xref: /linux/mm/rmap.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 
51 #include <asm/tlbflush.h>
52 
53 struct kmem_cache *anon_vma_cachep;
54 
55 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
56 {
57 #ifdef CONFIG_DEBUG_VM
58 	struct anon_vma *anon_vma = find_vma->anon_vma;
59 	struct vm_area_struct *vma;
60 	unsigned int mapcount = 0;
61 	int found = 0;
62 
63 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
64 		mapcount++;
65 		BUG_ON(mapcount > 100000);
66 		if (vma == find_vma)
67 			found = 1;
68 	}
69 	BUG_ON(!found);
70 #endif
71 }
72 
73 /* This must be called under the mmap_sem. */
74 int anon_vma_prepare(struct vm_area_struct *vma)
75 {
76 	struct anon_vma *anon_vma = vma->anon_vma;
77 
78 	might_sleep();
79 	if (unlikely(!anon_vma)) {
80 		struct mm_struct *mm = vma->vm_mm;
81 		struct anon_vma *allocated, *locked;
82 
83 		anon_vma = find_mergeable_anon_vma(vma);
84 		if (anon_vma) {
85 			allocated = NULL;
86 			locked = anon_vma;
87 			spin_lock(&locked->lock);
88 		} else {
89 			anon_vma = anon_vma_alloc();
90 			if (unlikely(!anon_vma))
91 				return -ENOMEM;
92 			allocated = anon_vma;
93 			locked = NULL;
94 		}
95 
96 		/* page_table_lock to protect against threads */
97 		spin_lock(&mm->page_table_lock);
98 		if (likely(!vma->anon_vma)) {
99 			vma->anon_vma = anon_vma;
100 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
101 			allocated = NULL;
102 		}
103 		spin_unlock(&mm->page_table_lock);
104 
105 		if (locked)
106 			spin_unlock(&locked->lock);
107 		if (unlikely(allocated))
108 			anon_vma_free(allocated);
109 	}
110 	return 0;
111 }
112 
113 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
114 {
115 	BUG_ON(vma->anon_vma != next->anon_vma);
116 	list_del(&next->anon_vma_node);
117 }
118 
119 void __anon_vma_link(struct vm_area_struct *vma)
120 {
121 	struct anon_vma *anon_vma = vma->anon_vma;
122 
123 	if (anon_vma) {
124 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
125 		validate_anon_vma(vma);
126 	}
127 }
128 
129 void anon_vma_link(struct vm_area_struct *vma)
130 {
131 	struct anon_vma *anon_vma = vma->anon_vma;
132 
133 	if (anon_vma) {
134 		spin_lock(&anon_vma->lock);
135 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
136 		validate_anon_vma(vma);
137 		spin_unlock(&anon_vma->lock);
138 	}
139 }
140 
141 void anon_vma_unlink(struct vm_area_struct *vma)
142 {
143 	struct anon_vma *anon_vma = vma->anon_vma;
144 	int empty;
145 
146 	if (!anon_vma)
147 		return;
148 
149 	spin_lock(&anon_vma->lock);
150 	validate_anon_vma(vma);
151 	list_del(&vma->anon_vma_node);
152 
153 	/* We must garbage collect the anon_vma if it's empty */
154 	empty = list_empty(&anon_vma->head);
155 	spin_unlock(&anon_vma->lock);
156 
157 	if (empty)
158 		anon_vma_free(anon_vma);
159 }
160 
161 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
162 			  unsigned long flags)
163 {
164 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
165 						SLAB_CTOR_CONSTRUCTOR) {
166 		struct anon_vma *anon_vma = data;
167 
168 		spin_lock_init(&anon_vma->lock);
169 		INIT_LIST_HEAD(&anon_vma->head);
170 	}
171 }
172 
173 void __init anon_vma_init(void)
174 {
175 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
176 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
177 }
178 
179 /*
180  * Getting a lock on a stable anon_vma from a page off the LRU is
181  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
182  */
183 static struct anon_vma *page_lock_anon_vma(struct page *page)
184 {
185 	struct anon_vma *anon_vma = NULL;
186 	unsigned long anon_mapping;
187 
188 	rcu_read_lock();
189 	anon_mapping = (unsigned long) page->mapping;
190 	if (!(anon_mapping & PAGE_MAPPING_ANON))
191 		goto out;
192 	if (!page_mapped(page))
193 		goto out;
194 
195 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
196 	spin_lock(&anon_vma->lock);
197 out:
198 	rcu_read_unlock();
199 	return anon_vma;
200 }
201 
202 /*
203  * At what user virtual address is page expected in vma?
204  */
205 static inline unsigned long
206 vma_address(struct page *page, struct vm_area_struct *vma)
207 {
208 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
209 	unsigned long address;
210 
211 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
212 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
213 		/* page should be within any vma from prio_tree_next */
214 		BUG_ON(!PageAnon(page));
215 		return -EFAULT;
216 	}
217 	return address;
218 }
219 
220 /*
221  * At what user virtual address is page expected in vma? checking that the
222  * page matches the vma: currently only used on anon pages, by unuse_vma;
223  */
224 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
225 {
226 	if (PageAnon(page)) {
227 		if ((void *)vma->anon_vma !=
228 		    (void *)page->mapping - PAGE_MAPPING_ANON)
229 			return -EFAULT;
230 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
231 		if (!vma->vm_file ||
232 		    vma->vm_file->f_mapping != page->mapping)
233 			return -EFAULT;
234 	} else
235 		return -EFAULT;
236 	return vma_address(page, vma);
237 }
238 
239 /*
240  * Check that @page is mapped at @address into @mm.
241  *
242  * On success returns with pte mapped and locked.
243  */
244 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
245 			  unsigned long address, spinlock_t **ptlp)
246 {
247 	pgd_t *pgd;
248 	pud_t *pud;
249 	pmd_t *pmd;
250 	pte_t *pte;
251 	spinlock_t *ptl;
252 
253 	pgd = pgd_offset(mm, address);
254 	if (!pgd_present(*pgd))
255 		return NULL;
256 
257 	pud = pud_offset(pgd, address);
258 	if (!pud_present(*pud))
259 		return NULL;
260 
261 	pmd = pmd_offset(pud, address);
262 	if (!pmd_present(*pmd))
263 		return NULL;
264 
265 	pte = pte_offset_map(pmd, address);
266 	/* Make a quick check before getting the lock */
267 	if (!pte_present(*pte)) {
268 		pte_unmap(pte);
269 		return NULL;
270 	}
271 
272 	ptl = pte_lockptr(mm, pmd);
273 	spin_lock(ptl);
274 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
275 		*ptlp = ptl;
276 		return pte;
277 	}
278 	pte_unmap_unlock(pte, ptl);
279 	return NULL;
280 }
281 
282 /*
283  * Subfunctions of page_referenced: page_referenced_one called
284  * repeatedly from either page_referenced_anon or page_referenced_file.
285  */
286 static int page_referenced_one(struct page *page,
287 	struct vm_area_struct *vma, unsigned int *mapcount)
288 {
289 	struct mm_struct *mm = vma->vm_mm;
290 	unsigned long address;
291 	pte_t *pte;
292 	spinlock_t *ptl;
293 	int referenced = 0;
294 
295 	address = vma_address(page, vma);
296 	if (address == -EFAULT)
297 		goto out;
298 
299 	pte = page_check_address(page, mm, address, &ptl);
300 	if (!pte)
301 		goto out;
302 
303 	if (ptep_clear_flush_young(vma, address, pte))
304 		referenced++;
305 
306 	/* Pretend the page is referenced if the task has the
307 	   swap token and is in the middle of a page fault. */
308 	if (mm != current->mm && has_swap_token(mm) &&
309 			rwsem_is_locked(&mm->mmap_sem))
310 		referenced++;
311 
312 	(*mapcount)--;
313 	pte_unmap_unlock(pte, ptl);
314 out:
315 	return referenced;
316 }
317 
318 static int page_referenced_anon(struct page *page)
319 {
320 	unsigned int mapcount;
321 	struct anon_vma *anon_vma;
322 	struct vm_area_struct *vma;
323 	int referenced = 0;
324 
325 	anon_vma = page_lock_anon_vma(page);
326 	if (!anon_vma)
327 		return referenced;
328 
329 	mapcount = page_mapcount(page);
330 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
331 		referenced += page_referenced_one(page, vma, &mapcount);
332 		if (!mapcount)
333 			break;
334 	}
335 	spin_unlock(&anon_vma->lock);
336 	return referenced;
337 }
338 
339 /**
340  * page_referenced_file - referenced check for object-based rmap
341  * @page: the page we're checking references on.
342  *
343  * For an object-based mapped page, find all the places it is mapped and
344  * check/clear the referenced flag.  This is done by following the page->mapping
345  * pointer, then walking the chain of vmas it holds.  It returns the number
346  * of references it found.
347  *
348  * This function is only called from page_referenced for object-based pages.
349  */
350 static int page_referenced_file(struct page *page)
351 {
352 	unsigned int mapcount;
353 	struct address_space *mapping = page->mapping;
354 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
355 	struct vm_area_struct *vma;
356 	struct prio_tree_iter iter;
357 	int referenced = 0;
358 
359 	/*
360 	 * The caller's checks on page->mapping and !PageAnon have made
361 	 * sure that this is a file page: the check for page->mapping
362 	 * excludes the case just before it gets set on an anon page.
363 	 */
364 	BUG_ON(PageAnon(page));
365 
366 	/*
367 	 * The page lock not only makes sure that page->mapping cannot
368 	 * suddenly be NULLified by truncation, it makes sure that the
369 	 * structure at mapping cannot be freed and reused yet,
370 	 * so we can safely take mapping->i_mmap_lock.
371 	 */
372 	BUG_ON(!PageLocked(page));
373 
374 	spin_lock(&mapping->i_mmap_lock);
375 
376 	/*
377 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
378 	 * is more likely to be accurate if we note it after spinning.
379 	 */
380 	mapcount = page_mapcount(page);
381 
382 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
383 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
384 				  == (VM_LOCKED|VM_MAYSHARE)) {
385 			referenced++;
386 			break;
387 		}
388 		referenced += page_referenced_one(page, vma, &mapcount);
389 		if (!mapcount)
390 			break;
391 	}
392 
393 	spin_unlock(&mapping->i_mmap_lock);
394 	return referenced;
395 }
396 
397 /**
398  * page_referenced - test if the page was referenced
399  * @page: the page to test
400  * @is_locked: caller holds lock on the page
401  *
402  * Quick test_and_clear_referenced for all mappings to a page,
403  * returns the number of ptes which referenced the page.
404  */
405 int page_referenced(struct page *page, int is_locked)
406 {
407 	int referenced = 0;
408 
409 	if (page_test_and_clear_young(page))
410 		referenced++;
411 
412 	if (TestClearPageReferenced(page))
413 		referenced++;
414 
415 	if (page_mapped(page) && page->mapping) {
416 		if (PageAnon(page))
417 			referenced += page_referenced_anon(page);
418 		else if (is_locked)
419 			referenced += page_referenced_file(page);
420 		else if (TestSetPageLocked(page))
421 			referenced++;
422 		else {
423 			if (page->mapping)
424 				referenced += page_referenced_file(page);
425 			unlock_page(page);
426 		}
427 	}
428 	return referenced;
429 }
430 
431 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
432 {
433 	struct mm_struct *mm = vma->vm_mm;
434 	unsigned long address;
435 	pte_t *pte, entry;
436 	spinlock_t *ptl;
437 	int ret = 0;
438 
439 	address = vma_address(page, vma);
440 	if (address == -EFAULT)
441 		goto out;
442 
443 	pte = page_check_address(page, mm, address, &ptl);
444 	if (!pte)
445 		goto out;
446 
447 	if (!pte_dirty(*pte) && !pte_write(*pte))
448 		goto unlock;
449 
450 	entry = ptep_get_and_clear(mm, address, pte);
451 	entry = pte_mkclean(entry);
452 	entry = pte_wrprotect(entry);
453 	ptep_establish(vma, address, pte, entry);
454 	lazy_mmu_prot_update(entry);
455 	ret = 1;
456 
457 unlock:
458 	pte_unmap_unlock(pte, ptl);
459 out:
460 	return ret;
461 }
462 
463 static int page_mkclean_file(struct address_space *mapping, struct page *page)
464 {
465 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
466 	struct vm_area_struct *vma;
467 	struct prio_tree_iter iter;
468 	int ret = 0;
469 
470 	BUG_ON(PageAnon(page));
471 
472 	spin_lock(&mapping->i_mmap_lock);
473 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
474 		if (vma->vm_flags & VM_SHARED)
475 			ret += page_mkclean_one(page, vma);
476 	}
477 	spin_unlock(&mapping->i_mmap_lock);
478 	return ret;
479 }
480 
481 int page_mkclean(struct page *page)
482 {
483 	int ret = 0;
484 
485 	BUG_ON(!PageLocked(page));
486 
487 	if (page_mapped(page)) {
488 		struct address_space *mapping = page_mapping(page);
489 		if (mapping)
490 			ret = page_mkclean_file(mapping, page);
491 	}
492 
493 	return ret;
494 }
495 
496 /**
497  * page_set_anon_rmap - setup new anonymous rmap
498  * @page:	the page to add the mapping to
499  * @vma:	the vm area in which the mapping is added
500  * @address:	the user virtual address mapped
501  */
502 static void __page_set_anon_rmap(struct page *page,
503 	struct vm_area_struct *vma, unsigned long address)
504 {
505 	struct anon_vma *anon_vma = vma->anon_vma;
506 
507 	BUG_ON(!anon_vma);
508 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
509 	page->mapping = (struct address_space *) anon_vma;
510 
511 	page->index = linear_page_index(vma, address);
512 
513 	/*
514 	 * nr_mapped state can be updated without turning off
515 	 * interrupts because it is not modified via interrupt.
516 	 */
517 	__inc_zone_page_state(page, NR_ANON_PAGES);
518 }
519 
520 /**
521  * page_add_anon_rmap - add pte mapping to an anonymous page
522  * @page:	the page to add the mapping to
523  * @vma:	the vm area in which the mapping is added
524  * @address:	the user virtual address mapped
525  *
526  * The caller needs to hold the pte lock.
527  */
528 void page_add_anon_rmap(struct page *page,
529 	struct vm_area_struct *vma, unsigned long address)
530 {
531 	if (atomic_inc_and_test(&page->_mapcount))
532 		__page_set_anon_rmap(page, vma, address);
533 	/* else checking page index and mapping is racy */
534 }
535 
536 /*
537  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
538  * @page:	the page to add the mapping to
539  * @vma:	the vm area in which the mapping is added
540  * @address:	the user virtual address mapped
541  *
542  * Same as page_add_anon_rmap but must only be called on *new* pages.
543  * This means the inc-and-test can be bypassed.
544  */
545 void page_add_new_anon_rmap(struct page *page,
546 	struct vm_area_struct *vma, unsigned long address)
547 {
548 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
549 	__page_set_anon_rmap(page, vma, address);
550 }
551 
552 /**
553  * page_add_file_rmap - add pte mapping to a file page
554  * @page: the page to add the mapping to
555  *
556  * The caller needs to hold the pte lock.
557  */
558 void page_add_file_rmap(struct page *page)
559 {
560 	if (atomic_inc_and_test(&page->_mapcount))
561 		__inc_zone_page_state(page, NR_FILE_MAPPED);
562 }
563 
564 /**
565  * page_remove_rmap - take down pte mapping from a page
566  * @page: page to remove mapping from
567  *
568  * The caller needs to hold the pte lock.
569  */
570 void page_remove_rmap(struct page *page)
571 {
572 	if (atomic_add_negative(-1, &page->_mapcount)) {
573 		if (unlikely(page_mapcount(page) < 0)) {
574 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
575 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
576 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
577 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
578 			BUG();
579 		}
580 
581 		/*
582 		 * It would be tidy to reset the PageAnon mapping here,
583 		 * but that might overwrite a racing page_add_anon_rmap
584 		 * which increments mapcount after us but sets mapping
585 		 * before us: so leave the reset to free_hot_cold_page,
586 		 * and remember that it's only reliable while mapped.
587 		 * Leaving it set also helps swapoff to reinstate ptes
588 		 * faster for those pages still in swapcache.
589 		 */
590 		if (page_test_and_clear_dirty(page))
591 			set_page_dirty(page);
592 		__dec_zone_page_state(page,
593 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
594 	}
595 }
596 
597 /*
598  * Subfunctions of try_to_unmap: try_to_unmap_one called
599  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
600  */
601 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
602 				int migration)
603 {
604 	struct mm_struct *mm = vma->vm_mm;
605 	unsigned long address;
606 	pte_t *pte;
607 	pte_t pteval;
608 	spinlock_t *ptl;
609 	int ret = SWAP_AGAIN;
610 
611 	address = vma_address(page, vma);
612 	if (address == -EFAULT)
613 		goto out;
614 
615 	pte = page_check_address(page, mm, address, &ptl);
616 	if (!pte)
617 		goto out;
618 
619 	/*
620 	 * If the page is mlock()d, we cannot swap it out.
621 	 * If it's recently referenced (perhaps page_referenced
622 	 * skipped over this mm) then we should reactivate it.
623 	 */
624 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
625 			(ptep_clear_flush_young(vma, address, pte)))) {
626 		ret = SWAP_FAIL;
627 		goto out_unmap;
628 	}
629 
630 	/* Nuke the page table entry. */
631 	flush_cache_page(vma, address, page_to_pfn(page));
632 	pteval = ptep_clear_flush(vma, address, pte);
633 
634 	/* Move the dirty bit to the physical page now the pte is gone. */
635 	if (pte_dirty(pteval))
636 		set_page_dirty(page);
637 
638 	/* Update high watermark before we lower rss */
639 	update_hiwater_rss(mm);
640 
641 	if (PageAnon(page)) {
642 		swp_entry_t entry = { .val = page_private(page) };
643 
644 		if (PageSwapCache(page)) {
645 			/*
646 			 * Store the swap location in the pte.
647 			 * See handle_pte_fault() ...
648 			 */
649 			swap_duplicate(entry);
650 			if (list_empty(&mm->mmlist)) {
651 				spin_lock(&mmlist_lock);
652 				if (list_empty(&mm->mmlist))
653 					list_add(&mm->mmlist, &init_mm.mmlist);
654 				spin_unlock(&mmlist_lock);
655 			}
656 			dec_mm_counter(mm, anon_rss);
657 #ifdef CONFIG_MIGRATION
658 		} else {
659 			/*
660 			 * Store the pfn of the page in a special migration
661 			 * pte. do_swap_page() will wait until the migration
662 			 * pte is removed and then restart fault handling.
663 			 */
664 			BUG_ON(!migration);
665 			entry = make_migration_entry(page, pte_write(pteval));
666 #endif
667 		}
668 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
669 		BUG_ON(pte_file(*pte));
670 	} else
671 #ifdef CONFIG_MIGRATION
672 	if (migration) {
673 		/* Establish migration entry for a file page */
674 		swp_entry_t entry;
675 		entry = make_migration_entry(page, pte_write(pteval));
676 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
677 	} else
678 #endif
679 		dec_mm_counter(mm, file_rss);
680 
681 
682 	page_remove_rmap(page);
683 	page_cache_release(page);
684 
685 out_unmap:
686 	pte_unmap_unlock(pte, ptl);
687 out:
688 	return ret;
689 }
690 
691 /*
692  * objrmap doesn't work for nonlinear VMAs because the assumption that
693  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
694  * Consequently, given a particular page and its ->index, we cannot locate the
695  * ptes which are mapping that page without an exhaustive linear search.
696  *
697  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
698  * maps the file to which the target page belongs.  The ->vm_private_data field
699  * holds the current cursor into that scan.  Successive searches will circulate
700  * around the vma's virtual address space.
701  *
702  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
703  * more scanning pressure is placed against them as well.   Eventually pages
704  * will become fully unmapped and are eligible for eviction.
705  *
706  * For very sparsely populated VMAs this is a little inefficient - chances are
707  * there there won't be many ptes located within the scan cluster.  In this case
708  * maybe we could scan further - to the end of the pte page, perhaps.
709  */
710 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
711 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
712 
713 static void try_to_unmap_cluster(unsigned long cursor,
714 	unsigned int *mapcount, struct vm_area_struct *vma)
715 {
716 	struct mm_struct *mm = vma->vm_mm;
717 	pgd_t *pgd;
718 	pud_t *pud;
719 	pmd_t *pmd;
720 	pte_t *pte;
721 	pte_t pteval;
722 	spinlock_t *ptl;
723 	struct page *page;
724 	unsigned long address;
725 	unsigned long end;
726 
727 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
728 	end = address + CLUSTER_SIZE;
729 	if (address < vma->vm_start)
730 		address = vma->vm_start;
731 	if (end > vma->vm_end)
732 		end = vma->vm_end;
733 
734 	pgd = pgd_offset(mm, address);
735 	if (!pgd_present(*pgd))
736 		return;
737 
738 	pud = pud_offset(pgd, address);
739 	if (!pud_present(*pud))
740 		return;
741 
742 	pmd = pmd_offset(pud, address);
743 	if (!pmd_present(*pmd))
744 		return;
745 
746 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
747 
748 	/* Update high watermark before we lower rss */
749 	update_hiwater_rss(mm);
750 
751 	for (; address < end; pte++, address += PAGE_SIZE) {
752 		if (!pte_present(*pte))
753 			continue;
754 		page = vm_normal_page(vma, address, *pte);
755 		BUG_ON(!page || PageAnon(page));
756 
757 		if (ptep_clear_flush_young(vma, address, pte))
758 			continue;
759 
760 		/* Nuke the page table entry. */
761 		flush_cache_page(vma, address, pte_pfn(*pte));
762 		pteval = ptep_clear_flush(vma, address, pte);
763 
764 		/* If nonlinear, store the file page offset in the pte. */
765 		if (page->index != linear_page_index(vma, address))
766 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
767 
768 		/* Move the dirty bit to the physical page now the pte is gone. */
769 		if (pte_dirty(pteval))
770 			set_page_dirty(page);
771 
772 		page_remove_rmap(page);
773 		page_cache_release(page);
774 		dec_mm_counter(mm, file_rss);
775 		(*mapcount)--;
776 	}
777 	pte_unmap_unlock(pte - 1, ptl);
778 }
779 
780 static int try_to_unmap_anon(struct page *page, int migration)
781 {
782 	struct anon_vma *anon_vma;
783 	struct vm_area_struct *vma;
784 	int ret = SWAP_AGAIN;
785 
786 	anon_vma = page_lock_anon_vma(page);
787 	if (!anon_vma)
788 		return ret;
789 
790 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
791 		ret = try_to_unmap_one(page, vma, migration);
792 		if (ret == SWAP_FAIL || !page_mapped(page))
793 			break;
794 	}
795 	spin_unlock(&anon_vma->lock);
796 	return ret;
797 }
798 
799 /**
800  * try_to_unmap_file - unmap file page using the object-based rmap method
801  * @page: the page to unmap
802  *
803  * Find all the mappings of a page using the mapping pointer and the vma chains
804  * contained in the address_space struct it points to.
805  *
806  * This function is only called from try_to_unmap for object-based pages.
807  */
808 static int try_to_unmap_file(struct page *page, int migration)
809 {
810 	struct address_space *mapping = page->mapping;
811 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
812 	struct vm_area_struct *vma;
813 	struct prio_tree_iter iter;
814 	int ret = SWAP_AGAIN;
815 	unsigned long cursor;
816 	unsigned long max_nl_cursor = 0;
817 	unsigned long max_nl_size = 0;
818 	unsigned int mapcount;
819 
820 	spin_lock(&mapping->i_mmap_lock);
821 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
822 		ret = try_to_unmap_one(page, vma, migration);
823 		if (ret == SWAP_FAIL || !page_mapped(page))
824 			goto out;
825 	}
826 
827 	if (list_empty(&mapping->i_mmap_nonlinear))
828 		goto out;
829 
830 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
831 						shared.vm_set.list) {
832 		if ((vma->vm_flags & VM_LOCKED) && !migration)
833 			continue;
834 		cursor = (unsigned long) vma->vm_private_data;
835 		if (cursor > max_nl_cursor)
836 			max_nl_cursor = cursor;
837 		cursor = vma->vm_end - vma->vm_start;
838 		if (cursor > max_nl_size)
839 			max_nl_size = cursor;
840 	}
841 
842 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
843 		ret = SWAP_FAIL;
844 		goto out;
845 	}
846 
847 	/*
848 	 * We don't try to search for this page in the nonlinear vmas,
849 	 * and page_referenced wouldn't have found it anyway.  Instead
850 	 * just walk the nonlinear vmas trying to age and unmap some.
851 	 * The mapcount of the page we came in with is irrelevant,
852 	 * but even so use it as a guide to how hard we should try?
853 	 */
854 	mapcount = page_mapcount(page);
855 	if (!mapcount)
856 		goto out;
857 	cond_resched_lock(&mapping->i_mmap_lock);
858 
859 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
860 	if (max_nl_cursor == 0)
861 		max_nl_cursor = CLUSTER_SIZE;
862 
863 	do {
864 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
865 						shared.vm_set.list) {
866 			if ((vma->vm_flags & VM_LOCKED) && !migration)
867 				continue;
868 			cursor = (unsigned long) vma->vm_private_data;
869 			while ( cursor < max_nl_cursor &&
870 				cursor < vma->vm_end - vma->vm_start) {
871 				try_to_unmap_cluster(cursor, &mapcount, vma);
872 				cursor += CLUSTER_SIZE;
873 				vma->vm_private_data = (void *) cursor;
874 				if ((int)mapcount <= 0)
875 					goto out;
876 			}
877 			vma->vm_private_data = (void *) max_nl_cursor;
878 		}
879 		cond_resched_lock(&mapping->i_mmap_lock);
880 		max_nl_cursor += CLUSTER_SIZE;
881 	} while (max_nl_cursor <= max_nl_size);
882 
883 	/*
884 	 * Don't loop forever (perhaps all the remaining pages are
885 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
886 	 * vmas, now forgetting on which ones it had fallen behind.
887 	 */
888 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
889 		vma->vm_private_data = NULL;
890 out:
891 	spin_unlock(&mapping->i_mmap_lock);
892 	return ret;
893 }
894 
895 /**
896  * try_to_unmap - try to remove all page table mappings to a page
897  * @page: the page to get unmapped
898  *
899  * Tries to remove all the page table entries which are mapping this
900  * page, used in the pageout path.  Caller must hold the page lock.
901  * Return values are:
902  *
903  * SWAP_SUCCESS	- we succeeded in removing all mappings
904  * SWAP_AGAIN	- we missed a mapping, try again later
905  * SWAP_FAIL	- the page is unswappable
906  */
907 int try_to_unmap(struct page *page, int migration)
908 {
909 	int ret;
910 
911 	BUG_ON(!PageLocked(page));
912 
913 	if (PageAnon(page))
914 		ret = try_to_unmap_anon(page, migration);
915 	else
916 		ret = try_to_unmap_file(page, migration);
917 
918 	if (!page_mapped(page))
919 		ret = SWAP_SUCCESS;
920 	return ret;
921 }
922 
923