (void *)&pra,
870 		.anon_lock = page_lock_anon_vma_read,
871 	};
872 
873 	*vm_flags = 0;
874 	if (!pra.mapcount)
875 		return 0;
876 
877 	if (!page_rmapping(page))
878 		return 0;
879 
880 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 		we_locked = trylock_page(page);
882 		if (!we_locked)
883 			return 1;
884 	}
885 
886 	/*
887 	 * If we are reclaiming on behalf of a cgroup, skip
888 	 * counting on behalf of references from different
889 	 * cgroups
890 	 */
891 	if (memcg) {
892 		rwc.invalid_vma = invalid_page_referenced_vma;
893 	}
894 
895 	rmap_walk(page, &rwc);
896 	*vm_flags = pra.vm_flags;
897 
898 	if (we_locked)
899 		unlock_page(page);
900 
901 	return pra.referenced;
902 }
903 
904 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
905 			    unsigned long address, void *arg)
906 {
907 	struct page_vma_mapped_walk pvmw = {
908 		.page = page,
909 		.vma = vma,
910 		.address = address,
911 		.flags = PVMW_SYNC,
912 	};
913 	struct mmu_notifier_range range;
914 	int *cleaned = arg;
915 
916 	/*
917 	 * We have to assume the worse case ie pmd for invalidation. Note that
918 	 * the page can not be free from this function.
919 	 */
920 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 				0, vma, vma->vm_mm, address,
922 				min(vma->vm_end, address + page_size(page)));
923 	mmu_notifier_invalidate_range_start(&range);
924 
925 	while (page_vma_mapped_walk(&pvmw)) {
926 		int ret = 0;
927 
928 		address = pvmw.address;
929 		if (pvmw.pte) {
930 			pte_t entry;
931 			pte_t *pte = pvmw.pte;
932 
933 			if (!pte_dirty(*pte) && !pte_write(*pte))
934 				continue;
935 
936 			flush_cache_page(vma, address, pte_pfn(*pte));
937 			entry = ptep_clear_flush(vma, address, pte);
938 			entry = pte_wrprotect(entry);
939 			entry = pte_mkclean(entry);
940 			set_pte_at(vma->vm_mm, address, pte, entry);
941 			ret = 1;
942 		} else {
943 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
944 			pmd_t *pmd = pvmw.pmd;
945 			pmd_t entry;
946 
947 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 				continue;
949 
950 			flush_cache_page(vma, address, page_to_pfn(page));
951 			entry = pmdp_invalidate(vma, address, pmd);
952 			entry = pmd_wrprotect(entry);
953 			entry = pmd_mkclean(entry);
954 			set_pmd_at(vma->vm_mm, address, pmd, entry);
955 			ret = 1;
956 #else
957 			/* unexpected pmd-mapped page? */
958 			WARN_ON_ONCE(1);
959 #endif
960 		}
961 
962 		/*
963 		 * No need to call mmu_notifier_invalidate_range() as we are
964 		 * downgrading page table protection not changing it to point
965 		 * to a new page.
966 		 *
967 		 * See Documentation/vm/mmu_notifier.rst
968 		 */
969 		if (ret)
970 			(*cleaned)++;
971 	}
972 
973 	mmu_notifier_invalidate_range_end(&range);
974 
975 	return true;
976 }
977 
978 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
979 {
980 	if (vma->vm_flags & VM_SHARED)
981 		return false;
982 
983 	return true;
984 }
985 
986 int page_mkclean(struct page *page)
987 {
988 	int cleaned = 0;
989 	struct address_space *mapping;
990 	struct rmap_walk_control rwc = {
991 		.arg = (void *)&cleaned,
992 		.rmap_one = page_mkclean_one,
993 		.invalid_vma = invalid_mkclean_vma,
994 	};
995 
996 	BUG_ON(!PageLocked(page));
997 
998 	if (!page_mapped(page))
999 		return 0;
1000 
1001 	mapping = page_mapping(page);
1002 	if (!mapping)
1003 		return 0;
1004 
1005 	rmap_walk(page, &rwc);
1006 
1007 	return cleaned;
1008 }
1009 EXPORT_SYMBOL_GPL(page_mkclean);
1010 
1011 /**
1012  * page_move_anon_rmap - move a page to our anon_vma
1013  * @page:	the page to move to our anon_vma
1014  * @vma:	the vma the page belongs to
1015  *
1016  * When a page belongs exclusively to one process after a COW event,
1017  * that page can be moved into the anon_vma that belongs to just that
1018  * process, so the rmap code will not search the parent or sibling
1019  * processes.
1020  */
1021 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1022 {
1023 	struct anon_vma *anon_vma = vma->anon_vma;
1024 
1025 	page = compound_head(page);
1026 
1027 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1028 	VM_BUG_ON_VMA(!anon_vma, vma);
1029 
1030 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1031 	/*
1032 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 	 * PageAnon()) will not see one without the other.
1035 	 */
1036 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1037 }
1038 
1039 /**
1040  * __page_set_anon_rmap - set up new anonymous rmap
1041  * @page:	Page or Hugepage to add to rmap
1042  * @vma:	VM area to add page to.
1043  * @address:	User virtual address of the mapping
1044  * @exclusive:	the page is exclusively owned by the current process
1045  */
1046 static void __page_set_anon_rmap(struct page *page,
1047 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1048 {
1049 	struct anon_vma *anon_vma = vma->anon_vma;
1050 
1051 	BUG_ON(!anon_vma);
1052 
1053 	if (PageAnon(page))
1054 		return;
1055 
1056 	/*
1057 	 * If the page isn't exclusively mapped into this vma,
1058 	 * we must use the _oldest_ possible anon_vma for the
1059 	 * page mapping!
1060 	 */
1061 	if (!exclusive)
1062 		anon_vma = anon_vma->root;
1063 
1064 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1065 	page->mapping = (struct address_space *) anon_vma;
1066 	page->index = linear_page_index(vma, address);
1067 }
1068 
1069 /**
1070  * __page_check_anon_rmap - sanity check anonymous rmap addition
1071  * @page:	the page to add the mapping to
1072  * @vma:	the vm area in which the mapping is added
1073  * @address:	the user virtual address mapped
1074  */
1075 static void __page_check_anon_rmap(struct page *page,
1076 	struct vm_area_struct *vma, unsigned long address)
1077 {
1078 	/*
1079 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1080 	 * be set up correctly at this point.
1081 	 *
1082 	 * We have exclusion against page_add_anon_rmap because the caller
1083 	 * always holds the page locked, except if called from page_dup_rmap,
1084 	 * in which case the page is already known to be setup.
1085 	 *
1086 	 * We have exclusion against page_add_new_anon_rmap because those pages
1087 	 * are initially only visible via the pagetables, and the pte is locked
1088 	 * over the call to page_add_new_anon_rmap.
1089 	 */
1090 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1091 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1092 		       page);
1093 }
1094 
1095 /**
1096  * page_add_anon_rmap - add pte mapping to an anonymous page
1097  * @page:	the page to add the mapping to
1098  * @vma:	the vm area in which the mapping is added
1099  * @address:	the user virtual address mapped
1100  * @compound:	charge the page as compound or small page
1101  *
1102  * The caller needs to hold the pte lock, and the page must be locked in
1103  * the anon_vma case: to serialize mapping,index checking after setting,
1104  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1105  * (but PageKsm is never downgraded to PageAnon).
1106  */
1107 void page_add_anon_rmap(struct page *page,
1108 	struct vm_area_struct *vma, unsigned long address, bool compound)
1109 {
1110 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1111 }
1112 
1113 /*
1114  * Special version of the above for do_swap_page, which often runs
1115  * into pages that are exclusively owned by the current process.
1116  * Everybody else should continue to use page_add_anon_rmap above.
1117  */
1118 void do_page_add_anon_rmap(struct page *page,
1119 	struct vm_area_struct *vma, unsigned long address, int flags)
1120 {
1121 	bool compound = flags & RMAP_COMPOUND;
1122 	bool first;
1123 
1124 	if (compound) {
1125 		atomic_t *mapcount;
1126 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1127 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1128 		mapcount = compound_mapcount_ptr(page);
1129 		first = atomic_inc_and_test(mapcount);
1130 	} else {
1131 		first = atomic_inc_and_test(&page->_mapcount);
1132 	}
1133 
1134 	if (first) {
1135 		int nr = compound ? hpage_nr_pages(page) : 1;
1136 		/*
1137 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1138 		 * these counters are not modified in interrupt context, and
1139 		 * pte lock(a spinlock) is held, which implies preemption
1140 		 * disabled.
1141 		 */
1142 		if (compound)
1143 			__inc_node_page_state(page, NR_ANON_THPS);
1144 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1145 	}
1146 	if (unlikely(PageKsm(page)))
1147 		return;
1148 
1149 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1150 
1151 	/* address might be in next vma when migration races vma_adjust */
1152 	if (first)
1153 		__page_set_anon_rmap(page, vma, address,
1154 				flags & RMAP_EXCLUSIVE);
1155 	else
1156 		__page_check_anon_rmap(page, vma, address);
1157 }
1158 
1159 /**
1160  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1161  * @page:	the page to add the mapping to
1162  * @vma:	the vm area in which the mapping is added
1163  * @address:	the user virtual address mapped
1164  * @compound:	charge the page as compound or small page
1165  *
1166  * Same as page_add_anon_rmap but must only be called on *new* pages.
1167  * This means the inc-and-test can be bypassed.
1168  * Page does not have to be locked.
1169  */
1170 void page_add_new_anon_rmap(struct page *page,
1171 	struct vm_area_struct *vma, unsigned long address, bool compound)
1172 {
1173 	int nr = compound ? hpage_nr_pages(page) : 1;
1174 
1175 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1176 	__SetPageSwapBacked(page);
1177 	if (compound) {
1178 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1179 		/* increment count (starts at -1) */
1180 		atomic_set(compound_mapcount_ptr(page), 0);
1181 		__inc_node_page_state(page, NR_ANON_THPS);
1182 	} else {
1183 		/* Anon THP always mapped first with PMD */
1184 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1185 		/* increment count (starts at -1) */
1186 		atomic_set(&page->_mapcount, 0);
1187 	}
1188 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1189 	__page_set_anon_rmap(page, vma, address, 1);
1190 }
1191 
1192 /**
1193  * page_add_file_rmap - add pte mapping to a file page
1194  * @page: the page to add the mapping to
1195  * @compound: charge the page as compound or small page
1196  *
1197  * The caller needs to hold the pte lock.
1198  */
1199 void page_add_file_rmap(struct page *page, bool compound)
1200 {
1201 	int i, nr = 1;
1202 
1203 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1204 	lock_page_memcg(page);
1205 	if (compound && PageTransHuge(page)) {
1206 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1207 			if (atomic_inc_and_test(&page[i]._mapcount))
1208 				nr++;
1209 		}
1210 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1211 			goto out;
1212 		if (PageSwapBacked(page))
1213 			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1214 		else
1215 			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1216 	} else {
1217 		if (PageTransCompound(page) && page_mapping(page)) {
1218 			VM_WARN_ON_ONCE(!PageLocked(page));
1219 
1220 			SetPageDoubleMap(compound_head(page));
1221 			if (PageMlocked(page))
1222 				clear_page_mlock(compound_head(page));
1223 		}
1224 		if (!atomic_inc_and_test(&page->_mapcount))
1225 			goto out;
1226 	}
1227 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1228 out:
1229 	unlock_page_memcg(page);
1230 }
1231 
1232 static void page_remove_file_rmap(struct page *page, bool compound)
1233 {
1234 	int i, nr = 1;
1235 
1236 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1237 	lock_page_memcg(page);
1238 
1239 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1240 	if (unlikely(PageHuge(page))) {
1241 		/* hugetlb pages are always mapped with pmds */
1242 		atomic_dec(compound_mapcount_ptr(page));
1243 		goto out;
1244 	}
1245 
1246 	/* page still mapped by someone else? */
1247 	if (compound && PageTransHuge(page)) {
1248 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1249 			if (atomic_add_negative(-1, &page[i]._mapcount))
1250 				nr++;
1251 		}
1252 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1253 			goto out;
1254 		if (PageSwapBacked(page))
1255 			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1256 		else
1257 			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1258 	} else {
1259 		if (!atomic_add_negative(-1, &page->_mapcount))
1260 			goto out;
1261 	}
1262 
1263 	/*
1264 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1265 	 * these counters are not modified in interrupt context, and
1266 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1267 	 */
1268 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1269 
1270 	if (unlikely(PageMlocked(page)))
1271 		clear_page_mlock(page);
1272 out:
1273 	unlock_page_memcg(page);
1274 }
1275 
1276 static void page_remove_anon_compound_rmap(struct page *page)
1277 {
1278 	int i, nr;
1279 
1280 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1281 		return;
1282 
1283 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1284 	if (unlikely(PageHuge(page)))
1285 		return;
1286 
1287 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1288 		return;
1289 
1290 	__dec_node_page_state(page, NR_ANON_THPS);
1291 
1292 	if (TestClearPageDoubleMap(page)) {
1293 		/*
1294 		 * Subpages can be mapped with PTEs too. Check how many of
1295 		 * them are still mapped.
1296 		 */
1297 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1298 			if (atomic_add_negative(-1, &page[i]._mapcount))
1299 				nr++;
1300 		}
1301 
1302 		/*
1303 		 * Queue the page for deferred split if at least one small
1304 		 * page of the compound page is unmapped, but at least one
1305 		 * small page is still mapped.
1306 		 */
1307 		if (nr && nr < HPAGE_PMD_NR)
1308 			deferred_split_huge_page(page);
1309 	} else {
1310 		nr = HPAGE_PMD_NR;
1311 	}
1312 
1313 	if (unlikely(PageMlocked(page)))
1314 		clear_page_mlock(page);
1315 
1316 	if (nr)
1317 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1318 }
1319 
1320 /**
1321  * page_remove_rmap - take down pte mapping from a page
1322  * @page:	page to remove mapping from
1323  * @compound:	uncharge the page as compound or small page
1324  *
1325  * The caller needs to hold the pte lock.
1326  */
1327 void page_remove_rmap(struct page *page, bool compound)
1328 {
1329 	if (!PageAnon(page))
1330 		return page_remove_file_rmap(page, compound);
1331 
1332 	if (compound)
1333 		return page_remove_anon_compound_rmap(page);
1334 
1335 	/* page still mapped by someone else? */
1336 	if (!atomic_add_negative(-1, &page->_mapcount))
1337 		return;
1338 
1339 	/*
1340 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1341 	 * these counters are not modified in interrupt context, and
1342 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1343 	 */
1344 	__dec_node_page_state(page, NR_ANON_MAPPED);
1345 
1346 	if (unlikely(PageMlocked(page)))
1347 		clear_page_mlock(page);
1348 
1349 	if (PageTransCompound(page))
1350 		deferred_split_huge_page(compound_head(page));
1351 
1352 	/*
1353 	 * It would be tidy to reset the PageAnon mapping here,
1354 	 * but that might overwrite a racing page_add_anon_rmap
1355 	 * which increments mapcount after us but sets mapping
1356 	 * before us: so leave the reset to free_unref_page,
1357 	 * and remember that it's only reliable while mapped.
1358 	 * Leaving it set also helps swapoff to reinstate ptes
1359 	 * faster for those pages still in swapcache.
1360 	 */
1361 }
1362 
1363 /*
1364  * @arg: enum ttu_flags will be passed to this argument
1365  */
1366 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1367 		     unsigned long address, void *arg)
1368 {
1369 	struct mm_struct *mm = vma->vm_mm;
1370 	struct page_vma_mapped_walk pvmw = {
1371 		.page = page,
1372 		.vma = vma,
1373 		.address = address,
1374 	};
1375 	pte_t pteval;
1376 	struct page *subpage;
1377 	bool ret = true;
1378 	struct mmu_notifier_range range;
1379 	enum ttu_flags flags = (enum ttu_flags)arg;
1380 
1381 	/* munlock has nothing to gain from examining un-locked vmas */
1382 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1383 		return true;
1384 
1385 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1386 	    is_zone_device_page(page) && !is_device_private_page(page))
1387 		return true;
1388 
1389 	if (flags & TTU_SPLIT_HUGE_PMD) {
1390 		split_huge_pmd_address(vma, address,
1391 				flags & TTU_SPLIT_FREEZE, page);
1392 	}
1393 
1394 	/*
1395 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1396 	 * For hugetlb, it could be much worse if we need to do pud
1397 	 * invalidation in the case of pmd sharing.
1398 	 *
1399 	 * Note that the page can not be free in this function as call of
1400 	 * try_to_unmap() must hold a reference on the page.
1401 	 */
1402 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1403 				address,
1404 				min(vma->vm_end, address + page_size(page)));
1405 	if (PageHuge(page)) {
1406 		/*
1407 		 * If sharing is possible, start and end will be adjusted
1408 		 * accordingly.
1409 		 */
1410 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1411 						     &range.end);
1412 	}
1413 	mmu_notifier_invalidate_range_start(&range);
1414 
1415 	while (page_vma_mapped_walk(&pvmw)) {
1416 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1417 		/* PMD-mapped THP migration entry */
1418 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1419 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1420 
1421 			set_pmd_migration_entry(&pvmw, page);
1422 			continue;
1423 		}
1424 #endif
1425 
1426 		/*
1427 		 * If the page is mlock()d, we cannot swap it out.
1428 		 * If it's recently referenced (perhaps page_referenced
1429 		 * skipped over this mm) then we should reactivate it.
1430 		 */
1431 		if (!(flags & TTU_IGNORE_MLOCK)) {
1432 			if (vma->vm_flags & VM_LOCKED) {
1433 				/* PTE-mapped THP are never mlocked */
1434 				if (!PageTransCompound(page)) {
1435 					/*
1436 					 * Holding pte lock, we do *not* need
1437 					 * mmap_sem here
1438 					 */
1439 					mlock_vma_page(page);
1440 				}
1441 				ret = false;
1442 				page_vma_mapped_walk_done(&pvmw);
1443 				break;
1444 			}
1445 			if (flags & TTU_MUNLOCK)
1446 				continue;
1447 		}
1448 
1449 		/* Unexpected PMD-mapped THP? */
1450 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1451 
1452 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1453 		address = pvmw.address;
1454 
1455 		if (PageHuge(page)) {
1456 			if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1457 				/*
1458 				 * huge_pmd_unshare unmapped an entire PMD
1459 				 * page.  There is no way of knowing exactly
1460 				 * which PMDs may be cached for this mm, so
1461 				 * we must flush them all.  start/end were
1462 				 * already adjusted above to cover this range.
1463 				 */
1464 				flush_cache_range(vma, range.start, range.end);
1465 				flush_tlb_range(vma, range.start, range.end);
1466 				mmu_notifier_invalidate_range(mm, range.start,
1467 							      range.end);
1468 
1469 				/*
1470 				 * The ref count of the PMD page was dropped
1471 				 * which is part of the way map counting
1472 				 * is done for shared PMDs.  Return 'true'
1473 				 * here.  When there is no other sharing,
1474 				 * huge_pmd_unshare returns false and we will
1475 				 * unmap the actual page and drop map count
1476 				 * to zero.
1477 				 */
1478 				page_vma_mapped_walk_done(&pvmw);
1479 				break;
1480 			}
1481 		}
1482 
1483 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1484 		    (flags & TTU_MIGRATION) &&
1485 		    is_zone_device_page(page)) {
1486 			swp_entry_t entry;
1487 			pte_t swp_pte;
1488 
1489 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1490 
1491 			/*
1492 			 * Store the pfn of the page in a special migration
1493 			 * pte. do_swap_page() will wait until the migration
1494 			 * pte is removed and then restart fault handling.
1495 			 */
1496 			entry = make_migration_entry(page, 0);
1497 			swp_pte = swp_entry_to_pte(entry);
1498 			if (pte_soft_dirty(pteval))
1499 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1500 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1501 			/*
1502 			 * No need to invalidate here it will synchronize on
1503 			 * against the special swap migration pte.
1504 			 *
1505 			 * The assignment to subpage above was computed from a
1506 			 * swap PTE which results in an invalid pointer.
1507 			 * Since only PAGE_SIZE pages can currently be
1508 			 * migrated, just set it to page. This will need to be
1509 			 * changed when hugepage migrations to device private
1510 			 * memory are supported.
1511 			 */
1512 			subpage = page;
1513 			goto discard;
1514 		}
1515 
1516 		if (!(flags & TTU_IGNORE_ACCESS)) {
1517 			if (ptep_clear_flush_young_notify(vma, address,
1518 						pvmw.pte)) {
1519 				ret = false;
1520 				page_vma_mapped_walk_done(&pvmw);
1521 				break;
1522 			}
1523 		}
1524 
1525 		/* Nuke the page table entry. */
1526 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1527 		if (should_defer_flush(mm, flags)) {
1528 			/*
1529 			 * We clear the PTE but do not flush so potentially
1530 			 * a remote CPU could still be writing to the page.
1531 			 * If the entry was previously clean then the
1532 			 * architecture must guarantee that a clear->dirty
1533 			 * transition on a cached TLB entry is written through
1534 			 * and traps if the PTE is unmapped.
1535 			 */
1536 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1537 
1538 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1539 		} else {
1540 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1541 		}
1542 
1543 		/* Move the dirty bit to the page. Now the pte is gone. */
1544 		if (pte_dirty(pteval))
1545 			set_page_dirty(page);
1546 
1547 		/* Update high watermark before we lower rss */
1548 		update_hiwater_rss(mm);
1549 
1550 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1551 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1552 			if (PageHuge(page)) {
1553 				hugetlb_count_sub(compound_nr(page), mm);
1554 				set_huge_swap_pte_at(mm, address,
1555 						     pvmw.pte, pteval,
1556 						     vma_mmu_pagesize(vma));
1557 			} else {
1558 				dec_mm_counter(mm, mm_counter(page));
1559 				set_pte_at(mm, address, pvmw.pte, pteval);
1560 			}
1561 
1562 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1563 			/*
1564 			 * The guest indicated that the page content is of no
1565 			 * interest anymore. Simply discard the pte, vmscan
1566 			 * will take care of the rest.
1567 			 * A future reference will then fault in a new zero
1568 			 * page. When userfaultfd is active, we must not drop
1569 			 * this page though, as its main user (postcopy
1570 			 * migration) will not expect userfaults on already
1571 			 * copied pages.
1572 			 */
1573 			dec_mm_counter(mm, mm_counter(page));
1574 			/* We have to invalidate as we cleared the pte */
1575 			mmu_notifier_invalidate_range(mm, address,
1576 						      address + PAGE_SIZE);
1577 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1578 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1579 			swp_entry_t entry;
1580 			pte_t swp_pte;
1581 
1582 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1583 				set_pte_at(mm, address, pvmw.pte, pteval);
1584 				ret = false;
1585 				page_vma_mapped_walk_done(&pvmw);
1586 				break;
1587 			}
1588 
1589 			/*
1590 			 * Store the pfn of the page in a special migration
1591 			 * pte. do_swap_page() will wait until the migration
1592 			 * pte is removed and then restart fault handling.
1593 			 */
1594 			entry = make_migration_entry(subpage,
1595 					pte_write(pteval));
1596 			swp_pte = swp_entry_to_pte(entry);
1597 			if (pte_soft_dirty(pteval))
1598 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1599 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1600 			/*
1601 			 * No need to invalidate here it will synchronize on
1602 			 * against the special swap migration pte.
1603 			 */
1604 		} else if (PageAnon(page)) {
1605 			swp_entry_t entry = { .val = page_private(subpage) };
1606 			pte_t swp_pte;
1607 			/*
1608 			 * Store the swap location in the pte.
1609 			 * See handle_pte_fault() ...
1610 			 */
1611 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1612 				WARN_ON_ONCE(1);
1613 				ret = false;
1614 				/* We have to invalidate as we cleared the pte */
1615 				mmu_notifier_invalidate_range(mm, address,
1616 							address + PAGE_SIZE);
1617 				page_vma_mapped_walk_done(&pvmw);
1618 				break;
1619 			}
1620 
1621 			/* MADV_FREE page check */
1622 			if (!PageSwapBacked(page)) {
1623 				if (!PageDirty(page)) {
1624 					/* Invalidate as we cleared the pte */
1625 					mmu_notifier_invalidate_range(mm,
1626 						address, address + PAGE_SIZE);
1627 					dec_mm_counter(mm, MM_ANONPAGES);
1628 					goto discard;
1629 				}
1630 
1631 				/*
1632 				 * If the page was redirtied, it cannot be
1633 				 * discarded. Remap the page to page table.
1634 				 */
1635 				set_pte_at(mm, address, pvmw.pte, pteval);
1636 				SetPageSwapBacked(page);
1637 				ret = false;
1638 				page_vma_mapped_walk_done(&pvmw);
1639 				break;
1640 			}
1641 
1642 			if (swap_duplicate(entry) < 0) {
1643 				set_pte_at(mm, address, pvmw.pte, pteval);
1644 				ret = false;
1645 				page_vma_mapped_walk_done(&pvmw);
1646 				break;
1647 			}
1648 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1649 				set_pte_at(mm, address, pvmw.pte, pteval);
1650 				ret = false;
1651 				page_vma_mapped_walk_done(&pvmw);
1652 				break;
1653 			}
1654 			if (list_empty(&mm->mmlist)) {
1655 				spin_lock(&mmlist_lock);
1656 				if (list_empty(&mm->mmlist))
1657 					list_add(&mm->mmlist, &init_mm.mmlist);
1658 				spin_unlock(&mmlist_lock);
1659 			}
1660 			dec_mm_counter(mm, MM_ANONPAGES);
1661 			inc_mm_counter(mm, MM_SWAPENTS);
1662 			swp_pte = swp_entry_to_pte(entry);
1663 			if (pte_soft_dirty(pteval))
1664 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1665 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1666 			/* Invalidate as we cleared the pte */
1667 			mmu_notifier_invalidate_range(mm, address,
1668 						      address + PAGE_SIZE);
1669 		} else {
1670 			/*
1671 			 * This is a locked file-backed page, thus it cannot
1672 			 * be removed from the page cache and replaced by a new
1673 			 * page before mmu_notifier_invalidate_range_end, so no
1674 			 * concurrent thread might update its page table to
1675 			 * point at new page while a device still is using this
1676 			 * page.
1677 			 *
1678 			 * See Documentation/vm/mmu_notifier.rst
1679 			 */
1680 			dec_mm_counter(mm, mm_counter_file(page));
1681 		}
1682 discard:
1683 		/*
1684 		 * No need to call mmu_notifier_invalidate_range() it has be
1685 		 * done above for all cases requiring it to happen under page
1686 		 * table lock before mmu_notifier_invalidate_range_end()
1687 		 *
1688 		 * See Documentation/vm/mmu_notifier.rst
1689 		 */
1690 		page_remove_rmap(subpage, PageHuge(page));
1691 		put_page(page);
1692 	}
1693 
1694 	mmu_notifier_invalidate_range_end(&range);
1695 
1696 	return ret;
1697 }
1698 
1699 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1700 {
1701 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1702 
1703 	if (!maybe_stack)
1704 		return false;
1705 
1706 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1707 						VM_STACK_INCOMPLETE_SETUP)
1708 		return true;
1709 
1710 	return false;
1711 }
1712 
1713 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1714 {
1715 	return is_vma_temporary_stack(vma);
1716 }
1717 
1718 static int page_mapcount_is_zero(struct page *page)
1719 {
1720 	return !total_mapcount(page);
1721 }
1722 
1723 /**
1724  * try_to_unmap - try to remove all page table mappings to a page
1725  * @page: the page to get unmapped
1726  * @flags: action and flags
1727  *
1728  * Tries to remove all the page table entries which are mapping this
1729  * page, used in the pageout path.  Caller must hold the page lock.
1730  *
1731  * If unmap is successful, return true. Otherwise, false.
1732  */
1733 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1734 {
1735 	struct rmap_walk_control rwc = {
1736 		.rmap_one = try_to_unmap_one,
1737 		.arg = (void *)flags,
1738 		.done = page_mapcount_is_zero,
1739 		.anon_lock = page_lock_anon_vma_read,
1740 	};
1741 
1742 	/*
1743 	 * During exec, a temporary VMA is setup and later moved.
1744 	 * The VMA is moved under the anon_vma lock but not the
1745 	 * page tables leading to a race where migration cannot
1746 	 * find the migration ptes. Rather than increasing the
1747 	 * locking requirements of exec(), migration skips
1748 	 * temporary VMAs until after exec() completes.
1749 	 */
1750 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1751 	    && !PageKsm(page) && PageAnon(page))
1752 		rwc.invalid_vma = invalid_migration_vma;
1753 
1754 	if (flags & TTU_RMAP_LOCKED)
1755 		rmap_walk_locked(page, &rwc);
1756 	else
1757 		rmap_walk(page, &rwc);
1758 
1759 	return !page_mapcount(page) ? true : false;
1760 }
1761 
1762 static int page_not_mapped(struct page *page)
1763 {
1764 	return !page_mapped(page);
1765 };
1766 
1767 /**
1768  * try_to_munlock - try to munlock a page
1769  * @page: the page to be munlocked
1770  *
1771  * Called from munlock code.  Checks all of the VMAs mapping the page
1772  * to make sure nobody else has this page mlocked. The page will be
1773  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1774  */
1775 
1776 void try_to_munlock(struct page *page)
1777 {
1778 	struct rmap_walk_control rwc = {
1779 		.rmap_one = try_to_unmap_one,
1780 		.arg = (void *)TTU_MUNLOCK,
1781 		.done = page_not_mapped,
1782 		.anon_lock = page_lock_anon_vma_read,
1783 
1784 	};
1785 
1786 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1787 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1788 
1789 	rmap_walk(page, &rwc);
1790 }
1791 
1792 void __put_anon_vma(struct anon_vma *anon_vma)
1793 {
1794 	struct anon_vma *root = anon_vma->root;
1795 
1796 	anon_vma_free(anon_vma);
1797 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1798 		anon_vma_free(root);
1799 }
1800 
1801 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1802 					struct rmap_walk_control *rwc)
1803 {
1804 	struct anon_vma *anon_vma;
1805 
1806 	if (rwc->anon_lock)
1807 		return rwc->anon_lock(page);
1808 
1809 	/*
1810 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1811 	 * because that depends on page_mapped(); but not all its usages
1812 	 * are holding mmap_sem. Users without mmap_sem are required to
1813 	 * take a reference count to prevent the anon_vma disappearing
1814 	 */
1815 	anon_vma = page_anon_vma(page);
1816 	if (!anon_vma)
1817 		return NULL;
1818 
1819 	anon_vma_lock_read(anon_vma);
1820 	return anon_vma;
1821 }
1822 
1823 /*
1824  * rmap_walk_anon - do something to anonymous page using the object-based
1825  * rmap method
1826  * @page: the page to be handled
1827  * @rwc: control variable according to each walk type
1828  *
1829  * Find all the mappings of a page using the mapping pointer and the vma chains
1830  * contained in the anon_vma struct it points to.
1831  *
1832  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1833  * where the page was found will be held for write.  So, we won't recheck
1834  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1835  * LOCKED.
1836  */
1837 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1838 		bool locked)
1839 {
1840 	struct anon_vma *anon_vma;
1841 	pgoff_t pgoff_start, pgoff_end;
1842 	struct anon_vma_chain *avc;
1843 
1844 	if (locked) {
1845 		anon_vma = page_anon_vma(page);
1846 		/* anon_vma disappear under us? */
1847 		VM_BUG_ON_PAGE(!anon_vma, page);
1848 	} else {
1849 		anon_vma = rmap_walk_anon_lock(page, rwc);
1850 	}
1851 	if (!anon_vma)
1852 		return;
1853 
1854 	pgoff_start = page_to_pgoff(page);
1855 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1856 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1857 			pgoff_start, pgoff_end) {
1858 		struct vm_area_struct *vma = avc->vma;
1859 		unsigned long address = vma_address(page, vma);
1860 
1861 		cond_resched();
1862 
1863 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1864 			continue;
1865 
1866 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1867 			break;
1868 		if (rwc->done && rwc->done(page))
1869 			break;
1870 	}
1871 
1872 	if (!locked)
1873 		anon_vma_unlock_read(anon_vma);
1874 }
1875 
1876 /*
1877  * rmap_walk_file - do something to file page using the object-based rmap method
1878  * @page: the page to be handled
1879  * @rwc: control variable according to each walk type
1880  *
1881  * Find all the mappings of a page using the mapping pointer and the vma chains
1882  * contained in the address_space struct it points to.
1883  *
1884  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1885  * where the page was found will be held for write.  So, we won't recheck
1886  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1887  * LOCKED.
1888  */
1889 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1890 		bool locked)
1891 {
1892 	struct address_space *mapping = page_mapping(page);
1893 	pgoff_t pgoff_start, pgoff_end;
1894 	struct vm_area_struct *vma;
1895 
1896 	/*
1897 	 * The page lock not only makes sure that page->mapping cannot
1898 	 * suddenly be NULLified by truncation, it makes sure that the
1899 	 * structure at mapping cannot be freed and reused yet,
1900 	 * so we can safely take mapping->i_mmap_rwsem.
1901 	 */
1902 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1903 
1904 	if (!mapping)
1905 		return;
1906 
1907 	pgoff_start = page_to_pgoff(page);
1908 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1909 	if (!locked)
1910 		i_mmap_lock_read(mapping);
1911 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1912 			pgoff_start, pgoff_end) {
1913 		unsigned long address = vma_address(page, vma);
1914 
1915 		cond_resched();
1916 
1917 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1918 			continue;
1919 
1920 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1921 			goto done;
1922 		if (rwc->done && rwc->done(page))
1923 			goto done;
1924 	}
1925 
1926 done:
1927 	if (!locked)
1928 		i_mmap_unlock_read(mapping);
1929 }
1930 
1931 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1932 {
1933 	if (unlikely(PageKsm(page)))
1934 		rmap_walk_ksm(page, rwc);
1935 	else if (PageAnon(page))
1936 		rmap_walk_anon(page, rwc, false);
1937 	else
1938 		rmap_walk_file(page, rwc, false);
1939 }
1940 
1941 /* Like rmap_walk, but caller holds relevant rmap lock */
1942 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1943 {
1944 	/* no ksm support for now */
1945 	VM_BUG_ON_PAGE(PageKsm(page), page);
1946 	if (PageAnon(page))
1947 		rmap_walk_anon(page, rwc, true);
1948 	else
1949 		rmap_walk_file(page, rwc, true);
1950 }
1951 
1952 #ifdef CONFIG_HUGETLB_PAGE
1953 /*
1954  * The following two functions are for anonymous (private mapped) hugepages.
1955  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1956  * and no lru code, because we handle hugepages differently from common pages.
1957  */
1958 void hugepage_add_anon_rmap(struct page *page,
1959 			    struct vm_area_struct *vma, unsigned long address)
1960 {
1961 	struct anon_vma *anon_vma = vma->anon_vma;
1962 	int first;
1963 
1964 	BUG_ON(!PageLocked(page));
1965 	BUG_ON(!anon_vma);
1966 	/* address might be in next vma when migration races vma_adjust */
1967 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1968 	if (first)
1969 		__page_set_anon_rmap(page, vma, address, 0);
1970 }
1971 
1972 void hugepage_add_new_anon_rmap(struct page *page,
1973 			struct vm_area_struct *vma, unsigned long address)
1974 {
1975 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1976 	atomic_set(compound_mapcount_ptr(page), 0);
1977 	__page_set_anon_rmap(page, vma, address, 1);
1978 }
1979 #endif /* CONFIG_HUGETLB_PAGE */
1980