1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 67 #include <asm/tlbflush.h> 68 69 #include <trace/events/tlb.h> 70 71 #include "internal.h" 72 73 static struct kmem_cache *anon_vma_cachep; 74 static struct kmem_cache *anon_vma_chain_cachep; 75 76 static inline struct anon_vma *anon_vma_alloc(void) 77 { 78 struct anon_vma *anon_vma; 79 80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 81 if (anon_vma) { 82 atomic_set(&anon_vma->refcount, 1); 83 anon_vma->degree = 1; /* Reference for first vma */ 84 anon_vma->parent = anon_vma; 85 /* 86 * Initialise the anon_vma root to point to itself. If called 87 * from fork, the root will be reset to the parents anon_vma. 88 */ 89 anon_vma->root = anon_vma; 90 } 91 92 return anon_vma; 93 } 94 95 static inline void anon_vma_free(struct anon_vma *anon_vma) 96 { 97 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 98 99 /* 100 * Synchronize against page_lock_anon_vma_read() such that 101 * we can safely hold the lock without the anon_vma getting 102 * freed. 103 * 104 * Relies on the full mb implied by the atomic_dec_and_test() from 105 * put_anon_vma() against the acquire barrier implied by 106 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 107 * 108 * page_lock_anon_vma_read() VS put_anon_vma() 109 * down_read_trylock() atomic_dec_and_test() 110 * LOCK MB 111 * atomic_read() rwsem_is_locked() 112 * 113 * LOCK should suffice since the actual taking of the lock must 114 * happen _before_ what follows. 115 */ 116 might_sleep(); 117 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 118 anon_vma_lock_write(anon_vma); 119 anon_vma_unlock_write(anon_vma); 120 } 121 122 kmem_cache_free(anon_vma_cachep, anon_vma); 123 } 124 125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 126 { 127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 128 } 129 130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 131 { 132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 133 } 134 135 static void anon_vma_chain_link(struct vm_area_struct *vma, 136 struct anon_vma_chain *avc, 137 struct anon_vma *anon_vma) 138 { 139 avc->vma = vma; 140 avc->anon_vma = anon_vma; 141 list_add(&avc->same_vma, &vma->anon_vma_chain); 142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 143 } 144 145 /** 146 * __anon_vma_prepare - attach an anon_vma to a memory region 147 * @vma: the memory region in question 148 * 149 * This makes sure the memory mapping described by 'vma' has 150 * an 'anon_vma' attached to it, so that we can associate the 151 * anonymous pages mapped into it with that anon_vma. 152 * 153 * The common case will be that we already have one, which 154 * is handled inline by anon_vma_prepare(). But if 155 * not we either need to find an adjacent mapping that we 156 * can re-use the anon_vma from (very common when the only 157 * reason for splitting a vma has been mprotect()), or we 158 * allocate a new one. 159 * 160 * Anon-vma allocations are very subtle, because we may have 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 162 * and that may actually touch the spinlock even in the newly 163 * allocated vma (it depends on RCU to make sure that the 164 * anon_vma isn't actually destroyed). 165 * 166 * As a result, we need to do proper anon_vma locking even 167 * for the new allocation. At the same time, we do not want 168 * to do any locking for the common case of already having 169 * an anon_vma. 170 * 171 * This must be called with the mmap_sem held for reading. 172 */ 173 int __anon_vma_prepare(struct vm_area_struct *vma) 174 { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *anon_vma, *allocated; 177 struct anon_vma_chain *avc; 178 179 might_sleep(); 180 181 avc = anon_vma_chain_alloc(GFP_KERNEL); 182 if (!avc) 183 goto out_enomem; 184 185 anon_vma = find_mergeable_anon_vma(vma); 186 allocated = NULL; 187 if (!anon_vma) { 188 anon_vma = anon_vma_alloc(); 189 if (unlikely(!anon_vma)) 190 goto out_enomem_free_avc; 191 allocated = anon_vma; 192 } 193 194 anon_vma_lock_write(anon_vma); 195 /* page_table_lock to protect against threads */ 196 spin_lock(&mm->page_table_lock); 197 if (likely(!vma->anon_vma)) { 198 vma->anon_vma = anon_vma; 199 anon_vma_chain_link(vma, avc, anon_vma); 200 /* vma reference or self-parent link for new root */ 201 anon_vma->degree++; 202 allocated = NULL; 203 avc = NULL; 204 } 205 spin_unlock(&mm->page_table_lock); 206 anon_vma_unlock_write(anon_vma); 207 208 if (unlikely(allocated)) 209 put_anon_vma(allocated); 210 if (unlikely(avc)) 211 anon_vma_chain_free(avc); 212 213 return 0; 214 215 out_enomem_free_avc: 216 anon_vma_chain_free(avc); 217 out_enomem: 218 return -ENOMEM; 219 } 220 221 /* 222 * This is a useful helper function for locking the anon_vma root as 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 224 * have the same vma. 225 * 226 * Such anon_vma's should have the same root, so you'd expect to see 227 * just a single mutex_lock for the whole traversal. 228 */ 229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 230 { 231 struct anon_vma *new_root = anon_vma->root; 232 if (new_root != root) { 233 if (WARN_ON_ONCE(root)) 234 up_write(&root->rwsem); 235 root = new_root; 236 down_write(&root->rwsem); 237 } 238 return root; 239 } 240 241 static inline void unlock_anon_vma_root(struct anon_vma *root) 242 { 243 if (root) 244 up_write(&root->rwsem); 245 } 246 247 /* 248 * Attach the anon_vmas from src to dst. 249 * Returns 0 on success, -ENOMEM on failure. 250 * 251 * If dst->anon_vma is NULL this function tries to find and reuse existing 252 * anon_vma which has no vmas and only one child anon_vma. This prevents 253 * degradation of anon_vma hierarchy to endless linear chain in case of 254 * constantly forking task. On the other hand, an anon_vma with more than one 255 * child isn't reused even if there was no alive vma, thus rmap walker has a 256 * good chance of avoiding scanning the whole hierarchy when it searches where 257 * page is mapped. 258 */ 259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 260 { 261 struct anon_vma_chain *avc, *pavc; 262 struct anon_vma *root = NULL; 263 264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 265 struct anon_vma *anon_vma; 266 267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 268 if (unlikely(!avc)) { 269 unlock_anon_vma_root(root); 270 root = NULL; 271 avc = anon_vma_chain_alloc(GFP_KERNEL); 272 if (!avc) 273 goto enomem_failure; 274 } 275 anon_vma = pavc->anon_vma; 276 root = lock_anon_vma_root(root, anon_vma); 277 anon_vma_chain_link(dst, avc, anon_vma); 278 279 /* 280 * Reuse existing anon_vma if its degree lower than two, 281 * that means it has no vma and only one anon_vma child. 282 * 283 * Do not chose parent anon_vma, otherwise first child 284 * will always reuse it. Root anon_vma is never reused: 285 * it has self-parent reference and at least one child. 286 */ 287 if (!dst->anon_vma && anon_vma != src->anon_vma && 288 anon_vma->degree < 2) 289 dst->anon_vma = anon_vma; 290 } 291 if (dst->anon_vma) 292 dst->anon_vma->degree++; 293 unlock_anon_vma_root(root); 294 return 0; 295 296 enomem_failure: 297 /* 298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 299 * decremented in unlink_anon_vmas(). 300 * We can safely do this because callers of anon_vma_clone() don't care 301 * about dst->anon_vma if anon_vma_clone() failed. 302 */ 303 dst->anon_vma = NULL; 304 unlink_anon_vmas(dst); 305 return -ENOMEM; 306 } 307 308 /* 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that 310 * the corresponding VMA in the parent process is attached to. 311 * Returns 0 on success, non-zero on failure. 312 */ 313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 314 { 315 struct anon_vma_chain *avc; 316 struct anon_vma *anon_vma; 317 int error; 318 319 /* Don't bother if the parent process has no anon_vma here. */ 320 if (!pvma->anon_vma) 321 return 0; 322 323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 324 vma->anon_vma = NULL; 325 326 /* 327 * First, attach the new VMA to the parent VMA's anon_vmas, 328 * so rmap can find non-COWed pages in child processes. 329 */ 330 error = anon_vma_clone(vma, pvma); 331 if (error) 332 return error; 333 334 /* An existing anon_vma has been reused, all done then. */ 335 if (vma->anon_vma) 336 return 0; 337 338 /* Then add our own anon_vma. */ 339 anon_vma = anon_vma_alloc(); 340 if (!anon_vma) 341 goto out_error; 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto out_error_free_anon_vma; 345 346 /* 347 * The root anon_vma's spinlock is the lock actually used when we 348 * lock any of the anon_vmas in this anon_vma tree. 349 */ 350 anon_vma->root = pvma->anon_vma->root; 351 anon_vma->parent = pvma->anon_vma; 352 /* 353 * With refcounts, an anon_vma can stay around longer than the 354 * process it belongs to. The root anon_vma needs to be pinned until 355 * this anon_vma is freed, because the lock lives in the root. 356 */ 357 get_anon_vma(anon_vma->root); 358 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 359 vma->anon_vma = anon_vma; 360 anon_vma_lock_write(anon_vma); 361 anon_vma_chain_link(vma, avc, anon_vma); 362 anon_vma->parent->degree++; 363 anon_vma_unlock_write(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 394 anon_vma->parent->degree--; 395 continue; 396 } 397 398 list_del(&avc->same_vma); 399 anon_vma_chain_free(avc); 400 } 401 if (vma->anon_vma) 402 vma->anon_vma->degree--; 403 unlock_anon_vma_root(root); 404 405 /* 406 * Iterate the list once more, it now only contains empty and unlinked 407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 408 * needing to write-acquire the anon_vma->root->rwsem. 409 */ 410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 411 struct anon_vma *anon_vma = avc->anon_vma; 412 413 VM_WARN_ON(anon_vma->degree); 414 put_anon_vma(anon_vma); 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 } 420 421 static void anon_vma_ctor(void *data) 422 { 423 struct anon_vma *anon_vma = data; 424 425 init_rwsem(&anon_vma->rwsem); 426 atomic_set(&anon_vma->refcount, 0); 427 anon_vma->rb_root = RB_ROOT; 428 } 429 430 void __init anon_vma_init(void) 431 { 432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 434 anon_vma_ctor); 435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 436 SLAB_PANIC|SLAB_ACCOUNT); 437 } 438 439 /* 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 441 * 442 * Since there is no serialization what so ever against page_remove_rmap() 443 * the best this function can do is return a locked anon_vma that might 444 * have been relevant to this page. 445 * 446 * The page might have been remapped to a different anon_vma or the anon_vma 447 * returned may already be freed (and even reused). 448 * 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 451 * ensure that any anon_vma obtained from the page will still be valid for as 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 453 * 454 * All users of this function must be very careful when walking the anon_vma 455 * chain and verify that the page in question is indeed mapped in it 456 * [ something equivalent to page_mapped_in_vma() ]. 457 * 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 459 * that the anon_vma pointer from page->mapping is valid if there is a 460 * mapcount, we can dereference the anon_vma after observing those. 461 */ 462 struct anon_vma *page_get_anon_vma(struct page *page) 463 { 464 struct anon_vma *anon_vma = NULL; 465 unsigned long anon_mapping; 466 467 rcu_read_lock(); 468 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 470 goto out; 471 if (!page_mapped(page)) 472 goto out; 473 474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 475 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 476 anon_vma = NULL; 477 goto out; 478 } 479 480 /* 481 * If this page is still mapped, then its anon_vma cannot have been 482 * freed. But if it has been unmapped, we have no security against the 483 * anon_vma structure being freed and reused (for another anon_vma: 484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 485 * above cannot corrupt). 486 */ 487 if (!page_mapped(page)) { 488 rcu_read_unlock(); 489 put_anon_vma(anon_vma); 490 return NULL; 491 } 492 out: 493 rcu_read_unlock(); 494 495 return anon_vma; 496 } 497 498 /* 499 * Similar to page_get_anon_vma() except it locks the anon_vma. 500 * 501 * Its a little more complex as it tries to keep the fast path to a single 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 503 * reference like with page_get_anon_vma() and then block on the mutex. 504 */ 505 struct anon_vma *page_lock_anon_vma_read(struct page *page) 506 { 507 struct anon_vma *anon_vma = NULL; 508 struct anon_vma *root_anon_vma; 509 unsigned long anon_mapping; 510 511 rcu_read_lock(); 512 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 514 goto out; 515 if (!page_mapped(page)) 516 goto out; 517 518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 519 root_anon_vma = READ_ONCE(anon_vma->root); 520 if (down_read_trylock(&root_anon_vma->rwsem)) { 521 /* 522 * If the page is still mapped, then this anon_vma is still 523 * its anon_vma, and holding the mutex ensures that it will 524 * not go away, see anon_vma_free(). 525 */ 526 if (!page_mapped(page)) { 527 up_read(&root_anon_vma->rwsem); 528 anon_vma = NULL; 529 } 530 goto out; 531 } 532 533 /* trylock failed, we got to sleep */ 534 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 535 anon_vma = NULL; 536 goto out; 537 } 538 539 if (!page_mapped(page)) { 540 rcu_read_unlock(); 541 put_anon_vma(anon_vma); 542 return NULL; 543 } 544 545 /* we pinned the anon_vma, its safe to sleep */ 546 rcu_read_unlock(); 547 anon_vma_lock_read(anon_vma); 548 549 if (atomic_dec_and_test(&anon_vma->refcount)) { 550 /* 551 * Oops, we held the last refcount, release the lock 552 * and bail -- can't simply use put_anon_vma() because 553 * we'll deadlock on the anon_vma_lock_write() recursion. 554 */ 555 anon_vma_unlock_read(anon_vma); 556 __put_anon_vma(anon_vma); 557 anon_vma = NULL; 558 } 559 560 return anon_vma; 561 562 out: 563 rcu_read_unlock(); 564 return anon_vma; 565 } 566 567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 568 { 569 anon_vma_unlock_read(anon_vma); 570 } 571 572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 573 /* 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 575 * important if a PTE was dirty when it was unmapped that it's flushed 576 * before any IO is initiated on the page to prevent lost writes. Similarly, 577 * it must be flushed before freeing to prevent data leakage. 578 */ 579 void try_to_unmap_flush(void) 580 { 581 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 582 583 if (!tlb_ubc->flush_required) 584 return; 585 586 arch_tlbbatch_flush(&tlb_ubc->arch); 587 tlb_ubc->flush_required = false; 588 tlb_ubc->writable = false; 589 } 590 591 /* Flush iff there are potentially writable TLB entries that can race with IO */ 592 void try_to_unmap_flush_dirty(void) 593 { 594 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 595 596 if (tlb_ubc->writable) 597 try_to_unmap_flush(); 598 } 599 600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 601 { 602 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 603 604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 605 tlb_ubc->flush_required = true; 606 607 /* 608 * If the PTE was dirty then it's best to assume it's writable. The 609 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 610 * before the page is queued for IO. 611 */ 612 if (writable) 613 tlb_ubc->writable = true; 614 } 615 616 /* 617 * Returns true if the TLB flush should be deferred to the end of a batch of 618 * unmap operations to reduce IPIs. 619 */ 620 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 621 { 622 bool should_defer = false; 623 624 if (!(flags & TTU_BATCH_FLUSH)) 625 return false; 626 627 /* If remote CPUs need to be flushed then defer batch the flush */ 628 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 629 should_defer = true; 630 put_cpu(); 631 632 return should_defer; 633 } 634 #else 635 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 636 { 637 } 638 639 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 640 { 641 return false; 642 } 643 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 644 645 /* 646 * At what user virtual address is page expected in vma? 647 * Caller should check the page is actually part of the vma. 648 */ 649 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 650 { 651 unsigned long address; 652 if (PageAnon(page)) { 653 struct anon_vma *page__anon_vma = page_anon_vma(page); 654 /* 655 * Note: swapoff's unuse_vma() is more efficient with this 656 * check, and needs it to match anon_vma when KSM is active. 657 */ 658 if (!vma->anon_vma || !page__anon_vma || 659 vma->anon_vma->root != page__anon_vma->root) 660 return -EFAULT; 661 } else if (page->mapping) { 662 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 663 return -EFAULT; 664 } else 665 return -EFAULT; 666 address = __vma_address(page, vma); 667 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 668 return -EFAULT; 669 return address; 670 } 671 672 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 673 { 674 pgd_t *pgd; 675 p4d_t *p4d; 676 pud_t *pud; 677 pmd_t *pmd = NULL; 678 pmd_t pmde; 679 680 pgd = pgd_offset(mm, address); 681 if (!pgd_present(*pgd)) 682 goto out; 683 684 p4d = p4d_offset(pgd, address); 685 if (!p4d_present(*p4d)) 686 goto out; 687 688 pud = pud_offset(p4d, address); 689 if (!pud_present(*pud)) 690 goto out; 691 692 pmd = pmd_offset(pud, address); 693 /* 694 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 695 * without holding anon_vma lock for write. So when looking for a 696 * genuine pmde (in which to find pte), test present and !THP together. 697 */ 698 pmde = *pmd; 699 barrier(); 700 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 701 pmd = NULL; 702 out: 703 return pmd; 704 } 705 706 struct page_referenced_arg { 707 int mapcount; 708 int referenced; 709 unsigned long vm_flags; 710 struct mem_cgroup *memcg; 711 }; 712 /* 713 * arg: page_referenced_arg will be passed 714 */ 715 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 716 unsigned long address, void *arg) 717 { 718 struct page_referenced_arg *pra = arg; 719 struct page_vma_mapped_walk pvmw = { 720 .page = page, 721 .vma = vma, 722 .address = address, 723 }; 724 int referenced = 0; 725 726 while (page_vma_mapped_walk(&pvmw)) { 727 address = pvmw.address; 728 729 if (vma->vm_flags & VM_LOCKED) { 730 page_vma_mapped_walk_done(&pvmw); 731 pra->vm_flags |= VM_LOCKED; 732 return false; /* To break the loop */ 733 } 734 735 if (pvmw.pte) { 736 if (ptep_clear_flush_young_notify(vma, address, 737 pvmw.pte)) { 738 /* 739 * Don't treat a reference through 740 * a sequentially read mapping as such. 741 * If the page has been used in another mapping, 742 * we will catch it; if this other mapping is 743 * already gone, the unmap path will have set 744 * PG_referenced or activated the page. 745 */ 746 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 747 referenced++; 748 } 749 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 750 if (pmdp_clear_flush_young_notify(vma, address, 751 pvmw.pmd)) 752 referenced++; 753 } else { 754 /* unexpected pmd-mapped page? */ 755 WARN_ON_ONCE(1); 756 } 757 758 pra->mapcount--; 759 } 760 761 if (referenced) 762 clear_page_idle(page); 763 if (test_and_clear_page_young(page)) 764 referenced++; 765 766 if (referenced) { 767 pra->referenced++; 768 pra->vm_flags |= vma->vm_flags; 769 } 770 771 if (!pra->mapcount) 772 return false; /* To break the loop */ 773 774 return true; 775 } 776 777 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 778 { 779 struct page_referenced_arg *pra = arg; 780 struct mem_cgroup *memcg = pra->memcg; 781 782 if (!mm_match_cgroup(vma->vm_mm, memcg)) 783 return true; 784 785 return false; 786 } 787 788 /** 789 * page_referenced - test if the page was referenced 790 * @page: the page to test 791 * @is_locked: caller holds lock on the page 792 * @memcg: target memory cgroup 793 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 794 * 795 * Quick test_and_clear_referenced for all mappings to a page, 796 * returns the number of ptes which referenced the page. 797 */ 798 int page_referenced(struct page *page, 799 int is_locked, 800 struct mem_cgroup *memcg, 801 unsigned long *vm_flags) 802 { 803 int we_locked = 0; 804 struct page_referenced_arg pra = { 805 .mapcount = total_mapcount(page), 806 .memcg = memcg, 807 }; 808 struct rmap_walk_control rwc = { 809 .rmap_one = page_referenced_one, 810 .arg = (void *)&pra, 811 .anon_lock = page_lock_anon_vma_read, 812 }; 813 814 *vm_flags = 0; 815 if (!page_mapped(page)) 816 return 0; 817 818 if (!page_rmapping(page)) 819 return 0; 820 821 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 822 we_locked = trylock_page(page); 823 if (!we_locked) 824 return 1; 825 } 826 827 /* 828 * If we are reclaiming on behalf of a cgroup, skip 829 * counting on behalf of references from different 830 * cgroups 831 */ 832 if (memcg) { 833 rwc.invalid_vma = invalid_page_referenced_vma; 834 } 835 836 rmap_walk(page, &rwc); 837 *vm_flags = pra.vm_flags; 838 839 if (we_locked) 840 unlock_page(page); 841 842 return pra.referenced; 843 } 844 845 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 846 unsigned long address, void *arg) 847 { 848 struct page_vma_mapped_walk pvmw = { 849 .page = page, 850 .vma = vma, 851 .address = address, 852 .flags = PVMW_SYNC, 853 }; 854 int *cleaned = arg; 855 856 while (page_vma_mapped_walk(&pvmw)) { 857 int ret = 0; 858 address = pvmw.address; 859 if (pvmw.pte) { 860 pte_t entry; 861 pte_t *pte = pvmw.pte; 862 863 if (!pte_dirty(*pte) && !pte_write(*pte)) 864 continue; 865 866 flush_cache_page(vma, address, pte_pfn(*pte)); 867 entry = ptep_clear_flush(vma, address, pte); 868 entry = pte_wrprotect(entry); 869 entry = pte_mkclean(entry); 870 set_pte_at(vma->vm_mm, address, pte, entry); 871 ret = 1; 872 } else { 873 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 874 pmd_t *pmd = pvmw.pmd; 875 pmd_t entry; 876 877 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 878 continue; 879 880 flush_cache_page(vma, address, page_to_pfn(page)); 881 entry = pmdp_huge_clear_flush(vma, address, pmd); 882 entry = pmd_wrprotect(entry); 883 entry = pmd_mkclean(entry); 884 set_pmd_at(vma->vm_mm, address, pmd, entry); 885 ret = 1; 886 #else 887 /* unexpected pmd-mapped page? */ 888 WARN_ON_ONCE(1); 889 #endif 890 } 891 892 if (ret) { 893 mmu_notifier_invalidate_page(vma->vm_mm, address); 894 (*cleaned)++; 895 } 896 } 897 898 return true; 899 } 900 901 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 902 { 903 if (vma->vm_flags & VM_SHARED) 904 return false; 905 906 return true; 907 } 908 909 int page_mkclean(struct page *page) 910 { 911 int cleaned = 0; 912 struct address_space *mapping; 913 struct rmap_walk_control rwc = { 914 .arg = (void *)&cleaned, 915 .rmap_one = page_mkclean_one, 916 .invalid_vma = invalid_mkclean_vma, 917 }; 918 919 BUG_ON(!PageLocked(page)); 920 921 if (!page_mapped(page)) 922 return 0; 923 924 mapping = page_mapping(page); 925 if (!mapping) 926 return 0; 927 928 rmap_walk(page, &rwc); 929 930 return cleaned; 931 } 932 EXPORT_SYMBOL_GPL(page_mkclean); 933 934 /** 935 * page_move_anon_rmap - move a page to our anon_vma 936 * @page: the page to move to our anon_vma 937 * @vma: the vma the page belongs to 938 * 939 * When a page belongs exclusively to one process after a COW event, 940 * that page can be moved into the anon_vma that belongs to just that 941 * process, so the rmap code will not search the parent or sibling 942 * processes. 943 */ 944 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 945 { 946 struct anon_vma *anon_vma = vma->anon_vma; 947 948 page = compound_head(page); 949 950 VM_BUG_ON_PAGE(!PageLocked(page), page); 951 VM_BUG_ON_VMA(!anon_vma, vma); 952 953 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 954 /* 955 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 956 * simultaneously, so a concurrent reader (eg page_referenced()'s 957 * PageAnon()) will not see one without the other. 958 */ 959 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 960 } 961 962 /** 963 * __page_set_anon_rmap - set up new anonymous rmap 964 * @page: Page to add to rmap 965 * @vma: VM area to add page to. 966 * @address: User virtual address of the mapping 967 * @exclusive: the page is exclusively owned by the current process 968 */ 969 static void __page_set_anon_rmap(struct page *page, 970 struct vm_area_struct *vma, unsigned long address, int exclusive) 971 { 972 struct anon_vma *anon_vma = vma->anon_vma; 973 974 BUG_ON(!anon_vma); 975 976 if (PageAnon(page)) 977 return; 978 979 /* 980 * If the page isn't exclusively mapped into this vma, 981 * we must use the _oldest_ possible anon_vma for the 982 * page mapping! 983 */ 984 if (!exclusive) 985 anon_vma = anon_vma->root; 986 987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 988 page->mapping = (struct address_space *) anon_vma; 989 page->index = linear_page_index(vma, address); 990 } 991 992 /** 993 * __page_check_anon_rmap - sanity check anonymous rmap addition 994 * @page: the page to add the mapping to 995 * @vma: the vm area in which the mapping is added 996 * @address: the user virtual address mapped 997 */ 998 static void __page_check_anon_rmap(struct page *page, 999 struct vm_area_struct *vma, unsigned long address) 1000 { 1001 #ifdef CONFIG_DEBUG_VM 1002 /* 1003 * The page's anon-rmap details (mapping and index) are guaranteed to 1004 * be set up correctly at this point. 1005 * 1006 * We have exclusion against page_add_anon_rmap because the caller 1007 * always holds the page locked, except if called from page_dup_rmap, 1008 * in which case the page is already known to be setup. 1009 * 1010 * We have exclusion against page_add_new_anon_rmap because those pages 1011 * are initially only visible via the pagetables, and the pte is locked 1012 * over the call to page_add_new_anon_rmap. 1013 */ 1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1015 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1016 #endif 1017 } 1018 1019 /** 1020 * page_add_anon_rmap - add pte mapping to an anonymous page 1021 * @page: the page to add the mapping to 1022 * @vma: the vm area in which the mapping is added 1023 * @address: the user virtual address mapped 1024 * @compound: charge the page as compound or small page 1025 * 1026 * The caller needs to hold the pte lock, and the page must be locked in 1027 * the anon_vma case: to serialize mapping,index checking after setting, 1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1029 * (but PageKsm is never downgraded to PageAnon). 1030 */ 1031 void page_add_anon_rmap(struct page *page, 1032 struct vm_area_struct *vma, unsigned long address, bool compound) 1033 { 1034 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1035 } 1036 1037 /* 1038 * Special version of the above for do_swap_page, which often runs 1039 * into pages that are exclusively owned by the current process. 1040 * Everybody else should continue to use page_add_anon_rmap above. 1041 */ 1042 void do_page_add_anon_rmap(struct page *page, 1043 struct vm_area_struct *vma, unsigned long address, int flags) 1044 { 1045 bool compound = flags & RMAP_COMPOUND; 1046 bool first; 1047 1048 if (compound) { 1049 atomic_t *mapcount; 1050 VM_BUG_ON_PAGE(!PageLocked(page), page); 1051 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1052 mapcount = compound_mapcount_ptr(page); 1053 first = atomic_inc_and_test(mapcount); 1054 } else { 1055 first = atomic_inc_and_test(&page->_mapcount); 1056 } 1057 1058 if (first) { 1059 int nr = compound ? hpage_nr_pages(page) : 1; 1060 /* 1061 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1062 * these counters are not modified in interrupt context, and 1063 * pte lock(a spinlock) is held, which implies preemption 1064 * disabled. 1065 */ 1066 if (compound) 1067 __inc_node_page_state(page, NR_ANON_THPS); 1068 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1069 } 1070 if (unlikely(PageKsm(page))) 1071 return; 1072 1073 VM_BUG_ON_PAGE(!PageLocked(page), page); 1074 1075 /* address might be in next vma when migration races vma_adjust */ 1076 if (first) 1077 __page_set_anon_rmap(page, vma, address, 1078 flags & RMAP_EXCLUSIVE); 1079 else 1080 __page_check_anon_rmap(page, vma, address); 1081 } 1082 1083 /** 1084 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1085 * @page: the page to add the mapping to 1086 * @vma: the vm area in which the mapping is added 1087 * @address: the user virtual address mapped 1088 * @compound: charge the page as compound or small page 1089 * 1090 * Same as page_add_anon_rmap but must only be called on *new* pages. 1091 * This means the inc-and-test can be bypassed. 1092 * Page does not have to be locked. 1093 */ 1094 void page_add_new_anon_rmap(struct page *page, 1095 struct vm_area_struct *vma, unsigned long address, bool compound) 1096 { 1097 int nr = compound ? hpage_nr_pages(page) : 1; 1098 1099 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1100 __SetPageSwapBacked(page); 1101 if (compound) { 1102 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1103 /* increment count (starts at -1) */ 1104 atomic_set(compound_mapcount_ptr(page), 0); 1105 __inc_node_page_state(page, NR_ANON_THPS); 1106 } else { 1107 /* Anon THP always mapped first with PMD */ 1108 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1109 /* increment count (starts at -1) */ 1110 atomic_set(&page->_mapcount, 0); 1111 } 1112 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1113 __page_set_anon_rmap(page, vma, address, 1); 1114 } 1115 1116 /** 1117 * page_add_file_rmap - add pte mapping to a file page 1118 * @page: the page to add the mapping to 1119 * 1120 * The caller needs to hold the pte lock. 1121 */ 1122 void page_add_file_rmap(struct page *page, bool compound) 1123 { 1124 int i, nr = 1; 1125 1126 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1127 lock_page_memcg(page); 1128 if (compound && PageTransHuge(page)) { 1129 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1130 if (atomic_inc_and_test(&page[i]._mapcount)) 1131 nr++; 1132 } 1133 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1134 goto out; 1135 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1136 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1137 } else { 1138 if (PageTransCompound(page) && page_mapping(page)) { 1139 VM_WARN_ON_ONCE(!PageLocked(page)); 1140 1141 SetPageDoubleMap(compound_head(page)); 1142 if (PageMlocked(page)) 1143 clear_page_mlock(compound_head(page)); 1144 } 1145 if (!atomic_inc_and_test(&page->_mapcount)) 1146 goto out; 1147 } 1148 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr); 1149 mod_memcg_page_state(page, NR_FILE_MAPPED, nr); 1150 out: 1151 unlock_page_memcg(page); 1152 } 1153 1154 static void page_remove_file_rmap(struct page *page, bool compound) 1155 { 1156 int i, nr = 1; 1157 1158 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1159 lock_page_memcg(page); 1160 1161 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1162 if (unlikely(PageHuge(page))) { 1163 /* hugetlb pages are always mapped with pmds */ 1164 atomic_dec(compound_mapcount_ptr(page)); 1165 goto out; 1166 } 1167 1168 /* page still mapped by someone else? */ 1169 if (compound && PageTransHuge(page)) { 1170 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1171 if (atomic_add_negative(-1, &page[i]._mapcount)) 1172 nr++; 1173 } 1174 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1175 goto out; 1176 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1177 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1178 } else { 1179 if (!atomic_add_negative(-1, &page->_mapcount)) 1180 goto out; 1181 } 1182 1183 /* 1184 * We use the irq-unsafe __{inc|mod}_zone_page_state because 1185 * these counters are not modified in interrupt context, and 1186 * pte lock(a spinlock) is held, which implies preemption disabled. 1187 */ 1188 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr); 1189 mod_memcg_page_state(page, NR_FILE_MAPPED, -nr); 1190 1191 if (unlikely(PageMlocked(page))) 1192 clear_page_mlock(page); 1193 out: 1194 unlock_page_memcg(page); 1195 } 1196 1197 static void page_remove_anon_compound_rmap(struct page *page) 1198 { 1199 int i, nr; 1200 1201 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1202 return; 1203 1204 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1205 if (unlikely(PageHuge(page))) 1206 return; 1207 1208 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1209 return; 1210 1211 __dec_node_page_state(page, NR_ANON_THPS); 1212 1213 if (TestClearPageDoubleMap(page)) { 1214 /* 1215 * Subpages can be mapped with PTEs too. Check how many of 1216 * themi are still mapped. 1217 */ 1218 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1219 if (atomic_add_negative(-1, &page[i]._mapcount)) 1220 nr++; 1221 } 1222 } else { 1223 nr = HPAGE_PMD_NR; 1224 } 1225 1226 if (unlikely(PageMlocked(page))) 1227 clear_page_mlock(page); 1228 1229 if (nr) { 1230 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1231 deferred_split_huge_page(page); 1232 } 1233 } 1234 1235 /** 1236 * page_remove_rmap - take down pte mapping from a page 1237 * @page: page to remove mapping from 1238 * @compound: uncharge the page as compound or small page 1239 * 1240 * The caller needs to hold the pte lock. 1241 */ 1242 void page_remove_rmap(struct page *page, bool compound) 1243 { 1244 if (!PageAnon(page)) 1245 return page_remove_file_rmap(page, compound); 1246 1247 if (compound) 1248 return page_remove_anon_compound_rmap(page); 1249 1250 /* page still mapped by someone else? */ 1251 if (!atomic_add_negative(-1, &page->_mapcount)) 1252 return; 1253 1254 /* 1255 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1256 * these counters are not modified in interrupt context, and 1257 * pte lock(a spinlock) is held, which implies preemption disabled. 1258 */ 1259 __dec_node_page_state(page, NR_ANON_MAPPED); 1260 1261 if (unlikely(PageMlocked(page))) 1262 clear_page_mlock(page); 1263 1264 if (PageTransCompound(page)) 1265 deferred_split_huge_page(compound_head(page)); 1266 1267 /* 1268 * It would be tidy to reset the PageAnon mapping here, 1269 * but that might overwrite a racing page_add_anon_rmap 1270 * which increments mapcount after us but sets mapping 1271 * before us: so leave the reset to free_hot_cold_page, 1272 * and remember that it's only reliable while mapped. 1273 * Leaving it set also helps swapoff to reinstate ptes 1274 * faster for those pages still in swapcache. 1275 */ 1276 } 1277 1278 /* 1279 * @arg: enum ttu_flags will be passed to this argument 1280 */ 1281 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1282 unsigned long address, void *arg) 1283 { 1284 struct mm_struct *mm = vma->vm_mm; 1285 struct page_vma_mapped_walk pvmw = { 1286 .page = page, 1287 .vma = vma, 1288 .address = address, 1289 }; 1290 pte_t pteval; 1291 struct page *subpage; 1292 bool ret = true; 1293 enum ttu_flags flags = (enum ttu_flags)arg; 1294 1295 /* munlock has nothing to gain from examining un-locked vmas */ 1296 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1297 return true; 1298 1299 if (flags & TTU_SPLIT_HUGE_PMD) { 1300 split_huge_pmd_address(vma, address, 1301 flags & TTU_MIGRATION, page); 1302 } 1303 1304 while (page_vma_mapped_walk(&pvmw)) { 1305 /* 1306 * If the page is mlock()d, we cannot swap it out. 1307 * If it's recently referenced (perhaps page_referenced 1308 * skipped over this mm) then we should reactivate it. 1309 */ 1310 if (!(flags & TTU_IGNORE_MLOCK)) { 1311 if (vma->vm_flags & VM_LOCKED) { 1312 /* PTE-mapped THP are never mlocked */ 1313 if (!PageTransCompound(page)) { 1314 /* 1315 * Holding pte lock, we do *not* need 1316 * mmap_sem here 1317 */ 1318 mlock_vma_page(page); 1319 } 1320 ret = false; 1321 page_vma_mapped_walk_done(&pvmw); 1322 break; 1323 } 1324 if (flags & TTU_MUNLOCK) 1325 continue; 1326 } 1327 1328 /* Unexpected PMD-mapped THP? */ 1329 VM_BUG_ON_PAGE(!pvmw.pte, page); 1330 1331 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1332 address = pvmw.address; 1333 1334 1335 if (!(flags & TTU_IGNORE_ACCESS)) { 1336 if (ptep_clear_flush_young_notify(vma, address, 1337 pvmw.pte)) { 1338 ret = false; 1339 page_vma_mapped_walk_done(&pvmw); 1340 break; 1341 } 1342 } 1343 1344 /* Nuke the page table entry. */ 1345 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1346 if (should_defer_flush(mm, flags)) { 1347 /* 1348 * We clear the PTE but do not flush so potentially 1349 * a remote CPU could still be writing to the page. 1350 * If the entry was previously clean then the 1351 * architecture must guarantee that a clear->dirty 1352 * transition on a cached TLB entry is written through 1353 * and traps if the PTE is unmapped. 1354 */ 1355 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1356 1357 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1358 } else { 1359 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1360 } 1361 1362 /* Move the dirty bit to the page. Now the pte is gone. */ 1363 if (pte_dirty(pteval)) 1364 set_page_dirty(page); 1365 1366 /* Update high watermark before we lower rss */ 1367 update_hiwater_rss(mm); 1368 1369 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1370 if (PageHuge(page)) { 1371 int nr = 1 << compound_order(page); 1372 hugetlb_count_sub(nr, mm); 1373 } else { 1374 dec_mm_counter(mm, mm_counter(page)); 1375 } 1376 1377 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1378 set_pte_at(mm, address, pvmw.pte, pteval); 1379 } else if (pte_unused(pteval)) { 1380 /* 1381 * The guest indicated that the page content is of no 1382 * interest anymore. Simply discard the pte, vmscan 1383 * will take care of the rest. 1384 */ 1385 dec_mm_counter(mm, mm_counter(page)); 1386 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1387 (flags & TTU_MIGRATION)) { 1388 swp_entry_t entry; 1389 pte_t swp_pte; 1390 /* 1391 * Store the pfn of the page in a special migration 1392 * pte. do_swap_page() will wait until the migration 1393 * pte is removed and then restart fault handling. 1394 */ 1395 entry = make_migration_entry(subpage, 1396 pte_write(pteval)); 1397 swp_pte = swp_entry_to_pte(entry); 1398 if (pte_soft_dirty(pteval)) 1399 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1400 set_pte_at(mm, address, pvmw.pte, swp_pte); 1401 } else if (PageAnon(page)) { 1402 swp_entry_t entry = { .val = page_private(subpage) }; 1403 pte_t swp_pte; 1404 /* 1405 * Store the swap location in the pte. 1406 * See handle_pte_fault() ... 1407 */ 1408 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1409 WARN_ON_ONCE(1); 1410 ret = false; 1411 page_vma_mapped_walk_done(&pvmw); 1412 break; 1413 } 1414 1415 /* MADV_FREE page check */ 1416 if (!PageSwapBacked(page)) { 1417 if (!PageDirty(page)) { 1418 dec_mm_counter(mm, MM_ANONPAGES); 1419 goto discard; 1420 } 1421 1422 /* 1423 * If the page was redirtied, it cannot be 1424 * discarded. Remap the page to page table. 1425 */ 1426 set_pte_at(mm, address, pvmw.pte, pteval); 1427 SetPageSwapBacked(page); 1428 ret = false; 1429 page_vma_mapped_walk_done(&pvmw); 1430 break; 1431 } 1432 1433 if (swap_duplicate(entry) < 0) { 1434 set_pte_at(mm, address, pvmw.pte, pteval); 1435 ret = false; 1436 page_vma_mapped_walk_done(&pvmw); 1437 break; 1438 } 1439 if (list_empty(&mm->mmlist)) { 1440 spin_lock(&mmlist_lock); 1441 if (list_empty(&mm->mmlist)) 1442 list_add(&mm->mmlist, &init_mm.mmlist); 1443 spin_unlock(&mmlist_lock); 1444 } 1445 dec_mm_counter(mm, MM_ANONPAGES); 1446 inc_mm_counter(mm, MM_SWAPENTS); 1447 swp_pte = swp_entry_to_pte(entry); 1448 if (pte_soft_dirty(pteval)) 1449 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1450 set_pte_at(mm, address, pvmw.pte, swp_pte); 1451 } else 1452 dec_mm_counter(mm, mm_counter_file(page)); 1453 discard: 1454 page_remove_rmap(subpage, PageHuge(page)); 1455 put_page(page); 1456 mmu_notifier_invalidate_page(mm, address); 1457 } 1458 return ret; 1459 } 1460 1461 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1462 { 1463 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1464 1465 if (!maybe_stack) 1466 return false; 1467 1468 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1469 VM_STACK_INCOMPLETE_SETUP) 1470 return true; 1471 1472 return false; 1473 } 1474 1475 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1476 { 1477 return is_vma_temporary_stack(vma); 1478 } 1479 1480 static int page_mapcount_is_zero(struct page *page) 1481 { 1482 return !total_mapcount(page); 1483 } 1484 1485 /** 1486 * try_to_unmap - try to remove all page table mappings to a page 1487 * @page: the page to get unmapped 1488 * @flags: action and flags 1489 * 1490 * Tries to remove all the page table entries which are mapping this 1491 * page, used in the pageout path. Caller must hold the page lock. 1492 * 1493 * If unmap is successful, return true. Otherwise, false. 1494 */ 1495 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1496 { 1497 struct rmap_walk_control rwc = { 1498 .rmap_one = try_to_unmap_one, 1499 .arg = (void *)flags, 1500 .done = page_mapcount_is_zero, 1501 .anon_lock = page_lock_anon_vma_read, 1502 }; 1503 1504 /* 1505 * During exec, a temporary VMA is setup and later moved. 1506 * The VMA is moved under the anon_vma lock but not the 1507 * page tables leading to a race where migration cannot 1508 * find the migration ptes. Rather than increasing the 1509 * locking requirements of exec(), migration skips 1510 * temporary VMAs until after exec() completes. 1511 */ 1512 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1513 rwc.invalid_vma = invalid_migration_vma; 1514 1515 if (flags & TTU_RMAP_LOCKED) 1516 rmap_walk_locked(page, &rwc); 1517 else 1518 rmap_walk(page, &rwc); 1519 1520 return !page_mapcount(page) ? true : false; 1521 } 1522 1523 static int page_not_mapped(struct page *page) 1524 { 1525 return !page_mapped(page); 1526 }; 1527 1528 /** 1529 * try_to_munlock - try to munlock a page 1530 * @page: the page to be munlocked 1531 * 1532 * Called from munlock code. Checks all of the VMAs mapping the page 1533 * to make sure nobody else has this page mlocked. The page will be 1534 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1535 */ 1536 1537 void try_to_munlock(struct page *page) 1538 { 1539 struct rmap_walk_control rwc = { 1540 .rmap_one = try_to_unmap_one, 1541 .arg = (void *)TTU_MUNLOCK, 1542 .done = page_not_mapped, 1543 .anon_lock = page_lock_anon_vma_read, 1544 1545 }; 1546 1547 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1548 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1549 1550 rmap_walk(page, &rwc); 1551 } 1552 1553 void __put_anon_vma(struct anon_vma *anon_vma) 1554 { 1555 struct anon_vma *root = anon_vma->root; 1556 1557 anon_vma_free(anon_vma); 1558 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1559 anon_vma_free(root); 1560 } 1561 1562 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1563 struct rmap_walk_control *rwc) 1564 { 1565 struct anon_vma *anon_vma; 1566 1567 if (rwc->anon_lock) 1568 return rwc->anon_lock(page); 1569 1570 /* 1571 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1572 * because that depends on page_mapped(); but not all its usages 1573 * are holding mmap_sem. Users without mmap_sem are required to 1574 * take a reference count to prevent the anon_vma disappearing 1575 */ 1576 anon_vma = page_anon_vma(page); 1577 if (!anon_vma) 1578 return NULL; 1579 1580 anon_vma_lock_read(anon_vma); 1581 return anon_vma; 1582 } 1583 1584 /* 1585 * rmap_walk_anon - do something to anonymous page using the object-based 1586 * rmap method 1587 * @page: the page to be handled 1588 * @rwc: control variable according to each walk type 1589 * 1590 * Find all the mappings of a page using the mapping pointer and the vma chains 1591 * contained in the anon_vma struct it points to. 1592 * 1593 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1594 * where the page was found will be held for write. So, we won't recheck 1595 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1596 * LOCKED. 1597 */ 1598 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1599 bool locked) 1600 { 1601 struct anon_vma *anon_vma; 1602 pgoff_t pgoff_start, pgoff_end; 1603 struct anon_vma_chain *avc; 1604 1605 if (locked) { 1606 anon_vma = page_anon_vma(page); 1607 /* anon_vma disappear under us? */ 1608 VM_BUG_ON_PAGE(!anon_vma, page); 1609 } else { 1610 anon_vma = rmap_walk_anon_lock(page, rwc); 1611 } 1612 if (!anon_vma) 1613 return; 1614 1615 pgoff_start = page_to_pgoff(page); 1616 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1617 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1618 pgoff_start, pgoff_end) { 1619 struct vm_area_struct *vma = avc->vma; 1620 unsigned long address = vma_address(page, vma); 1621 1622 cond_resched(); 1623 1624 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1625 continue; 1626 1627 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1628 break; 1629 if (rwc->done && rwc->done(page)) 1630 break; 1631 } 1632 1633 if (!locked) 1634 anon_vma_unlock_read(anon_vma); 1635 } 1636 1637 /* 1638 * rmap_walk_file - do something to file page using the object-based rmap method 1639 * @page: the page to be handled 1640 * @rwc: control variable according to each walk type 1641 * 1642 * Find all the mappings of a page using the mapping pointer and the vma chains 1643 * contained in the address_space struct it points to. 1644 * 1645 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1646 * where the page was found will be held for write. So, we won't recheck 1647 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1648 * LOCKED. 1649 */ 1650 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1651 bool locked) 1652 { 1653 struct address_space *mapping = page_mapping(page); 1654 pgoff_t pgoff_start, pgoff_end; 1655 struct vm_area_struct *vma; 1656 1657 /* 1658 * The page lock not only makes sure that page->mapping cannot 1659 * suddenly be NULLified by truncation, it makes sure that the 1660 * structure at mapping cannot be freed and reused yet, 1661 * so we can safely take mapping->i_mmap_rwsem. 1662 */ 1663 VM_BUG_ON_PAGE(!PageLocked(page), page); 1664 1665 if (!mapping) 1666 return; 1667 1668 pgoff_start = page_to_pgoff(page); 1669 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1670 if (!locked) 1671 i_mmap_lock_read(mapping); 1672 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1673 pgoff_start, pgoff_end) { 1674 unsigned long address = vma_address(page, vma); 1675 1676 cond_resched(); 1677 1678 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1679 continue; 1680 1681 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1682 goto done; 1683 if (rwc->done && rwc->done(page)) 1684 goto done; 1685 } 1686 1687 done: 1688 if (!locked) 1689 i_mmap_unlock_read(mapping); 1690 } 1691 1692 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1693 { 1694 if (unlikely(PageKsm(page))) 1695 rmap_walk_ksm(page, rwc); 1696 else if (PageAnon(page)) 1697 rmap_walk_anon(page, rwc, false); 1698 else 1699 rmap_walk_file(page, rwc, false); 1700 } 1701 1702 /* Like rmap_walk, but caller holds relevant rmap lock */ 1703 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1704 { 1705 /* no ksm support for now */ 1706 VM_BUG_ON_PAGE(PageKsm(page), page); 1707 if (PageAnon(page)) 1708 rmap_walk_anon(page, rwc, true); 1709 else 1710 rmap_walk_file(page, rwc, true); 1711 } 1712 1713 #ifdef CONFIG_HUGETLB_PAGE 1714 /* 1715 * The following three functions are for anonymous (private mapped) hugepages. 1716 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1717 * and no lru code, because we handle hugepages differently from common pages. 1718 */ 1719 static void __hugepage_set_anon_rmap(struct page *page, 1720 struct vm_area_struct *vma, unsigned long address, int exclusive) 1721 { 1722 struct anon_vma *anon_vma = vma->anon_vma; 1723 1724 BUG_ON(!anon_vma); 1725 1726 if (PageAnon(page)) 1727 return; 1728 if (!exclusive) 1729 anon_vma = anon_vma->root; 1730 1731 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1732 page->mapping = (struct address_space *) anon_vma; 1733 page->index = linear_page_index(vma, address); 1734 } 1735 1736 void hugepage_add_anon_rmap(struct page *page, 1737 struct vm_area_struct *vma, unsigned long address) 1738 { 1739 struct anon_vma *anon_vma = vma->anon_vma; 1740 int first; 1741 1742 BUG_ON(!PageLocked(page)); 1743 BUG_ON(!anon_vma); 1744 /* address might be in next vma when migration races vma_adjust */ 1745 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1746 if (first) 1747 __hugepage_set_anon_rmap(page, vma, address, 0); 1748 } 1749 1750 void hugepage_add_new_anon_rmap(struct page *page, 1751 struct vm_area_struct *vma, unsigned long address) 1752 { 1753 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1754 atomic_set(compound_mapcount_ptr(page), 0); 1755 __hugepage_set_anon_rmap(page, vma, address, 1); 1756 } 1757 #endif /* CONFIG_HUGETLB_PAGE */ 1758