1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->mutex 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 60 #include <asm/tlbflush.h> 61 62 #include "internal.h" 63 64 static struct kmem_cache *anon_vma_cachep; 65 static struct kmem_cache *anon_vma_chain_cachep; 66 67 static inline struct anon_vma *anon_vma_alloc(void) 68 { 69 struct anon_vma *anon_vma; 70 71 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 72 if (anon_vma) { 73 atomic_set(&anon_vma->refcount, 1); 74 /* 75 * Initialise the anon_vma root to point to itself. If called 76 * from fork, the root will be reset to the parents anon_vma. 77 */ 78 anon_vma->root = anon_vma; 79 } 80 81 return anon_vma; 82 } 83 84 static inline void anon_vma_free(struct anon_vma *anon_vma) 85 { 86 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 87 88 /* 89 * Synchronize against page_lock_anon_vma() such that 90 * we can safely hold the lock without the anon_vma getting 91 * freed. 92 * 93 * Relies on the full mb implied by the atomic_dec_and_test() from 94 * put_anon_vma() against the acquire barrier implied by 95 * mutex_trylock() from page_lock_anon_vma(). This orders: 96 * 97 * page_lock_anon_vma() VS put_anon_vma() 98 * mutex_trylock() atomic_dec_and_test() 99 * LOCK MB 100 * atomic_read() mutex_is_locked() 101 * 102 * LOCK should suffice since the actual taking of the lock must 103 * happen _before_ what follows. 104 */ 105 if (mutex_is_locked(&anon_vma->root->mutex)) { 106 anon_vma_lock(anon_vma); 107 anon_vma_unlock(anon_vma); 108 } 109 110 kmem_cache_free(anon_vma_cachep, anon_vma); 111 } 112 113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 114 { 115 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 116 } 117 118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 119 { 120 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 121 } 122 123 /** 124 * anon_vma_prepare - attach an anon_vma to a memory region 125 * @vma: the memory region in question 126 * 127 * This makes sure the memory mapping described by 'vma' has 128 * an 'anon_vma' attached to it, so that we can associate the 129 * anonymous pages mapped into it with that anon_vma. 130 * 131 * The common case will be that we already have one, but if 132 * not we either need to find an adjacent mapping that we 133 * can re-use the anon_vma from (very common when the only 134 * reason for splitting a vma has been mprotect()), or we 135 * allocate a new one. 136 * 137 * Anon-vma allocations are very subtle, because we may have 138 * optimistically looked up an anon_vma in page_lock_anon_vma() 139 * and that may actually touch the spinlock even in the newly 140 * allocated vma (it depends on RCU to make sure that the 141 * anon_vma isn't actually destroyed). 142 * 143 * As a result, we need to do proper anon_vma locking even 144 * for the new allocation. At the same time, we do not want 145 * to do any locking for the common case of already having 146 * an anon_vma. 147 * 148 * This must be called with the mmap_sem held for reading. 149 */ 150 int anon_vma_prepare(struct vm_area_struct *vma) 151 { 152 struct anon_vma *anon_vma = vma->anon_vma; 153 struct anon_vma_chain *avc; 154 155 might_sleep(); 156 if (unlikely(!anon_vma)) { 157 struct mm_struct *mm = vma->vm_mm; 158 struct anon_vma *allocated; 159 160 avc = anon_vma_chain_alloc(GFP_KERNEL); 161 if (!avc) 162 goto out_enomem; 163 164 anon_vma = find_mergeable_anon_vma(vma); 165 allocated = NULL; 166 if (!anon_vma) { 167 anon_vma = anon_vma_alloc(); 168 if (unlikely(!anon_vma)) 169 goto out_enomem_free_avc; 170 allocated = anon_vma; 171 } 172 173 anon_vma_lock(anon_vma); 174 /* page_table_lock to protect against threads */ 175 spin_lock(&mm->page_table_lock); 176 if (likely(!vma->anon_vma)) { 177 vma->anon_vma = anon_vma; 178 avc->anon_vma = anon_vma; 179 avc->vma = vma; 180 list_add(&avc->same_vma, &vma->anon_vma_chain); 181 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 182 allocated = NULL; 183 avc = NULL; 184 } 185 spin_unlock(&mm->page_table_lock); 186 anon_vma_unlock(anon_vma); 187 188 if (unlikely(allocated)) 189 put_anon_vma(allocated); 190 if (unlikely(avc)) 191 anon_vma_chain_free(avc); 192 } 193 return 0; 194 195 out_enomem_free_avc: 196 anon_vma_chain_free(avc); 197 out_enomem: 198 return -ENOMEM; 199 } 200 201 /* 202 * This is a useful helper function for locking the anon_vma root as 203 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 204 * have the same vma. 205 * 206 * Such anon_vma's should have the same root, so you'd expect to see 207 * just a single mutex_lock for the whole traversal. 208 */ 209 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 210 { 211 struct anon_vma *new_root = anon_vma->root; 212 if (new_root != root) { 213 if (WARN_ON_ONCE(root)) 214 mutex_unlock(&root->mutex); 215 root = new_root; 216 mutex_lock(&root->mutex); 217 } 218 return root; 219 } 220 221 static inline void unlock_anon_vma_root(struct anon_vma *root) 222 { 223 if (root) 224 mutex_unlock(&root->mutex); 225 } 226 227 static void anon_vma_chain_link(struct vm_area_struct *vma, 228 struct anon_vma_chain *avc, 229 struct anon_vma *anon_vma) 230 { 231 avc->vma = vma; 232 avc->anon_vma = anon_vma; 233 list_add(&avc->same_vma, &vma->anon_vma_chain); 234 235 /* 236 * It's critical to add new vmas to the tail of the anon_vma, 237 * see comment in huge_memory.c:__split_huge_page(). 238 */ 239 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 240 } 241 242 /* 243 * Attach the anon_vmas from src to dst. 244 * Returns 0 on success, -ENOMEM on failure. 245 */ 246 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 247 { 248 struct anon_vma_chain *avc, *pavc; 249 struct anon_vma *root = NULL; 250 251 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 252 struct anon_vma *anon_vma; 253 254 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 255 if (unlikely(!avc)) { 256 unlock_anon_vma_root(root); 257 root = NULL; 258 avc = anon_vma_chain_alloc(GFP_KERNEL); 259 if (!avc) 260 goto enomem_failure; 261 } 262 anon_vma = pavc->anon_vma; 263 root = lock_anon_vma_root(root, anon_vma); 264 anon_vma_chain_link(dst, avc, anon_vma); 265 } 266 unlock_anon_vma_root(root); 267 return 0; 268 269 enomem_failure: 270 unlink_anon_vmas(dst); 271 return -ENOMEM; 272 } 273 274 /* 275 * Some rmap walk that needs to find all ptes/hugepmds without false 276 * negatives (like migrate and split_huge_page) running concurrent 277 * with operations that copy or move pagetables (like mremap() and 278 * fork()) to be safe. They depend on the anon_vma "same_anon_vma" 279 * list to be in a certain order: the dst_vma must be placed after the 280 * src_vma in the list. This is always guaranteed by fork() but 281 * mremap() needs to call this function to enforce it in case the 282 * dst_vma isn't newly allocated and chained with the anon_vma_clone() 283 * function but just an extension of a pre-existing vma through 284 * vma_merge. 285 * 286 * NOTE: the same_anon_vma list can still be changed by other 287 * processes while mremap runs because mremap doesn't hold the 288 * anon_vma mutex to prevent modifications to the list while it 289 * runs. All we need to enforce is that the relative order of this 290 * process vmas isn't changing (we don't care about other vmas 291 * order). Each vma corresponds to an anon_vma_chain structure so 292 * there's no risk that other processes calling anon_vma_moveto_tail() 293 * and changing the same_anon_vma list under mremap() will screw with 294 * the relative order of this process vmas in the list, because we 295 * they can't alter the order of any vma that belongs to this 296 * process. And there can't be another anon_vma_moveto_tail() running 297 * concurrently with mremap() coming from this process because we hold 298 * the mmap_sem for the whole mremap(). fork() ordering dependency 299 * also shouldn't be affected because fork() only cares that the 300 * parent vmas are placed in the list before the child vmas and 301 * anon_vma_moveto_tail() won't reorder vmas from either the fork() 302 * parent or child. 303 */ 304 void anon_vma_moveto_tail(struct vm_area_struct *dst) 305 { 306 struct anon_vma_chain *pavc; 307 struct anon_vma *root = NULL; 308 309 list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) { 310 struct anon_vma *anon_vma = pavc->anon_vma; 311 VM_BUG_ON(pavc->vma != dst); 312 root = lock_anon_vma_root(root, anon_vma); 313 list_del(&pavc->same_anon_vma); 314 list_add_tail(&pavc->same_anon_vma, &anon_vma->head); 315 } 316 unlock_anon_vma_root(root); 317 } 318 319 /* 320 * Attach vma to its own anon_vma, as well as to the anon_vmas that 321 * the corresponding VMA in the parent process is attached to. 322 * Returns 0 on success, non-zero on failure. 323 */ 324 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 325 { 326 struct anon_vma_chain *avc; 327 struct anon_vma *anon_vma; 328 329 /* Don't bother if the parent process has no anon_vma here. */ 330 if (!pvma->anon_vma) 331 return 0; 332 333 /* 334 * First, attach the new VMA to the parent VMA's anon_vmas, 335 * so rmap can find non-COWed pages in child processes. 336 */ 337 if (anon_vma_clone(vma, pvma)) 338 return -ENOMEM; 339 340 /* Then add our own anon_vma. */ 341 anon_vma = anon_vma_alloc(); 342 if (!anon_vma) 343 goto out_error; 344 avc = anon_vma_chain_alloc(GFP_KERNEL); 345 if (!avc) 346 goto out_error_free_anon_vma; 347 348 /* 349 * The root anon_vma's spinlock is the lock actually used when we 350 * lock any of the anon_vmas in this anon_vma tree. 351 */ 352 anon_vma->root = pvma->anon_vma->root; 353 /* 354 * With refcounts, an anon_vma can stay around longer than the 355 * process it belongs to. The root anon_vma needs to be pinned until 356 * this anon_vma is freed, because the lock lives in the root. 357 */ 358 get_anon_vma(anon_vma->root); 359 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 360 vma->anon_vma = anon_vma; 361 anon_vma_lock(anon_vma); 362 anon_vma_chain_link(vma, avc, anon_vma); 363 anon_vma_unlock(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 list_del(&avc->same_anon_vma); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (list_empty(&anon_vma->head)) 394 continue; 395 396 list_del(&avc->same_vma); 397 anon_vma_chain_free(avc); 398 } 399 unlock_anon_vma_root(root); 400 401 /* 402 * Iterate the list once more, it now only contains empty and unlinked 403 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 404 * needing to acquire the anon_vma->root->mutex. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 put_anon_vma(anon_vma); 410 411 list_del(&avc->same_vma); 412 anon_vma_chain_free(avc); 413 } 414 } 415 416 static void anon_vma_ctor(void *data) 417 { 418 struct anon_vma *anon_vma = data; 419 420 mutex_init(&anon_vma->mutex); 421 atomic_set(&anon_vma->refcount, 0); 422 INIT_LIST_HEAD(&anon_vma->head); 423 } 424 425 void __init anon_vma_init(void) 426 { 427 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 428 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 429 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 430 } 431 432 /* 433 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 434 * 435 * Since there is no serialization what so ever against page_remove_rmap() 436 * the best this function can do is return a locked anon_vma that might 437 * have been relevant to this page. 438 * 439 * The page might have been remapped to a different anon_vma or the anon_vma 440 * returned may already be freed (and even reused). 441 * 442 * In case it was remapped to a different anon_vma, the new anon_vma will be a 443 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 444 * ensure that any anon_vma obtained from the page will still be valid for as 445 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 446 * 447 * All users of this function must be very careful when walking the anon_vma 448 * chain and verify that the page in question is indeed mapped in it 449 * [ something equivalent to page_mapped_in_vma() ]. 450 * 451 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 452 * that the anon_vma pointer from page->mapping is valid if there is a 453 * mapcount, we can dereference the anon_vma after observing those. 454 */ 455 struct anon_vma *page_get_anon_vma(struct page *page) 456 { 457 struct anon_vma *anon_vma = NULL; 458 unsigned long anon_mapping; 459 460 rcu_read_lock(); 461 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 462 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 463 goto out; 464 if (!page_mapped(page)) 465 goto out; 466 467 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 468 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 469 anon_vma = NULL; 470 goto out; 471 } 472 473 /* 474 * If this page is still mapped, then its anon_vma cannot have been 475 * freed. But if it has been unmapped, we have no security against the 476 * anon_vma structure being freed and reused (for another anon_vma: 477 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 478 * above cannot corrupt). 479 */ 480 if (!page_mapped(page)) { 481 put_anon_vma(anon_vma); 482 anon_vma = NULL; 483 } 484 out: 485 rcu_read_unlock(); 486 487 return anon_vma; 488 } 489 490 /* 491 * Similar to page_get_anon_vma() except it locks the anon_vma. 492 * 493 * Its a little more complex as it tries to keep the fast path to a single 494 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 495 * reference like with page_get_anon_vma() and then block on the mutex. 496 */ 497 struct anon_vma *page_lock_anon_vma(struct page *page) 498 { 499 struct anon_vma *anon_vma = NULL; 500 struct anon_vma *root_anon_vma; 501 unsigned long anon_mapping; 502 503 rcu_read_lock(); 504 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 505 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 506 goto out; 507 if (!page_mapped(page)) 508 goto out; 509 510 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 511 root_anon_vma = ACCESS_ONCE(anon_vma->root); 512 if (mutex_trylock(&root_anon_vma->mutex)) { 513 /* 514 * If the page is still mapped, then this anon_vma is still 515 * its anon_vma, and holding the mutex ensures that it will 516 * not go away, see anon_vma_free(). 517 */ 518 if (!page_mapped(page)) { 519 mutex_unlock(&root_anon_vma->mutex); 520 anon_vma = NULL; 521 } 522 goto out; 523 } 524 525 /* trylock failed, we got to sleep */ 526 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 527 anon_vma = NULL; 528 goto out; 529 } 530 531 if (!page_mapped(page)) { 532 put_anon_vma(anon_vma); 533 anon_vma = NULL; 534 goto out; 535 } 536 537 /* we pinned the anon_vma, its safe to sleep */ 538 rcu_read_unlock(); 539 anon_vma_lock(anon_vma); 540 541 if (atomic_dec_and_test(&anon_vma->refcount)) { 542 /* 543 * Oops, we held the last refcount, release the lock 544 * and bail -- can't simply use put_anon_vma() because 545 * we'll deadlock on the anon_vma_lock() recursion. 546 */ 547 anon_vma_unlock(anon_vma); 548 __put_anon_vma(anon_vma); 549 anon_vma = NULL; 550 } 551 552 return anon_vma; 553 554 out: 555 rcu_read_unlock(); 556 return anon_vma; 557 } 558 559 void page_unlock_anon_vma(struct anon_vma *anon_vma) 560 { 561 anon_vma_unlock(anon_vma); 562 } 563 564 /* 565 * At what user virtual address is page expected in @vma? 566 * Returns virtual address or -EFAULT if page's index/offset is not 567 * within the range mapped the @vma. 568 */ 569 inline unsigned long 570 vma_address(struct page *page, struct vm_area_struct *vma) 571 { 572 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 573 unsigned long address; 574 575 if (unlikely(is_vm_hugetlb_page(vma))) 576 pgoff = page->index << huge_page_order(page_hstate(page)); 577 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 578 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 579 /* page should be within @vma mapping range */ 580 return -EFAULT; 581 } 582 return address; 583 } 584 585 /* 586 * At what user virtual address is page expected in vma? 587 * Caller should check the page is actually part of the vma. 588 */ 589 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 590 { 591 if (PageAnon(page)) { 592 struct anon_vma *page__anon_vma = page_anon_vma(page); 593 /* 594 * Note: swapoff's unuse_vma() is more efficient with this 595 * check, and needs it to match anon_vma when KSM is active. 596 */ 597 if (!vma->anon_vma || !page__anon_vma || 598 vma->anon_vma->root != page__anon_vma->root) 599 return -EFAULT; 600 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 601 if (!vma->vm_file || 602 vma->vm_file->f_mapping != page->mapping) 603 return -EFAULT; 604 } else 605 return -EFAULT; 606 return vma_address(page, vma); 607 } 608 609 /* 610 * Check that @page is mapped at @address into @mm. 611 * 612 * If @sync is false, page_check_address may perform a racy check to avoid 613 * the page table lock when the pte is not present (helpful when reclaiming 614 * highly shared pages). 615 * 616 * On success returns with pte mapped and locked. 617 */ 618 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 619 unsigned long address, spinlock_t **ptlp, int sync) 620 { 621 pgd_t *pgd; 622 pud_t *pud; 623 pmd_t *pmd; 624 pte_t *pte; 625 spinlock_t *ptl; 626 627 if (unlikely(PageHuge(page))) { 628 pte = huge_pte_offset(mm, address); 629 ptl = &mm->page_table_lock; 630 goto check; 631 } 632 633 pgd = pgd_offset(mm, address); 634 if (!pgd_present(*pgd)) 635 return NULL; 636 637 pud = pud_offset(pgd, address); 638 if (!pud_present(*pud)) 639 return NULL; 640 641 pmd = pmd_offset(pud, address); 642 if (!pmd_present(*pmd)) 643 return NULL; 644 if (pmd_trans_huge(*pmd)) 645 return NULL; 646 647 pte = pte_offset_map(pmd, address); 648 /* Make a quick check before getting the lock */ 649 if (!sync && !pte_present(*pte)) { 650 pte_unmap(pte); 651 return NULL; 652 } 653 654 ptl = pte_lockptr(mm, pmd); 655 check: 656 spin_lock(ptl); 657 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 658 *ptlp = ptl; 659 return pte; 660 } 661 pte_unmap_unlock(pte, ptl); 662 return NULL; 663 } 664 665 /** 666 * page_mapped_in_vma - check whether a page is really mapped in a VMA 667 * @page: the page to test 668 * @vma: the VMA to test 669 * 670 * Returns 1 if the page is mapped into the page tables of the VMA, 0 671 * if the page is not mapped into the page tables of this VMA. Only 672 * valid for normal file or anonymous VMAs. 673 */ 674 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 675 { 676 unsigned long address; 677 pte_t *pte; 678 spinlock_t *ptl; 679 680 address = vma_address(page, vma); 681 if (address == -EFAULT) /* out of vma range */ 682 return 0; 683 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 684 if (!pte) /* the page is not in this mm */ 685 return 0; 686 pte_unmap_unlock(pte, ptl); 687 688 return 1; 689 } 690 691 /* 692 * Subfunctions of page_referenced: page_referenced_one called 693 * repeatedly from either page_referenced_anon or page_referenced_file. 694 */ 695 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 696 unsigned long address, unsigned int *mapcount, 697 unsigned long *vm_flags) 698 { 699 struct mm_struct *mm = vma->vm_mm; 700 int referenced = 0; 701 702 if (unlikely(PageTransHuge(page))) { 703 pmd_t *pmd; 704 705 spin_lock(&mm->page_table_lock); 706 /* 707 * rmap might return false positives; we must filter 708 * these out using page_check_address_pmd(). 709 */ 710 pmd = page_check_address_pmd(page, mm, address, 711 PAGE_CHECK_ADDRESS_PMD_FLAG); 712 if (!pmd) { 713 spin_unlock(&mm->page_table_lock); 714 goto out; 715 } 716 717 if (vma->vm_flags & VM_LOCKED) { 718 spin_unlock(&mm->page_table_lock); 719 *mapcount = 0; /* break early from loop */ 720 *vm_flags |= VM_LOCKED; 721 goto out; 722 } 723 724 /* go ahead even if the pmd is pmd_trans_splitting() */ 725 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 726 referenced++; 727 spin_unlock(&mm->page_table_lock); 728 } else { 729 pte_t *pte; 730 spinlock_t *ptl; 731 732 /* 733 * rmap might return false positives; we must filter 734 * these out using page_check_address(). 735 */ 736 pte = page_check_address(page, mm, address, &ptl, 0); 737 if (!pte) 738 goto out; 739 740 if (vma->vm_flags & VM_LOCKED) { 741 pte_unmap_unlock(pte, ptl); 742 *mapcount = 0; /* break early from loop */ 743 *vm_flags |= VM_LOCKED; 744 goto out; 745 } 746 747 if (ptep_clear_flush_young_notify(vma, address, pte)) { 748 /* 749 * Don't treat a reference through a sequentially read 750 * mapping as such. If the page has been used in 751 * another mapping, we will catch it; if this other 752 * mapping is already gone, the unmap path will have 753 * set PG_referenced or activated the page. 754 */ 755 if (likely(!VM_SequentialReadHint(vma))) 756 referenced++; 757 } 758 pte_unmap_unlock(pte, ptl); 759 } 760 761 /* Pretend the page is referenced if the task has the 762 swap token and is in the middle of a page fault. */ 763 if (mm != current->mm && has_swap_token(mm) && 764 rwsem_is_locked(&mm->mmap_sem)) 765 referenced++; 766 767 (*mapcount)--; 768 769 if (referenced) 770 *vm_flags |= vma->vm_flags; 771 out: 772 return referenced; 773 } 774 775 static int page_referenced_anon(struct page *page, 776 struct mem_cgroup *memcg, 777 unsigned long *vm_flags) 778 { 779 unsigned int mapcount; 780 struct anon_vma *anon_vma; 781 struct anon_vma_chain *avc; 782 int referenced = 0; 783 784 anon_vma = page_lock_anon_vma(page); 785 if (!anon_vma) 786 return referenced; 787 788 mapcount = page_mapcount(page); 789 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 790 struct vm_area_struct *vma = avc->vma; 791 unsigned long address = vma_address(page, vma); 792 if (address == -EFAULT) 793 continue; 794 /* 795 * If we are reclaiming on behalf of a cgroup, skip 796 * counting on behalf of references from different 797 * cgroups 798 */ 799 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 800 continue; 801 referenced += page_referenced_one(page, vma, address, 802 &mapcount, vm_flags); 803 if (!mapcount) 804 break; 805 } 806 807 page_unlock_anon_vma(anon_vma); 808 return referenced; 809 } 810 811 /** 812 * page_referenced_file - referenced check for object-based rmap 813 * @page: the page we're checking references on. 814 * @memcg: target memory control group 815 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 816 * 817 * For an object-based mapped page, find all the places it is mapped and 818 * check/clear the referenced flag. This is done by following the page->mapping 819 * pointer, then walking the chain of vmas it holds. It returns the number 820 * of references it found. 821 * 822 * This function is only called from page_referenced for object-based pages. 823 */ 824 static int page_referenced_file(struct page *page, 825 struct mem_cgroup *memcg, 826 unsigned long *vm_flags) 827 { 828 unsigned int mapcount; 829 struct address_space *mapping = page->mapping; 830 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 831 struct vm_area_struct *vma; 832 struct prio_tree_iter iter; 833 int referenced = 0; 834 835 /* 836 * The caller's checks on page->mapping and !PageAnon have made 837 * sure that this is a file page: the check for page->mapping 838 * excludes the case just before it gets set on an anon page. 839 */ 840 BUG_ON(PageAnon(page)); 841 842 /* 843 * The page lock not only makes sure that page->mapping cannot 844 * suddenly be NULLified by truncation, it makes sure that the 845 * structure at mapping cannot be freed and reused yet, 846 * so we can safely take mapping->i_mmap_mutex. 847 */ 848 BUG_ON(!PageLocked(page)); 849 850 mutex_lock(&mapping->i_mmap_mutex); 851 852 /* 853 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 854 * is more likely to be accurate if we note it after spinning. 855 */ 856 mapcount = page_mapcount(page); 857 858 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 859 unsigned long address = vma_address(page, vma); 860 if (address == -EFAULT) 861 continue; 862 /* 863 * If we are reclaiming on behalf of a cgroup, skip 864 * counting on behalf of references from different 865 * cgroups 866 */ 867 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 868 continue; 869 referenced += page_referenced_one(page, vma, address, 870 &mapcount, vm_flags); 871 if (!mapcount) 872 break; 873 } 874 875 mutex_unlock(&mapping->i_mmap_mutex); 876 return referenced; 877 } 878 879 /** 880 * page_referenced - test if the page was referenced 881 * @page: the page to test 882 * @is_locked: caller holds lock on the page 883 * @memcg: target memory cgroup 884 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 885 * 886 * Quick test_and_clear_referenced for all mappings to a page, 887 * returns the number of ptes which referenced the page. 888 */ 889 int page_referenced(struct page *page, 890 int is_locked, 891 struct mem_cgroup *memcg, 892 unsigned long *vm_flags) 893 { 894 int referenced = 0; 895 int we_locked = 0; 896 897 *vm_flags = 0; 898 if (page_mapped(page) && page_rmapping(page)) { 899 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 900 we_locked = trylock_page(page); 901 if (!we_locked) { 902 referenced++; 903 goto out; 904 } 905 } 906 if (unlikely(PageKsm(page))) 907 referenced += page_referenced_ksm(page, memcg, 908 vm_flags); 909 else if (PageAnon(page)) 910 referenced += page_referenced_anon(page, memcg, 911 vm_flags); 912 else if (page->mapping) 913 referenced += page_referenced_file(page, memcg, 914 vm_flags); 915 if (we_locked) 916 unlock_page(page); 917 918 if (page_test_and_clear_young(page_to_pfn(page))) 919 referenced++; 920 } 921 out: 922 return referenced; 923 } 924 925 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 926 unsigned long address) 927 { 928 struct mm_struct *mm = vma->vm_mm; 929 pte_t *pte; 930 spinlock_t *ptl; 931 int ret = 0; 932 933 pte = page_check_address(page, mm, address, &ptl, 1); 934 if (!pte) 935 goto out; 936 937 if (pte_dirty(*pte) || pte_write(*pte)) { 938 pte_t entry; 939 940 flush_cache_page(vma, address, pte_pfn(*pte)); 941 entry = ptep_clear_flush_notify(vma, address, pte); 942 entry = pte_wrprotect(entry); 943 entry = pte_mkclean(entry); 944 set_pte_at(mm, address, pte, entry); 945 ret = 1; 946 } 947 948 pte_unmap_unlock(pte, ptl); 949 out: 950 return ret; 951 } 952 953 static int page_mkclean_file(struct address_space *mapping, struct page *page) 954 { 955 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 956 struct vm_area_struct *vma; 957 struct prio_tree_iter iter; 958 int ret = 0; 959 960 BUG_ON(PageAnon(page)); 961 962 mutex_lock(&mapping->i_mmap_mutex); 963 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 964 if (vma->vm_flags & VM_SHARED) { 965 unsigned long address = vma_address(page, vma); 966 if (address == -EFAULT) 967 continue; 968 ret += page_mkclean_one(page, vma, address); 969 } 970 } 971 mutex_unlock(&mapping->i_mmap_mutex); 972 return ret; 973 } 974 975 int page_mkclean(struct page *page) 976 { 977 int ret = 0; 978 979 BUG_ON(!PageLocked(page)); 980 981 if (page_mapped(page)) { 982 struct address_space *mapping = page_mapping(page); 983 if (mapping) { 984 ret = page_mkclean_file(mapping, page); 985 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 986 ret = 1; 987 } 988 } 989 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(page_mkclean); 993 994 /** 995 * page_move_anon_rmap - move a page to our anon_vma 996 * @page: the page to move to our anon_vma 997 * @vma: the vma the page belongs to 998 * @address: the user virtual address mapped 999 * 1000 * When a page belongs exclusively to one process after a COW event, 1001 * that page can be moved into the anon_vma that belongs to just that 1002 * process, so the rmap code will not search the parent or sibling 1003 * processes. 1004 */ 1005 void page_move_anon_rmap(struct page *page, 1006 struct vm_area_struct *vma, unsigned long address) 1007 { 1008 struct anon_vma *anon_vma = vma->anon_vma; 1009 1010 VM_BUG_ON(!PageLocked(page)); 1011 VM_BUG_ON(!anon_vma); 1012 VM_BUG_ON(page->index != linear_page_index(vma, address)); 1013 1014 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1015 page->mapping = (struct address_space *) anon_vma; 1016 } 1017 1018 /** 1019 * __page_set_anon_rmap - set up new anonymous rmap 1020 * @page: Page to add to rmap 1021 * @vma: VM area to add page to. 1022 * @address: User virtual address of the mapping 1023 * @exclusive: the page is exclusively owned by the current process 1024 */ 1025 static void __page_set_anon_rmap(struct page *page, 1026 struct vm_area_struct *vma, unsigned long address, int exclusive) 1027 { 1028 struct anon_vma *anon_vma = vma->anon_vma; 1029 1030 BUG_ON(!anon_vma); 1031 1032 if (PageAnon(page)) 1033 return; 1034 1035 /* 1036 * If the page isn't exclusively mapped into this vma, 1037 * we must use the _oldest_ possible anon_vma for the 1038 * page mapping! 1039 */ 1040 if (!exclusive) 1041 anon_vma = anon_vma->root; 1042 1043 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1044 page->mapping = (struct address_space *) anon_vma; 1045 page->index = linear_page_index(vma, address); 1046 } 1047 1048 /** 1049 * __page_check_anon_rmap - sanity check anonymous rmap addition 1050 * @page: the page to add the mapping to 1051 * @vma: the vm area in which the mapping is added 1052 * @address: the user virtual address mapped 1053 */ 1054 static void __page_check_anon_rmap(struct page *page, 1055 struct vm_area_struct *vma, unsigned long address) 1056 { 1057 #ifdef CONFIG_DEBUG_VM 1058 /* 1059 * The page's anon-rmap details (mapping and index) are guaranteed to 1060 * be set up correctly at this point. 1061 * 1062 * We have exclusion against page_add_anon_rmap because the caller 1063 * always holds the page locked, except if called from page_dup_rmap, 1064 * in which case the page is already known to be setup. 1065 * 1066 * We have exclusion against page_add_new_anon_rmap because those pages 1067 * are initially only visible via the pagetables, and the pte is locked 1068 * over the call to page_add_new_anon_rmap. 1069 */ 1070 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1071 BUG_ON(page->index != linear_page_index(vma, address)); 1072 #endif 1073 } 1074 1075 /** 1076 * page_add_anon_rmap - add pte mapping to an anonymous page 1077 * @page: the page to add the mapping to 1078 * @vma: the vm area in which the mapping is added 1079 * @address: the user virtual address mapped 1080 * 1081 * The caller needs to hold the pte lock, and the page must be locked in 1082 * the anon_vma case: to serialize mapping,index checking after setting, 1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1084 * (but PageKsm is never downgraded to PageAnon). 1085 */ 1086 void page_add_anon_rmap(struct page *page, 1087 struct vm_area_struct *vma, unsigned long address) 1088 { 1089 do_page_add_anon_rmap(page, vma, address, 0); 1090 } 1091 1092 /* 1093 * Special version of the above for do_swap_page, which often runs 1094 * into pages that are exclusively owned by the current process. 1095 * Everybody else should continue to use page_add_anon_rmap above. 1096 */ 1097 void do_page_add_anon_rmap(struct page *page, 1098 struct vm_area_struct *vma, unsigned long address, int exclusive) 1099 { 1100 int first = atomic_inc_and_test(&page->_mapcount); 1101 if (first) { 1102 if (!PageTransHuge(page)) 1103 __inc_zone_page_state(page, NR_ANON_PAGES); 1104 else 1105 __inc_zone_page_state(page, 1106 NR_ANON_TRANSPARENT_HUGEPAGES); 1107 } 1108 if (unlikely(PageKsm(page))) 1109 return; 1110 1111 VM_BUG_ON(!PageLocked(page)); 1112 /* address might be in next vma when migration races vma_adjust */ 1113 if (first) 1114 __page_set_anon_rmap(page, vma, address, exclusive); 1115 else 1116 __page_check_anon_rmap(page, vma, address); 1117 } 1118 1119 /** 1120 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1121 * @page: the page to add the mapping to 1122 * @vma: the vm area in which the mapping is added 1123 * @address: the user virtual address mapped 1124 * 1125 * Same as page_add_anon_rmap but must only be called on *new* pages. 1126 * This means the inc-and-test can be bypassed. 1127 * Page does not have to be locked. 1128 */ 1129 void page_add_new_anon_rmap(struct page *page, 1130 struct vm_area_struct *vma, unsigned long address) 1131 { 1132 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1133 SetPageSwapBacked(page); 1134 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1135 if (!PageTransHuge(page)) 1136 __inc_zone_page_state(page, NR_ANON_PAGES); 1137 else 1138 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1139 __page_set_anon_rmap(page, vma, address, 1); 1140 if (page_evictable(page, vma)) 1141 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1142 else 1143 add_page_to_unevictable_list(page); 1144 } 1145 1146 /** 1147 * page_add_file_rmap - add pte mapping to a file page 1148 * @page: the page to add the mapping to 1149 * 1150 * The caller needs to hold the pte lock. 1151 */ 1152 void page_add_file_rmap(struct page *page) 1153 { 1154 if (atomic_inc_and_test(&page->_mapcount)) { 1155 __inc_zone_page_state(page, NR_FILE_MAPPED); 1156 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1157 } 1158 } 1159 1160 /** 1161 * page_remove_rmap - take down pte mapping from a page 1162 * @page: page to remove mapping from 1163 * 1164 * The caller needs to hold the pte lock. 1165 */ 1166 void page_remove_rmap(struct page *page) 1167 { 1168 /* page still mapped by someone else? */ 1169 if (!atomic_add_negative(-1, &page->_mapcount)) 1170 return; 1171 1172 /* 1173 * Now that the last pte has gone, s390 must transfer dirty 1174 * flag from storage key to struct page. We can usually skip 1175 * this if the page is anon, so about to be freed; but perhaps 1176 * not if it's in swapcache - there might be another pte slot 1177 * containing the swap entry, but page not yet written to swap. 1178 */ 1179 if ((!PageAnon(page) || PageSwapCache(page)) && 1180 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1181 set_page_dirty(page); 1182 /* 1183 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1184 * and not charged by memcg for now. 1185 */ 1186 if (unlikely(PageHuge(page))) 1187 return; 1188 if (PageAnon(page)) { 1189 mem_cgroup_uncharge_page(page); 1190 if (!PageTransHuge(page)) 1191 __dec_zone_page_state(page, NR_ANON_PAGES); 1192 else 1193 __dec_zone_page_state(page, 1194 NR_ANON_TRANSPARENT_HUGEPAGES); 1195 } else { 1196 __dec_zone_page_state(page, NR_FILE_MAPPED); 1197 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1198 } 1199 /* 1200 * It would be tidy to reset the PageAnon mapping here, 1201 * but that might overwrite a racing page_add_anon_rmap 1202 * which increments mapcount after us but sets mapping 1203 * before us: so leave the reset to free_hot_cold_page, 1204 * and remember that it's only reliable while mapped. 1205 * Leaving it set also helps swapoff to reinstate ptes 1206 * faster for those pages still in swapcache. 1207 */ 1208 } 1209 1210 /* 1211 * Subfunctions of try_to_unmap: try_to_unmap_one called 1212 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1213 */ 1214 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1215 unsigned long address, enum ttu_flags flags) 1216 { 1217 struct mm_struct *mm = vma->vm_mm; 1218 pte_t *pte; 1219 pte_t pteval; 1220 spinlock_t *ptl; 1221 int ret = SWAP_AGAIN; 1222 1223 pte = page_check_address(page, mm, address, &ptl, 0); 1224 if (!pte) 1225 goto out; 1226 1227 /* 1228 * If the page is mlock()d, we cannot swap it out. 1229 * If it's recently referenced (perhaps page_referenced 1230 * skipped over this mm) then we should reactivate it. 1231 */ 1232 if (!(flags & TTU_IGNORE_MLOCK)) { 1233 if (vma->vm_flags & VM_LOCKED) 1234 goto out_mlock; 1235 1236 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1237 goto out_unmap; 1238 } 1239 if (!(flags & TTU_IGNORE_ACCESS)) { 1240 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1241 ret = SWAP_FAIL; 1242 goto out_unmap; 1243 } 1244 } 1245 1246 /* Nuke the page table entry. */ 1247 flush_cache_page(vma, address, page_to_pfn(page)); 1248 pteval = ptep_clear_flush_notify(vma, address, pte); 1249 1250 /* Move the dirty bit to the physical page now the pte is gone. */ 1251 if (pte_dirty(pteval)) 1252 set_page_dirty(page); 1253 1254 /* Update high watermark before we lower rss */ 1255 update_hiwater_rss(mm); 1256 1257 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1258 if (PageAnon(page)) 1259 dec_mm_counter(mm, MM_ANONPAGES); 1260 else 1261 dec_mm_counter(mm, MM_FILEPAGES); 1262 set_pte_at(mm, address, pte, 1263 swp_entry_to_pte(make_hwpoison_entry(page))); 1264 } else if (PageAnon(page)) { 1265 swp_entry_t entry = { .val = page_private(page) }; 1266 1267 if (PageSwapCache(page)) { 1268 /* 1269 * Store the swap location in the pte. 1270 * See handle_pte_fault() ... 1271 */ 1272 if (swap_duplicate(entry) < 0) { 1273 set_pte_at(mm, address, pte, pteval); 1274 ret = SWAP_FAIL; 1275 goto out_unmap; 1276 } 1277 if (list_empty(&mm->mmlist)) { 1278 spin_lock(&mmlist_lock); 1279 if (list_empty(&mm->mmlist)) 1280 list_add(&mm->mmlist, &init_mm.mmlist); 1281 spin_unlock(&mmlist_lock); 1282 } 1283 dec_mm_counter(mm, MM_ANONPAGES); 1284 inc_mm_counter(mm, MM_SWAPENTS); 1285 } else if (PAGE_MIGRATION) { 1286 /* 1287 * Store the pfn of the page in a special migration 1288 * pte. do_swap_page() will wait until the migration 1289 * pte is removed and then restart fault handling. 1290 */ 1291 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1292 entry = make_migration_entry(page, pte_write(pteval)); 1293 } 1294 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1295 BUG_ON(pte_file(*pte)); 1296 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1297 /* Establish migration entry for a file page */ 1298 swp_entry_t entry; 1299 entry = make_migration_entry(page, pte_write(pteval)); 1300 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1301 } else 1302 dec_mm_counter(mm, MM_FILEPAGES); 1303 1304 page_remove_rmap(page); 1305 page_cache_release(page); 1306 1307 out_unmap: 1308 pte_unmap_unlock(pte, ptl); 1309 out: 1310 return ret; 1311 1312 out_mlock: 1313 pte_unmap_unlock(pte, ptl); 1314 1315 1316 /* 1317 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1318 * unstable result and race. Plus, We can't wait here because 1319 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1320 * if trylock failed, the page remain in evictable lru and later 1321 * vmscan could retry to move the page to unevictable lru if the 1322 * page is actually mlocked. 1323 */ 1324 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1325 if (vma->vm_flags & VM_LOCKED) { 1326 mlock_vma_page(page); 1327 ret = SWAP_MLOCK; 1328 } 1329 up_read(&vma->vm_mm->mmap_sem); 1330 } 1331 return ret; 1332 } 1333 1334 /* 1335 * objrmap doesn't work for nonlinear VMAs because the assumption that 1336 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1337 * Consequently, given a particular page and its ->index, we cannot locate the 1338 * ptes which are mapping that page without an exhaustive linear search. 1339 * 1340 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1341 * maps the file to which the target page belongs. The ->vm_private_data field 1342 * holds the current cursor into that scan. Successive searches will circulate 1343 * around the vma's virtual address space. 1344 * 1345 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1346 * more scanning pressure is placed against them as well. Eventually pages 1347 * will become fully unmapped and are eligible for eviction. 1348 * 1349 * For very sparsely populated VMAs this is a little inefficient - chances are 1350 * there there won't be many ptes located within the scan cluster. In this case 1351 * maybe we could scan further - to the end of the pte page, perhaps. 1352 * 1353 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1354 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1355 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1356 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1357 */ 1358 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1359 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1360 1361 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1362 struct vm_area_struct *vma, struct page *check_page) 1363 { 1364 struct mm_struct *mm = vma->vm_mm; 1365 pgd_t *pgd; 1366 pud_t *pud; 1367 pmd_t *pmd; 1368 pte_t *pte; 1369 pte_t pteval; 1370 spinlock_t *ptl; 1371 struct page *page; 1372 unsigned long address; 1373 unsigned long end; 1374 int ret = SWAP_AGAIN; 1375 int locked_vma = 0; 1376 1377 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1378 end = address + CLUSTER_SIZE; 1379 if (address < vma->vm_start) 1380 address = vma->vm_start; 1381 if (end > vma->vm_end) 1382 end = vma->vm_end; 1383 1384 pgd = pgd_offset(mm, address); 1385 if (!pgd_present(*pgd)) 1386 return ret; 1387 1388 pud = pud_offset(pgd, address); 1389 if (!pud_present(*pud)) 1390 return ret; 1391 1392 pmd = pmd_offset(pud, address); 1393 if (!pmd_present(*pmd)) 1394 return ret; 1395 1396 /* 1397 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1398 * keep the sem while scanning the cluster for mlocking pages. 1399 */ 1400 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1401 locked_vma = (vma->vm_flags & VM_LOCKED); 1402 if (!locked_vma) 1403 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1404 } 1405 1406 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1407 1408 /* Update high watermark before we lower rss */ 1409 update_hiwater_rss(mm); 1410 1411 for (; address < end; pte++, address += PAGE_SIZE) { 1412 if (!pte_present(*pte)) 1413 continue; 1414 page = vm_normal_page(vma, address, *pte); 1415 BUG_ON(!page || PageAnon(page)); 1416 1417 if (locked_vma) { 1418 mlock_vma_page(page); /* no-op if already mlocked */ 1419 if (page == check_page) 1420 ret = SWAP_MLOCK; 1421 continue; /* don't unmap */ 1422 } 1423 1424 if (ptep_clear_flush_young_notify(vma, address, pte)) 1425 continue; 1426 1427 /* Nuke the page table entry. */ 1428 flush_cache_page(vma, address, pte_pfn(*pte)); 1429 pteval = ptep_clear_flush_notify(vma, address, pte); 1430 1431 /* If nonlinear, store the file page offset in the pte. */ 1432 if (page->index != linear_page_index(vma, address)) 1433 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1434 1435 /* Move the dirty bit to the physical page now the pte is gone. */ 1436 if (pte_dirty(pteval)) 1437 set_page_dirty(page); 1438 1439 page_remove_rmap(page); 1440 page_cache_release(page); 1441 dec_mm_counter(mm, MM_FILEPAGES); 1442 (*mapcount)--; 1443 } 1444 pte_unmap_unlock(pte - 1, ptl); 1445 if (locked_vma) 1446 up_read(&vma->vm_mm->mmap_sem); 1447 return ret; 1448 } 1449 1450 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1451 { 1452 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1453 1454 if (!maybe_stack) 1455 return false; 1456 1457 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1458 VM_STACK_INCOMPLETE_SETUP) 1459 return true; 1460 1461 return false; 1462 } 1463 1464 /** 1465 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1466 * rmap method 1467 * @page: the page to unmap/unlock 1468 * @flags: action and flags 1469 * 1470 * Find all the mappings of a page using the mapping pointer and the vma chains 1471 * contained in the anon_vma struct it points to. 1472 * 1473 * This function is only called from try_to_unmap/try_to_munlock for 1474 * anonymous pages. 1475 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1476 * where the page was found will be held for write. So, we won't recheck 1477 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1478 * 'LOCKED. 1479 */ 1480 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1481 { 1482 struct anon_vma *anon_vma; 1483 struct anon_vma_chain *avc; 1484 int ret = SWAP_AGAIN; 1485 1486 anon_vma = page_lock_anon_vma(page); 1487 if (!anon_vma) 1488 return ret; 1489 1490 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1491 struct vm_area_struct *vma = avc->vma; 1492 unsigned long address; 1493 1494 /* 1495 * During exec, a temporary VMA is setup and later moved. 1496 * The VMA is moved under the anon_vma lock but not the 1497 * page tables leading to a race where migration cannot 1498 * find the migration ptes. Rather than increasing the 1499 * locking requirements of exec(), migration skips 1500 * temporary VMAs until after exec() completes. 1501 */ 1502 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1503 is_vma_temporary_stack(vma)) 1504 continue; 1505 1506 address = vma_address(page, vma); 1507 if (address == -EFAULT) 1508 continue; 1509 ret = try_to_unmap_one(page, vma, address, flags); 1510 if (ret != SWAP_AGAIN || !page_mapped(page)) 1511 break; 1512 } 1513 1514 page_unlock_anon_vma(anon_vma); 1515 return ret; 1516 } 1517 1518 /** 1519 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1520 * @page: the page to unmap/unlock 1521 * @flags: action and flags 1522 * 1523 * Find all the mappings of a page using the mapping pointer and the vma chains 1524 * contained in the address_space struct it points to. 1525 * 1526 * This function is only called from try_to_unmap/try_to_munlock for 1527 * object-based pages. 1528 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1529 * where the page was found will be held for write. So, we won't recheck 1530 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1531 * 'LOCKED. 1532 */ 1533 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1534 { 1535 struct address_space *mapping = page->mapping; 1536 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1537 struct vm_area_struct *vma; 1538 struct prio_tree_iter iter; 1539 int ret = SWAP_AGAIN; 1540 unsigned long cursor; 1541 unsigned long max_nl_cursor = 0; 1542 unsigned long max_nl_size = 0; 1543 unsigned int mapcount; 1544 1545 mutex_lock(&mapping->i_mmap_mutex); 1546 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1547 unsigned long address = vma_address(page, vma); 1548 if (address == -EFAULT) 1549 continue; 1550 ret = try_to_unmap_one(page, vma, address, flags); 1551 if (ret != SWAP_AGAIN || !page_mapped(page)) 1552 goto out; 1553 } 1554 1555 if (list_empty(&mapping->i_mmap_nonlinear)) 1556 goto out; 1557 1558 /* 1559 * We don't bother to try to find the munlocked page in nonlinears. 1560 * It's costly. Instead, later, page reclaim logic may call 1561 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1562 */ 1563 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1564 goto out; 1565 1566 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1567 shared.vm_set.list) { 1568 cursor = (unsigned long) vma->vm_private_data; 1569 if (cursor > max_nl_cursor) 1570 max_nl_cursor = cursor; 1571 cursor = vma->vm_end - vma->vm_start; 1572 if (cursor > max_nl_size) 1573 max_nl_size = cursor; 1574 } 1575 1576 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1577 ret = SWAP_FAIL; 1578 goto out; 1579 } 1580 1581 /* 1582 * We don't try to search for this page in the nonlinear vmas, 1583 * and page_referenced wouldn't have found it anyway. Instead 1584 * just walk the nonlinear vmas trying to age and unmap some. 1585 * The mapcount of the page we came in with is irrelevant, 1586 * but even so use it as a guide to how hard we should try? 1587 */ 1588 mapcount = page_mapcount(page); 1589 if (!mapcount) 1590 goto out; 1591 cond_resched(); 1592 1593 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1594 if (max_nl_cursor == 0) 1595 max_nl_cursor = CLUSTER_SIZE; 1596 1597 do { 1598 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1599 shared.vm_set.list) { 1600 cursor = (unsigned long) vma->vm_private_data; 1601 while ( cursor < max_nl_cursor && 1602 cursor < vma->vm_end - vma->vm_start) { 1603 if (try_to_unmap_cluster(cursor, &mapcount, 1604 vma, page) == SWAP_MLOCK) 1605 ret = SWAP_MLOCK; 1606 cursor += CLUSTER_SIZE; 1607 vma->vm_private_data = (void *) cursor; 1608 if ((int)mapcount <= 0) 1609 goto out; 1610 } 1611 vma->vm_private_data = (void *) max_nl_cursor; 1612 } 1613 cond_resched(); 1614 max_nl_cursor += CLUSTER_SIZE; 1615 } while (max_nl_cursor <= max_nl_size); 1616 1617 /* 1618 * Don't loop forever (perhaps all the remaining pages are 1619 * in locked vmas). Reset cursor on all unreserved nonlinear 1620 * vmas, now forgetting on which ones it had fallen behind. 1621 */ 1622 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1623 vma->vm_private_data = NULL; 1624 out: 1625 mutex_unlock(&mapping->i_mmap_mutex); 1626 return ret; 1627 } 1628 1629 /** 1630 * try_to_unmap - try to remove all page table mappings to a page 1631 * @page: the page to get unmapped 1632 * @flags: action and flags 1633 * 1634 * Tries to remove all the page table entries which are mapping this 1635 * page, used in the pageout path. Caller must hold the page lock. 1636 * Return values are: 1637 * 1638 * SWAP_SUCCESS - we succeeded in removing all mappings 1639 * SWAP_AGAIN - we missed a mapping, try again later 1640 * SWAP_FAIL - the page is unswappable 1641 * SWAP_MLOCK - page is mlocked. 1642 */ 1643 int try_to_unmap(struct page *page, enum ttu_flags flags) 1644 { 1645 int ret; 1646 1647 BUG_ON(!PageLocked(page)); 1648 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1649 1650 if (unlikely(PageKsm(page))) 1651 ret = try_to_unmap_ksm(page, flags); 1652 else if (PageAnon(page)) 1653 ret = try_to_unmap_anon(page, flags); 1654 else 1655 ret = try_to_unmap_file(page, flags); 1656 if (ret != SWAP_MLOCK && !page_mapped(page)) 1657 ret = SWAP_SUCCESS; 1658 return ret; 1659 } 1660 1661 /** 1662 * try_to_munlock - try to munlock a page 1663 * @page: the page to be munlocked 1664 * 1665 * Called from munlock code. Checks all of the VMAs mapping the page 1666 * to make sure nobody else has this page mlocked. The page will be 1667 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1668 * 1669 * Return values are: 1670 * 1671 * SWAP_AGAIN - no vma is holding page mlocked, or, 1672 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1673 * SWAP_FAIL - page cannot be located at present 1674 * SWAP_MLOCK - page is now mlocked. 1675 */ 1676 int try_to_munlock(struct page *page) 1677 { 1678 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1679 1680 if (unlikely(PageKsm(page))) 1681 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1682 else if (PageAnon(page)) 1683 return try_to_unmap_anon(page, TTU_MUNLOCK); 1684 else 1685 return try_to_unmap_file(page, TTU_MUNLOCK); 1686 } 1687 1688 void __put_anon_vma(struct anon_vma *anon_vma) 1689 { 1690 struct anon_vma *root = anon_vma->root; 1691 1692 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1693 anon_vma_free(root); 1694 1695 anon_vma_free(anon_vma); 1696 } 1697 1698 #ifdef CONFIG_MIGRATION 1699 /* 1700 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1701 * Called by migrate.c to remove migration ptes, but might be used more later. 1702 */ 1703 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1704 struct vm_area_struct *, unsigned long, void *), void *arg) 1705 { 1706 struct anon_vma *anon_vma; 1707 struct anon_vma_chain *avc; 1708 int ret = SWAP_AGAIN; 1709 1710 /* 1711 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1712 * because that depends on page_mapped(); but not all its usages 1713 * are holding mmap_sem. Users without mmap_sem are required to 1714 * take a reference count to prevent the anon_vma disappearing 1715 */ 1716 anon_vma = page_anon_vma(page); 1717 if (!anon_vma) 1718 return ret; 1719 anon_vma_lock(anon_vma); 1720 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1721 struct vm_area_struct *vma = avc->vma; 1722 unsigned long address = vma_address(page, vma); 1723 if (address == -EFAULT) 1724 continue; 1725 ret = rmap_one(page, vma, address, arg); 1726 if (ret != SWAP_AGAIN) 1727 break; 1728 } 1729 anon_vma_unlock(anon_vma); 1730 return ret; 1731 } 1732 1733 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1734 struct vm_area_struct *, unsigned long, void *), void *arg) 1735 { 1736 struct address_space *mapping = page->mapping; 1737 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1738 struct vm_area_struct *vma; 1739 struct prio_tree_iter iter; 1740 int ret = SWAP_AGAIN; 1741 1742 if (!mapping) 1743 return ret; 1744 mutex_lock(&mapping->i_mmap_mutex); 1745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1746 unsigned long address = vma_address(page, vma); 1747 if (address == -EFAULT) 1748 continue; 1749 ret = rmap_one(page, vma, address, arg); 1750 if (ret != SWAP_AGAIN) 1751 break; 1752 } 1753 /* 1754 * No nonlinear handling: being always shared, nonlinear vmas 1755 * never contain migration ptes. Decide what to do about this 1756 * limitation to linear when we need rmap_walk() on nonlinear. 1757 */ 1758 mutex_unlock(&mapping->i_mmap_mutex); 1759 return ret; 1760 } 1761 1762 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1763 struct vm_area_struct *, unsigned long, void *), void *arg) 1764 { 1765 VM_BUG_ON(!PageLocked(page)); 1766 1767 if (unlikely(PageKsm(page))) 1768 return rmap_walk_ksm(page, rmap_one, arg); 1769 else if (PageAnon(page)) 1770 return rmap_walk_anon(page, rmap_one, arg); 1771 else 1772 return rmap_walk_file(page, rmap_one, arg); 1773 } 1774 #endif /* CONFIG_MIGRATION */ 1775 1776 #ifdef CONFIG_HUGETLB_PAGE 1777 /* 1778 * The following three functions are for anonymous (private mapped) hugepages. 1779 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1780 * and no lru code, because we handle hugepages differently from common pages. 1781 */ 1782 static void __hugepage_set_anon_rmap(struct page *page, 1783 struct vm_area_struct *vma, unsigned long address, int exclusive) 1784 { 1785 struct anon_vma *anon_vma = vma->anon_vma; 1786 1787 BUG_ON(!anon_vma); 1788 1789 if (PageAnon(page)) 1790 return; 1791 if (!exclusive) 1792 anon_vma = anon_vma->root; 1793 1794 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1795 page->mapping = (struct address_space *) anon_vma; 1796 page->index = linear_page_index(vma, address); 1797 } 1798 1799 void hugepage_add_anon_rmap(struct page *page, 1800 struct vm_area_struct *vma, unsigned long address) 1801 { 1802 struct anon_vma *anon_vma = vma->anon_vma; 1803 int first; 1804 1805 BUG_ON(!PageLocked(page)); 1806 BUG_ON(!anon_vma); 1807 /* address might be in next vma when migration races vma_adjust */ 1808 first = atomic_inc_and_test(&page->_mapcount); 1809 if (first) 1810 __hugepage_set_anon_rmap(page, vma, address, 0); 1811 } 1812 1813 void hugepage_add_new_anon_rmap(struct page *page, 1814 struct vm_area_struct *vma, unsigned long address) 1815 { 1816 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1817 atomic_set(&page->_mapcount, 0); 1818 __hugepage_set_anon_rmap(page, vma, address, 1); 1819 } 1820 #endif /* CONFIG_HUGETLB_PAGE */ 1821