1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * page->flags PG_locked (lock_page) * (see huegtlbfs below) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 29 * anon_vma->rwsem 30 * mm->page_table_lock or pte_lock 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * lock_page_memcg move_lock (in __set_page_dirty_buffers) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in lock_page_lruvec_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * * hugetlbfs PageHuge() pages take locks in this order: 49 * mapping->i_mmap_rwsem 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * page->flags PG_locked (lock_page) 52 */ 53 54 #include <linux/mm.h> 55 #include <linux/sched/mm.h> 56 #include <linux/sched/task.h> 57 #include <linux/pagemap.h> 58 #include <linux/swap.h> 59 #include <linux/swapops.h> 60 #include <linux/slab.h> 61 #include <linux/init.h> 62 #include <linux/ksm.h> 63 #include <linux/rmap.h> 64 #include <linux/rcupdate.h> 65 #include <linux/export.h> 66 #include <linux/memcontrol.h> 67 #include <linux/mmu_notifier.h> 68 #include <linux/migrate.h> 69 #include <linux/hugetlb.h> 70 #include <linux/huge_mm.h> 71 #include <linux/backing-dev.h> 72 #include <linux/page_idle.h> 73 #include <linux/memremap.h> 74 #include <linux/userfaultfd_k.h> 75 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/tlb.h> 79 80 #include "internal.h" 81 82 static struct kmem_cache *anon_vma_cachep; 83 static struct kmem_cache *anon_vma_chain_cachep; 84 85 static inline struct anon_vma *anon_vma_alloc(void) 86 { 87 struct anon_vma *anon_vma; 88 89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 90 if (anon_vma) { 91 atomic_set(&anon_vma->refcount, 1); 92 anon_vma->degree = 1; /* Reference for first vma */ 93 anon_vma->parent = anon_vma; 94 /* 95 * Initialise the anon_vma root to point to itself. If called 96 * from fork, the root will be reset to the parents anon_vma. 97 */ 98 anon_vma->root = anon_vma; 99 } 100 101 return anon_vma; 102 } 103 104 static inline void anon_vma_free(struct anon_vma *anon_vma) 105 { 106 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 107 108 /* 109 * Synchronize against page_lock_anon_vma_read() such that 110 * we can safely hold the lock without the anon_vma getting 111 * freed. 112 * 113 * Relies on the full mb implied by the atomic_dec_and_test() from 114 * put_anon_vma() against the acquire barrier implied by 115 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 116 * 117 * page_lock_anon_vma_read() VS put_anon_vma() 118 * down_read_trylock() atomic_dec_and_test() 119 * LOCK MB 120 * atomic_read() rwsem_is_locked() 121 * 122 * LOCK should suffice since the actual taking of the lock must 123 * happen _before_ what follows. 124 */ 125 might_sleep(); 126 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 127 anon_vma_lock_write(anon_vma); 128 anon_vma_unlock_write(anon_vma); 129 } 130 131 kmem_cache_free(anon_vma_cachep, anon_vma); 132 } 133 134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 135 { 136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 137 } 138 139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 140 { 141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 142 } 143 144 static void anon_vma_chain_link(struct vm_area_struct *vma, 145 struct anon_vma_chain *avc, 146 struct anon_vma *anon_vma) 147 { 148 avc->vma = vma; 149 avc->anon_vma = anon_vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 152 } 153 154 /** 155 * __anon_vma_prepare - attach an anon_vma to a memory region 156 * @vma: the memory region in question 157 * 158 * This makes sure the memory mapping described by 'vma' has 159 * an 'anon_vma' attached to it, so that we can associate the 160 * anonymous pages mapped into it with that anon_vma. 161 * 162 * The common case will be that we already have one, which 163 * is handled inline by anon_vma_prepare(). But if 164 * not we either need to find an adjacent mapping that we 165 * can re-use the anon_vma from (very common when the only 166 * reason for splitting a vma has been mprotect()), or we 167 * allocate a new one. 168 * 169 * Anon-vma allocations are very subtle, because we may have 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 171 * and that may actually touch the rwsem even in the newly 172 * allocated vma (it depends on RCU to make sure that the 173 * anon_vma isn't actually destroyed). 174 * 175 * As a result, we need to do proper anon_vma locking even 176 * for the new allocation. At the same time, we do not want 177 * to do any locking for the common case of already having 178 * an anon_vma. 179 * 180 * This must be called with the mmap_lock held for reading. 181 */ 182 int __anon_vma_prepare(struct vm_area_struct *vma) 183 { 184 struct mm_struct *mm = vma->vm_mm; 185 struct anon_vma *anon_vma, *allocated; 186 struct anon_vma_chain *avc; 187 188 might_sleep(); 189 190 avc = anon_vma_chain_alloc(GFP_KERNEL); 191 if (!avc) 192 goto out_enomem; 193 194 anon_vma = find_mergeable_anon_vma(vma); 195 allocated = NULL; 196 if (!anon_vma) { 197 anon_vma = anon_vma_alloc(); 198 if (unlikely(!anon_vma)) 199 goto out_enomem_free_avc; 200 allocated = anon_vma; 201 } 202 203 anon_vma_lock_write(anon_vma); 204 /* page_table_lock to protect against threads */ 205 spin_lock(&mm->page_table_lock); 206 if (likely(!vma->anon_vma)) { 207 vma->anon_vma = anon_vma; 208 anon_vma_chain_link(vma, avc, anon_vma); 209 /* vma reference or self-parent link for new root */ 210 anon_vma->degree++; 211 allocated = NULL; 212 avc = NULL; 213 } 214 spin_unlock(&mm->page_table_lock); 215 anon_vma_unlock_write(anon_vma); 216 217 if (unlikely(allocated)) 218 put_anon_vma(allocated); 219 if (unlikely(avc)) 220 anon_vma_chain_free(avc); 221 222 return 0; 223 224 out_enomem_free_avc: 225 anon_vma_chain_free(avc); 226 out_enomem: 227 return -ENOMEM; 228 } 229 230 /* 231 * This is a useful helper function for locking the anon_vma root as 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 233 * have the same vma. 234 * 235 * Such anon_vma's should have the same root, so you'd expect to see 236 * just a single mutex_lock for the whole traversal. 237 */ 238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 239 { 240 struct anon_vma *new_root = anon_vma->root; 241 if (new_root != root) { 242 if (WARN_ON_ONCE(root)) 243 up_write(&root->rwsem); 244 root = new_root; 245 down_write(&root->rwsem); 246 } 247 return root; 248 } 249 250 static inline void unlock_anon_vma_root(struct anon_vma *root) 251 { 252 if (root) 253 up_write(&root->rwsem); 254 } 255 256 /* 257 * Attach the anon_vmas from src to dst. 258 * Returns 0 on success, -ENOMEM on failure. 259 * 260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and 261 * anon_vma_fork(). The first three want an exact copy of src, while the last 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 265 * 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in 269 * case of constantly forking task. On the other hand, an anon_vma with more 270 * than one child isn't reused even if there was no alive vma, thus rmap 271 * walker has a good chance of avoiding scanning the whole hierarchy when it 272 * searches where page is mapped. 273 */ 274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 275 { 276 struct anon_vma_chain *avc, *pavc; 277 struct anon_vma *root = NULL; 278 279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 280 struct anon_vma *anon_vma; 281 282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 283 if (unlikely(!avc)) { 284 unlock_anon_vma_root(root); 285 root = NULL; 286 avc = anon_vma_chain_alloc(GFP_KERNEL); 287 if (!avc) 288 goto enomem_failure; 289 } 290 anon_vma = pavc->anon_vma; 291 root = lock_anon_vma_root(root, anon_vma); 292 anon_vma_chain_link(dst, avc, anon_vma); 293 294 /* 295 * Reuse existing anon_vma if its degree lower than two, 296 * that means it has no vma and only one anon_vma child. 297 * 298 * Do not chose parent anon_vma, otherwise first child 299 * will always reuse it. Root anon_vma is never reused: 300 * it has self-parent reference and at least one child. 301 */ 302 if (!dst->anon_vma && src->anon_vma && 303 anon_vma != src->anon_vma && anon_vma->degree < 2) 304 dst->anon_vma = anon_vma; 305 } 306 if (dst->anon_vma) 307 dst->anon_vma->degree++; 308 unlock_anon_vma_root(root); 309 return 0; 310 311 enomem_failure: 312 /* 313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 314 * decremented in unlink_anon_vmas(). 315 * We can safely do this because callers of anon_vma_clone() don't care 316 * about dst->anon_vma if anon_vma_clone() failed. 317 */ 318 dst->anon_vma = NULL; 319 unlink_anon_vmas(dst); 320 return -ENOMEM; 321 } 322 323 /* 324 * Attach vma to its own anon_vma, as well as to the anon_vmas that 325 * the corresponding VMA in the parent process is attached to. 326 * Returns 0 on success, non-zero on failure. 327 */ 328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 329 { 330 struct anon_vma_chain *avc; 331 struct anon_vma *anon_vma; 332 int error; 333 334 /* Don't bother if the parent process has no anon_vma here. */ 335 if (!pvma->anon_vma) 336 return 0; 337 338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 339 vma->anon_vma = NULL; 340 341 /* 342 * First, attach the new VMA to the parent VMA's anon_vmas, 343 * so rmap can find non-COWed pages in child processes. 344 */ 345 error = anon_vma_clone(vma, pvma); 346 if (error) 347 return error; 348 349 /* An existing anon_vma has been reused, all done then. */ 350 if (vma->anon_vma) 351 return 0; 352 353 /* Then add our own anon_vma. */ 354 anon_vma = anon_vma_alloc(); 355 if (!anon_vma) 356 goto out_error; 357 avc = anon_vma_chain_alloc(GFP_KERNEL); 358 if (!avc) 359 goto out_error_free_anon_vma; 360 361 /* 362 * The root anon_vma's rwsem is the lock actually used when we 363 * lock any of the anon_vmas in this anon_vma tree. 364 */ 365 anon_vma->root = pvma->anon_vma->root; 366 anon_vma->parent = pvma->anon_vma; 367 /* 368 * With refcounts, an anon_vma can stay around longer than the 369 * process it belongs to. The root anon_vma needs to be pinned until 370 * this anon_vma is freed, because the lock lives in the root. 371 */ 372 get_anon_vma(anon_vma->root); 373 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 374 vma->anon_vma = anon_vma; 375 anon_vma_lock_write(anon_vma); 376 anon_vma_chain_link(vma, avc, anon_vma); 377 anon_vma->parent->degree++; 378 anon_vma_unlock_write(anon_vma); 379 380 return 0; 381 382 out_error_free_anon_vma: 383 put_anon_vma(anon_vma); 384 out_error: 385 unlink_anon_vmas(vma); 386 return -ENOMEM; 387 } 388 389 void unlink_anon_vmas(struct vm_area_struct *vma) 390 { 391 struct anon_vma_chain *avc, *next; 392 struct anon_vma *root = NULL; 393 394 /* 395 * Unlink each anon_vma chained to the VMA. This list is ordered 396 * from newest to oldest, ensuring the root anon_vma gets freed last. 397 */ 398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 399 struct anon_vma *anon_vma = avc->anon_vma; 400 401 root = lock_anon_vma_root(root, anon_vma); 402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 403 404 /* 405 * Leave empty anon_vmas on the list - we'll need 406 * to free them outside the lock. 407 */ 408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 409 anon_vma->parent->degree--; 410 continue; 411 } 412 413 list_del(&avc->same_vma); 414 anon_vma_chain_free(avc); 415 } 416 if (vma->anon_vma) { 417 vma->anon_vma->degree--; 418 419 /* 420 * vma would still be needed after unlink, and anon_vma will be prepared 421 * when handle fault. 422 */ 423 vma->anon_vma = NULL; 424 } 425 unlock_anon_vma_root(root); 426 427 /* 428 * Iterate the list once more, it now only contains empty and unlinked 429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 430 * needing to write-acquire the anon_vma->root->rwsem. 431 */ 432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 433 struct anon_vma *anon_vma = avc->anon_vma; 434 435 VM_WARN_ON(anon_vma->degree); 436 put_anon_vma(anon_vma); 437 438 list_del(&avc->same_vma); 439 anon_vma_chain_free(avc); 440 } 441 } 442 443 static void anon_vma_ctor(void *data) 444 { 445 struct anon_vma *anon_vma = data; 446 447 init_rwsem(&anon_vma->rwsem); 448 atomic_set(&anon_vma->refcount, 0); 449 anon_vma->rb_root = RB_ROOT_CACHED; 450 } 451 452 void __init anon_vma_init(void) 453 { 454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 456 anon_vma_ctor); 457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 458 SLAB_PANIC|SLAB_ACCOUNT); 459 } 460 461 /* 462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 463 * 464 * Since there is no serialization what so ever against page_remove_rmap() 465 * the best this function can do is return a refcount increased anon_vma 466 * that might have been relevant to this page. 467 * 468 * The page might have been remapped to a different anon_vma or the anon_vma 469 * returned may already be freed (and even reused). 470 * 471 * In case it was remapped to a different anon_vma, the new anon_vma will be a 472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 473 * ensure that any anon_vma obtained from the page will still be valid for as 474 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 475 * 476 * All users of this function must be very careful when walking the anon_vma 477 * chain and verify that the page in question is indeed mapped in it 478 * [ something equivalent to page_mapped_in_vma() ]. 479 * 480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 482 * if there is a mapcount, we can dereference the anon_vma after observing 483 * those. 484 */ 485 struct anon_vma *page_get_anon_vma(struct page *page) 486 { 487 struct anon_vma *anon_vma = NULL; 488 unsigned long anon_mapping; 489 490 rcu_read_lock(); 491 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 493 goto out; 494 if (!page_mapped(page)) 495 goto out; 496 497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 498 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 499 anon_vma = NULL; 500 goto out; 501 } 502 503 /* 504 * If this page is still mapped, then its anon_vma cannot have been 505 * freed. But if it has been unmapped, we have no security against the 506 * anon_vma structure being freed and reused (for another anon_vma: 507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 508 * above cannot corrupt). 509 */ 510 if (!page_mapped(page)) { 511 rcu_read_unlock(); 512 put_anon_vma(anon_vma); 513 return NULL; 514 } 515 out: 516 rcu_read_unlock(); 517 518 return anon_vma; 519 } 520 521 /* 522 * Similar to page_get_anon_vma() except it locks the anon_vma. 523 * 524 * Its a little more complex as it tries to keep the fast path to a single 525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 526 * reference like with page_get_anon_vma() and then block on the mutex. 527 */ 528 struct anon_vma *page_lock_anon_vma_read(struct page *page) 529 { 530 struct anon_vma *anon_vma = NULL; 531 struct anon_vma *root_anon_vma; 532 unsigned long anon_mapping; 533 534 rcu_read_lock(); 535 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 537 goto out; 538 if (!page_mapped(page)) 539 goto out; 540 541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 542 root_anon_vma = READ_ONCE(anon_vma->root); 543 if (down_read_trylock(&root_anon_vma->rwsem)) { 544 /* 545 * If the page is still mapped, then this anon_vma is still 546 * its anon_vma, and holding the mutex ensures that it will 547 * not go away, see anon_vma_free(). 548 */ 549 if (!page_mapped(page)) { 550 up_read(&root_anon_vma->rwsem); 551 anon_vma = NULL; 552 } 553 goto out; 554 } 555 556 /* trylock failed, we got to sleep */ 557 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 558 anon_vma = NULL; 559 goto out; 560 } 561 562 if (!page_mapped(page)) { 563 rcu_read_unlock(); 564 put_anon_vma(anon_vma); 565 return NULL; 566 } 567 568 /* we pinned the anon_vma, its safe to sleep */ 569 rcu_read_unlock(); 570 anon_vma_lock_read(anon_vma); 571 572 if (atomic_dec_and_test(&anon_vma->refcount)) { 573 /* 574 * Oops, we held the last refcount, release the lock 575 * and bail -- can't simply use put_anon_vma() because 576 * we'll deadlock on the anon_vma_lock_write() recursion. 577 */ 578 anon_vma_unlock_read(anon_vma); 579 __put_anon_vma(anon_vma); 580 anon_vma = NULL; 581 } 582 583 return anon_vma; 584 585 out: 586 rcu_read_unlock(); 587 return anon_vma; 588 } 589 590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 591 { 592 anon_vma_unlock_read(anon_vma); 593 } 594 595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 596 /* 597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 598 * important if a PTE was dirty when it was unmapped that it's flushed 599 * before any IO is initiated on the page to prevent lost writes. Similarly, 600 * it must be flushed before freeing to prevent data leakage. 601 */ 602 void try_to_unmap_flush(void) 603 { 604 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 605 606 if (!tlb_ubc->flush_required) 607 return; 608 609 arch_tlbbatch_flush(&tlb_ubc->arch); 610 tlb_ubc->flush_required = false; 611 tlb_ubc->writable = false; 612 } 613 614 /* Flush iff there are potentially writable TLB entries that can race with IO */ 615 void try_to_unmap_flush_dirty(void) 616 { 617 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 618 619 if (tlb_ubc->writable) 620 try_to_unmap_flush(); 621 } 622 623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 624 { 625 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 626 627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 628 tlb_ubc->flush_required = true; 629 630 /* 631 * Ensure compiler does not re-order the setting of tlb_flush_batched 632 * before the PTE is cleared. 633 */ 634 barrier(); 635 mm->tlb_flush_batched = true; 636 637 /* 638 * If the PTE was dirty then it's best to assume it's writable. The 639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 640 * before the page is queued for IO. 641 */ 642 if (writable) 643 tlb_ubc->writable = true; 644 } 645 646 /* 647 * Returns true if the TLB flush should be deferred to the end of a batch of 648 * unmap operations to reduce IPIs. 649 */ 650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 651 { 652 bool should_defer = false; 653 654 if (!(flags & TTU_BATCH_FLUSH)) 655 return false; 656 657 /* If remote CPUs need to be flushed then defer batch the flush */ 658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 659 should_defer = true; 660 put_cpu(); 661 662 return should_defer; 663 } 664 665 /* 666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 668 * operation such as mprotect or munmap to race between reclaim unmapping 669 * the page and flushing the page. If this race occurs, it potentially allows 670 * access to data via a stale TLB entry. Tracking all mm's that have TLB 671 * batching in flight would be expensive during reclaim so instead track 672 * whether TLB batching occurred in the past and if so then do a flush here 673 * if required. This will cost one additional flush per reclaim cycle paid 674 * by the first operation at risk such as mprotect and mumap. 675 * 676 * This must be called under the PTL so that an access to tlb_flush_batched 677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 678 * via the PTL. 679 */ 680 void flush_tlb_batched_pending(struct mm_struct *mm) 681 { 682 if (data_race(mm->tlb_flush_batched)) { 683 flush_tlb_mm(mm); 684 685 /* 686 * Do not allow the compiler to re-order the clearing of 687 * tlb_flush_batched before the tlb is flushed. 688 */ 689 barrier(); 690 mm->tlb_flush_batched = false; 691 } 692 } 693 #else 694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 695 { 696 } 697 698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 699 { 700 return false; 701 } 702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 703 704 /* 705 * At what user virtual address is page expected in vma? 706 * Caller should check the page is actually part of the vma. 707 */ 708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 709 { 710 unsigned long address; 711 if (PageAnon(page)) { 712 struct anon_vma *page__anon_vma = page_anon_vma(page); 713 /* 714 * Note: swapoff's unuse_vma() is more efficient with this 715 * check, and needs it to match anon_vma when KSM is active. 716 */ 717 if (!vma->anon_vma || !page__anon_vma || 718 vma->anon_vma->root != page__anon_vma->root) 719 return -EFAULT; 720 } else if (page->mapping) { 721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 722 return -EFAULT; 723 } else 724 return -EFAULT; 725 address = __vma_address(page, vma); 726 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 727 return -EFAULT; 728 return address; 729 } 730 731 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 732 { 733 pgd_t *pgd; 734 p4d_t *p4d; 735 pud_t *pud; 736 pmd_t *pmd = NULL; 737 pmd_t pmde; 738 739 pgd = pgd_offset(mm, address); 740 if (!pgd_present(*pgd)) 741 goto out; 742 743 p4d = p4d_offset(pgd, address); 744 if (!p4d_present(*p4d)) 745 goto out; 746 747 pud = pud_offset(p4d, address); 748 if (!pud_present(*pud)) 749 goto out; 750 751 pmd = pmd_offset(pud, address); 752 /* 753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 754 * without holding anon_vma lock for write. So when looking for a 755 * genuine pmde (in which to find pte), test present and !THP together. 756 */ 757 pmde = *pmd; 758 barrier(); 759 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 760 pmd = NULL; 761 out: 762 return pmd; 763 } 764 765 struct page_referenced_arg { 766 int mapcount; 767 int referenced; 768 unsigned long vm_flags; 769 struct mem_cgroup *memcg; 770 }; 771 /* 772 * arg: page_referenced_arg will be passed 773 */ 774 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 775 unsigned long address, void *arg) 776 { 777 struct page_referenced_arg *pra = arg; 778 struct page_vma_mapped_walk pvmw = { 779 .page = page, 780 .vma = vma, 781 .address = address, 782 }; 783 int referenced = 0; 784 785 while (page_vma_mapped_walk(&pvmw)) { 786 address = pvmw.address; 787 788 if (vma->vm_flags & VM_LOCKED) { 789 page_vma_mapped_walk_done(&pvmw); 790 pra->vm_flags |= VM_LOCKED; 791 return false; /* To break the loop */ 792 } 793 794 if (pvmw.pte) { 795 if (ptep_clear_flush_young_notify(vma, address, 796 pvmw.pte)) { 797 /* 798 * Don't treat a reference through 799 * a sequentially read mapping as such. 800 * If the page has been used in another mapping, 801 * we will catch it; if this other mapping is 802 * already gone, the unmap path will have set 803 * PG_referenced or activated the page. 804 */ 805 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 806 referenced++; 807 } 808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 809 if (pmdp_clear_flush_young_notify(vma, address, 810 pvmw.pmd)) 811 referenced++; 812 } else { 813 /* unexpected pmd-mapped page? */ 814 WARN_ON_ONCE(1); 815 } 816 817 pra->mapcount--; 818 } 819 820 if (referenced) 821 clear_page_idle(page); 822 if (test_and_clear_page_young(page)) 823 referenced++; 824 825 if (referenced) { 826 pra->referenced++; 827 pra->vm_flags |= vma->vm_flags; 828 } 829 830 if (!pra->mapcount) 831 return false; /* To break the loop */ 832 833 return true; 834 } 835 836 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 837 { 838 struct page_referenced_arg *pra = arg; 839 struct mem_cgroup *memcg = pra->memcg; 840 841 if (!mm_match_cgroup(vma->vm_mm, memcg)) 842 return true; 843 844 return false; 845 } 846 847 /** 848 * page_referenced - test if the page was referenced 849 * @page: the page to test 850 * @is_locked: caller holds lock on the page 851 * @memcg: target memory cgroup 852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 853 * 854 * Quick test_and_clear_referenced for all mappings to a page, 855 * returns the number of ptes which referenced the page. 856 */ 857 int page_referenced(struct page *page, 858 int is_locked, 859 struct mem_cgroup *memcg, 860 unsigned long *vm_flags) 861 { 862 int we_locked = 0; 863 struct page_referenced_arg pra = { 864 .mapcount = total_mapcount(page), 865 .memcg = memcg, 866 }; 867 struct rmap_walk_control rwc = { 868 .rmap_one = page_referenced_one, 869 .arg = (void *)&pra, 870 .anon_lock = page_lock_anon_vma_read, 871 }; 872 873 *vm_flags = 0; 874 if (!pra.mapcount) 875 return 0; 876 877 if (!page_rmapping(page)) 878 return 0; 879 880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 881 we_locked = trylock_page(page); 882 if (!we_locked) 883 return 1; 884 } 885 886 /* 887 * If we are reclaiming on behalf of a cgroup, skip 888 * counting on behalf of references from different 889 * cgroups 890 */ 891 if (memcg) { 892 rwc.invalid_vma = invalid_page_referenced_vma; 893 } 894 895 rmap_walk(page, &rwc); 896 *vm_flags = pra.vm_flags; 897 898 if (we_locked) 899 unlock_page(page); 900 901 return pra.referenced; 902 } 903 904 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 905 unsigned long address, void *arg) 906 { 907 struct page_vma_mapped_walk pvmw = { 908 .page = page, 909 .vma = vma, 910 .address = address, 911 .flags = PVMW_SYNC, 912 }; 913 struct mmu_notifier_range range; 914 int *cleaned = arg; 915 916 /* 917 * We have to assume the worse case ie pmd for invalidation. Note that 918 * the page can not be free from this function. 919 */ 920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 921 0, vma, vma->vm_mm, address, 922 min(vma->vm_end, address + page_size(page))); 923 mmu_notifier_invalidate_range_start(&range); 924 925 while (page_vma_mapped_walk(&pvmw)) { 926 int ret = 0; 927 928 address = pvmw.address; 929 if (pvmw.pte) { 930 pte_t entry; 931 pte_t *pte = pvmw.pte; 932 933 if (!pte_dirty(*pte) && !pte_write(*pte)) 934 continue; 935 936 flush_cache_page(vma, address, pte_pfn(*pte)); 937 entry = ptep_clear_flush(vma, address, pte); 938 entry = pte_wrprotect(entry); 939 entry = pte_mkclean(entry); 940 set_pte_at(vma->vm_mm, address, pte, entry); 941 ret = 1; 942 } else { 943 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 944 pmd_t *pmd = pvmw.pmd; 945 pmd_t entry; 946 947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 948 continue; 949 950 flush_cache_page(vma, address, page_to_pfn(page)); 951 entry = pmdp_invalidate(vma, address, pmd); 952 entry = pmd_wrprotect(entry); 953 entry = pmd_mkclean(entry); 954 set_pmd_at(vma->vm_mm, address, pmd, entry); 955 ret = 1; 956 #else 957 /* unexpected pmd-mapped page? */ 958 WARN_ON_ONCE(1); 959 #endif 960 } 961 962 /* 963 * No need to call mmu_notifier_invalidate_range() as we are 964 * downgrading page table protection not changing it to point 965 * to a new page. 966 * 967 * See Documentation/vm/mmu_notifier.rst 968 */ 969 if (ret) 970 (*cleaned)++; 971 } 972 973 mmu_notifier_invalidate_range_end(&range); 974 975 return true; 976 } 977 978 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 979 { 980 if (vma->vm_flags & VM_SHARED) 981 return false; 982 983 return true; 984 } 985 986 int page_mkclean(struct page *page) 987 { 988 int cleaned = 0; 989 struct address_space *mapping; 990 struct rmap_walk_control rwc = { 991 .arg = (void *)&cleaned, 992 .rmap_one = page_mkclean_one, 993 .invalid_vma = invalid_mkclean_vma, 994 }; 995 996 BUG_ON(!PageLocked(page)); 997 998 if (!page_mapped(page)) 999 return 0; 1000 1001 mapping = page_mapping(page); 1002 if (!mapping) 1003 return 0; 1004 1005 rmap_walk(page, &rwc); 1006 1007 return cleaned; 1008 } 1009 EXPORT_SYMBOL_GPL(page_mkclean); 1010 1011 /** 1012 * page_move_anon_rmap - move a page to our anon_vma 1013 * @page: the page to move to our anon_vma 1014 * @vma: the vma the page belongs to 1015 * 1016 * When a page belongs exclusively to one process after a COW event, 1017 * that page can be moved into the anon_vma that belongs to just that 1018 * process, so the rmap code will not search the parent or sibling 1019 * processes. 1020 */ 1021 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1022 { 1023 struct anon_vma *anon_vma = vma->anon_vma; 1024 1025 page = compound_head(page); 1026 1027 VM_BUG_ON_PAGE(!PageLocked(page), page); 1028 VM_BUG_ON_VMA(!anon_vma, vma); 1029 1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1031 /* 1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1033 * simultaneously, so a concurrent reader (eg page_referenced()'s 1034 * PageAnon()) will not see one without the other. 1035 */ 1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1037 } 1038 1039 /** 1040 * __page_set_anon_rmap - set up new anonymous rmap 1041 * @page: Page or Hugepage to add to rmap 1042 * @vma: VM area to add page to. 1043 * @address: User virtual address of the mapping 1044 * @exclusive: the page is exclusively owned by the current process 1045 */ 1046 static void __page_set_anon_rmap(struct page *page, 1047 struct vm_area_struct *vma, unsigned long address, int exclusive) 1048 { 1049 struct anon_vma *anon_vma = vma->anon_vma; 1050 1051 BUG_ON(!anon_vma); 1052 1053 if (PageAnon(page)) 1054 return; 1055 1056 /* 1057 * If the page isn't exclusively mapped into this vma, 1058 * we must use the _oldest_ possible anon_vma for the 1059 * page mapping! 1060 */ 1061 if (!exclusive) 1062 anon_vma = anon_vma->root; 1063 1064 /* 1065 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1066 * Make sure the compiler doesn't split the stores of anon_vma and 1067 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1068 * could mistake the mapping for a struct address_space and crash. 1069 */ 1070 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1071 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1072 page->index = linear_page_index(vma, address); 1073 } 1074 1075 /** 1076 * __page_check_anon_rmap - sanity check anonymous rmap addition 1077 * @page: the page to add the mapping to 1078 * @vma: the vm area in which the mapping is added 1079 * @address: the user virtual address mapped 1080 */ 1081 static void __page_check_anon_rmap(struct page *page, 1082 struct vm_area_struct *vma, unsigned long address) 1083 { 1084 /* 1085 * The page's anon-rmap details (mapping and index) are guaranteed to 1086 * be set up correctly at this point. 1087 * 1088 * We have exclusion against page_add_anon_rmap because the caller 1089 * always holds the page locked. 1090 * 1091 * We have exclusion against page_add_new_anon_rmap because those pages 1092 * are initially only visible via the pagetables, and the pte is locked 1093 * over the call to page_add_new_anon_rmap. 1094 */ 1095 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); 1096 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1097 page); 1098 } 1099 1100 /** 1101 * page_add_anon_rmap - add pte mapping to an anonymous page 1102 * @page: the page to add the mapping to 1103 * @vma: the vm area in which the mapping is added 1104 * @address: the user virtual address mapped 1105 * @compound: charge the page as compound or small page 1106 * 1107 * The caller needs to hold the pte lock, and the page must be locked in 1108 * the anon_vma case: to serialize mapping,index checking after setting, 1109 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1110 * (but PageKsm is never downgraded to PageAnon). 1111 */ 1112 void page_add_anon_rmap(struct page *page, 1113 struct vm_area_struct *vma, unsigned long address, bool compound) 1114 { 1115 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1116 } 1117 1118 /* 1119 * Special version of the above for do_swap_page, which often runs 1120 * into pages that are exclusively owned by the current process. 1121 * Everybody else should continue to use page_add_anon_rmap above. 1122 */ 1123 void do_page_add_anon_rmap(struct page *page, 1124 struct vm_area_struct *vma, unsigned long address, int flags) 1125 { 1126 bool compound = flags & RMAP_COMPOUND; 1127 bool first; 1128 1129 if (unlikely(PageKsm(page))) 1130 lock_page_memcg(page); 1131 else 1132 VM_BUG_ON_PAGE(!PageLocked(page), page); 1133 1134 if (compound) { 1135 atomic_t *mapcount; 1136 VM_BUG_ON_PAGE(!PageLocked(page), page); 1137 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1138 mapcount = compound_mapcount_ptr(page); 1139 first = atomic_inc_and_test(mapcount); 1140 } else { 1141 first = atomic_inc_and_test(&page->_mapcount); 1142 } 1143 1144 if (first) { 1145 int nr = compound ? thp_nr_pages(page) : 1; 1146 /* 1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1148 * these counters are not modified in interrupt context, and 1149 * pte lock(a spinlock) is held, which implies preemption 1150 * disabled. 1151 */ 1152 if (compound) 1153 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1154 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1155 } 1156 1157 if (unlikely(PageKsm(page))) { 1158 unlock_page_memcg(page); 1159 return; 1160 } 1161 1162 /* address might be in next vma when migration races vma_adjust */ 1163 if (first) 1164 __page_set_anon_rmap(page, vma, address, 1165 flags & RMAP_EXCLUSIVE); 1166 else 1167 __page_check_anon_rmap(page, vma, address); 1168 } 1169 1170 /** 1171 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1172 * @page: the page to add the mapping to 1173 * @vma: the vm area in which the mapping is added 1174 * @address: the user virtual address mapped 1175 * @compound: charge the page as compound or small page 1176 * 1177 * Same as page_add_anon_rmap but must only be called on *new* pages. 1178 * This means the inc-and-test can be bypassed. 1179 * Page does not have to be locked. 1180 */ 1181 void page_add_new_anon_rmap(struct page *page, 1182 struct vm_area_struct *vma, unsigned long address, bool compound) 1183 { 1184 int nr = compound ? thp_nr_pages(page) : 1; 1185 1186 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1187 __SetPageSwapBacked(page); 1188 if (compound) { 1189 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1190 /* increment count (starts at -1) */ 1191 atomic_set(compound_mapcount_ptr(page), 0); 1192 if (hpage_pincount_available(page)) 1193 atomic_set(compound_pincount_ptr(page), 0); 1194 1195 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1196 } else { 1197 /* Anon THP always mapped first with PMD */ 1198 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1199 /* increment count (starts at -1) */ 1200 atomic_set(&page->_mapcount, 0); 1201 } 1202 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1203 __page_set_anon_rmap(page, vma, address, 1); 1204 } 1205 1206 /** 1207 * page_add_file_rmap - add pte mapping to a file page 1208 * @page: the page to add the mapping to 1209 * @compound: charge the page as compound or small page 1210 * 1211 * The caller needs to hold the pte lock. 1212 */ 1213 void page_add_file_rmap(struct page *page, bool compound) 1214 { 1215 int i, nr = 1; 1216 1217 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1218 lock_page_memcg(page); 1219 if (compound && PageTransHuge(page)) { 1220 int nr_pages = thp_nr_pages(page); 1221 1222 for (i = 0, nr = 0; i < nr_pages; i++) { 1223 if (atomic_inc_and_test(&page[i]._mapcount)) 1224 nr++; 1225 } 1226 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1227 goto out; 1228 if (PageSwapBacked(page)) 1229 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1230 nr_pages); 1231 else 1232 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1233 nr_pages); 1234 } else { 1235 if (PageTransCompound(page) && page_mapping(page)) { 1236 VM_WARN_ON_ONCE(!PageLocked(page)); 1237 1238 SetPageDoubleMap(compound_head(page)); 1239 if (PageMlocked(page)) 1240 clear_page_mlock(compound_head(page)); 1241 } 1242 if (!atomic_inc_and_test(&page->_mapcount)) 1243 goto out; 1244 } 1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1246 out: 1247 unlock_page_memcg(page); 1248 } 1249 1250 static void page_remove_file_rmap(struct page *page, bool compound) 1251 { 1252 int i, nr = 1; 1253 1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1255 1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1257 if (unlikely(PageHuge(page))) { 1258 /* hugetlb pages are always mapped with pmds */ 1259 atomic_dec(compound_mapcount_ptr(page)); 1260 return; 1261 } 1262 1263 /* page still mapped by someone else? */ 1264 if (compound && PageTransHuge(page)) { 1265 int nr_pages = thp_nr_pages(page); 1266 1267 for (i = 0, nr = 0; i < nr_pages; i++) { 1268 if (atomic_add_negative(-1, &page[i]._mapcount)) 1269 nr++; 1270 } 1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1272 return; 1273 if (PageSwapBacked(page)) 1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1275 -nr_pages); 1276 else 1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1278 -nr_pages); 1279 } else { 1280 if (!atomic_add_negative(-1, &page->_mapcount)) 1281 return; 1282 } 1283 1284 /* 1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1286 * these counters are not modified in interrupt context, and 1287 * pte lock(a spinlock) is held, which implies preemption disabled. 1288 */ 1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1290 1291 if (unlikely(PageMlocked(page))) 1292 clear_page_mlock(page); 1293 } 1294 1295 static void page_remove_anon_compound_rmap(struct page *page) 1296 { 1297 int i, nr; 1298 1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1300 return; 1301 1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1303 if (unlikely(PageHuge(page))) 1304 return; 1305 1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1307 return; 1308 1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1310 1311 if (TestClearPageDoubleMap(page)) { 1312 /* 1313 * Subpages can be mapped with PTEs too. Check how many of 1314 * them are still mapped. 1315 */ 1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1317 if (atomic_add_negative(-1, &page[i]._mapcount)) 1318 nr++; 1319 } 1320 1321 /* 1322 * Queue the page for deferred split if at least one small 1323 * page of the compound page is unmapped, but at least one 1324 * small page is still mapped. 1325 */ 1326 if (nr && nr < thp_nr_pages(page)) 1327 deferred_split_huge_page(page); 1328 } else { 1329 nr = thp_nr_pages(page); 1330 } 1331 1332 if (unlikely(PageMlocked(page))) 1333 clear_page_mlock(page); 1334 1335 if (nr) 1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1337 } 1338 1339 /** 1340 * page_remove_rmap - take down pte mapping from a page 1341 * @page: page to remove mapping from 1342 * @compound: uncharge the page as compound or small page 1343 * 1344 * The caller needs to hold the pte lock. 1345 */ 1346 void page_remove_rmap(struct page *page, bool compound) 1347 { 1348 lock_page_memcg(page); 1349 1350 if (!PageAnon(page)) { 1351 page_remove_file_rmap(page, compound); 1352 goto out; 1353 } 1354 1355 if (compound) { 1356 page_remove_anon_compound_rmap(page); 1357 goto out; 1358 } 1359 1360 /* page still mapped by someone else? */ 1361 if (!atomic_add_negative(-1, &page->_mapcount)) 1362 goto out; 1363 1364 /* 1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1366 * these counters are not modified in interrupt context, and 1367 * pte lock(a spinlock) is held, which implies preemption disabled. 1368 */ 1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1370 1371 if (unlikely(PageMlocked(page))) 1372 clear_page_mlock(page); 1373 1374 if (PageTransCompound(page)) 1375 deferred_split_huge_page(compound_head(page)); 1376 1377 /* 1378 * It would be tidy to reset the PageAnon mapping here, 1379 * but that might overwrite a racing page_add_anon_rmap 1380 * which increments mapcount after us but sets mapping 1381 * before us: so leave the reset to free_unref_page, 1382 * and remember that it's only reliable while mapped. 1383 * Leaving it set also helps swapoff to reinstate ptes 1384 * faster for those pages still in swapcache. 1385 */ 1386 out: 1387 unlock_page_memcg(page); 1388 } 1389 1390 /* 1391 * @arg: enum ttu_flags will be passed to this argument 1392 */ 1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1394 unsigned long address, void *arg) 1395 { 1396 struct mm_struct *mm = vma->vm_mm; 1397 struct page_vma_mapped_walk pvmw = { 1398 .page = page, 1399 .vma = vma, 1400 .address = address, 1401 }; 1402 pte_t pteval; 1403 struct page *subpage; 1404 bool ret = true; 1405 struct mmu_notifier_range range; 1406 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1407 1408 /* munlock has nothing to gain from examining un-locked vmas */ 1409 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1410 return true; 1411 1412 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1413 is_zone_device_page(page) && !is_device_private_page(page)) 1414 return true; 1415 1416 if (flags & TTU_SPLIT_HUGE_PMD) { 1417 split_huge_pmd_address(vma, address, 1418 flags & TTU_SPLIT_FREEZE, page); 1419 } 1420 1421 /* 1422 * For THP, we have to assume the worse case ie pmd for invalidation. 1423 * For hugetlb, it could be much worse if we need to do pud 1424 * invalidation in the case of pmd sharing. 1425 * 1426 * Note that the page can not be free in this function as call of 1427 * try_to_unmap() must hold a reference on the page. 1428 */ 1429 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1430 address, 1431 min(vma->vm_end, address + page_size(page))); 1432 if (PageHuge(page)) { 1433 /* 1434 * If sharing is possible, start and end will be adjusted 1435 * accordingly. 1436 */ 1437 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1438 &range.end); 1439 } 1440 mmu_notifier_invalidate_range_start(&range); 1441 1442 while (page_vma_mapped_walk(&pvmw)) { 1443 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1444 /* PMD-mapped THP migration entry */ 1445 if (!pvmw.pte && (flags & TTU_MIGRATION)) { 1446 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 1447 1448 set_pmd_migration_entry(&pvmw, page); 1449 continue; 1450 } 1451 #endif 1452 1453 /* 1454 * If the page is mlock()d, we cannot swap it out. 1455 * If it's recently referenced (perhaps page_referenced 1456 * skipped over this mm) then we should reactivate it. 1457 */ 1458 if (!(flags & TTU_IGNORE_MLOCK)) { 1459 if (vma->vm_flags & VM_LOCKED) { 1460 /* PTE-mapped THP are never mlocked */ 1461 if (!PageTransCompound(page)) { 1462 /* 1463 * Holding pte lock, we do *not* need 1464 * mmap_lock here 1465 */ 1466 mlock_vma_page(page); 1467 } 1468 ret = false; 1469 page_vma_mapped_walk_done(&pvmw); 1470 break; 1471 } 1472 if (flags & TTU_MUNLOCK) 1473 continue; 1474 } 1475 1476 /* Unexpected PMD-mapped THP? */ 1477 VM_BUG_ON_PAGE(!pvmw.pte, page); 1478 1479 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1480 address = pvmw.address; 1481 1482 if (PageHuge(page) && !PageAnon(page)) { 1483 /* 1484 * To call huge_pmd_unshare, i_mmap_rwsem must be 1485 * held in write mode. Caller needs to explicitly 1486 * do this outside rmap routines. 1487 */ 1488 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1489 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1490 /* 1491 * huge_pmd_unshare unmapped an entire PMD 1492 * page. There is no way of knowing exactly 1493 * which PMDs may be cached for this mm, so 1494 * we must flush them all. start/end were 1495 * already adjusted above to cover this range. 1496 */ 1497 flush_cache_range(vma, range.start, range.end); 1498 flush_tlb_range(vma, range.start, range.end); 1499 mmu_notifier_invalidate_range(mm, range.start, 1500 range.end); 1501 1502 /* 1503 * The ref count of the PMD page was dropped 1504 * which is part of the way map counting 1505 * is done for shared PMDs. Return 'true' 1506 * here. When there is no other sharing, 1507 * huge_pmd_unshare returns false and we will 1508 * unmap the actual page and drop map count 1509 * to zero. 1510 */ 1511 page_vma_mapped_walk_done(&pvmw); 1512 break; 1513 } 1514 } 1515 1516 if (IS_ENABLED(CONFIG_MIGRATION) && 1517 (flags & TTU_MIGRATION) && 1518 is_zone_device_page(page)) { 1519 swp_entry_t entry; 1520 pte_t swp_pte; 1521 1522 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); 1523 1524 /* 1525 * Store the pfn of the page in a special migration 1526 * pte. do_swap_page() will wait until the migration 1527 * pte is removed and then restart fault handling. 1528 */ 1529 entry = make_migration_entry(page, 0); 1530 swp_pte = swp_entry_to_pte(entry); 1531 1532 /* 1533 * pteval maps a zone device page and is therefore 1534 * a swap pte. 1535 */ 1536 if (pte_swp_soft_dirty(pteval)) 1537 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1538 if (pte_swp_uffd_wp(pteval)) 1539 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1540 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1541 /* 1542 * No need to invalidate here it will synchronize on 1543 * against the special swap migration pte. 1544 * 1545 * The assignment to subpage above was computed from a 1546 * swap PTE which results in an invalid pointer. 1547 * Since only PAGE_SIZE pages can currently be 1548 * migrated, just set it to page. This will need to be 1549 * changed when hugepage migrations to device private 1550 * memory are supported. 1551 */ 1552 subpage = page; 1553 goto discard; 1554 } 1555 1556 /* Nuke the page table entry. */ 1557 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1558 if (should_defer_flush(mm, flags)) { 1559 /* 1560 * We clear the PTE but do not flush so potentially 1561 * a remote CPU could still be writing to the page. 1562 * If the entry was previously clean then the 1563 * architecture must guarantee that a clear->dirty 1564 * transition on a cached TLB entry is written through 1565 * and traps if the PTE is unmapped. 1566 */ 1567 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1568 1569 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1570 } else { 1571 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1572 } 1573 1574 /* Move the dirty bit to the page. Now the pte is gone. */ 1575 if (pte_dirty(pteval)) 1576 set_page_dirty(page); 1577 1578 /* Update high watermark before we lower rss */ 1579 update_hiwater_rss(mm); 1580 1581 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1582 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1583 if (PageHuge(page)) { 1584 hugetlb_count_sub(compound_nr(page), mm); 1585 set_huge_swap_pte_at(mm, address, 1586 pvmw.pte, pteval, 1587 vma_mmu_pagesize(vma)); 1588 } else { 1589 dec_mm_counter(mm, mm_counter(page)); 1590 set_pte_at(mm, address, pvmw.pte, pteval); 1591 } 1592 1593 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1594 /* 1595 * The guest indicated that the page content is of no 1596 * interest anymore. Simply discard the pte, vmscan 1597 * will take care of the rest. 1598 * A future reference will then fault in a new zero 1599 * page. When userfaultfd is active, we must not drop 1600 * this page though, as its main user (postcopy 1601 * migration) will not expect userfaults on already 1602 * copied pages. 1603 */ 1604 dec_mm_counter(mm, mm_counter(page)); 1605 /* We have to invalidate as we cleared the pte */ 1606 mmu_notifier_invalidate_range(mm, address, 1607 address + PAGE_SIZE); 1608 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1609 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { 1610 swp_entry_t entry; 1611 pte_t swp_pte; 1612 1613 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1614 set_pte_at(mm, address, pvmw.pte, pteval); 1615 ret = false; 1616 page_vma_mapped_walk_done(&pvmw); 1617 break; 1618 } 1619 1620 /* 1621 * Store the pfn of the page in a special migration 1622 * pte. do_swap_page() will wait until the migration 1623 * pte is removed and then restart fault handling. 1624 */ 1625 entry = make_migration_entry(subpage, 1626 pte_write(pteval)); 1627 swp_pte = swp_entry_to_pte(entry); 1628 if (pte_soft_dirty(pteval)) 1629 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1630 if (pte_uffd_wp(pteval)) 1631 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1632 set_pte_at(mm, address, pvmw.pte, swp_pte); 1633 /* 1634 * No need to invalidate here it will synchronize on 1635 * against the special swap migration pte. 1636 */ 1637 } else if (PageAnon(page)) { 1638 swp_entry_t entry = { .val = page_private(subpage) }; 1639 pte_t swp_pte; 1640 /* 1641 * Store the swap location in the pte. 1642 * See handle_pte_fault() ... 1643 */ 1644 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1645 WARN_ON_ONCE(1); 1646 ret = false; 1647 /* We have to invalidate as we cleared the pte */ 1648 mmu_notifier_invalidate_range(mm, address, 1649 address + PAGE_SIZE); 1650 page_vma_mapped_walk_done(&pvmw); 1651 break; 1652 } 1653 1654 /* MADV_FREE page check */ 1655 if (!PageSwapBacked(page)) { 1656 if (!PageDirty(page)) { 1657 /* Invalidate as we cleared the pte */ 1658 mmu_notifier_invalidate_range(mm, 1659 address, address + PAGE_SIZE); 1660 dec_mm_counter(mm, MM_ANONPAGES); 1661 goto discard; 1662 } 1663 1664 /* 1665 * If the page was redirtied, it cannot be 1666 * discarded. Remap the page to page table. 1667 */ 1668 set_pte_at(mm, address, pvmw.pte, pteval); 1669 SetPageSwapBacked(page); 1670 ret = false; 1671 page_vma_mapped_walk_done(&pvmw); 1672 break; 1673 } 1674 1675 if (swap_duplicate(entry) < 0) { 1676 set_pte_at(mm, address, pvmw.pte, pteval); 1677 ret = false; 1678 page_vma_mapped_walk_done(&pvmw); 1679 break; 1680 } 1681 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1682 set_pte_at(mm, address, pvmw.pte, pteval); 1683 ret = false; 1684 page_vma_mapped_walk_done(&pvmw); 1685 break; 1686 } 1687 if (list_empty(&mm->mmlist)) { 1688 spin_lock(&mmlist_lock); 1689 if (list_empty(&mm->mmlist)) 1690 list_add(&mm->mmlist, &init_mm.mmlist); 1691 spin_unlock(&mmlist_lock); 1692 } 1693 dec_mm_counter(mm, MM_ANONPAGES); 1694 inc_mm_counter(mm, MM_SWAPENTS); 1695 swp_pte = swp_entry_to_pte(entry); 1696 if (pte_soft_dirty(pteval)) 1697 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1698 if (pte_uffd_wp(pteval)) 1699 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1700 set_pte_at(mm, address, pvmw.pte, swp_pte); 1701 /* Invalidate as we cleared the pte */ 1702 mmu_notifier_invalidate_range(mm, address, 1703 address + PAGE_SIZE); 1704 } else { 1705 /* 1706 * This is a locked file-backed page, thus it cannot 1707 * be removed from the page cache and replaced by a new 1708 * page before mmu_notifier_invalidate_range_end, so no 1709 * concurrent thread might update its page table to 1710 * point at new page while a device still is using this 1711 * page. 1712 * 1713 * See Documentation/vm/mmu_notifier.rst 1714 */ 1715 dec_mm_counter(mm, mm_counter_file(page)); 1716 } 1717 discard: 1718 /* 1719 * No need to call mmu_notifier_invalidate_range() it has be 1720 * done above for all cases requiring it to happen under page 1721 * table lock before mmu_notifier_invalidate_range_end() 1722 * 1723 * See Documentation/vm/mmu_notifier.rst 1724 */ 1725 page_remove_rmap(subpage, PageHuge(page)); 1726 put_page(page); 1727 } 1728 1729 mmu_notifier_invalidate_range_end(&range); 1730 1731 return ret; 1732 } 1733 1734 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1735 { 1736 return vma_is_temporary_stack(vma); 1737 } 1738 1739 static int page_not_mapped(struct page *page) 1740 { 1741 return !page_mapped(page); 1742 } 1743 1744 /** 1745 * try_to_unmap - try to remove all page table mappings to a page 1746 * @page: the page to get unmapped 1747 * @flags: action and flags 1748 * 1749 * Tries to remove all the page table entries which are mapping this 1750 * page, used in the pageout path. Caller must hold the page lock. 1751 * 1752 * If unmap is successful, return true. Otherwise, false. 1753 */ 1754 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1755 { 1756 struct rmap_walk_control rwc = { 1757 .rmap_one = try_to_unmap_one, 1758 .arg = (void *)flags, 1759 .done = page_not_mapped, 1760 .anon_lock = page_lock_anon_vma_read, 1761 }; 1762 1763 /* 1764 * During exec, a temporary VMA is setup and later moved. 1765 * The VMA is moved under the anon_vma lock but not the 1766 * page tables leading to a race where migration cannot 1767 * find the migration ptes. Rather than increasing the 1768 * locking requirements of exec(), migration skips 1769 * temporary VMAs until after exec() completes. 1770 */ 1771 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) 1772 && !PageKsm(page) && PageAnon(page)) 1773 rwc.invalid_vma = invalid_migration_vma; 1774 1775 if (flags & TTU_RMAP_LOCKED) 1776 rmap_walk_locked(page, &rwc); 1777 else 1778 rmap_walk(page, &rwc); 1779 1780 return !page_mapcount(page) ? true : false; 1781 } 1782 1783 /** 1784 * try_to_munlock - try to munlock a page 1785 * @page: the page to be munlocked 1786 * 1787 * Called from munlock code. Checks all of the VMAs mapping the page 1788 * to make sure nobody else has this page mlocked. The page will be 1789 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1790 */ 1791 1792 void try_to_munlock(struct page *page) 1793 { 1794 struct rmap_walk_control rwc = { 1795 .rmap_one = try_to_unmap_one, 1796 .arg = (void *)TTU_MUNLOCK, 1797 .done = page_not_mapped, 1798 .anon_lock = page_lock_anon_vma_read, 1799 1800 }; 1801 1802 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1803 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1804 1805 rmap_walk(page, &rwc); 1806 } 1807 1808 void __put_anon_vma(struct anon_vma *anon_vma) 1809 { 1810 struct anon_vma *root = anon_vma->root; 1811 1812 anon_vma_free(anon_vma); 1813 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1814 anon_vma_free(root); 1815 } 1816 1817 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1818 struct rmap_walk_control *rwc) 1819 { 1820 struct anon_vma *anon_vma; 1821 1822 if (rwc->anon_lock) 1823 return rwc->anon_lock(page); 1824 1825 /* 1826 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1827 * because that depends on page_mapped(); but not all its usages 1828 * are holding mmap_lock. Users without mmap_lock are required to 1829 * take a reference count to prevent the anon_vma disappearing 1830 */ 1831 anon_vma = page_anon_vma(page); 1832 if (!anon_vma) 1833 return NULL; 1834 1835 anon_vma_lock_read(anon_vma); 1836 return anon_vma; 1837 } 1838 1839 /* 1840 * rmap_walk_anon - do something to anonymous page using the object-based 1841 * rmap method 1842 * @page: the page to be handled 1843 * @rwc: control variable according to each walk type 1844 * 1845 * Find all the mappings of a page using the mapping pointer and the vma chains 1846 * contained in the anon_vma struct it points to. 1847 * 1848 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma 1849 * where the page was found will be held for write. So, we won't recheck 1850 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1851 * LOCKED. 1852 */ 1853 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1854 bool locked) 1855 { 1856 struct anon_vma *anon_vma; 1857 pgoff_t pgoff_start, pgoff_end; 1858 struct anon_vma_chain *avc; 1859 1860 if (locked) { 1861 anon_vma = page_anon_vma(page); 1862 /* anon_vma disappear under us? */ 1863 VM_BUG_ON_PAGE(!anon_vma, page); 1864 } else { 1865 anon_vma = rmap_walk_anon_lock(page, rwc); 1866 } 1867 if (!anon_vma) 1868 return; 1869 1870 pgoff_start = page_to_pgoff(page); 1871 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 1872 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1873 pgoff_start, pgoff_end) { 1874 struct vm_area_struct *vma = avc->vma; 1875 unsigned long address = vma_address(page, vma); 1876 1877 cond_resched(); 1878 1879 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1880 continue; 1881 1882 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1883 break; 1884 if (rwc->done && rwc->done(page)) 1885 break; 1886 } 1887 1888 if (!locked) 1889 anon_vma_unlock_read(anon_vma); 1890 } 1891 1892 /* 1893 * rmap_walk_file - do something to file page using the object-based rmap method 1894 * @page: the page to be handled 1895 * @rwc: control variable according to each walk type 1896 * 1897 * Find all the mappings of a page using the mapping pointer and the vma chains 1898 * contained in the address_space struct it points to. 1899 * 1900 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma 1901 * where the page was found will be held for write. So, we won't recheck 1902 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1903 * LOCKED. 1904 */ 1905 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1906 bool locked) 1907 { 1908 struct address_space *mapping = page_mapping(page); 1909 pgoff_t pgoff_start, pgoff_end; 1910 struct vm_area_struct *vma; 1911 1912 /* 1913 * The page lock not only makes sure that page->mapping cannot 1914 * suddenly be NULLified by truncation, it makes sure that the 1915 * structure at mapping cannot be freed and reused yet, 1916 * so we can safely take mapping->i_mmap_rwsem. 1917 */ 1918 VM_BUG_ON_PAGE(!PageLocked(page), page); 1919 1920 if (!mapping) 1921 return; 1922 1923 pgoff_start = page_to_pgoff(page); 1924 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 1925 if (!locked) 1926 i_mmap_lock_read(mapping); 1927 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1928 pgoff_start, pgoff_end) { 1929 unsigned long address = vma_address(page, vma); 1930 1931 cond_resched(); 1932 1933 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1934 continue; 1935 1936 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1937 goto done; 1938 if (rwc->done && rwc->done(page)) 1939 goto done; 1940 } 1941 1942 done: 1943 if (!locked) 1944 i_mmap_unlock_read(mapping); 1945 } 1946 1947 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1948 { 1949 if (unlikely(PageKsm(page))) 1950 rmap_walk_ksm(page, rwc); 1951 else if (PageAnon(page)) 1952 rmap_walk_anon(page, rwc, false); 1953 else 1954 rmap_walk_file(page, rwc, false); 1955 } 1956 1957 /* Like rmap_walk, but caller holds relevant rmap lock */ 1958 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1959 { 1960 /* no ksm support for now */ 1961 VM_BUG_ON_PAGE(PageKsm(page), page); 1962 if (PageAnon(page)) 1963 rmap_walk_anon(page, rwc, true); 1964 else 1965 rmap_walk_file(page, rwc, true); 1966 } 1967 1968 #ifdef CONFIG_HUGETLB_PAGE 1969 /* 1970 * The following two functions are for anonymous (private mapped) hugepages. 1971 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1972 * and no lru code, because we handle hugepages differently from common pages. 1973 */ 1974 void hugepage_add_anon_rmap(struct page *page, 1975 struct vm_area_struct *vma, unsigned long address) 1976 { 1977 struct anon_vma *anon_vma = vma->anon_vma; 1978 int first; 1979 1980 BUG_ON(!PageLocked(page)); 1981 BUG_ON(!anon_vma); 1982 /* address might be in next vma when migration races vma_adjust */ 1983 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1984 if (first) 1985 __page_set_anon_rmap(page, vma, address, 0); 1986 } 1987 1988 void hugepage_add_new_anon_rmap(struct page *page, 1989 struct vm_area_struct *vma, unsigned long address) 1990 { 1991 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1992 atomic_set(compound_mapcount_ptr(page), 0); 1993 if (hpage_pincount_available(page)) 1994 atomic_set(compound_pincount_ptr(page), 0); 1995 1996 __page_set_anon_rmap(page, vma, address, 1); 1997 } 1998 #endif /* CONFIG_HUGETLB_PAGE */ 1999