1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 mmap_assert_locked(mm); 192 might_sleep(); 193 194 avc = anon_vma_chain_alloc(GFP_KERNEL); 195 if (!avc) 196 goto out_enomem; 197 198 anon_vma = find_mergeable_anon_vma(vma); 199 allocated = NULL; 200 if (!anon_vma) { 201 anon_vma = anon_vma_alloc(); 202 if (unlikely(!anon_vma)) 203 goto out_enomem_free_avc; 204 anon_vma->num_children++; /* self-parent link for new root */ 205 allocated = anon_vma; 206 } 207 208 anon_vma_lock_write(anon_vma); 209 /* page_table_lock to protect against threads */ 210 spin_lock(&mm->page_table_lock); 211 if (likely(!vma->anon_vma)) { 212 vma->anon_vma = anon_vma; 213 anon_vma_chain_link(vma, avc, anon_vma); 214 anon_vma->num_active_vmas++; 215 allocated = NULL; 216 avc = NULL; 217 } 218 spin_unlock(&mm->page_table_lock); 219 anon_vma_unlock_write(anon_vma); 220 221 if (unlikely(allocated)) 222 put_anon_vma(allocated); 223 if (unlikely(avc)) 224 anon_vma_chain_free(avc); 225 226 return 0; 227 228 out_enomem_free_avc: 229 anon_vma_chain_free(avc); 230 out_enomem: 231 return -ENOMEM; 232 } 233 234 /* 235 * This is a useful helper function for locking the anon_vma root as 236 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 237 * have the same vma. 238 * 239 * Such anon_vma's should have the same root, so you'd expect to see 240 * just a single mutex_lock for the whole traversal. 241 */ 242 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 243 { 244 struct anon_vma *new_root = anon_vma->root; 245 if (new_root != root) { 246 if (WARN_ON_ONCE(root)) 247 up_write(&root->rwsem); 248 root = new_root; 249 down_write(&root->rwsem); 250 } 251 return root; 252 } 253 254 static inline void unlock_anon_vma_root(struct anon_vma *root) 255 { 256 if (root) 257 up_write(&root->rwsem); 258 } 259 260 /* 261 * Attach the anon_vmas from src to dst. 262 * Returns 0 on success, -ENOMEM on failure. 263 * 264 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 265 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 266 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 267 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 268 * call, we can identify this case by checking (!dst->anon_vma && 269 * src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 319 * be incorrectly decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against folio_remove_rmap_*() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 * 492 * NOTE: the caller should normally hold folio lock when calling this. If 493 * not, the caller needs to double check the anon_vma didn't change after 494 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 495 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 496 * which has already covered that, and comment above remap_pages(). 497 */ 498 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 499 { 500 struct anon_vma *anon_vma = NULL; 501 unsigned long anon_mapping; 502 503 rcu_read_lock(); 504 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 505 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 506 goto out; 507 if (!folio_mapped(folio)) 508 goto out; 509 510 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 511 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 512 anon_vma = NULL; 513 goto out; 514 } 515 516 /* 517 * If this folio is still mapped, then its anon_vma cannot have been 518 * freed. But if it has been unmapped, we have no security against the 519 * anon_vma structure being freed and reused (for another anon_vma: 520 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 521 * above cannot corrupt). 522 */ 523 if (!folio_mapped(folio)) { 524 rcu_read_unlock(); 525 put_anon_vma(anon_vma); 526 return NULL; 527 } 528 out: 529 rcu_read_unlock(); 530 531 return anon_vma; 532 } 533 534 /* 535 * Similar to folio_get_anon_vma() except it locks the anon_vma. 536 * 537 * Its a little more complex as it tries to keep the fast path to a single 538 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 539 * reference like with folio_get_anon_vma() and then block on the mutex 540 * on !rwc->try_lock case. 541 */ 542 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 543 struct rmap_walk_control *rwc) 544 { 545 struct anon_vma *anon_vma = NULL; 546 struct anon_vma *root_anon_vma; 547 unsigned long anon_mapping; 548 549 retry: 550 rcu_read_lock(); 551 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 552 if ((anon_mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) 553 goto out; 554 if (!folio_mapped(folio)) 555 goto out; 556 557 anon_vma = (struct anon_vma *) (anon_mapping - FOLIO_MAPPING_ANON); 558 root_anon_vma = READ_ONCE(anon_vma->root); 559 if (down_read_trylock(&root_anon_vma->rwsem)) { 560 /* 561 * folio_move_anon_rmap() might have changed the anon_vma as we 562 * might not hold the folio lock here. 563 */ 564 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 565 anon_mapping)) { 566 up_read(&root_anon_vma->rwsem); 567 rcu_read_unlock(); 568 goto retry; 569 } 570 571 /* 572 * If the folio is still mapped, then this anon_vma is still 573 * its anon_vma, and holding the mutex ensures that it will 574 * not go away, see anon_vma_free(). 575 */ 576 if (!folio_mapped(folio)) { 577 up_read(&root_anon_vma->rwsem); 578 anon_vma = NULL; 579 } 580 goto out; 581 } 582 583 if (rwc && rwc->try_lock) { 584 anon_vma = NULL; 585 rwc->contended = true; 586 goto out; 587 } 588 589 /* trylock failed, we got to sleep */ 590 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 591 anon_vma = NULL; 592 goto out; 593 } 594 595 if (!folio_mapped(folio)) { 596 rcu_read_unlock(); 597 put_anon_vma(anon_vma); 598 return NULL; 599 } 600 601 /* we pinned the anon_vma, its safe to sleep */ 602 rcu_read_unlock(); 603 anon_vma_lock_read(anon_vma); 604 605 /* 606 * folio_move_anon_rmap() might have changed the anon_vma as we might 607 * not hold the folio lock here. 608 */ 609 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 610 anon_mapping)) { 611 anon_vma_unlock_read(anon_vma); 612 put_anon_vma(anon_vma); 613 anon_vma = NULL; 614 goto retry; 615 } 616 617 if (atomic_dec_and_test(&anon_vma->refcount)) { 618 /* 619 * Oops, we held the last refcount, release the lock 620 * and bail -- can't simply use put_anon_vma() because 621 * we'll deadlock on the anon_vma_lock_write() recursion. 622 */ 623 anon_vma_unlock_read(anon_vma); 624 __put_anon_vma(anon_vma); 625 anon_vma = NULL; 626 } 627 628 return anon_vma; 629 630 out: 631 rcu_read_unlock(); 632 return anon_vma; 633 } 634 635 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 636 /* 637 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 638 * important if a PTE was dirty when it was unmapped that it's flushed 639 * before any IO is initiated on the page to prevent lost writes. Similarly, 640 * it must be flushed before freeing to prevent data leakage. 641 */ 642 void try_to_unmap_flush(void) 643 { 644 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 645 646 if (!tlb_ubc->flush_required) 647 return; 648 649 arch_tlbbatch_flush(&tlb_ubc->arch); 650 tlb_ubc->flush_required = false; 651 tlb_ubc->writable = false; 652 } 653 654 /* Flush iff there are potentially writable TLB entries that can race with IO */ 655 void try_to_unmap_flush_dirty(void) 656 { 657 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 658 659 if (tlb_ubc->writable) 660 try_to_unmap_flush(); 661 } 662 663 /* 664 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 665 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 666 */ 667 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 668 #define TLB_FLUSH_BATCH_PENDING_MASK \ 669 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 670 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 671 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 672 673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 674 unsigned long start, unsigned long end) 675 { 676 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 677 int batch; 678 bool writable = pte_dirty(pteval); 679 680 if (!pte_accessible(mm, pteval)) 681 return; 682 683 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 684 tlb_ubc->flush_required = true; 685 686 /* 687 * Ensure compiler does not re-order the setting of tlb_flush_batched 688 * before the PTE is cleared. 689 */ 690 barrier(); 691 batch = atomic_read(&mm->tlb_flush_batched); 692 retry: 693 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 694 /* 695 * Prevent `pending' from catching up with `flushed' because of 696 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 697 * `pending' becomes large. 698 */ 699 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 700 goto retry; 701 } else { 702 atomic_inc(&mm->tlb_flush_batched); 703 } 704 705 /* 706 * If the PTE was dirty then it's best to assume it's writable. The 707 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 708 * before the page is queued for IO. 709 */ 710 if (writable) 711 tlb_ubc->writable = true; 712 } 713 714 /* 715 * Returns true if the TLB flush should be deferred to the end of a batch of 716 * unmap operations to reduce IPIs. 717 */ 718 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 719 { 720 if (!(flags & TTU_BATCH_FLUSH)) 721 return false; 722 723 return arch_tlbbatch_should_defer(mm); 724 } 725 726 /* 727 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 728 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 729 * operation such as mprotect or munmap to race between reclaim unmapping 730 * the page and flushing the page. If this race occurs, it potentially allows 731 * access to data via a stale TLB entry. Tracking all mm's that have TLB 732 * batching in flight would be expensive during reclaim so instead track 733 * whether TLB batching occurred in the past and if so then do a flush here 734 * if required. This will cost one additional flush per reclaim cycle paid 735 * by the first operation at risk such as mprotect and mumap. 736 * 737 * This must be called under the PTL so that an access to tlb_flush_batched 738 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 739 * via the PTL. 740 */ 741 void flush_tlb_batched_pending(struct mm_struct *mm) 742 { 743 int batch = atomic_read(&mm->tlb_flush_batched); 744 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 745 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 746 747 if (pending != flushed) { 748 flush_tlb_mm(mm); 749 /* 750 * If the new TLB flushing is pending during flushing, leave 751 * mm->tlb_flush_batched as is, to avoid losing flushing. 752 */ 753 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 754 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 755 } 756 } 757 #else 758 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 759 unsigned long start, unsigned long end) 760 { 761 } 762 763 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 764 { 765 return false; 766 } 767 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 768 769 /** 770 * page_address_in_vma - The virtual address of a page in this VMA. 771 * @folio: The folio containing the page. 772 * @page: The page within the folio. 773 * @vma: The VMA we need to know the address in. 774 * 775 * Calculates the user virtual address of this page in the specified VMA. 776 * It is the caller's responsibility to check the page is actually 777 * within the VMA. There may not currently be a PTE pointing at this 778 * page, but if a page fault occurs at this address, this is the page 779 * which will be accessed. 780 * 781 * Context: Caller should hold a reference to the folio. Caller should 782 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 783 * VMA from being altered. 784 * 785 * Return: The virtual address corresponding to this page in the VMA. 786 */ 787 unsigned long page_address_in_vma(const struct folio *folio, 788 const struct page *page, const struct vm_area_struct *vma) 789 { 790 if (folio_test_anon(folio)) { 791 struct anon_vma *anon_vma = folio_anon_vma(folio); 792 /* 793 * Note: swapoff's unuse_vma() is more efficient with this 794 * check, and needs it to match anon_vma when KSM is active. 795 */ 796 if (!vma->anon_vma || !anon_vma || 797 vma->anon_vma->root != anon_vma->root) 798 return -EFAULT; 799 } else if (!vma->vm_file) { 800 return -EFAULT; 801 } else if (vma->vm_file->f_mapping != folio->mapping) { 802 return -EFAULT; 803 } 804 805 /* KSM folios don't reach here because of the !anon_vma check */ 806 return vma_address(vma, page_pgoff(folio, page), 1); 807 } 808 809 /* 810 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 811 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 812 * represents. 813 */ 814 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 815 { 816 pgd_t *pgd; 817 p4d_t *p4d; 818 pud_t *pud; 819 pmd_t *pmd = NULL; 820 821 pgd = pgd_offset(mm, address); 822 if (!pgd_present(*pgd)) 823 goto out; 824 825 p4d = p4d_offset(pgd, address); 826 if (!p4d_present(*p4d)) 827 goto out; 828 829 pud = pud_offset(p4d, address); 830 if (!pud_present(*pud)) 831 goto out; 832 833 pmd = pmd_offset(pud, address); 834 out: 835 return pmd; 836 } 837 838 struct folio_referenced_arg { 839 int mapcount; 840 int referenced; 841 vm_flags_t vm_flags; 842 struct mem_cgroup *memcg; 843 }; 844 845 /* 846 * arg: folio_referenced_arg will be passed 847 */ 848 static bool folio_referenced_one(struct folio *folio, 849 struct vm_area_struct *vma, unsigned long address, void *arg) 850 { 851 struct folio_referenced_arg *pra = arg; 852 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 853 int ptes = 0, referenced = 0; 854 855 while (page_vma_mapped_walk(&pvmw)) { 856 address = pvmw.address; 857 858 if (vma->vm_flags & VM_LOCKED) { 859 ptes++; 860 pra->mapcount--; 861 862 /* Only mlock fully mapped pages */ 863 if (pvmw.pte && ptes != pvmw.nr_pages) 864 continue; 865 866 /* 867 * All PTEs must be protected by page table lock in 868 * order to mlock the page. 869 * 870 * If page table boundary has been cross, current ptl 871 * only protect part of ptes. 872 */ 873 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 874 continue; 875 876 /* Restore the mlock which got missed */ 877 mlock_vma_folio(folio, vma); 878 page_vma_mapped_walk_done(&pvmw); 879 pra->vm_flags |= VM_LOCKED; 880 return false; /* To break the loop */ 881 } 882 883 /* 884 * Skip the non-shared swapbacked folio mapped solely by 885 * the exiting or OOM-reaped process. This avoids redundant 886 * swap-out followed by an immediate unmap. 887 */ 888 if ((!atomic_read(&vma->vm_mm->mm_users) || 889 check_stable_address_space(vma->vm_mm)) && 890 folio_test_anon(folio) && folio_test_swapbacked(folio) && 891 !folio_maybe_mapped_shared(folio)) { 892 pra->referenced = -1; 893 page_vma_mapped_walk_done(&pvmw); 894 return false; 895 } 896 897 if (lru_gen_enabled() && pvmw.pte) { 898 if (lru_gen_look_around(&pvmw)) 899 referenced++; 900 } else if (pvmw.pte) { 901 if (ptep_clear_flush_young_notify(vma, address, 902 pvmw.pte)) 903 referenced++; 904 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 905 if (pmdp_clear_flush_young_notify(vma, address, 906 pvmw.pmd)) 907 referenced++; 908 } else { 909 /* unexpected pmd-mapped folio? */ 910 WARN_ON_ONCE(1); 911 } 912 913 pra->mapcount--; 914 } 915 916 if (referenced) 917 folio_clear_idle(folio); 918 if (folio_test_clear_young(folio)) 919 referenced++; 920 921 if (referenced) { 922 pra->referenced++; 923 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 924 } 925 926 if (!pra->mapcount) 927 return false; /* To break the loop */ 928 929 return true; 930 } 931 932 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 933 { 934 struct folio_referenced_arg *pra = arg; 935 struct mem_cgroup *memcg = pra->memcg; 936 937 /* 938 * Ignore references from this mapping if it has no recency. If the 939 * folio has been used in another mapping, we will catch it; if this 940 * other mapping is already gone, the unmap path will have set the 941 * referenced flag or activated the folio in zap_pte_range(). 942 */ 943 if (!vma_has_recency(vma)) 944 return true; 945 946 /* 947 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 948 * of references from different cgroups. 949 */ 950 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 951 return true; 952 953 return false; 954 } 955 956 /** 957 * folio_referenced() - Test if the folio was referenced. 958 * @folio: The folio to test. 959 * @is_locked: Caller holds lock on the folio. 960 * @memcg: target memory cgroup 961 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 962 * 963 * Quick test_and_clear_referenced for all mappings of a folio, 964 * 965 * Return: The number of mappings which referenced the folio. Return -1 if 966 * the function bailed out due to rmap lock contention. 967 */ 968 int folio_referenced(struct folio *folio, int is_locked, 969 struct mem_cgroup *memcg, vm_flags_t *vm_flags) 970 { 971 bool we_locked = false; 972 struct folio_referenced_arg pra = { 973 .mapcount = folio_mapcount(folio), 974 .memcg = memcg, 975 }; 976 struct rmap_walk_control rwc = { 977 .rmap_one = folio_referenced_one, 978 .arg = (void *)&pra, 979 .anon_lock = folio_lock_anon_vma_read, 980 .try_lock = true, 981 .invalid_vma = invalid_folio_referenced_vma, 982 }; 983 984 *vm_flags = 0; 985 if (!pra.mapcount) 986 return 0; 987 988 if (!folio_raw_mapping(folio)) 989 return 0; 990 991 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 992 we_locked = folio_trylock(folio); 993 if (!we_locked) 994 return 1; 995 } 996 997 rmap_walk(folio, &rwc); 998 *vm_flags = pra.vm_flags; 999 1000 if (we_locked) 1001 folio_unlock(folio); 1002 1003 return rwc.contended ? -1 : pra.referenced; 1004 } 1005 1006 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1007 { 1008 int cleaned = 0; 1009 struct vm_area_struct *vma = pvmw->vma; 1010 struct mmu_notifier_range range; 1011 unsigned long address = pvmw->address; 1012 1013 /* 1014 * We have to assume the worse case ie pmd for invalidation. Note that 1015 * the folio can not be freed from this function. 1016 */ 1017 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1018 vma->vm_mm, address, vma_address_end(pvmw)); 1019 mmu_notifier_invalidate_range_start(&range); 1020 1021 while (page_vma_mapped_walk(pvmw)) { 1022 int ret = 0; 1023 1024 address = pvmw->address; 1025 if (pvmw->pte) { 1026 pte_t *pte = pvmw->pte; 1027 pte_t entry = ptep_get(pte); 1028 1029 /* 1030 * PFN swap PTEs, such as device-exclusive ones, that 1031 * actually map pages are clean and not writable from a 1032 * CPU perspective. The MMU notifier takes care of any 1033 * device aspects. 1034 */ 1035 if (!pte_present(entry)) 1036 continue; 1037 if (!pte_dirty(entry) && !pte_write(entry)) 1038 continue; 1039 1040 flush_cache_page(vma, address, pte_pfn(entry)); 1041 entry = ptep_clear_flush(vma, address, pte); 1042 entry = pte_wrprotect(entry); 1043 entry = pte_mkclean(entry); 1044 set_pte_at(vma->vm_mm, address, pte, entry); 1045 ret = 1; 1046 } else { 1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1048 pmd_t *pmd = pvmw->pmd; 1049 pmd_t entry; 1050 1051 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1052 continue; 1053 1054 flush_cache_range(vma, address, 1055 address + HPAGE_PMD_SIZE); 1056 entry = pmdp_invalidate(vma, address, pmd); 1057 entry = pmd_wrprotect(entry); 1058 entry = pmd_mkclean(entry); 1059 set_pmd_at(vma->vm_mm, address, pmd, entry); 1060 ret = 1; 1061 #else 1062 /* unexpected pmd-mapped folio? */ 1063 WARN_ON_ONCE(1); 1064 #endif 1065 } 1066 1067 if (ret) 1068 cleaned++; 1069 } 1070 1071 mmu_notifier_invalidate_range_end(&range); 1072 1073 return cleaned; 1074 } 1075 1076 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1077 unsigned long address, void *arg) 1078 { 1079 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1080 int *cleaned = arg; 1081 1082 *cleaned += page_vma_mkclean_one(&pvmw); 1083 1084 return true; 1085 } 1086 1087 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1088 { 1089 if (vma->vm_flags & VM_SHARED) 1090 return false; 1091 1092 return true; 1093 } 1094 1095 int folio_mkclean(struct folio *folio) 1096 { 1097 int cleaned = 0; 1098 struct address_space *mapping; 1099 struct rmap_walk_control rwc = { 1100 .arg = (void *)&cleaned, 1101 .rmap_one = page_mkclean_one, 1102 .invalid_vma = invalid_mkclean_vma, 1103 }; 1104 1105 BUG_ON(!folio_test_locked(folio)); 1106 1107 if (!folio_mapped(folio)) 1108 return 0; 1109 1110 mapping = folio_mapping(folio); 1111 if (!mapping) 1112 return 0; 1113 1114 rmap_walk(folio, &rwc); 1115 1116 return cleaned; 1117 } 1118 EXPORT_SYMBOL_GPL(folio_mkclean); 1119 1120 struct wrprotect_file_state { 1121 int cleaned; 1122 pgoff_t pgoff; 1123 unsigned long pfn; 1124 unsigned long nr_pages; 1125 }; 1126 1127 static bool mapping_wrprotect_range_one(struct folio *folio, 1128 struct vm_area_struct *vma, unsigned long address, void *arg) 1129 { 1130 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1131 struct page_vma_mapped_walk pvmw = { 1132 .pfn = state->pfn, 1133 .nr_pages = state->nr_pages, 1134 .pgoff = state->pgoff, 1135 .vma = vma, 1136 .address = address, 1137 .flags = PVMW_SYNC, 1138 }; 1139 1140 state->cleaned += page_vma_mkclean_one(&pvmw); 1141 1142 return true; 1143 } 1144 1145 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1146 pgoff_t pgoff_start, unsigned long nr_pages, 1147 struct rmap_walk_control *rwc, bool locked); 1148 1149 /** 1150 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1151 * 1152 * @mapping: The mapping whose reverse mapping should be traversed. 1153 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1154 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1155 * @nr_pages: The number of physically contiguous base pages spanned. 1156 * 1157 * Traverses the reverse mapping, finding all VMAs which contain a shared 1158 * mapping of the pages in the specified range in @mapping, and write-protects 1159 * them (that is, updates the page tables to mark the mappings read-only such 1160 * that a write protection fault arises when the mappings are written to). 1161 * 1162 * The @pfn value need not refer to a folio, but rather can reference a kernel 1163 * allocation which is mapped into userland. We therefore do not require that 1164 * the page maps to a folio with a valid mapping or index field, rather the 1165 * caller specifies these in @mapping and @pgoff. 1166 * 1167 * Return: the number of write-protected PTEs, or an error. 1168 */ 1169 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1170 unsigned long pfn, unsigned long nr_pages) 1171 { 1172 struct wrprotect_file_state state = { 1173 .cleaned = 0, 1174 .pgoff = pgoff, 1175 .pfn = pfn, 1176 .nr_pages = nr_pages, 1177 }; 1178 struct rmap_walk_control rwc = { 1179 .arg = (void *)&state, 1180 .rmap_one = mapping_wrprotect_range_one, 1181 .invalid_vma = invalid_mkclean_vma, 1182 }; 1183 1184 if (!mapping) 1185 return 0; 1186 1187 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1188 /* locked = */false); 1189 1190 return state.cleaned; 1191 } 1192 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1193 1194 /** 1195 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1196 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1197 * within the @vma of shared mappings. And since clean PTEs 1198 * should also be readonly, write protects them too. 1199 * @pfn: start pfn. 1200 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1201 * @pgoff: page offset that the @pfn mapped with. 1202 * @vma: vma that @pfn mapped within. 1203 * 1204 * Returns the number of cleaned PTEs (including PMDs). 1205 */ 1206 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1207 struct vm_area_struct *vma) 1208 { 1209 struct page_vma_mapped_walk pvmw = { 1210 .pfn = pfn, 1211 .nr_pages = nr_pages, 1212 .pgoff = pgoff, 1213 .vma = vma, 1214 .flags = PVMW_SYNC, 1215 }; 1216 1217 if (invalid_mkclean_vma(vma, NULL)) 1218 return 0; 1219 1220 pvmw.address = vma_address(vma, pgoff, nr_pages); 1221 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1222 1223 return page_vma_mkclean_one(&pvmw); 1224 } 1225 1226 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1227 { 1228 int idx; 1229 1230 if (nr) { 1231 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1232 __lruvec_stat_mod_folio(folio, idx, nr); 1233 } 1234 if (nr_pmdmapped) { 1235 if (folio_test_anon(folio)) { 1236 idx = NR_ANON_THPS; 1237 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1238 } else { 1239 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1240 idx = folio_test_swapbacked(folio) ? 1241 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1242 __mod_node_page_state(folio_pgdat(folio), idx, 1243 nr_pmdmapped); 1244 } 1245 } 1246 } 1247 1248 static __always_inline void __folio_add_rmap(struct folio *folio, 1249 struct page *page, int nr_pages, struct vm_area_struct *vma, 1250 enum pgtable_level level) 1251 { 1252 atomic_t *mapped = &folio->_nr_pages_mapped; 1253 const int orig_nr_pages = nr_pages; 1254 int first = 0, nr = 0, nr_pmdmapped = 0; 1255 1256 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1257 1258 switch (level) { 1259 case PGTABLE_LEVEL_PTE: 1260 if (!folio_test_large(folio)) { 1261 nr = atomic_inc_and_test(&folio->_mapcount); 1262 break; 1263 } 1264 1265 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1266 nr = folio_add_return_large_mapcount(folio, orig_nr_pages, vma); 1267 if (nr == orig_nr_pages) 1268 /* Was completely unmapped. */ 1269 nr = folio_large_nr_pages(folio); 1270 else 1271 nr = 0; 1272 break; 1273 } 1274 1275 do { 1276 first += atomic_inc_and_test(&page->_mapcount); 1277 } while (page++, --nr_pages > 0); 1278 1279 if (first && 1280 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1281 nr = first; 1282 1283 folio_add_large_mapcount(folio, orig_nr_pages, vma); 1284 break; 1285 case PGTABLE_LEVEL_PMD: 1286 case PGTABLE_LEVEL_PUD: 1287 first = atomic_inc_and_test(&folio->_entire_mapcount); 1288 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1289 if (level == PGTABLE_LEVEL_PMD && first) 1290 nr_pmdmapped = folio_large_nr_pages(folio); 1291 nr = folio_inc_return_large_mapcount(folio, vma); 1292 if (nr == 1) 1293 /* Was completely unmapped. */ 1294 nr = folio_large_nr_pages(folio); 1295 else 1296 nr = 0; 1297 break; 1298 } 1299 1300 if (first) { 1301 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1302 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1303 nr_pages = folio_large_nr_pages(folio); 1304 /* 1305 * We only track PMD mappings of PMD-sized 1306 * folios separately. 1307 */ 1308 if (level == PGTABLE_LEVEL_PMD) 1309 nr_pmdmapped = nr_pages; 1310 nr = nr_pages - (nr & FOLIO_PAGES_MAPPED); 1311 /* Raced ahead of a remove and another add? */ 1312 if (unlikely(nr < 0)) 1313 nr = 0; 1314 } else { 1315 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1316 nr = 0; 1317 } 1318 } 1319 folio_inc_large_mapcount(folio, vma); 1320 break; 1321 default: 1322 BUILD_BUG(); 1323 } 1324 __folio_mod_stat(folio, nr, nr_pmdmapped); 1325 } 1326 1327 /** 1328 * folio_move_anon_rmap - move a folio to our anon_vma 1329 * @folio: The folio to move to our anon_vma 1330 * @vma: The vma the folio belongs to 1331 * 1332 * When a folio belongs exclusively to one process after a COW event, 1333 * that folio can be moved into the anon_vma that belongs to just that 1334 * process, so the rmap code will not search the parent or sibling processes. 1335 */ 1336 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1337 { 1338 void *anon_vma = vma->anon_vma; 1339 1340 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1341 VM_BUG_ON_VMA(!anon_vma, vma); 1342 1343 anon_vma += FOLIO_MAPPING_ANON; 1344 /* 1345 * Ensure that anon_vma and the FOLIO_MAPPING_ANON bit are written 1346 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1347 * folio_test_anon()) will not see one without the other. 1348 */ 1349 WRITE_ONCE(folio->mapping, anon_vma); 1350 } 1351 1352 /** 1353 * __folio_set_anon - set up a new anonymous rmap for a folio 1354 * @folio: The folio to set up the new anonymous rmap for. 1355 * @vma: VM area to add the folio to. 1356 * @address: User virtual address of the mapping 1357 * @exclusive: Whether the folio is exclusive to the process. 1358 */ 1359 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1360 unsigned long address, bool exclusive) 1361 { 1362 struct anon_vma *anon_vma = vma->anon_vma; 1363 1364 BUG_ON(!anon_vma); 1365 1366 /* 1367 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1368 * possible anon_vma for the folio mapping! 1369 */ 1370 if (!exclusive) 1371 anon_vma = anon_vma->root; 1372 1373 /* 1374 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1375 * Make sure the compiler doesn't split the stores of anon_vma and 1376 * the FOLIO_MAPPING_ANON type identifier, otherwise the rmap code 1377 * could mistake the mapping for a struct address_space and crash. 1378 */ 1379 anon_vma = (void *) anon_vma + FOLIO_MAPPING_ANON; 1380 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1381 folio->index = linear_page_index(vma, address); 1382 } 1383 1384 /** 1385 * __page_check_anon_rmap - sanity check anonymous rmap addition 1386 * @folio: The folio containing @page. 1387 * @page: the page to check the mapping of 1388 * @vma: the vm area in which the mapping is added 1389 * @address: the user virtual address mapped 1390 */ 1391 static void __page_check_anon_rmap(const struct folio *folio, 1392 const struct page *page, struct vm_area_struct *vma, 1393 unsigned long address) 1394 { 1395 /* 1396 * The page's anon-rmap details (mapping and index) are guaranteed to 1397 * be set up correctly at this point. 1398 * 1399 * We have exclusion against folio_add_anon_rmap_*() because the caller 1400 * always holds the page locked. 1401 * 1402 * We have exclusion against folio_add_new_anon_rmap because those pages 1403 * are initially only visible via the pagetables, and the pte is locked 1404 * over the call to folio_add_new_anon_rmap. 1405 */ 1406 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1407 folio); 1408 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1409 page); 1410 } 1411 1412 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1413 struct page *page, int nr_pages, struct vm_area_struct *vma, 1414 unsigned long address, rmap_t flags, enum pgtable_level level) 1415 { 1416 int i; 1417 1418 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1419 1420 __folio_add_rmap(folio, page, nr_pages, vma, level); 1421 1422 if (likely(!folio_test_ksm(folio))) 1423 __page_check_anon_rmap(folio, page, vma, address); 1424 1425 if (flags & RMAP_EXCLUSIVE) { 1426 switch (level) { 1427 case PGTABLE_LEVEL_PTE: 1428 for (i = 0; i < nr_pages; i++) 1429 SetPageAnonExclusive(page + i); 1430 break; 1431 case PGTABLE_LEVEL_PMD: 1432 SetPageAnonExclusive(page); 1433 break; 1434 case PGTABLE_LEVEL_PUD: 1435 /* 1436 * Keep the compiler happy, we don't support anonymous 1437 * PUD mappings. 1438 */ 1439 WARN_ON_ONCE(1); 1440 break; 1441 default: 1442 BUILD_BUG(); 1443 } 1444 } 1445 1446 VM_WARN_ON_FOLIO(!folio_test_large(folio) && PageAnonExclusive(page) && 1447 atomic_read(&folio->_mapcount) > 0, folio); 1448 for (i = 0; i < nr_pages; i++) { 1449 struct page *cur_page = page + i; 1450 1451 VM_WARN_ON_FOLIO(folio_test_large(folio) && 1452 folio_entire_mapcount(folio) > 1 && 1453 PageAnonExclusive(cur_page), folio); 1454 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) 1455 continue; 1456 1457 /* 1458 * While PTE-mapping a THP we have a PMD and a PTE 1459 * mapping. 1460 */ 1461 VM_WARN_ON_FOLIO(atomic_read(&cur_page->_mapcount) > 0 && 1462 PageAnonExclusive(cur_page), folio); 1463 } 1464 1465 /* 1466 * Only mlock it if the folio is fully mapped to the VMA. 1467 * 1468 * Partially mapped folios can be split on reclaim and part outside 1469 * of mlocked VMA can be evicted or freed. 1470 */ 1471 if (folio_nr_pages(folio) == nr_pages) 1472 mlock_vma_folio(folio, vma); 1473 } 1474 1475 /** 1476 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1477 * @folio: The folio to add the mappings to 1478 * @page: The first page to add 1479 * @nr_pages: The number of pages which will be mapped 1480 * @vma: The vm area in which the mappings are added 1481 * @address: The user virtual address of the first page to map 1482 * @flags: The rmap flags 1483 * 1484 * The page range of folio is defined by [first_page, first_page + nr_pages) 1485 * 1486 * The caller needs to hold the page table lock, and the page must be locked in 1487 * the anon_vma case: to serialize mapping,index checking after setting, 1488 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1489 * (but KSM folios are never downgraded). 1490 */ 1491 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1492 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1493 rmap_t flags) 1494 { 1495 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1496 PGTABLE_LEVEL_PTE); 1497 } 1498 1499 /** 1500 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1501 * @folio: The folio to add the mapping to 1502 * @page: The first page to add 1503 * @vma: The vm area in which the mapping is added 1504 * @address: The user virtual address of the first page to map 1505 * @flags: The rmap flags 1506 * 1507 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1508 * 1509 * The caller needs to hold the page table lock, and the page must be locked in 1510 * the anon_vma case: to serialize mapping,index checking after setting. 1511 */ 1512 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1513 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1514 { 1515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1516 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1517 PGTABLE_LEVEL_PMD); 1518 #else 1519 WARN_ON_ONCE(true); 1520 #endif 1521 } 1522 1523 /** 1524 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1525 * @folio: The folio to add the mapping to. 1526 * @vma: the vm area in which the mapping is added 1527 * @address: the user virtual address mapped 1528 * @flags: The rmap flags 1529 * 1530 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1531 * This means the inc-and-test can be bypassed. 1532 * The folio doesn't necessarily need to be locked while it's exclusive 1533 * unless two threads map it concurrently. However, the folio must be 1534 * locked if it's shared. 1535 * 1536 * If the folio is pmd-mappable, it is accounted as a THP. 1537 */ 1538 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1539 unsigned long address, rmap_t flags) 1540 { 1541 const bool exclusive = flags & RMAP_EXCLUSIVE; 1542 int nr = 1, nr_pmdmapped = 0; 1543 1544 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1545 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1546 1547 /* 1548 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1549 * under memory pressure. 1550 */ 1551 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1552 __folio_set_swapbacked(folio); 1553 __folio_set_anon(folio, vma, address, exclusive); 1554 1555 if (likely(!folio_test_large(folio))) { 1556 /* increment count (starts at -1) */ 1557 atomic_set(&folio->_mapcount, 0); 1558 if (exclusive) 1559 SetPageAnonExclusive(&folio->page); 1560 } else if (!folio_test_pmd_mappable(folio)) { 1561 int i; 1562 1563 nr = folio_large_nr_pages(folio); 1564 for (i = 0; i < nr; i++) { 1565 struct page *page = folio_page(folio, i); 1566 1567 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1568 /* increment count (starts at -1) */ 1569 atomic_set(&page->_mapcount, 0); 1570 if (exclusive) 1571 SetPageAnonExclusive(page); 1572 } 1573 1574 folio_set_large_mapcount(folio, nr, vma); 1575 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1576 atomic_set(&folio->_nr_pages_mapped, nr); 1577 } else { 1578 nr = folio_large_nr_pages(folio); 1579 /* increment count (starts at -1) */ 1580 atomic_set(&folio->_entire_mapcount, 0); 1581 folio_set_large_mapcount(folio, 1, vma); 1582 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) 1583 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1584 if (exclusive) 1585 SetPageAnonExclusive(&folio->page); 1586 nr_pmdmapped = nr; 1587 } 1588 1589 VM_WARN_ON_ONCE(address < vma->vm_start || 1590 address + (nr << PAGE_SHIFT) > vma->vm_end); 1591 1592 __folio_mod_stat(folio, nr, nr_pmdmapped); 1593 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1594 } 1595 1596 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1597 struct page *page, int nr_pages, struct vm_area_struct *vma, 1598 enum pgtable_level level) 1599 { 1600 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1601 1602 __folio_add_rmap(folio, page, nr_pages, vma, level); 1603 1604 /* 1605 * Only mlock it if the folio is fully mapped to the VMA. 1606 * 1607 * Partially mapped folios can be split on reclaim and part outside 1608 * of mlocked VMA can be evicted or freed. 1609 */ 1610 if (folio_nr_pages(folio) == nr_pages) 1611 mlock_vma_folio(folio, vma); 1612 } 1613 1614 /** 1615 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1616 * @folio: The folio to add the mappings to 1617 * @page: The first page to add 1618 * @nr_pages: The number of pages that will be mapped using PTEs 1619 * @vma: The vm area in which the mappings are added 1620 * 1621 * The page range of the folio is defined by [page, page + nr_pages) 1622 * 1623 * The caller needs to hold the page table lock. 1624 */ 1625 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1626 int nr_pages, struct vm_area_struct *vma) 1627 { 1628 __folio_add_file_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1629 } 1630 1631 /** 1632 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1633 * @folio: The folio to add the mapping to 1634 * @page: The first page to add 1635 * @vma: The vm area in which the mapping is added 1636 * 1637 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1638 * 1639 * The caller needs to hold the page table lock. 1640 */ 1641 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1642 struct vm_area_struct *vma) 1643 { 1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1645 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1646 #else 1647 WARN_ON_ONCE(true); 1648 #endif 1649 } 1650 1651 /** 1652 * folio_add_file_rmap_pud - add a PUD mapping to a page range of a folio 1653 * @folio: The folio to add the mapping to 1654 * @page: The first page to add 1655 * @vma: The vm area in which the mapping is added 1656 * 1657 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1658 * 1659 * The caller needs to hold the page table lock. 1660 */ 1661 void folio_add_file_rmap_pud(struct folio *folio, struct page *page, 1662 struct vm_area_struct *vma) 1663 { 1664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1665 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1666 __folio_add_file_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1667 #else 1668 WARN_ON_ONCE(true); 1669 #endif 1670 } 1671 1672 static __always_inline void __folio_remove_rmap(struct folio *folio, 1673 struct page *page, int nr_pages, struct vm_area_struct *vma, 1674 enum pgtable_level level) 1675 { 1676 atomic_t *mapped = &folio->_nr_pages_mapped; 1677 int last = 0, nr = 0, nr_pmdmapped = 0; 1678 bool partially_mapped = false; 1679 1680 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1681 1682 switch (level) { 1683 case PGTABLE_LEVEL_PTE: 1684 if (!folio_test_large(folio)) { 1685 nr = atomic_add_negative(-1, &folio->_mapcount); 1686 break; 1687 } 1688 1689 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1690 nr = folio_sub_return_large_mapcount(folio, nr_pages, vma); 1691 if (!nr) { 1692 /* Now completely unmapped. */ 1693 nr = folio_large_nr_pages(folio); 1694 } else { 1695 partially_mapped = nr < folio_large_nr_pages(folio) && 1696 !folio_entire_mapcount(folio); 1697 nr = 0; 1698 } 1699 break; 1700 } 1701 1702 folio_sub_large_mapcount(folio, nr_pages, vma); 1703 do { 1704 last += atomic_add_negative(-1, &page->_mapcount); 1705 } while (page++, --nr_pages > 0); 1706 1707 if (last && 1708 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1709 nr = last; 1710 1711 partially_mapped = nr && atomic_read(mapped); 1712 break; 1713 case PGTABLE_LEVEL_PMD: 1714 case PGTABLE_LEVEL_PUD: 1715 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) { 1716 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1717 if (level == PGTABLE_LEVEL_PMD && last) 1718 nr_pmdmapped = folio_large_nr_pages(folio); 1719 nr = folio_dec_return_large_mapcount(folio, vma); 1720 if (!nr) { 1721 /* Now completely unmapped. */ 1722 nr = folio_large_nr_pages(folio); 1723 } else { 1724 partially_mapped = last && 1725 nr < folio_large_nr_pages(folio); 1726 nr = 0; 1727 } 1728 break; 1729 } 1730 1731 folio_dec_large_mapcount(folio, vma); 1732 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1733 if (last) { 1734 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1735 if (likely(nr < ENTIRELY_MAPPED)) { 1736 nr_pages = folio_large_nr_pages(folio); 1737 if (level == PGTABLE_LEVEL_PMD) 1738 nr_pmdmapped = nr_pages; 1739 nr = nr_pages - nr; 1740 /* Raced ahead of another remove and an add? */ 1741 if (unlikely(nr < 0)) 1742 nr = 0; 1743 } else { 1744 /* An add of ENTIRELY_MAPPED raced ahead */ 1745 nr = 0; 1746 } 1747 } 1748 1749 partially_mapped = nr && nr < nr_pmdmapped; 1750 break; 1751 default: 1752 BUILD_BUG(); 1753 } 1754 1755 /* 1756 * Queue anon large folio for deferred split if at least one page of 1757 * the folio is unmapped and at least one page is still mapped. 1758 * 1759 * Check partially_mapped first to ensure it is a large folio. 1760 */ 1761 if (partially_mapped && folio_test_anon(folio) && 1762 !folio_test_partially_mapped(folio)) 1763 deferred_split_folio(folio, true); 1764 1765 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1766 1767 /* 1768 * It would be tidy to reset folio_test_anon mapping when fully 1769 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1770 * which increments mapcount after us but sets mapping before us: 1771 * so leave the reset to free_pages_prepare, and remember that 1772 * it's only reliable while mapped. 1773 */ 1774 1775 munlock_vma_folio(folio, vma); 1776 } 1777 1778 /** 1779 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1780 * @folio: The folio to remove the mappings from 1781 * @page: The first page to remove 1782 * @nr_pages: The number of pages that will be removed from the mapping 1783 * @vma: The vm area from which the mappings are removed 1784 * 1785 * The page range of the folio is defined by [page, page + nr_pages) 1786 * 1787 * The caller needs to hold the page table lock. 1788 */ 1789 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1790 int nr_pages, struct vm_area_struct *vma) 1791 { 1792 __folio_remove_rmap(folio, page, nr_pages, vma, PGTABLE_LEVEL_PTE); 1793 } 1794 1795 /** 1796 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1797 * @folio: The folio to remove the mapping from 1798 * @page: The first page to remove 1799 * @vma: The vm area from which the mapping is removed 1800 * 1801 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1802 * 1803 * The caller needs to hold the page table lock. 1804 */ 1805 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1806 struct vm_area_struct *vma) 1807 { 1808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1809 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, PGTABLE_LEVEL_PMD); 1810 #else 1811 WARN_ON_ONCE(true); 1812 #endif 1813 } 1814 1815 /** 1816 * folio_remove_rmap_pud - remove a PUD mapping from a page range of a folio 1817 * @folio: The folio to remove the mapping from 1818 * @page: The first page to remove 1819 * @vma: The vm area from which the mapping is removed 1820 * 1821 * The page range of the folio is defined by [page, page + HPAGE_PUD_NR) 1822 * 1823 * The caller needs to hold the page table lock. 1824 */ 1825 void folio_remove_rmap_pud(struct folio *folio, struct page *page, 1826 struct vm_area_struct *vma) 1827 { 1828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1829 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1830 __folio_remove_rmap(folio, page, HPAGE_PUD_NR, vma, PGTABLE_LEVEL_PUD); 1831 #else 1832 WARN_ON_ONCE(true); 1833 #endif 1834 } 1835 1836 static inline unsigned int folio_unmap_pte_batch(struct folio *folio, 1837 struct page_vma_mapped_walk *pvmw, 1838 enum ttu_flags flags, pte_t pte) 1839 { 1840 unsigned long end_addr, addr = pvmw->address; 1841 struct vm_area_struct *vma = pvmw->vma; 1842 unsigned int max_nr; 1843 1844 if (flags & TTU_HWPOISON) 1845 return 1; 1846 if (!folio_test_large(folio)) 1847 return 1; 1848 1849 /* We may only batch within a single VMA and a single page table. */ 1850 end_addr = pmd_addr_end(addr, vma->vm_end); 1851 max_nr = (end_addr - addr) >> PAGE_SHIFT; 1852 1853 /* We only support lazyfree batching for now ... */ 1854 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1855 return 1; 1856 if (pte_unused(pte)) 1857 return 1; 1858 1859 return folio_pte_batch(folio, pvmw->pte, pte, max_nr); 1860 } 1861 1862 /* 1863 * @arg: enum ttu_flags will be passed to this argument 1864 */ 1865 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1866 unsigned long address, void *arg) 1867 { 1868 struct mm_struct *mm = vma->vm_mm; 1869 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1870 bool anon_exclusive, ret = true; 1871 pte_t pteval; 1872 struct page *subpage; 1873 struct mmu_notifier_range range; 1874 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1875 unsigned long nr_pages = 1, end_addr; 1876 unsigned long pfn; 1877 unsigned long hsz = 0; 1878 int ptes = 0; 1879 1880 /* 1881 * When racing against e.g. zap_pte_range() on another cpu, 1882 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1883 * try_to_unmap() may return before page_mapped() has become false, 1884 * if page table locking is skipped: use TTU_SYNC to wait for that. 1885 */ 1886 if (flags & TTU_SYNC) 1887 pvmw.flags = PVMW_SYNC; 1888 1889 /* 1890 * For THP, we have to assume the worse case ie pmd for invalidation. 1891 * For hugetlb, it could be much worse if we need to do pud 1892 * invalidation in the case of pmd sharing. 1893 * 1894 * Note that the folio can not be freed in this function as call of 1895 * try_to_unmap() must hold a reference on the folio. 1896 */ 1897 range.end = vma_address_end(&pvmw); 1898 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1899 address, range.end); 1900 if (folio_test_hugetlb(folio)) { 1901 /* 1902 * If sharing is possible, start and end will be adjusted 1903 * accordingly. 1904 */ 1905 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1906 &range.end); 1907 1908 /* We need the huge page size for set_huge_pte_at() */ 1909 hsz = huge_page_size(hstate_vma(vma)); 1910 } 1911 mmu_notifier_invalidate_range_start(&range); 1912 1913 while (page_vma_mapped_walk(&pvmw)) { 1914 /* 1915 * If the folio is in an mlock()d vma, we must not swap it out. 1916 */ 1917 if (!(flags & TTU_IGNORE_MLOCK) && 1918 (vma->vm_flags & VM_LOCKED)) { 1919 ptes++; 1920 1921 /* 1922 * Set 'ret' to indicate the page cannot be unmapped. 1923 * 1924 * Do not jump to walk_abort immediately as additional 1925 * iteration might be required to detect fully mapped 1926 * folio an mlock it. 1927 */ 1928 ret = false; 1929 1930 /* Only mlock fully mapped pages */ 1931 if (pvmw.pte && ptes != pvmw.nr_pages) 1932 continue; 1933 1934 /* 1935 * All PTEs must be protected by page table lock in 1936 * order to mlock the page. 1937 * 1938 * If page table boundary has been cross, current ptl 1939 * only protect part of ptes. 1940 */ 1941 if (pvmw.flags & PVMW_PGTABLE_CROSSED) 1942 goto walk_done; 1943 1944 /* Restore the mlock which got missed */ 1945 mlock_vma_folio(folio, vma); 1946 goto walk_done; 1947 } 1948 1949 if (!pvmw.pte) { 1950 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1951 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1952 goto walk_done; 1953 /* 1954 * unmap_huge_pmd_locked has either already marked 1955 * the folio as swap-backed or decided to retain it 1956 * due to GUP or speculative references. 1957 */ 1958 goto walk_abort; 1959 } 1960 1961 if (flags & TTU_SPLIT_HUGE_PMD) { 1962 /* 1963 * We temporarily have to drop the PTL and 1964 * restart so we can process the PTE-mapped THP. 1965 */ 1966 split_huge_pmd_locked(vma, pvmw.address, 1967 pvmw.pmd, false); 1968 flags &= ~TTU_SPLIT_HUGE_PMD; 1969 page_vma_mapped_walk_restart(&pvmw); 1970 continue; 1971 } 1972 } 1973 1974 /* Unexpected PMD-mapped THP? */ 1975 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1976 1977 /* 1978 * Handle PFN swap PTEs, such as device-exclusive ones, that 1979 * actually map pages. 1980 */ 1981 pteval = ptep_get(pvmw.pte); 1982 if (likely(pte_present(pteval))) { 1983 pfn = pte_pfn(pteval); 1984 } else { 1985 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1986 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1987 } 1988 1989 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1990 address = pvmw.address; 1991 anon_exclusive = folio_test_anon(folio) && 1992 PageAnonExclusive(subpage); 1993 1994 if (folio_test_hugetlb(folio)) { 1995 bool anon = folio_test_anon(folio); 1996 1997 /* 1998 * The try_to_unmap() is only passed a hugetlb page 1999 * in the case where the hugetlb page is poisoned. 2000 */ 2001 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 2002 /* 2003 * huge_pmd_unshare may unmap an entire PMD page. 2004 * There is no way of knowing exactly which PMDs may 2005 * be cached for this mm, so we must flush them all. 2006 * start/end were already adjusted above to cover this 2007 * range. 2008 */ 2009 flush_cache_range(vma, range.start, range.end); 2010 2011 /* 2012 * To call huge_pmd_unshare, i_mmap_rwsem must be 2013 * held in write mode. Caller needs to explicitly 2014 * do this outside rmap routines. 2015 * 2016 * We also must hold hugetlb vma_lock in write mode. 2017 * Lock order dictates acquiring vma_lock BEFORE 2018 * i_mmap_rwsem. We can only try lock here and fail 2019 * if unsuccessful. 2020 */ 2021 if (!anon) { 2022 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2023 if (!hugetlb_vma_trylock_write(vma)) 2024 goto walk_abort; 2025 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2026 hugetlb_vma_unlock_write(vma); 2027 flush_tlb_range(vma, 2028 range.start, range.end); 2029 /* 2030 * The ref count of the PMD page was 2031 * dropped which is part of the way map 2032 * counting is done for shared PMDs. 2033 * Return 'true' here. When there is 2034 * no other sharing, huge_pmd_unshare 2035 * returns false and we will unmap the 2036 * actual page and drop map count 2037 * to zero. 2038 */ 2039 goto walk_done; 2040 } 2041 hugetlb_vma_unlock_write(vma); 2042 } 2043 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2044 if (pte_dirty(pteval)) 2045 folio_mark_dirty(folio); 2046 } else if (likely(pte_present(pteval))) { 2047 nr_pages = folio_unmap_pte_batch(folio, &pvmw, flags, pteval); 2048 end_addr = address + nr_pages * PAGE_SIZE; 2049 flush_cache_range(vma, address, end_addr); 2050 2051 /* Nuke the page table entry. */ 2052 pteval = get_and_clear_ptes(mm, address, pvmw.pte, nr_pages); 2053 /* 2054 * We clear the PTE but do not flush so potentially 2055 * a remote CPU could still be writing to the folio. 2056 * If the entry was previously clean then the 2057 * architecture must guarantee that a clear->dirty 2058 * transition on a cached TLB entry is written through 2059 * and traps if the PTE is unmapped. 2060 */ 2061 if (should_defer_flush(mm, flags)) 2062 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 2063 else 2064 flush_tlb_range(vma, address, end_addr); 2065 if (pte_dirty(pteval)) 2066 folio_mark_dirty(folio); 2067 } else { 2068 pte_clear(mm, address, pvmw.pte); 2069 } 2070 2071 /* 2072 * Now the pte is cleared. If this pte was uffd-wp armed, 2073 * we may want to replace a none pte with a marker pte if 2074 * it's file-backed, so we don't lose the tracking info. 2075 */ 2076 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 2077 2078 /* Update high watermark before we lower rss */ 2079 update_hiwater_rss(mm); 2080 2081 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 2082 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2083 if (folio_test_hugetlb(folio)) { 2084 hugetlb_count_sub(folio_nr_pages(folio), mm); 2085 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2086 hsz); 2087 } else { 2088 dec_mm_counter(mm, mm_counter(folio)); 2089 set_pte_at(mm, address, pvmw.pte, pteval); 2090 } 2091 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2092 !userfaultfd_armed(vma)) { 2093 /* 2094 * The guest indicated that the page content is of no 2095 * interest anymore. Simply discard the pte, vmscan 2096 * will take care of the rest. 2097 * A future reference will then fault in a new zero 2098 * page. When userfaultfd is active, we must not drop 2099 * this page though, as its main user (postcopy 2100 * migration) will not expect userfaults on already 2101 * copied pages. 2102 */ 2103 dec_mm_counter(mm, mm_counter(folio)); 2104 } else if (folio_test_anon(folio)) { 2105 swp_entry_t entry = page_swap_entry(subpage); 2106 pte_t swp_pte; 2107 /* 2108 * Store the swap location in the pte. 2109 * See handle_pte_fault() ... 2110 */ 2111 if (unlikely(folio_test_swapbacked(folio) != 2112 folio_test_swapcache(folio))) { 2113 WARN_ON_ONCE(1); 2114 goto walk_abort; 2115 } 2116 2117 /* MADV_FREE page check */ 2118 if (!folio_test_swapbacked(folio)) { 2119 int ref_count, map_count; 2120 2121 /* 2122 * Synchronize with gup_pte_range(): 2123 * - clear PTE; barrier; read refcount 2124 * - inc refcount; barrier; read PTE 2125 */ 2126 smp_mb(); 2127 2128 ref_count = folio_ref_count(folio); 2129 map_count = folio_mapcount(folio); 2130 2131 /* 2132 * Order reads for page refcount and dirty flag 2133 * (see comments in __remove_mapping()). 2134 */ 2135 smp_rmb(); 2136 2137 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 2138 /* 2139 * redirtied either using the page table or a previously 2140 * obtained GUP reference. 2141 */ 2142 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2143 folio_set_swapbacked(folio); 2144 goto walk_abort; 2145 } else if (ref_count != 1 + map_count) { 2146 /* 2147 * Additional reference. Could be a GUP reference or any 2148 * speculative reference. GUP users must mark the folio 2149 * dirty if there was a modification. This folio cannot be 2150 * reclaimed right now either way, so act just like nothing 2151 * happened. 2152 * We'll come back here later and detect if the folio was 2153 * dirtied when the additional reference is gone. 2154 */ 2155 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2156 goto walk_abort; 2157 } 2158 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2159 goto discard; 2160 } 2161 2162 if (swap_duplicate(entry) < 0) { 2163 set_pte_at(mm, address, pvmw.pte, pteval); 2164 goto walk_abort; 2165 } 2166 2167 /* 2168 * arch_unmap_one() is expected to be a NOP on 2169 * architectures where we could have PFN swap PTEs, 2170 * so we'll not check/care. 2171 */ 2172 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2173 swap_free(entry); 2174 set_pte_at(mm, address, pvmw.pte, pteval); 2175 goto walk_abort; 2176 } 2177 2178 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2179 if (anon_exclusive && 2180 folio_try_share_anon_rmap_pte(folio, subpage)) { 2181 swap_free(entry); 2182 set_pte_at(mm, address, pvmw.pte, pteval); 2183 goto walk_abort; 2184 } 2185 if (list_empty(&mm->mmlist)) { 2186 spin_lock(&mmlist_lock); 2187 if (list_empty(&mm->mmlist)) 2188 list_add(&mm->mmlist, &init_mm.mmlist); 2189 spin_unlock(&mmlist_lock); 2190 } 2191 dec_mm_counter(mm, MM_ANONPAGES); 2192 inc_mm_counter(mm, MM_SWAPENTS); 2193 swp_pte = swp_entry_to_pte(entry); 2194 if (anon_exclusive) 2195 swp_pte = pte_swp_mkexclusive(swp_pte); 2196 if (likely(pte_present(pteval))) { 2197 if (pte_soft_dirty(pteval)) 2198 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2199 if (pte_uffd_wp(pteval)) 2200 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2201 } else { 2202 if (pte_swp_soft_dirty(pteval)) 2203 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2204 if (pte_swp_uffd_wp(pteval)) 2205 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2206 } 2207 set_pte_at(mm, address, pvmw.pte, swp_pte); 2208 } else { 2209 /* 2210 * This is a locked file-backed folio, 2211 * so it cannot be removed from the page 2212 * cache and replaced by a new folio before 2213 * mmu_notifier_invalidate_range_end, so no 2214 * concurrent thread might update its page table 2215 * to point at a new folio while a device is 2216 * still using this folio. 2217 * 2218 * See Documentation/mm/mmu_notifier.rst 2219 */ 2220 dec_mm_counter(mm, mm_counter_file(folio)); 2221 } 2222 discard: 2223 if (unlikely(folio_test_hugetlb(folio))) { 2224 hugetlb_remove_rmap(folio); 2225 } else { 2226 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2227 } 2228 if (vma->vm_flags & VM_LOCKED) 2229 mlock_drain_local(); 2230 folio_put_refs(folio, nr_pages); 2231 2232 /* 2233 * If we are sure that we batched the entire folio and cleared 2234 * all PTEs, we can just optimize and stop right here. 2235 */ 2236 if (nr_pages == folio_nr_pages(folio)) 2237 goto walk_done; 2238 continue; 2239 walk_abort: 2240 ret = false; 2241 walk_done: 2242 page_vma_mapped_walk_done(&pvmw); 2243 break; 2244 } 2245 2246 mmu_notifier_invalidate_range_end(&range); 2247 2248 return ret; 2249 } 2250 2251 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2252 { 2253 return vma_is_temporary_stack(vma); 2254 } 2255 2256 static int folio_not_mapped(struct folio *folio) 2257 { 2258 return !folio_mapped(folio); 2259 } 2260 2261 /** 2262 * try_to_unmap - Try to remove all page table mappings to a folio. 2263 * @folio: The folio to unmap. 2264 * @flags: action and flags 2265 * 2266 * Tries to remove all the page table entries which are mapping this 2267 * folio. It is the caller's responsibility to check if the folio is 2268 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2269 * 2270 * Context: Caller must hold the folio lock. 2271 */ 2272 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2273 { 2274 struct rmap_walk_control rwc = { 2275 .rmap_one = try_to_unmap_one, 2276 .arg = (void *)flags, 2277 .done = folio_not_mapped, 2278 .anon_lock = folio_lock_anon_vma_read, 2279 }; 2280 2281 if (flags & TTU_RMAP_LOCKED) 2282 rmap_walk_locked(folio, &rwc); 2283 else 2284 rmap_walk(folio, &rwc); 2285 } 2286 2287 /* 2288 * @arg: enum ttu_flags will be passed to this argument. 2289 * 2290 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2291 * containing migration entries. 2292 */ 2293 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2294 unsigned long address, void *arg) 2295 { 2296 struct mm_struct *mm = vma->vm_mm; 2297 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2298 bool anon_exclusive, writable, ret = true; 2299 pte_t pteval; 2300 struct page *subpage; 2301 struct mmu_notifier_range range; 2302 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2303 unsigned long pfn; 2304 unsigned long hsz = 0; 2305 2306 /* 2307 * When racing against e.g. zap_pte_range() on another cpu, 2308 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2309 * try_to_migrate() may return before page_mapped() has become false, 2310 * if page table locking is skipped: use TTU_SYNC to wait for that. 2311 */ 2312 if (flags & TTU_SYNC) 2313 pvmw.flags = PVMW_SYNC; 2314 2315 /* 2316 * For THP, we have to assume the worse case ie pmd for invalidation. 2317 * For hugetlb, it could be much worse if we need to do pud 2318 * invalidation in the case of pmd sharing. 2319 * 2320 * Note that the page can not be free in this function as call of 2321 * try_to_unmap() must hold a reference on the page. 2322 */ 2323 range.end = vma_address_end(&pvmw); 2324 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2325 address, range.end); 2326 if (folio_test_hugetlb(folio)) { 2327 /* 2328 * If sharing is possible, start and end will be adjusted 2329 * accordingly. 2330 */ 2331 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2332 &range.end); 2333 2334 /* We need the huge page size for set_huge_pte_at() */ 2335 hsz = huge_page_size(hstate_vma(vma)); 2336 } 2337 mmu_notifier_invalidate_range_start(&range); 2338 2339 while (page_vma_mapped_walk(&pvmw)) { 2340 /* PMD-mapped THP migration entry */ 2341 if (!pvmw.pte) { 2342 if (flags & TTU_SPLIT_HUGE_PMD) { 2343 split_huge_pmd_locked(vma, pvmw.address, 2344 pvmw.pmd, true); 2345 ret = false; 2346 page_vma_mapped_walk_done(&pvmw); 2347 break; 2348 } 2349 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2350 subpage = folio_page(folio, 2351 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2352 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2353 !folio_test_pmd_mappable(folio), folio); 2354 2355 if (set_pmd_migration_entry(&pvmw, subpage)) { 2356 ret = false; 2357 page_vma_mapped_walk_done(&pvmw); 2358 break; 2359 } 2360 continue; 2361 #endif 2362 } 2363 2364 /* Unexpected PMD-mapped THP? */ 2365 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2366 2367 /* 2368 * Handle PFN swap PTEs, such as device-exclusive ones, that 2369 * actually map pages. 2370 */ 2371 pteval = ptep_get(pvmw.pte); 2372 if (likely(pte_present(pteval))) { 2373 pfn = pte_pfn(pteval); 2374 } else { 2375 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2376 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2377 } 2378 2379 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2380 address = pvmw.address; 2381 anon_exclusive = folio_test_anon(folio) && 2382 PageAnonExclusive(subpage); 2383 2384 if (folio_test_hugetlb(folio)) { 2385 bool anon = folio_test_anon(folio); 2386 2387 /* 2388 * huge_pmd_unshare may unmap an entire PMD page. 2389 * There is no way of knowing exactly which PMDs may 2390 * be cached for this mm, so we must flush them all. 2391 * start/end were already adjusted above to cover this 2392 * range. 2393 */ 2394 flush_cache_range(vma, range.start, range.end); 2395 2396 /* 2397 * To call huge_pmd_unshare, i_mmap_rwsem must be 2398 * held in write mode. Caller needs to explicitly 2399 * do this outside rmap routines. 2400 * 2401 * We also must hold hugetlb vma_lock in write mode. 2402 * Lock order dictates acquiring vma_lock BEFORE 2403 * i_mmap_rwsem. We can only try lock here and 2404 * fail if unsuccessful. 2405 */ 2406 if (!anon) { 2407 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2408 if (!hugetlb_vma_trylock_write(vma)) { 2409 page_vma_mapped_walk_done(&pvmw); 2410 ret = false; 2411 break; 2412 } 2413 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2414 hugetlb_vma_unlock_write(vma); 2415 flush_tlb_range(vma, 2416 range.start, range.end); 2417 2418 /* 2419 * The ref count of the PMD page was 2420 * dropped which is part of the way map 2421 * counting is done for shared PMDs. 2422 * Return 'true' here. When there is 2423 * no other sharing, huge_pmd_unshare 2424 * returns false and we will unmap the 2425 * actual page and drop map count 2426 * to zero. 2427 */ 2428 page_vma_mapped_walk_done(&pvmw); 2429 break; 2430 } 2431 hugetlb_vma_unlock_write(vma); 2432 } 2433 /* Nuke the hugetlb page table entry */ 2434 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2435 if (pte_dirty(pteval)) 2436 folio_mark_dirty(folio); 2437 writable = pte_write(pteval); 2438 } else if (likely(pte_present(pteval))) { 2439 flush_cache_page(vma, address, pfn); 2440 /* Nuke the page table entry. */ 2441 if (should_defer_flush(mm, flags)) { 2442 /* 2443 * We clear the PTE but do not flush so potentially 2444 * a remote CPU could still be writing to the folio. 2445 * If the entry was previously clean then the 2446 * architecture must guarantee that a clear->dirty 2447 * transition on a cached TLB entry is written through 2448 * and traps if the PTE is unmapped. 2449 */ 2450 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2451 2452 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2453 } else { 2454 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2455 } 2456 if (pte_dirty(pteval)) 2457 folio_mark_dirty(folio); 2458 writable = pte_write(pteval); 2459 } else { 2460 pte_clear(mm, address, pvmw.pte); 2461 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2462 } 2463 2464 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2465 !anon_exclusive, folio); 2466 2467 /* Update high watermark before we lower rss */ 2468 update_hiwater_rss(mm); 2469 2470 if (PageHWPoison(subpage)) { 2471 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2472 2473 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2474 if (folio_test_hugetlb(folio)) { 2475 hugetlb_count_sub(folio_nr_pages(folio), mm); 2476 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2477 hsz); 2478 } else { 2479 dec_mm_counter(mm, mm_counter(folio)); 2480 set_pte_at(mm, address, pvmw.pte, pteval); 2481 } 2482 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2483 !userfaultfd_armed(vma)) { 2484 /* 2485 * The guest indicated that the page content is of no 2486 * interest anymore. Simply discard the pte, vmscan 2487 * will take care of the rest. 2488 * A future reference will then fault in a new zero 2489 * page. When userfaultfd is active, we must not drop 2490 * this page though, as its main user (postcopy 2491 * migration) will not expect userfaults on already 2492 * copied pages. 2493 */ 2494 dec_mm_counter(mm, mm_counter(folio)); 2495 } else { 2496 swp_entry_t entry; 2497 pte_t swp_pte; 2498 2499 /* 2500 * arch_unmap_one() is expected to be a NOP on 2501 * architectures where we could have PFN swap PTEs, 2502 * so we'll not check/care. 2503 */ 2504 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2505 if (folio_test_hugetlb(folio)) 2506 set_huge_pte_at(mm, address, pvmw.pte, 2507 pteval, hsz); 2508 else 2509 set_pte_at(mm, address, pvmw.pte, pteval); 2510 ret = false; 2511 page_vma_mapped_walk_done(&pvmw); 2512 break; 2513 } 2514 2515 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2516 if (folio_test_hugetlb(folio)) { 2517 if (anon_exclusive && 2518 hugetlb_try_share_anon_rmap(folio)) { 2519 set_huge_pte_at(mm, address, pvmw.pte, 2520 pteval, hsz); 2521 ret = false; 2522 page_vma_mapped_walk_done(&pvmw); 2523 break; 2524 } 2525 } else if (anon_exclusive && 2526 folio_try_share_anon_rmap_pte(folio, subpage)) { 2527 set_pte_at(mm, address, pvmw.pte, pteval); 2528 ret = false; 2529 page_vma_mapped_walk_done(&pvmw); 2530 break; 2531 } 2532 2533 /* 2534 * Store the pfn of the page in a special migration 2535 * pte. do_swap_page() will wait until the migration 2536 * pte is removed and then restart fault handling. 2537 */ 2538 if (writable) 2539 entry = make_writable_migration_entry( 2540 page_to_pfn(subpage)); 2541 else if (anon_exclusive) 2542 entry = make_readable_exclusive_migration_entry( 2543 page_to_pfn(subpage)); 2544 else 2545 entry = make_readable_migration_entry( 2546 page_to_pfn(subpage)); 2547 if (likely(pte_present(pteval))) { 2548 if (pte_young(pteval)) 2549 entry = make_migration_entry_young(entry); 2550 if (pte_dirty(pteval)) 2551 entry = make_migration_entry_dirty(entry); 2552 swp_pte = swp_entry_to_pte(entry); 2553 if (pte_soft_dirty(pteval)) 2554 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2555 if (pte_uffd_wp(pteval)) 2556 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2557 } else { 2558 swp_pte = swp_entry_to_pte(entry); 2559 if (pte_swp_soft_dirty(pteval)) 2560 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2561 if (pte_swp_uffd_wp(pteval)) 2562 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2563 } 2564 if (folio_test_hugetlb(folio)) 2565 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2566 hsz); 2567 else 2568 set_pte_at(mm, address, pvmw.pte, swp_pte); 2569 trace_set_migration_pte(address, pte_val(swp_pte), 2570 folio_order(folio)); 2571 /* 2572 * No need to invalidate here it will synchronize on 2573 * against the special swap migration pte. 2574 */ 2575 } 2576 2577 if (unlikely(folio_test_hugetlb(folio))) 2578 hugetlb_remove_rmap(folio); 2579 else 2580 folio_remove_rmap_pte(folio, subpage, vma); 2581 if (vma->vm_flags & VM_LOCKED) 2582 mlock_drain_local(); 2583 folio_put(folio); 2584 } 2585 2586 mmu_notifier_invalidate_range_end(&range); 2587 2588 return ret; 2589 } 2590 2591 /** 2592 * try_to_migrate - try to replace all page table mappings with swap entries 2593 * @folio: the folio to replace page table entries for 2594 * @flags: action and flags 2595 * 2596 * Tries to remove all the page table entries which are mapping this folio and 2597 * replace them with special swap entries. Caller must hold the folio lock. 2598 */ 2599 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2600 { 2601 struct rmap_walk_control rwc = { 2602 .rmap_one = try_to_migrate_one, 2603 .arg = (void *)flags, 2604 .done = folio_not_mapped, 2605 .anon_lock = folio_lock_anon_vma_read, 2606 }; 2607 2608 /* 2609 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2610 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2611 */ 2612 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2613 TTU_SYNC | TTU_BATCH_FLUSH))) 2614 return; 2615 2616 if (folio_is_zone_device(folio) && 2617 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2618 return; 2619 2620 /* 2621 * During exec, a temporary VMA is setup and later moved. 2622 * The VMA is moved under the anon_vma lock but not the 2623 * page tables leading to a race where migration cannot 2624 * find the migration ptes. Rather than increasing the 2625 * locking requirements of exec(), migration skips 2626 * temporary VMAs until after exec() completes. 2627 */ 2628 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2629 rwc.invalid_vma = invalid_migration_vma; 2630 2631 if (flags & TTU_RMAP_LOCKED) 2632 rmap_walk_locked(folio, &rwc); 2633 else 2634 rmap_walk(folio, &rwc); 2635 } 2636 2637 #ifdef CONFIG_DEVICE_PRIVATE 2638 /** 2639 * make_device_exclusive() - Mark a page for exclusive use by a device 2640 * @mm: mm_struct of associated target process 2641 * @addr: the virtual address to mark for exclusive device access 2642 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2643 * @foliop: folio pointer will be stored here on success. 2644 * 2645 * This function looks up the page mapped at the given address, grabs a 2646 * folio reference, locks the folio and replaces the PTE with special 2647 * device-exclusive PFN swap entry, preventing access through the process 2648 * page tables. The function will return with the folio locked and referenced. 2649 * 2650 * On fault, the device-exclusive entries are replaced with the original PTE 2651 * under folio lock, after calling MMU notifiers. 2652 * 2653 * Only anonymous non-hugetlb folios are supported and the VMA must have 2654 * write permissions such that we can fault in the anonymous page writable 2655 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2656 * mode. 2657 * 2658 * A driver using this to program access from a device must use a mmu notifier 2659 * critical section to hold a device specific lock during programming. Once 2660 * programming is complete it should drop the folio lock and reference after 2661 * which point CPU access to the page will revoke the exclusive access. 2662 * 2663 * Notes: 2664 * #. This function always operates on individual PTEs mapping individual 2665 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2666 * the conversion happens on a single PTE corresponding to @addr. 2667 * #. While concurrent access through the process page tables is prevented, 2668 * concurrent access through other page references (e.g., earlier GUP 2669 * invocation) is not handled and not supported. 2670 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2671 * Device drivers must update the folio state when informed by MMU 2672 * notifiers. 2673 * 2674 * Returns: pointer to mapped page on success, otherwise a negative error. 2675 */ 2676 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2677 void *owner, struct folio **foliop) 2678 { 2679 struct mmu_notifier_range range; 2680 struct folio *folio, *fw_folio; 2681 struct vm_area_struct *vma; 2682 struct folio_walk fw; 2683 struct page *page; 2684 swp_entry_t entry; 2685 pte_t swp_pte; 2686 int ret; 2687 2688 mmap_assert_locked(mm); 2689 addr = PAGE_ALIGN_DOWN(addr); 2690 2691 /* 2692 * Fault in the page writable and try to lock it; note that if the 2693 * address would already be marked for exclusive use by a device, 2694 * the GUP call would undo that first by triggering a fault. 2695 * 2696 * If any other device would already map this page exclusively, the 2697 * fault will trigger a conversion to an ordinary 2698 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2699 */ 2700 retry: 2701 page = get_user_page_vma_remote(mm, addr, 2702 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2703 &vma); 2704 if (IS_ERR(page)) 2705 return page; 2706 folio = page_folio(page); 2707 2708 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2709 folio_put(folio); 2710 return ERR_PTR(-EOPNOTSUPP); 2711 } 2712 2713 ret = folio_lock_killable(folio); 2714 if (ret) { 2715 folio_put(folio); 2716 return ERR_PTR(ret); 2717 } 2718 2719 /* 2720 * Inform secondary MMUs that we are going to convert this PTE to 2721 * device-exclusive, such that they unmap it now. Note that the 2722 * caller must filter this event out to prevent livelocks. 2723 */ 2724 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2725 mm, addr, addr + PAGE_SIZE, owner); 2726 mmu_notifier_invalidate_range_start(&range); 2727 2728 /* 2729 * Let's do a second walk and make sure we still find the same page 2730 * mapped writable. Note that any page of an anonymous folio can 2731 * only be mapped writable using exactly one PTE ("exclusive"), so 2732 * there cannot be other mappings. 2733 */ 2734 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2735 if (fw_folio != folio || fw.page != page || 2736 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2737 if (fw_folio) 2738 folio_walk_end(&fw, vma); 2739 mmu_notifier_invalidate_range_end(&range); 2740 folio_unlock(folio); 2741 folio_put(folio); 2742 goto retry; 2743 } 2744 2745 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2746 flush_cache_page(vma, addr, page_to_pfn(page)); 2747 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2748 2749 /* Set the dirty flag on the folio now the PTE is gone. */ 2750 if (pte_dirty(fw.pte)) 2751 folio_mark_dirty(folio); 2752 2753 /* 2754 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2755 * do_swap_page() will trigger the conversion back while holding the 2756 * folio lock. 2757 */ 2758 entry = make_device_exclusive_entry(page_to_pfn(page)); 2759 swp_pte = swp_entry_to_pte(entry); 2760 if (pte_soft_dirty(fw.pte)) 2761 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2762 /* The pte is writable, uffd-wp does not apply. */ 2763 set_pte_at(mm, addr, fw.ptep, swp_pte); 2764 2765 folio_walk_end(&fw, vma); 2766 mmu_notifier_invalidate_range_end(&range); 2767 *foliop = folio; 2768 return page; 2769 } 2770 EXPORT_SYMBOL_GPL(make_device_exclusive); 2771 #endif 2772 2773 void __put_anon_vma(struct anon_vma *anon_vma) 2774 { 2775 struct anon_vma *root = anon_vma->root; 2776 2777 anon_vma_free(anon_vma); 2778 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2779 anon_vma_free(root); 2780 } 2781 2782 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2783 struct rmap_walk_control *rwc) 2784 { 2785 struct anon_vma *anon_vma; 2786 2787 if (rwc->anon_lock) 2788 return rwc->anon_lock(folio, rwc); 2789 2790 /* 2791 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2792 * because that depends on page_mapped(); but not all its usages 2793 * are holding mmap_lock. Users without mmap_lock are required to 2794 * take a reference count to prevent the anon_vma disappearing 2795 */ 2796 anon_vma = folio_anon_vma(folio); 2797 if (!anon_vma) 2798 return NULL; 2799 2800 if (anon_vma_trylock_read(anon_vma)) 2801 goto out; 2802 2803 if (rwc->try_lock) { 2804 anon_vma = NULL; 2805 rwc->contended = true; 2806 goto out; 2807 } 2808 2809 anon_vma_lock_read(anon_vma); 2810 out: 2811 return anon_vma; 2812 } 2813 2814 /* 2815 * rmap_walk_anon - do something to anonymous page using the object-based 2816 * rmap method 2817 * @folio: the folio to be handled 2818 * @rwc: control variable according to each walk type 2819 * @locked: caller holds relevant rmap lock 2820 * 2821 * Find all the mappings of a folio using the mapping pointer and the vma 2822 * chains contained in the anon_vma struct it points to. 2823 */ 2824 static void rmap_walk_anon(struct folio *folio, 2825 struct rmap_walk_control *rwc, bool locked) 2826 { 2827 struct anon_vma *anon_vma; 2828 pgoff_t pgoff_start, pgoff_end; 2829 struct anon_vma_chain *avc; 2830 2831 if (locked) { 2832 anon_vma = folio_anon_vma(folio); 2833 /* anon_vma disappear under us? */ 2834 VM_BUG_ON_FOLIO(!anon_vma, folio); 2835 } else { 2836 anon_vma = rmap_walk_anon_lock(folio, rwc); 2837 } 2838 if (!anon_vma) 2839 return; 2840 2841 pgoff_start = folio_pgoff(folio); 2842 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2843 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2844 pgoff_start, pgoff_end) { 2845 struct vm_area_struct *vma = avc->vma; 2846 unsigned long address = vma_address(vma, pgoff_start, 2847 folio_nr_pages(folio)); 2848 2849 VM_BUG_ON_VMA(address == -EFAULT, vma); 2850 cond_resched(); 2851 2852 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2853 continue; 2854 2855 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2856 break; 2857 if (rwc->done && rwc->done(folio)) 2858 break; 2859 } 2860 2861 if (!locked) 2862 anon_vma_unlock_read(anon_vma); 2863 } 2864 2865 /** 2866 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2867 * of a page mapped within a specified page cache object at a specified offset. 2868 * 2869 * @folio: Either the folio whose mappings to traverse, or if NULL, 2870 * the callbacks specified in @rwc will be configured such 2871 * as to be able to look up mappings correctly. 2872 * @mapping: The page cache object whose mapping VMAs we intend to 2873 * traverse. If @folio is non-NULL, this should be equal to 2874 * folio_mapping(folio). 2875 * @pgoff_start: The offset within @mapping of the page which we are 2876 * looking up. If @folio is non-NULL, this should be equal 2877 * to folio_pgoff(folio). 2878 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2879 * non-NULL, this should be equal to folio_nr_pages(folio). 2880 * @rwc: The reverse mapping walk control object describing how 2881 * the traversal should proceed. 2882 * @locked: Is the @mapping already locked? If not, we acquire the 2883 * lock. 2884 */ 2885 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2886 pgoff_t pgoff_start, unsigned long nr_pages, 2887 struct rmap_walk_control *rwc, bool locked) 2888 { 2889 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2890 struct vm_area_struct *vma; 2891 2892 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2893 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2894 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2895 2896 if (!locked) { 2897 if (i_mmap_trylock_read(mapping)) 2898 goto lookup; 2899 2900 if (rwc->try_lock) { 2901 rwc->contended = true; 2902 return; 2903 } 2904 2905 i_mmap_lock_read(mapping); 2906 } 2907 lookup: 2908 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2909 pgoff_start, pgoff_end) { 2910 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2911 2912 VM_BUG_ON_VMA(address == -EFAULT, vma); 2913 cond_resched(); 2914 2915 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2916 continue; 2917 2918 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2919 goto done; 2920 if (rwc->done && rwc->done(folio)) 2921 goto done; 2922 } 2923 done: 2924 if (!locked) 2925 i_mmap_unlock_read(mapping); 2926 } 2927 2928 /* 2929 * rmap_walk_file - do something to file page using the object-based rmap method 2930 * @folio: the folio to be handled 2931 * @rwc: control variable according to each walk type 2932 * @locked: caller holds relevant rmap lock 2933 * 2934 * Find all the mappings of a folio using the mapping pointer and the vma chains 2935 * contained in the address_space struct it points to. 2936 */ 2937 static void rmap_walk_file(struct folio *folio, 2938 struct rmap_walk_control *rwc, bool locked) 2939 { 2940 /* 2941 * The folio lock not only makes sure that folio->mapping cannot 2942 * suddenly be NULLified by truncation, it makes sure that the structure 2943 * at mapping cannot be freed and reused yet, so we can safely take 2944 * mapping->i_mmap_rwsem. 2945 */ 2946 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2947 2948 if (!folio->mapping) 2949 return; 2950 2951 __rmap_walk_file(folio, folio->mapping, folio->index, 2952 folio_nr_pages(folio), rwc, locked); 2953 } 2954 2955 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2956 { 2957 if (unlikely(folio_test_ksm(folio))) 2958 rmap_walk_ksm(folio, rwc); 2959 else if (folio_test_anon(folio)) 2960 rmap_walk_anon(folio, rwc, false); 2961 else 2962 rmap_walk_file(folio, rwc, false); 2963 } 2964 2965 /* Like rmap_walk, but caller holds relevant rmap lock */ 2966 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2967 { 2968 /* no ksm support for now */ 2969 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2970 if (folio_test_anon(folio)) 2971 rmap_walk_anon(folio, rwc, true); 2972 else 2973 rmap_walk_file(folio, rwc, true); 2974 } 2975 2976 #ifdef CONFIG_HUGETLB_PAGE 2977 /* 2978 * The following two functions are for anonymous (private mapped) hugepages. 2979 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2980 * and no lru code, because we handle hugepages differently from common pages. 2981 */ 2982 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2983 unsigned long address, rmap_t flags) 2984 { 2985 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2986 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2987 2988 atomic_inc(&folio->_entire_mapcount); 2989 atomic_inc(&folio->_large_mapcount); 2990 if (flags & RMAP_EXCLUSIVE) 2991 SetPageAnonExclusive(&folio->page); 2992 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2993 PageAnonExclusive(&folio->page), folio); 2994 } 2995 2996 void hugetlb_add_new_anon_rmap(struct folio *folio, 2997 struct vm_area_struct *vma, unsigned long address) 2998 { 2999 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 3000 3001 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 3002 /* increment count (starts at -1) */ 3003 atomic_set(&folio->_entire_mapcount, 0); 3004 atomic_set(&folio->_large_mapcount, 0); 3005 folio_clear_hugetlb_restore_reserve(folio); 3006 __folio_set_anon(folio, vma, address, true); 3007 SetPageAnonExclusive(&folio->page); 3008 } 3009 #endif /* CONFIG_HUGETLB_PAGE */ 3010