1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 71 } 72 73 void anon_vma_free(struct anon_vma *anon_vma) 74 { 75 kmem_cache_free(anon_vma_cachep, anon_vma); 76 } 77 78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 79 { 80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 81 } 82 83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 84 { 85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 86 } 87 88 /** 89 * anon_vma_prepare - attach an anon_vma to a memory region 90 * @vma: the memory region in question 91 * 92 * This makes sure the memory mapping described by 'vma' has 93 * an 'anon_vma' attached to it, so that we can associate the 94 * anonymous pages mapped into it with that anon_vma. 95 * 96 * The common case will be that we already have one, but if 97 * if not we either need to find an adjacent mapping that we 98 * can re-use the anon_vma from (very common when the only 99 * reason for splitting a vma has been mprotect()), or we 100 * allocate a new one. 101 * 102 * Anon-vma allocations are very subtle, because we may have 103 * optimistically looked up an anon_vma in page_lock_anon_vma() 104 * and that may actually touch the spinlock even in the newly 105 * allocated vma (it depends on RCU to make sure that the 106 * anon_vma isn't actually destroyed). 107 * 108 * As a result, we need to do proper anon_vma locking even 109 * for the new allocation. At the same time, we do not want 110 * to do any locking for the common case of already having 111 * an anon_vma. 112 * 113 * This must be called with the mmap_sem held for reading. 114 */ 115 int anon_vma_prepare(struct vm_area_struct *vma) 116 { 117 struct anon_vma *anon_vma = vma->anon_vma; 118 struct anon_vma_chain *avc; 119 120 might_sleep(); 121 if (unlikely(!anon_vma)) { 122 struct mm_struct *mm = vma->vm_mm; 123 struct anon_vma *allocated; 124 125 avc = anon_vma_chain_alloc(); 126 if (!avc) 127 goto out_enomem; 128 129 anon_vma = find_mergeable_anon_vma(vma); 130 allocated = NULL; 131 if (!anon_vma) { 132 anon_vma = anon_vma_alloc(); 133 if (unlikely(!anon_vma)) 134 goto out_enomem_free_avc; 135 allocated = anon_vma; 136 /* 137 * This VMA had no anon_vma yet. This anon_vma is 138 * the root of any anon_vma tree that might form. 139 */ 140 anon_vma->root = anon_vma; 141 } 142 143 anon_vma_lock(anon_vma); 144 /* page_table_lock to protect against threads */ 145 spin_lock(&mm->page_table_lock); 146 if (likely(!vma->anon_vma)) { 147 vma->anon_vma = anon_vma; 148 avc->anon_vma = anon_vma; 149 avc->vma = vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 152 allocated = NULL; 153 avc = NULL; 154 } 155 spin_unlock(&mm->page_table_lock); 156 anon_vma_unlock(anon_vma); 157 158 if (unlikely(allocated)) 159 anon_vma_free(allocated); 160 if (unlikely(avc)) 161 anon_vma_chain_free(avc); 162 } 163 return 0; 164 165 out_enomem_free_avc: 166 anon_vma_chain_free(avc); 167 out_enomem: 168 return -ENOMEM; 169 } 170 171 static void anon_vma_chain_link(struct vm_area_struct *vma, 172 struct anon_vma_chain *avc, 173 struct anon_vma *anon_vma) 174 { 175 avc->vma = vma; 176 avc->anon_vma = anon_vma; 177 list_add(&avc->same_vma, &vma->anon_vma_chain); 178 179 anon_vma_lock(anon_vma); 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 181 anon_vma_unlock(anon_vma); 182 } 183 184 /* 185 * Attach the anon_vmas from src to dst. 186 * Returns 0 on success, -ENOMEM on failure. 187 */ 188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 189 { 190 struct anon_vma_chain *avc, *pavc; 191 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 193 avc = anon_vma_chain_alloc(); 194 if (!avc) 195 goto enomem_failure; 196 anon_vma_chain_link(dst, avc, pavc->anon_vma); 197 } 198 return 0; 199 200 enomem_failure: 201 unlink_anon_vmas(dst); 202 return -ENOMEM; 203 } 204 205 /* 206 * Attach vma to its own anon_vma, as well as to the anon_vmas that 207 * the corresponding VMA in the parent process is attached to. 208 * Returns 0 on success, non-zero on failure. 209 */ 210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 211 { 212 struct anon_vma_chain *avc; 213 struct anon_vma *anon_vma; 214 215 /* Don't bother if the parent process has no anon_vma here. */ 216 if (!pvma->anon_vma) 217 return 0; 218 219 /* 220 * First, attach the new VMA to the parent VMA's anon_vmas, 221 * so rmap can find non-COWed pages in child processes. 222 */ 223 if (anon_vma_clone(vma, pvma)) 224 return -ENOMEM; 225 226 /* Then add our own anon_vma. */ 227 anon_vma = anon_vma_alloc(); 228 if (!anon_vma) 229 goto out_error; 230 avc = anon_vma_chain_alloc(); 231 if (!avc) 232 goto out_error_free_anon_vma; 233 234 /* 235 * The root anon_vma's spinlock is the lock actually used when we 236 * lock any of the anon_vmas in this anon_vma tree. 237 */ 238 anon_vma->root = pvma->anon_vma->root; 239 /* 240 * With KSM refcounts, an anon_vma can stay around longer than the 241 * process it belongs to. The root anon_vma needs to be pinned 242 * until this anon_vma is freed, because the lock lives in the root. 243 */ 244 get_anon_vma(anon_vma->root); 245 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 246 vma->anon_vma = anon_vma; 247 anon_vma_chain_link(vma, avc, anon_vma); 248 249 return 0; 250 251 out_error_free_anon_vma: 252 anon_vma_free(anon_vma); 253 out_error: 254 unlink_anon_vmas(vma); 255 return -ENOMEM; 256 } 257 258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 259 { 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 261 int empty; 262 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 264 if (!anon_vma) 265 return; 266 267 anon_vma_lock(anon_vma); 268 list_del(&anon_vma_chain->same_anon_vma); 269 270 /* We must garbage collect the anon_vma if it's empty */ 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); 272 anon_vma_unlock(anon_vma); 273 274 if (empty) { 275 /* We no longer need the root anon_vma */ 276 if (anon_vma->root != anon_vma) 277 drop_anon_vma(anon_vma->root); 278 anon_vma_free(anon_vma); 279 } 280 } 281 282 void unlink_anon_vmas(struct vm_area_struct *vma) 283 { 284 struct anon_vma_chain *avc, *next; 285 286 /* 287 * Unlink each anon_vma chained to the VMA. This list is ordered 288 * from newest to oldest, ensuring the root anon_vma gets freed last. 289 */ 290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 291 anon_vma_unlink(avc); 292 list_del(&avc->same_vma); 293 anon_vma_chain_free(avc); 294 } 295 } 296 297 static void anon_vma_ctor(void *data) 298 { 299 struct anon_vma *anon_vma = data; 300 301 spin_lock_init(&anon_vma->lock); 302 anonvma_external_refcount_init(anon_vma); 303 INIT_LIST_HEAD(&anon_vma->head); 304 } 305 306 void __init anon_vma_init(void) 307 { 308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 311 } 312 313 /* 314 * Getting a lock on a stable anon_vma from a page off the LRU is 315 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 316 */ 317 struct anon_vma *page_lock_anon_vma(struct page *page) 318 { 319 struct anon_vma *anon_vma, *root_anon_vma; 320 unsigned long anon_mapping; 321 322 rcu_read_lock(); 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 325 goto out; 326 if (!page_mapped(page)) 327 goto out; 328 329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 330 root_anon_vma = ACCESS_ONCE(anon_vma->root); 331 spin_lock(&root_anon_vma->lock); 332 333 /* 334 * If this page is still mapped, then its anon_vma cannot have been 335 * freed. But if it has been unmapped, we have no security against 336 * the anon_vma structure being freed and reused (for another anon_vma: 337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot 338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting 339 * anon_vma->root before page_unlock_anon_vma() is called to unlock. 340 */ 341 if (page_mapped(page)) 342 return anon_vma; 343 344 spin_unlock(&root_anon_vma->lock); 345 out: 346 rcu_read_unlock(); 347 return NULL; 348 } 349 350 void page_unlock_anon_vma(struct anon_vma *anon_vma) 351 { 352 anon_vma_unlock(anon_vma); 353 rcu_read_unlock(); 354 } 355 356 /* 357 * At what user virtual address is page expected in @vma? 358 * Returns virtual address or -EFAULT if page's index/offset is not 359 * within the range mapped the @vma. 360 */ 361 static inline unsigned long 362 vma_address(struct page *page, struct vm_area_struct *vma) 363 { 364 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 365 unsigned long address; 366 367 if (unlikely(is_vm_hugetlb_page(vma))) 368 pgoff = page->index << huge_page_order(page_hstate(page)); 369 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 370 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 371 /* page should be within @vma mapping range */ 372 return -EFAULT; 373 } 374 return address; 375 } 376 377 /* 378 * At what user virtual address is page expected in vma? 379 * Caller should check the page is actually part of the vma. 380 */ 381 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 382 { 383 if (PageAnon(page)) { 384 if (vma->anon_vma->root != page_anon_vma(page)->root) 385 return -EFAULT; 386 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 387 if (!vma->vm_file || 388 vma->vm_file->f_mapping != page->mapping) 389 return -EFAULT; 390 } else 391 return -EFAULT; 392 return vma_address(page, vma); 393 } 394 395 /* 396 * Check that @page is mapped at @address into @mm. 397 * 398 * If @sync is false, page_check_address may perform a racy check to avoid 399 * the page table lock when the pte is not present (helpful when reclaiming 400 * highly shared pages). 401 * 402 * On success returns with pte mapped and locked. 403 */ 404 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 405 unsigned long address, spinlock_t **ptlp, int sync) 406 { 407 pgd_t *pgd; 408 pud_t *pud; 409 pmd_t *pmd; 410 pte_t *pte; 411 spinlock_t *ptl; 412 413 if (unlikely(PageHuge(page))) { 414 pte = huge_pte_offset(mm, address); 415 ptl = &mm->page_table_lock; 416 goto check; 417 } 418 419 pgd = pgd_offset(mm, address); 420 if (!pgd_present(*pgd)) 421 return NULL; 422 423 pud = pud_offset(pgd, address); 424 if (!pud_present(*pud)) 425 return NULL; 426 427 pmd = pmd_offset(pud, address); 428 if (!pmd_present(*pmd)) 429 return NULL; 430 431 pte = pte_offset_map(pmd, address); 432 /* Make a quick check before getting the lock */ 433 if (!sync && !pte_present(*pte)) { 434 pte_unmap(pte); 435 return NULL; 436 } 437 438 ptl = pte_lockptr(mm, pmd); 439 check: 440 spin_lock(ptl); 441 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 442 *ptlp = ptl; 443 return pte; 444 } 445 pte_unmap_unlock(pte, ptl); 446 return NULL; 447 } 448 449 /** 450 * page_mapped_in_vma - check whether a page is really mapped in a VMA 451 * @page: the page to test 452 * @vma: the VMA to test 453 * 454 * Returns 1 if the page is mapped into the page tables of the VMA, 0 455 * if the page is not mapped into the page tables of this VMA. Only 456 * valid for normal file or anonymous VMAs. 457 */ 458 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 459 { 460 unsigned long address; 461 pte_t *pte; 462 spinlock_t *ptl; 463 464 address = vma_address(page, vma); 465 if (address == -EFAULT) /* out of vma range */ 466 return 0; 467 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 468 if (!pte) /* the page is not in this mm */ 469 return 0; 470 pte_unmap_unlock(pte, ptl); 471 472 return 1; 473 } 474 475 /* 476 * Subfunctions of page_referenced: page_referenced_one called 477 * repeatedly from either page_referenced_anon or page_referenced_file. 478 */ 479 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 480 unsigned long address, unsigned int *mapcount, 481 unsigned long *vm_flags) 482 { 483 struct mm_struct *mm = vma->vm_mm; 484 pte_t *pte; 485 spinlock_t *ptl; 486 int referenced = 0; 487 488 pte = page_check_address(page, mm, address, &ptl, 0); 489 if (!pte) 490 goto out; 491 492 /* 493 * Don't want to elevate referenced for mlocked page that gets this far, 494 * in order that it progresses to try_to_unmap and is moved to the 495 * unevictable list. 496 */ 497 if (vma->vm_flags & VM_LOCKED) { 498 *mapcount = 1; /* break early from loop */ 499 *vm_flags |= VM_LOCKED; 500 goto out_unmap; 501 } 502 503 if (ptep_clear_flush_young_notify(vma, address, pte)) { 504 /* 505 * Don't treat a reference through a sequentially read 506 * mapping as such. If the page has been used in 507 * another mapping, we will catch it; if this other 508 * mapping is already gone, the unmap path will have 509 * set PG_referenced or activated the page. 510 */ 511 if (likely(!VM_SequentialReadHint(vma))) 512 referenced++; 513 } 514 515 /* Pretend the page is referenced if the task has the 516 swap token and is in the middle of a page fault. */ 517 if (mm != current->mm && has_swap_token(mm) && 518 rwsem_is_locked(&mm->mmap_sem)) 519 referenced++; 520 521 out_unmap: 522 (*mapcount)--; 523 pte_unmap_unlock(pte, ptl); 524 525 if (referenced) 526 *vm_flags |= vma->vm_flags; 527 out: 528 return referenced; 529 } 530 531 static int page_referenced_anon(struct page *page, 532 struct mem_cgroup *mem_cont, 533 unsigned long *vm_flags) 534 { 535 unsigned int mapcount; 536 struct anon_vma *anon_vma; 537 struct anon_vma_chain *avc; 538 int referenced = 0; 539 540 anon_vma = page_lock_anon_vma(page); 541 if (!anon_vma) 542 return referenced; 543 544 mapcount = page_mapcount(page); 545 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 546 struct vm_area_struct *vma = avc->vma; 547 unsigned long address = vma_address(page, vma); 548 if (address == -EFAULT) 549 continue; 550 /* 551 * If we are reclaiming on behalf of a cgroup, skip 552 * counting on behalf of references from different 553 * cgroups 554 */ 555 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 556 continue; 557 referenced += page_referenced_one(page, vma, address, 558 &mapcount, vm_flags); 559 if (!mapcount) 560 break; 561 } 562 563 page_unlock_anon_vma(anon_vma); 564 return referenced; 565 } 566 567 /** 568 * page_referenced_file - referenced check for object-based rmap 569 * @page: the page we're checking references on. 570 * @mem_cont: target memory controller 571 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 572 * 573 * For an object-based mapped page, find all the places it is mapped and 574 * check/clear the referenced flag. This is done by following the page->mapping 575 * pointer, then walking the chain of vmas it holds. It returns the number 576 * of references it found. 577 * 578 * This function is only called from page_referenced for object-based pages. 579 */ 580 static int page_referenced_file(struct page *page, 581 struct mem_cgroup *mem_cont, 582 unsigned long *vm_flags) 583 { 584 unsigned int mapcount; 585 struct address_space *mapping = page->mapping; 586 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 587 struct vm_area_struct *vma; 588 struct prio_tree_iter iter; 589 int referenced = 0; 590 591 /* 592 * The caller's checks on page->mapping and !PageAnon have made 593 * sure that this is a file page: the check for page->mapping 594 * excludes the case just before it gets set on an anon page. 595 */ 596 BUG_ON(PageAnon(page)); 597 598 /* 599 * The page lock not only makes sure that page->mapping cannot 600 * suddenly be NULLified by truncation, it makes sure that the 601 * structure at mapping cannot be freed and reused yet, 602 * so we can safely take mapping->i_mmap_lock. 603 */ 604 BUG_ON(!PageLocked(page)); 605 606 spin_lock(&mapping->i_mmap_lock); 607 608 /* 609 * i_mmap_lock does not stabilize mapcount at all, but mapcount 610 * is more likely to be accurate if we note it after spinning. 611 */ 612 mapcount = page_mapcount(page); 613 614 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 615 unsigned long address = vma_address(page, vma); 616 if (address == -EFAULT) 617 continue; 618 /* 619 * If we are reclaiming on behalf of a cgroup, skip 620 * counting on behalf of references from different 621 * cgroups 622 */ 623 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 624 continue; 625 referenced += page_referenced_one(page, vma, address, 626 &mapcount, vm_flags); 627 if (!mapcount) 628 break; 629 } 630 631 spin_unlock(&mapping->i_mmap_lock); 632 return referenced; 633 } 634 635 /** 636 * page_referenced - test if the page was referenced 637 * @page: the page to test 638 * @is_locked: caller holds lock on the page 639 * @mem_cont: target memory controller 640 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 641 * 642 * Quick test_and_clear_referenced for all mappings to a page, 643 * returns the number of ptes which referenced the page. 644 */ 645 int page_referenced(struct page *page, 646 int is_locked, 647 struct mem_cgroup *mem_cont, 648 unsigned long *vm_flags) 649 { 650 int referenced = 0; 651 int we_locked = 0; 652 653 *vm_flags = 0; 654 if (page_mapped(page) && page_rmapping(page)) { 655 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 656 we_locked = trylock_page(page); 657 if (!we_locked) { 658 referenced++; 659 goto out; 660 } 661 } 662 if (unlikely(PageKsm(page))) 663 referenced += page_referenced_ksm(page, mem_cont, 664 vm_flags); 665 else if (PageAnon(page)) 666 referenced += page_referenced_anon(page, mem_cont, 667 vm_flags); 668 else if (page->mapping) 669 referenced += page_referenced_file(page, mem_cont, 670 vm_flags); 671 if (we_locked) 672 unlock_page(page); 673 } 674 out: 675 if (page_test_and_clear_young(page)) 676 referenced++; 677 678 return referenced; 679 } 680 681 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 682 unsigned long address) 683 { 684 struct mm_struct *mm = vma->vm_mm; 685 pte_t *pte; 686 spinlock_t *ptl; 687 int ret = 0; 688 689 pte = page_check_address(page, mm, address, &ptl, 1); 690 if (!pte) 691 goto out; 692 693 if (pte_dirty(*pte) || pte_write(*pte)) { 694 pte_t entry; 695 696 flush_cache_page(vma, address, pte_pfn(*pte)); 697 entry = ptep_clear_flush_notify(vma, address, pte); 698 entry = pte_wrprotect(entry); 699 entry = pte_mkclean(entry); 700 set_pte_at(mm, address, pte, entry); 701 ret = 1; 702 } 703 704 pte_unmap_unlock(pte, ptl); 705 out: 706 return ret; 707 } 708 709 static int page_mkclean_file(struct address_space *mapping, struct page *page) 710 { 711 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 712 struct vm_area_struct *vma; 713 struct prio_tree_iter iter; 714 int ret = 0; 715 716 BUG_ON(PageAnon(page)); 717 718 spin_lock(&mapping->i_mmap_lock); 719 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 720 if (vma->vm_flags & VM_SHARED) { 721 unsigned long address = vma_address(page, vma); 722 if (address == -EFAULT) 723 continue; 724 ret += page_mkclean_one(page, vma, address); 725 } 726 } 727 spin_unlock(&mapping->i_mmap_lock); 728 return ret; 729 } 730 731 int page_mkclean(struct page *page) 732 { 733 int ret = 0; 734 735 BUG_ON(!PageLocked(page)); 736 737 if (page_mapped(page)) { 738 struct address_space *mapping = page_mapping(page); 739 if (mapping) { 740 ret = page_mkclean_file(mapping, page); 741 if (page_test_dirty(page)) { 742 page_clear_dirty(page); 743 ret = 1; 744 } 745 } 746 } 747 748 return ret; 749 } 750 EXPORT_SYMBOL_GPL(page_mkclean); 751 752 /** 753 * page_move_anon_rmap - move a page to our anon_vma 754 * @page: the page to move to our anon_vma 755 * @vma: the vma the page belongs to 756 * @address: the user virtual address mapped 757 * 758 * When a page belongs exclusively to one process after a COW event, 759 * that page can be moved into the anon_vma that belongs to just that 760 * process, so the rmap code will not search the parent or sibling 761 * processes. 762 */ 763 void page_move_anon_rmap(struct page *page, 764 struct vm_area_struct *vma, unsigned long address) 765 { 766 struct anon_vma *anon_vma = vma->anon_vma; 767 768 VM_BUG_ON(!PageLocked(page)); 769 VM_BUG_ON(!anon_vma); 770 VM_BUG_ON(page->index != linear_page_index(vma, address)); 771 772 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 773 page->mapping = (struct address_space *) anon_vma; 774 } 775 776 /** 777 * __page_set_anon_rmap - setup new anonymous rmap 778 * @page: the page to add the mapping to 779 * @vma: the vm area in which the mapping is added 780 * @address: the user virtual address mapped 781 * @exclusive: the page is exclusively owned by the current process 782 */ 783 static void __page_set_anon_rmap(struct page *page, 784 struct vm_area_struct *vma, unsigned long address, int exclusive) 785 { 786 struct anon_vma *anon_vma = vma->anon_vma; 787 788 BUG_ON(!anon_vma); 789 790 /* 791 * If the page isn't exclusively mapped into this vma, 792 * we must use the _oldest_ possible anon_vma for the 793 * page mapping! 794 */ 795 if (!exclusive) { 796 if (PageAnon(page)) 797 return; 798 anon_vma = anon_vma->root; 799 } else { 800 /* 801 * In this case, swapped-out-but-not-discarded swap-cache 802 * is remapped. So, no need to update page->mapping here. 803 * We convice anon_vma poitned by page->mapping is not obsolete 804 * because vma->anon_vma is necessary to be a family of it. 805 */ 806 if (PageAnon(page)) 807 return; 808 } 809 810 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 811 page->mapping = (struct address_space *) anon_vma; 812 page->index = linear_page_index(vma, address); 813 } 814 815 /** 816 * __page_check_anon_rmap - sanity check anonymous rmap addition 817 * @page: the page to add the mapping to 818 * @vma: the vm area in which the mapping is added 819 * @address: the user virtual address mapped 820 */ 821 static void __page_check_anon_rmap(struct page *page, 822 struct vm_area_struct *vma, unsigned long address) 823 { 824 #ifdef CONFIG_DEBUG_VM 825 /* 826 * The page's anon-rmap details (mapping and index) are guaranteed to 827 * be set up correctly at this point. 828 * 829 * We have exclusion against page_add_anon_rmap because the caller 830 * always holds the page locked, except if called from page_dup_rmap, 831 * in which case the page is already known to be setup. 832 * 833 * We have exclusion against page_add_new_anon_rmap because those pages 834 * are initially only visible via the pagetables, and the pte is locked 835 * over the call to page_add_new_anon_rmap. 836 */ 837 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 838 BUG_ON(page->index != linear_page_index(vma, address)); 839 #endif 840 } 841 842 /** 843 * page_add_anon_rmap - add pte mapping to an anonymous page 844 * @page: the page to add the mapping to 845 * @vma: the vm area in which the mapping is added 846 * @address: the user virtual address mapped 847 * 848 * The caller needs to hold the pte lock, and the page must be locked in 849 * the anon_vma case: to serialize mapping,index checking after setting, 850 * and to ensure that PageAnon is not being upgraded racily to PageKsm 851 * (but PageKsm is never downgraded to PageAnon). 852 */ 853 void page_add_anon_rmap(struct page *page, 854 struct vm_area_struct *vma, unsigned long address) 855 { 856 do_page_add_anon_rmap(page, vma, address, 0); 857 } 858 859 /* 860 * Special version of the above for do_swap_page, which often runs 861 * into pages that are exclusively owned by the current process. 862 * Everybody else should continue to use page_add_anon_rmap above. 863 */ 864 void do_page_add_anon_rmap(struct page *page, 865 struct vm_area_struct *vma, unsigned long address, int exclusive) 866 { 867 int first = atomic_inc_and_test(&page->_mapcount); 868 if (first) 869 __inc_zone_page_state(page, NR_ANON_PAGES); 870 if (unlikely(PageKsm(page))) 871 return; 872 873 VM_BUG_ON(!PageLocked(page)); 874 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 875 if (first) 876 __page_set_anon_rmap(page, vma, address, exclusive); 877 else 878 __page_check_anon_rmap(page, vma, address); 879 } 880 881 /** 882 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 883 * @page: the page to add the mapping to 884 * @vma: the vm area in which the mapping is added 885 * @address: the user virtual address mapped 886 * 887 * Same as page_add_anon_rmap but must only be called on *new* pages. 888 * This means the inc-and-test can be bypassed. 889 * Page does not have to be locked. 890 */ 891 void page_add_new_anon_rmap(struct page *page, 892 struct vm_area_struct *vma, unsigned long address) 893 { 894 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 895 SetPageSwapBacked(page); 896 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 897 __inc_zone_page_state(page, NR_ANON_PAGES); 898 __page_set_anon_rmap(page, vma, address, 1); 899 if (page_evictable(page, vma)) 900 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 901 else 902 add_page_to_unevictable_list(page); 903 } 904 905 /** 906 * page_add_file_rmap - add pte mapping to a file page 907 * @page: the page to add the mapping to 908 * 909 * The caller needs to hold the pte lock. 910 */ 911 void page_add_file_rmap(struct page *page) 912 { 913 if (atomic_inc_and_test(&page->_mapcount)) { 914 __inc_zone_page_state(page, NR_FILE_MAPPED); 915 mem_cgroup_update_file_mapped(page, 1); 916 } 917 } 918 919 /** 920 * page_remove_rmap - take down pte mapping from a page 921 * @page: page to remove mapping from 922 * 923 * The caller needs to hold the pte lock. 924 */ 925 void page_remove_rmap(struct page *page) 926 { 927 /* page still mapped by someone else? */ 928 if (!atomic_add_negative(-1, &page->_mapcount)) 929 return; 930 931 /* 932 * Now that the last pte has gone, s390 must transfer dirty 933 * flag from storage key to struct page. We can usually skip 934 * this if the page is anon, so about to be freed; but perhaps 935 * not if it's in swapcache - there might be another pte slot 936 * containing the swap entry, but page not yet written to swap. 937 */ 938 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 939 page_clear_dirty(page); 940 set_page_dirty(page); 941 } 942 /* 943 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 944 * and not charged by memcg for now. 945 */ 946 if (unlikely(PageHuge(page))) 947 return; 948 if (PageAnon(page)) { 949 mem_cgroup_uncharge_page(page); 950 __dec_zone_page_state(page, NR_ANON_PAGES); 951 } else { 952 __dec_zone_page_state(page, NR_FILE_MAPPED); 953 mem_cgroup_update_file_mapped(page, -1); 954 } 955 /* 956 * It would be tidy to reset the PageAnon mapping here, 957 * but that might overwrite a racing page_add_anon_rmap 958 * which increments mapcount after us but sets mapping 959 * before us: so leave the reset to free_hot_cold_page, 960 * and remember that it's only reliable while mapped. 961 * Leaving it set also helps swapoff to reinstate ptes 962 * faster for those pages still in swapcache. 963 */ 964 } 965 966 /* 967 * Subfunctions of try_to_unmap: try_to_unmap_one called 968 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 969 */ 970 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 971 unsigned long address, enum ttu_flags flags) 972 { 973 struct mm_struct *mm = vma->vm_mm; 974 pte_t *pte; 975 pte_t pteval; 976 spinlock_t *ptl; 977 int ret = SWAP_AGAIN; 978 979 pte = page_check_address(page, mm, address, &ptl, 0); 980 if (!pte) 981 goto out; 982 983 /* 984 * If the page is mlock()d, we cannot swap it out. 985 * If it's recently referenced (perhaps page_referenced 986 * skipped over this mm) then we should reactivate it. 987 */ 988 if (!(flags & TTU_IGNORE_MLOCK)) { 989 if (vma->vm_flags & VM_LOCKED) 990 goto out_mlock; 991 992 if (TTU_ACTION(flags) == TTU_MUNLOCK) 993 goto out_unmap; 994 } 995 if (!(flags & TTU_IGNORE_ACCESS)) { 996 if (ptep_clear_flush_young_notify(vma, address, pte)) { 997 ret = SWAP_FAIL; 998 goto out_unmap; 999 } 1000 } 1001 1002 /* Nuke the page table entry. */ 1003 flush_cache_page(vma, address, page_to_pfn(page)); 1004 pteval = ptep_clear_flush_notify(vma, address, pte); 1005 1006 /* Move the dirty bit to the physical page now the pte is gone. */ 1007 if (pte_dirty(pteval)) 1008 set_page_dirty(page); 1009 1010 /* Update high watermark before we lower rss */ 1011 update_hiwater_rss(mm); 1012 1013 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1014 if (PageAnon(page)) 1015 dec_mm_counter(mm, MM_ANONPAGES); 1016 else 1017 dec_mm_counter(mm, MM_FILEPAGES); 1018 set_pte_at(mm, address, pte, 1019 swp_entry_to_pte(make_hwpoison_entry(page))); 1020 } else if (PageAnon(page)) { 1021 swp_entry_t entry = { .val = page_private(page) }; 1022 1023 if (PageSwapCache(page)) { 1024 /* 1025 * Store the swap location in the pte. 1026 * See handle_pte_fault() ... 1027 */ 1028 if (swap_duplicate(entry) < 0) { 1029 set_pte_at(mm, address, pte, pteval); 1030 ret = SWAP_FAIL; 1031 goto out_unmap; 1032 } 1033 if (list_empty(&mm->mmlist)) { 1034 spin_lock(&mmlist_lock); 1035 if (list_empty(&mm->mmlist)) 1036 list_add(&mm->mmlist, &init_mm.mmlist); 1037 spin_unlock(&mmlist_lock); 1038 } 1039 dec_mm_counter(mm, MM_ANONPAGES); 1040 inc_mm_counter(mm, MM_SWAPENTS); 1041 } else if (PAGE_MIGRATION) { 1042 /* 1043 * Store the pfn of the page in a special migration 1044 * pte. do_swap_page() will wait until the migration 1045 * pte is removed and then restart fault handling. 1046 */ 1047 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1048 entry = make_migration_entry(page, pte_write(pteval)); 1049 } 1050 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1051 BUG_ON(pte_file(*pte)); 1052 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1053 /* Establish migration entry for a file page */ 1054 swp_entry_t entry; 1055 entry = make_migration_entry(page, pte_write(pteval)); 1056 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1057 } else 1058 dec_mm_counter(mm, MM_FILEPAGES); 1059 1060 page_remove_rmap(page); 1061 page_cache_release(page); 1062 1063 out_unmap: 1064 pte_unmap_unlock(pte, ptl); 1065 out: 1066 return ret; 1067 1068 out_mlock: 1069 pte_unmap_unlock(pte, ptl); 1070 1071 1072 /* 1073 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1074 * unstable result and race. Plus, We can't wait here because 1075 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1076 * if trylock failed, the page remain in evictable lru and later 1077 * vmscan could retry to move the page to unevictable lru if the 1078 * page is actually mlocked. 1079 */ 1080 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1081 if (vma->vm_flags & VM_LOCKED) { 1082 mlock_vma_page(page); 1083 ret = SWAP_MLOCK; 1084 } 1085 up_read(&vma->vm_mm->mmap_sem); 1086 } 1087 return ret; 1088 } 1089 1090 /* 1091 * objrmap doesn't work for nonlinear VMAs because the assumption that 1092 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1093 * Consequently, given a particular page and its ->index, we cannot locate the 1094 * ptes which are mapping that page without an exhaustive linear search. 1095 * 1096 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1097 * maps the file to which the target page belongs. The ->vm_private_data field 1098 * holds the current cursor into that scan. Successive searches will circulate 1099 * around the vma's virtual address space. 1100 * 1101 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1102 * more scanning pressure is placed against them as well. Eventually pages 1103 * will become fully unmapped and are eligible for eviction. 1104 * 1105 * For very sparsely populated VMAs this is a little inefficient - chances are 1106 * there there won't be many ptes located within the scan cluster. In this case 1107 * maybe we could scan further - to the end of the pte page, perhaps. 1108 * 1109 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1110 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1111 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1112 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1113 */ 1114 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1115 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1116 1117 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1118 struct vm_area_struct *vma, struct page *check_page) 1119 { 1120 struct mm_struct *mm = vma->vm_mm; 1121 pgd_t *pgd; 1122 pud_t *pud; 1123 pmd_t *pmd; 1124 pte_t *pte; 1125 pte_t pteval; 1126 spinlock_t *ptl; 1127 struct page *page; 1128 unsigned long address; 1129 unsigned long end; 1130 int ret = SWAP_AGAIN; 1131 int locked_vma = 0; 1132 1133 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1134 end = address + CLUSTER_SIZE; 1135 if (address < vma->vm_start) 1136 address = vma->vm_start; 1137 if (end > vma->vm_end) 1138 end = vma->vm_end; 1139 1140 pgd = pgd_offset(mm, address); 1141 if (!pgd_present(*pgd)) 1142 return ret; 1143 1144 pud = pud_offset(pgd, address); 1145 if (!pud_present(*pud)) 1146 return ret; 1147 1148 pmd = pmd_offset(pud, address); 1149 if (!pmd_present(*pmd)) 1150 return ret; 1151 1152 /* 1153 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1154 * keep the sem while scanning the cluster for mlocking pages. 1155 */ 1156 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1157 locked_vma = (vma->vm_flags & VM_LOCKED); 1158 if (!locked_vma) 1159 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1160 } 1161 1162 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1163 1164 /* Update high watermark before we lower rss */ 1165 update_hiwater_rss(mm); 1166 1167 for (; address < end; pte++, address += PAGE_SIZE) { 1168 if (!pte_present(*pte)) 1169 continue; 1170 page = vm_normal_page(vma, address, *pte); 1171 BUG_ON(!page || PageAnon(page)); 1172 1173 if (locked_vma) { 1174 mlock_vma_page(page); /* no-op if already mlocked */ 1175 if (page == check_page) 1176 ret = SWAP_MLOCK; 1177 continue; /* don't unmap */ 1178 } 1179 1180 if (ptep_clear_flush_young_notify(vma, address, pte)) 1181 continue; 1182 1183 /* Nuke the page table entry. */ 1184 flush_cache_page(vma, address, pte_pfn(*pte)); 1185 pteval = ptep_clear_flush_notify(vma, address, pte); 1186 1187 /* If nonlinear, store the file page offset in the pte. */ 1188 if (page->index != linear_page_index(vma, address)) 1189 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1190 1191 /* Move the dirty bit to the physical page now the pte is gone. */ 1192 if (pte_dirty(pteval)) 1193 set_page_dirty(page); 1194 1195 page_remove_rmap(page); 1196 page_cache_release(page); 1197 dec_mm_counter(mm, MM_FILEPAGES); 1198 (*mapcount)--; 1199 } 1200 pte_unmap_unlock(pte - 1, ptl); 1201 if (locked_vma) 1202 up_read(&vma->vm_mm->mmap_sem); 1203 return ret; 1204 } 1205 1206 static bool is_vma_temporary_stack(struct vm_area_struct *vma) 1207 { 1208 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1209 1210 if (!maybe_stack) 1211 return false; 1212 1213 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1214 VM_STACK_INCOMPLETE_SETUP) 1215 return true; 1216 1217 return false; 1218 } 1219 1220 /** 1221 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1222 * rmap method 1223 * @page: the page to unmap/unlock 1224 * @flags: action and flags 1225 * 1226 * Find all the mappings of a page using the mapping pointer and the vma chains 1227 * contained in the anon_vma struct it points to. 1228 * 1229 * This function is only called from try_to_unmap/try_to_munlock for 1230 * anonymous pages. 1231 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1232 * where the page was found will be held for write. So, we won't recheck 1233 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1234 * 'LOCKED. 1235 */ 1236 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1237 { 1238 struct anon_vma *anon_vma; 1239 struct anon_vma_chain *avc; 1240 int ret = SWAP_AGAIN; 1241 1242 anon_vma = page_lock_anon_vma(page); 1243 if (!anon_vma) 1244 return ret; 1245 1246 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1247 struct vm_area_struct *vma = avc->vma; 1248 unsigned long address; 1249 1250 /* 1251 * During exec, a temporary VMA is setup and later moved. 1252 * The VMA is moved under the anon_vma lock but not the 1253 * page tables leading to a race where migration cannot 1254 * find the migration ptes. Rather than increasing the 1255 * locking requirements of exec(), migration skips 1256 * temporary VMAs until after exec() completes. 1257 */ 1258 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1259 is_vma_temporary_stack(vma)) 1260 continue; 1261 1262 address = vma_address(page, vma); 1263 if (address == -EFAULT) 1264 continue; 1265 ret = try_to_unmap_one(page, vma, address, flags); 1266 if (ret != SWAP_AGAIN || !page_mapped(page)) 1267 break; 1268 } 1269 1270 page_unlock_anon_vma(anon_vma); 1271 return ret; 1272 } 1273 1274 /** 1275 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1276 * @page: the page to unmap/unlock 1277 * @flags: action and flags 1278 * 1279 * Find all the mappings of a page using the mapping pointer and the vma chains 1280 * contained in the address_space struct it points to. 1281 * 1282 * This function is only called from try_to_unmap/try_to_munlock for 1283 * object-based pages. 1284 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1285 * where the page was found will be held for write. So, we won't recheck 1286 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1287 * 'LOCKED. 1288 */ 1289 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1290 { 1291 struct address_space *mapping = page->mapping; 1292 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1293 struct vm_area_struct *vma; 1294 struct prio_tree_iter iter; 1295 int ret = SWAP_AGAIN; 1296 unsigned long cursor; 1297 unsigned long max_nl_cursor = 0; 1298 unsigned long max_nl_size = 0; 1299 unsigned int mapcount; 1300 1301 spin_lock(&mapping->i_mmap_lock); 1302 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1303 unsigned long address = vma_address(page, vma); 1304 if (address == -EFAULT) 1305 continue; 1306 ret = try_to_unmap_one(page, vma, address, flags); 1307 if (ret != SWAP_AGAIN || !page_mapped(page)) 1308 goto out; 1309 } 1310 1311 if (list_empty(&mapping->i_mmap_nonlinear)) 1312 goto out; 1313 1314 /* 1315 * We don't bother to try to find the munlocked page in nonlinears. 1316 * It's costly. Instead, later, page reclaim logic may call 1317 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1318 */ 1319 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1320 goto out; 1321 1322 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1323 shared.vm_set.list) { 1324 cursor = (unsigned long) vma->vm_private_data; 1325 if (cursor > max_nl_cursor) 1326 max_nl_cursor = cursor; 1327 cursor = vma->vm_end - vma->vm_start; 1328 if (cursor > max_nl_size) 1329 max_nl_size = cursor; 1330 } 1331 1332 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1333 ret = SWAP_FAIL; 1334 goto out; 1335 } 1336 1337 /* 1338 * We don't try to search for this page in the nonlinear vmas, 1339 * and page_referenced wouldn't have found it anyway. Instead 1340 * just walk the nonlinear vmas trying to age and unmap some. 1341 * The mapcount of the page we came in with is irrelevant, 1342 * but even so use it as a guide to how hard we should try? 1343 */ 1344 mapcount = page_mapcount(page); 1345 if (!mapcount) 1346 goto out; 1347 cond_resched_lock(&mapping->i_mmap_lock); 1348 1349 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1350 if (max_nl_cursor == 0) 1351 max_nl_cursor = CLUSTER_SIZE; 1352 1353 do { 1354 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1355 shared.vm_set.list) { 1356 cursor = (unsigned long) vma->vm_private_data; 1357 while ( cursor < max_nl_cursor && 1358 cursor < vma->vm_end - vma->vm_start) { 1359 if (try_to_unmap_cluster(cursor, &mapcount, 1360 vma, page) == SWAP_MLOCK) 1361 ret = SWAP_MLOCK; 1362 cursor += CLUSTER_SIZE; 1363 vma->vm_private_data = (void *) cursor; 1364 if ((int)mapcount <= 0) 1365 goto out; 1366 } 1367 vma->vm_private_data = (void *) max_nl_cursor; 1368 } 1369 cond_resched_lock(&mapping->i_mmap_lock); 1370 max_nl_cursor += CLUSTER_SIZE; 1371 } while (max_nl_cursor <= max_nl_size); 1372 1373 /* 1374 * Don't loop forever (perhaps all the remaining pages are 1375 * in locked vmas). Reset cursor on all unreserved nonlinear 1376 * vmas, now forgetting on which ones it had fallen behind. 1377 */ 1378 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1379 vma->vm_private_data = NULL; 1380 out: 1381 spin_unlock(&mapping->i_mmap_lock); 1382 return ret; 1383 } 1384 1385 /** 1386 * try_to_unmap - try to remove all page table mappings to a page 1387 * @page: the page to get unmapped 1388 * @flags: action and flags 1389 * 1390 * Tries to remove all the page table entries which are mapping this 1391 * page, used in the pageout path. Caller must hold the page lock. 1392 * Return values are: 1393 * 1394 * SWAP_SUCCESS - we succeeded in removing all mappings 1395 * SWAP_AGAIN - we missed a mapping, try again later 1396 * SWAP_FAIL - the page is unswappable 1397 * SWAP_MLOCK - page is mlocked. 1398 */ 1399 int try_to_unmap(struct page *page, enum ttu_flags flags) 1400 { 1401 int ret; 1402 1403 BUG_ON(!PageLocked(page)); 1404 1405 if (unlikely(PageKsm(page))) 1406 ret = try_to_unmap_ksm(page, flags); 1407 else if (PageAnon(page)) 1408 ret = try_to_unmap_anon(page, flags); 1409 else 1410 ret = try_to_unmap_file(page, flags); 1411 if (ret != SWAP_MLOCK && !page_mapped(page)) 1412 ret = SWAP_SUCCESS; 1413 return ret; 1414 } 1415 1416 /** 1417 * try_to_munlock - try to munlock a page 1418 * @page: the page to be munlocked 1419 * 1420 * Called from munlock code. Checks all of the VMAs mapping the page 1421 * to make sure nobody else has this page mlocked. The page will be 1422 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1423 * 1424 * Return values are: 1425 * 1426 * SWAP_AGAIN - no vma is holding page mlocked, or, 1427 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1428 * SWAP_FAIL - page cannot be located at present 1429 * SWAP_MLOCK - page is now mlocked. 1430 */ 1431 int try_to_munlock(struct page *page) 1432 { 1433 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1434 1435 if (unlikely(PageKsm(page))) 1436 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1437 else if (PageAnon(page)) 1438 return try_to_unmap_anon(page, TTU_MUNLOCK); 1439 else 1440 return try_to_unmap_file(page, TTU_MUNLOCK); 1441 } 1442 1443 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) 1444 /* 1445 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root 1446 * if necessary. Be careful to do all the tests under the lock. Once 1447 * we know we are the last user, nobody else can get a reference and we 1448 * can do the freeing without the lock. 1449 */ 1450 void drop_anon_vma(struct anon_vma *anon_vma) 1451 { 1452 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); 1453 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { 1454 struct anon_vma *root = anon_vma->root; 1455 int empty = list_empty(&anon_vma->head); 1456 int last_root_user = 0; 1457 int root_empty = 0; 1458 1459 /* 1460 * The refcount on a non-root anon_vma got dropped. Drop 1461 * the refcount on the root and check if we need to free it. 1462 */ 1463 if (empty && anon_vma != root) { 1464 BUG_ON(atomic_read(&root->external_refcount) <= 0); 1465 last_root_user = atomic_dec_and_test(&root->external_refcount); 1466 root_empty = list_empty(&root->head); 1467 } 1468 anon_vma_unlock(anon_vma); 1469 1470 if (empty) { 1471 anon_vma_free(anon_vma); 1472 if (root_empty && last_root_user) 1473 anon_vma_free(root); 1474 } 1475 } 1476 } 1477 #endif 1478 1479 #ifdef CONFIG_MIGRATION 1480 /* 1481 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1482 * Called by migrate.c to remove migration ptes, but might be used more later. 1483 */ 1484 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1485 struct vm_area_struct *, unsigned long, void *), void *arg) 1486 { 1487 struct anon_vma *anon_vma; 1488 struct anon_vma_chain *avc; 1489 int ret = SWAP_AGAIN; 1490 1491 /* 1492 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1493 * because that depends on page_mapped(); but not all its usages 1494 * are holding mmap_sem. Users without mmap_sem are required to 1495 * take a reference count to prevent the anon_vma disappearing 1496 */ 1497 anon_vma = page_anon_vma(page); 1498 if (!anon_vma) 1499 return ret; 1500 anon_vma_lock(anon_vma); 1501 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1502 struct vm_area_struct *vma = avc->vma; 1503 unsigned long address = vma_address(page, vma); 1504 if (address == -EFAULT) 1505 continue; 1506 ret = rmap_one(page, vma, address, arg); 1507 if (ret != SWAP_AGAIN) 1508 break; 1509 } 1510 anon_vma_unlock(anon_vma); 1511 return ret; 1512 } 1513 1514 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1515 struct vm_area_struct *, unsigned long, void *), void *arg) 1516 { 1517 struct address_space *mapping = page->mapping; 1518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1519 struct vm_area_struct *vma; 1520 struct prio_tree_iter iter; 1521 int ret = SWAP_AGAIN; 1522 1523 if (!mapping) 1524 return ret; 1525 spin_lock(&mapping->i_mmap_lock); 1526 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1527 unsigned long address = vma_address(page, vma); 1528 if (address == -EFAULT) 1529 continue; 1530 ret = rmap_one(page, vma, address, arg); 1531 if (ret != SWAP_AGAIN) 1532 break; 1533 } 1534 /* 1535 * No nonlinear handling: being always shared, nonlinear vmas 1536 * never contain migration ptes. Decide what to do about this 1537 * limitation to linear when we need rmap_walk() on nonlinear. 1538 */ 1539 spin_unlock(&mapping->i_mmap_lock); 1540 return ret; 1541 } 1542 1543 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1544 struct vm_area_struct *, unsigned long, void *), void *arg) 1545 { 1546 VM_BUG_ON(!PageLocked(page)); 1547 1548 if (unlikely(PageKsm(page))) 1549 return rmap_walk_ksm(page, rmap_one, arg); 1550 else if (PageAnon(page)) 1551 return rmap_walk_anon(page, rmap_one, arg); 1552 else 1553 return rmap_walk_file(page, rmap_one, arg); 1554 } 1555 #endif /* CONFIG_MIGRATION */ 1556 1557 #ifdef CONFIG_HUGETLB_PAGE 1558 /* 1559 * The following three functions are for anonymous (private mapped) hugepages. 1560 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1561 * and no lru code, because we handle hugepages differently from common pages. 1562 */ 1563 static void __hugepage_set_anon_rmap(struct page *page, 1564 struct vm_area_struct *vma, unsigned long address, int exclusive) 1565 { 1566 struct anon_vma *anon_vma = vma->anon_vma; 1567 BUG_ON(!anon_vma); 1568 if (!exclusive) { 1569 struct anon_vma_chain *avc; 1570 avc = list_entry(vma->anon_vma_chain.prev, 1571 struct anon_vma_chain, same_vma); 1572 anon_vma = avc->anon_vma; 1573 } 1574 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1575 page->mapping = (struct address_space *) anon_vma; 1576 page->index = linear_page_index(vma, address); 1577 } 1578 1579 void hugepage_add_anon_rmap(struct page *page, 1580 struct vm_area_struct *vma, unsigned long address) 1581 { 1582 struct anon_vma *anon_vma = vma->anon_vma; 1583 int first; 1584 BUG_ON(!anon_vma); 1585 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1586 first = atomic_inc_and_test(&page->_mapcount); 1587 if (first) 1588 __hugepage_set_anon_rmap(page, vma, address, 0); 1589 } 1590 1591 void hugepage_add_new_anon_rmap(struct page *page, 1592 struct vm_area_struct *vma, unsigned long address) 1593 { 1594 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1595 atomic_set(&page->_mapcount, 0); 1596 __hugepage_set_anon_rmap(page, vma, address, 1); 1597 } 1598 #endif /* CONFIG_HUGETLB_PAGE */ 1599