xref: /linux/mm/rmap.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * if not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 	anon_vma_unlock(anon_vma);
182 }
183 
184 /*
185  * Attach the anon_vmas from src to dst.
186  * Returns 0 on success, -ENOMEM on failure.
187  */
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 {
190 	struct anon_vma_chain *avc, *pavc;
191 
192 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 		avc = anon_vma_chain_alloc();
194 		if (!avc)
195 			goto enomem_failure;
196 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 	}
198 	return 0;
199 
200  enomem_failure:
201 	unlink_anon_vmas(dst);
202 	return -ENOMEM;
203 }
204 
205 /*
206  * Attach vma to its own anon_vma, as well as to the anon_vmas that
207  * the corresponding VMA in the parent process is attached to.
208  * Returns 0 on success, non-zero on failure.
209  */
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 {
212 	struct anon_vma_chain *avc;
213 	struct anon_vma *anon_vma;
214 
215 	/* Don't bother if the parent process has no anon_vma here. */
216 	if (!pvma->anon_vma)
217 		return 0;
218 
219 	/*
220 	 * First, attach the new VMA to the parent VMA's anon_vmas,
221 	 * so rmap can find non-COWed pages in child processes.
222 	 */
223 	if (anon_vma_clone(vma, pvma))
224 		return -ENOMEM;
225 
226 	/* Then add our own anon_vma. */
227 	anon_vma = anon_vma_alloc();
228 	if (!anon_vma)
229 		goto out_error;
230 	avc = anon_vma_chain_alloc();
231 	if (!avc)
232 		goto out_error_free_anon_vma;
233 
234 	/*
235 	 * The root anon_vma's spinlock is the lock actually used when we
236 	 * lock any of the anon_vmas in this anon_vma tree.
237 	 */
238 	anon_vma->root = pvma->anon_vma->root;
239 	/*
240 	 * With KSM refcounts, an anon_vma can stay around longer than the
241 	 * process it belongs to.  The root anon_vma needs to be pinned
242 	 * until this anon_vma is freed, because the lock lives in the root.
243 	 */
244 	get_anon_vma(anon_vma->root);
245 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
246 	vma->anon_vma = anon_vma;
247 	anon_vma_chain_link(vma, avc, anon_vma);
248 
249 	return 0;
250 
251  out_error_free_anon_vma:
252 	anon_vma_free(anon_vma);
253  out_error:
254 	unlink_anon_vmas(vma);
255 	return -ENOMEM;
256 }
257 
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 {
260 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 	int empty;
262 
263 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 	if (!anon_vma)
265 		return;
266 
267 	anon_vma_lock(anon_vma);
268 	list_del(&anon_vma_chain->same_anon_vma);
269 
270 	/* We must garbage collect the anon_vma if it's empty */
271 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 	anon_vma_unlock(anon_vma);
273 
274 	if (empty) {
275 		/* We no longer need the root anon_vma */
276 		if (anon_vma->root != anon_vma)
277 			drop_anon_vma(anon_vma->root);
278 		anon_vma_free(anon_vma);
279 	}
280 }
281 
282 void unlink_anon_vmas(struct vm_area_struct *vma)
283 {
284 	struct anon_vma_chain *avc, *next;
285 
286 	/*
287 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
288 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 	 */
290 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 		anon_vma_unlink(avc);
292 		list_del(&avc->same_vma);
293 		anon_vma_chain_free(avc);
294 	}
295 }
296 
297 static void anon_vma_ctor(void *data)
298 {
299 	struct anon_vma *anon_vma = data;
300 
301 	spin_lock_init(&anon_vma->lock);
302 	anonvma_external_refcount_init(anon_vma);
303 	INIT_LIST_HEAD(&anon_vma->head);
304 }
305 
306 void __init anon_vma_init(void)
307 {
308 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
311 }
312 
313 /*
314  * Getting a lock on a stable anon_vma from a page off the LRU is
315  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316  */
317 struct anon_vma *page_lock_anon_vma(struct page *page)
318 {
319 	struct anon_vma *anon_vma, *root_anon_vma;
320 	unsigned long anon_mapping;
321 
322 	rcu_read_lock();
323 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 		goto out;
326 	if (!page_mapped(page))
327 		goto out;
328 
329 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 	spin_lock(&root_anon_vma->lock);
332 
333 	/*
334 	 * If this page is still mapped, then its anon_vma cannot have been
335 	 * freed.  But if it has been unmapped, we have no security against
336 	 * the anon_vma structure being freed and reused (for another anon_vma:
337 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340 	 */
341 	if (page_mapped(page))
342 		return anon_vma;
343 
344 	spin_unlock(&root_anon_vma->lock);
345 out:
346 	rcu_read_unlock();
347 	return NULL;
348 }
349 
350 void page_unlock_anon_vma(struct anon_vma *anon_vma)
351 {
352 	anon_vma_unlock(anon_vma);
353 	rcu_read_unlock();
354 }
355 
356 /*
357  * At what user virtual address is page expected in @vma?
358  * Returns virtual address or -EFAULT if page's index/offset is not
359  * within the range mapped the @vma.
360  */
361 static inline unsigned long
362 vma_address(struct page *page, struct vm_area_struct *vma)
363 {
364 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
365 	unsigned long address;
366 
367 	if (unlikely(is_vm_hugetlb_page(vma)))
368 		pgoff = page->index << huge_page_order(page_hstate(page));
369 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
370 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
371 		/* page should be within @vma mapping range */
372 		return -EFAULT;
373 	}
374 	return address;
375 }
376 
377 /*
378  * At what user virtual address is page expected in vma?
379  * Caller should check the page is actually part of the vma.
380  */
381 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
382 {
383 	if (PageAnon(page)) {
384 		if (vma->anon_vma->root != page_anon_vma(page)->root)
385 			return -EFAULT;
386 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
387 		if (!vma->vm_file ||
388 		    vma->vm_file->f_mapping != page->mapping)
389 			return -EFAULT;
390 	} else
391 		return -EFAULT;
392 	return vma_address(page, vma);
393 }
394 
395 /*
396  * Check that @page is mapped at @address into @mm.
397  *
398  * If @sync is false, page_check_address may perform a racy check to avoid
399  * the page table lock when the pte is not present (helpful when reclaiming
400  * highly shared pages).
401  *
402  * On success returns with pte mapped and locked.
403  */
404 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
405 			  unsigned long address, spinlock_t **ptlp, int sync)
406 {
407 	pgd_t *pgd;
408 	pud_t *pud;
409 	pmd_t *pmd;
410 	pte_t *pte;
411 	spinlock_t *ptl;
412 
413 	if (unlikely(PageHuge(page))) {
414 		pte = huge_pte_offset(mm, address);
415 		ptl = &mm->page_table_lock;
416 		goto check;
417 	}
418 
419 	pgd = pgd_offset(mm, address);
420 	if (!pgd_present(*pgd))
421 		return NULL;
422 
423 	pud = pud_offset(pgd, address);
424 	if (!pud_present(*pud))
425 		return NULL;
426 
427 	pmd = pmd_offset(pud, address);
428 	if (!pmd_present(*pmd))
429 		return NULL;
430 
431 	pte = pte_offset_map(pmd, address);
432 	/* Make a quick check before getting the lock */
433 	if (!sync && !pte_present(*pte)) {
434 		pte_unmap(pte);
435 		return NULL;
436 	}
437 
438 	ptl = pte_lockptr(mm, pmd);
439 check:
440 	spin_lock(ptl);
441 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
442 		*ptlp = ptl;
443 		return pte;
444 	}
445 	pte_unmap_unlock(pte, ptl);
446 	return NULL;
447 }
448 
449 /**
450  * page_mapped_in_vma - check whether a page is really mapped in a VMA
451  * @page: the page to test
452  * @vma: the VMA to test
453  *
454  * Returns 1 if the page is mapped into the page tables of the VMA, 0
455  * if the page is not mapped into the page tables of this VMA.  Only
456  * valid for normal file or anonymous VMAs.
457  */
458 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
459 {
460 	unsigned long address;
461 	pte_t *pte;
462 	spinlock_t *ptl;
463 
464 	address = vma_address(page, vma);
465 	if (address == -EFAULT)		/* out of vma range */
466 		return 0;
467 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
468 	if (!pte)			/* the page is not in this mm */
469 		return 0;
470 	pte_unmap_unlock(pte, ptl);
471 
472 	return 1;
473 }
474 
475 /*
476  * Subfunctions of page_referenced: page_referenced_one called
477  * repeatedly from either page_referenced_anon or page_referenced_file.
478  */
479 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
480 			unsigned long address, unsigned int *mapcount,
481 			unsigned long *vm_flags)
482 {
483 	struct mm_struct *mm = vma->vm_mm;
484 	pte_t *pte;
485 	spinlock_t *ptl;
486 	int referenced = 0;
487 
488 	pte = page_check_address(page, mm, address, &ptl, 0);
489 	if (!pte)
490 		goto out;
491 
492 	/*
493 	 * Don't want to elevate referenced for mlocked page that gets this far,
494 	 * in order that it progresses to try_to_unmap and is moved to the
495 	 * unevictable list.
496 	 */
497 	if (vma->vm_flags & VM_LOCKED) {
498 		*mapcount = 1;	/* break early from loop */
499 		*vm_flags |= VM_LOCKED;
500 		goto out_unmap;
501 	}
502 
503 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
504 		/*
505 		 * Don't treat a reference through a sequentially read
506 		 * mapping as such.  If the page has been used in
507 		 * another mapping, we will catch it; if this other
508 		 * mapping is already gone, the unmap path will have
509 		 * set PG_referenced or activated the page.
510 		 */
511 		if (likely(!VM_SequentialReadHint(vma)))
512 			referenced++;
513 	}
514 
515 	/* Pretend the page is referenced if the task has the
516 	   swap token and is in the middle of a page fault. */
517 	if (mm != current->mm && has_swap_token(mm) &&
518 			rwsem_is_locked(&mm->mmap_sem))
519 		referenced++;
520 
521 out_unmap:
522 	(*mapcount)--;
523 	pte_unmap_unlock(pte, ptl);
524 
525 	if (referenced)
526 		*vm_flags |= vma->vm_flags;
527 out:
528 	return referenced;
529 }
530 
531 static int page_referenced_anon(struct page *page,
532 				struct mem_cgroup *mem_cont,
533 				unsigned long *vm_flags)
534 {
535 	unsigned int mapcount;
536 	struct anon_vma *anon_vma;
537 	struct anon_vma_chain *avc;
538 	int referenced = 0;
539 
540 	anon_vma = page_lock_anon_vma(page);
541 	if (!anon_vma)
542 		return referenced;
543 
544 	mapcount = page_mapcount(page);
545 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
546 		struct vm_area_struct *vma = avc->vma;
547 		unsigned long address = vma_address(page, vma);
548 		if (address == -EFAULT)
549 			continue;
550 		/*
551 		 * If we are reclaiming on behalf of a cgroup, skip
552 		 * counting on behalf of references from different
553 		 * cgroups
554 		 */
555 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
556 			continue;
557 		referenced += page_referenced_one(page, vma, address,
558 						  &mapcount, vm_flags);
559 		if (!mapcount)
560 			break;
561 	}
562 
563 	page_unlock_anon_vma(anon_vma);
564 	return referenced;
565 }
566 
567 /**
568  * page_referenced_file - referenced check for object-based rmap
569  * @page: the page we're checking references on.
570  * @mem_cont: target memory controller
571  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
572  *
573  * For an object-based mapped page, find all the places it is mapped and
574  * check/clear the referenced flag.  This is done by following the page->mapping
575  * pointer, then walking the chain of vmas it holds.  It returns the number
576  * of references it found.
577  *
578  * This function is only called from page_referenced for object-based pages.
579  */
580 static int page_referenced_file(struct page *page,
581 				struct mem_cgroup *mem_cont,
582 				unsigned long *vm_flags)
583 {
584 	unsigned int mapcount;
585 	struct address_space *mapping = page->mapping;
586 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
587 	struct vm_area_struct *vma;
588 	struct prio_tree_iter iter;
589 	int referenced = 0;
590 
591 	/*
592 	 * The caller's checks on page->mapping and !PageAnon have made
593 	 * sure that this is a file page: the check for page->mapping
594 	 * excludes the case just before it gets set on an anon page.
595 	 */
596 	BUG_ON(PageAnon(page));
597 
598 	/*
599 	 * The page lock not only makes sure that page->mapping cannot
600 	 * suddenly be NULLified by truncation, it makes sure that the
601 	 * structure at mapping cannot be freed and reused yet,
602 	 * so we can safely take mapping->i_mmap_lock.
603 	 */
604 	BUG_ON(!PageLocked(page));
605 
606 	spin_lock(&mapping->i_mmap_lock);
607 
608 	/*
609 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
610 	 * is more likely to be accurate if we note it after spinning.
611 	 */
612 	mapcount = page_mapcount(page);
613 
614 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
615 		unsigned long address = vma_address(page, vma);
616 		if (address == -EFAULT)
617 			continue;
618 		/*
619 		 * If we are reclaiming on behalf of a cgroup, skip
620 		 * counting on behalf of references from different
621 		 * cgroups
622 		 */
623 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
624 			continue;
625 		referenced += page_referenced_one(page, vma, address,
626 						  &mapcount, vm_flags);
627 		if (!mapcount)
628 			break;
629 	}
630 
631 	spin_unlock(&mapping->i_mmap_lock);
632 	return referenced;
633 }
634 
635 /**
636  * page_referenced - test if the page was referenced
637  * @page: the page to test
638  * @is_locked: caller holds lock on the page
639  * @mem_cont: target memory controller
640  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
641  *
642  * Quick test_and_clear_referenced for all mappings to a page,
643  * returns the number of ptes which referenced the page.
644  */
645 int page_referenced(struct page *page,
646 		    int is_locked,
647 		    struct mem_cgroup *mem_cont,
648 		    unsigned long *vm_flags)
649 {
650 	int referenced = 0;
651 	int we_locked = 0;
652 
653 	*vm_flags = 0;
654 	if (page_mapped(page) && page_rmapping(page)) {
655 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
656 			we_locked = trylock_page(page);
657 			if (!we_locked) {
658 				referenced++;
659 				goto out;
660 			}
661 		}
662 		if (unlikely(PageKsm(page)))
663 			referenced += page_referenced_ksm(page, mem_cont,
664 								vm_flags);
665 		else if (PageAnon(page))
666 			referenced += page_referenced_anon(page, mem_cont,
667 								vm_flags);
668 		else if (page->mapping)
669 			referenced += page_referenced_file(page, mem_cont,
670 								vm_flags);
671 		if (we_locked)
672 			unlock_page(page);
673 	}
674 out:
675 	if (page_test_and_clear_young(page))
676 		referenced++;
677 
678 	return referenced;
679 }
680 
681 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
682 			    unsigned long address)
683 {
684 	struct mm_struct *mm = vma->vm_mm;
685 	pte_t *pte;
686 	spinlock_t *ptl;
687 	int ret = 0;
688 
689 	pte = page_check_address(page, mm, address, &ptl, 1);
690 	if (!pte)
691 		goto out;
692 
693 	if (pte_dirty(*pte) || pte_write(*pte)) {
694 		pte_t entry;
695 
696 		flush_cache_page(vma, address, pte_pfn(*pte));
697 		entry = ptep_clear_flush_notify(vma, address, pte);
698 		entry = pte_wrprotect(entry);
699 		entry = pte_mkclean(entry);
700 		set_pte_at(mm, address, pte, entry);
701 		ret = 1;
702 	}
703 
704 	pte_unmap_unlock(pte, ptl);
705 out:
706 	return ret;
707 }
708 
709 static int page_mkclean_file(struct address_space *mapping, struct page *page)
710 {
711 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
712 	struct vm_area_struct *vma;
713 	struct prio_tree_iter iter;
714 	int ret = 0;
715 
716 	BUG_ON(PageAnon(page));
717 
718 	spin_lock(&mapping->i_mmap_lock);
719 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
720 		if (vma->vm_flags & VM_SHARED) {
721 			unsigned long address = vma_address(page, vma);
722 			if (address == -EFAULT)
723 				continue;
724 			ret += page_mkclean_one(page, vma, address);
725 		}
726 	}
727 	spin_unlock(&mapping->i_mmap_lock);
728 	return ret;
729 }
730 
731 int page_mkclean(struct page *page)
732 {
733 	int ret = 0;
734 
735 	BUG_ON(!PageLocked(page));
736 
737 	if (page_mapped(page)) {
738 		struct address_space *mapping = page_mapping(page);
739 		if (mapping) {
740 			ret = page_mkclean_file(mapping, page);
741 			if (page_test_dirty(page)) {
742 				page_clear_dirty(page);
743 				ret = 1;
744 			}
745 		}
746 	}
747 
748 	return ret;
749 }
750 EXPORT_SYMBOL_GPL(page_mkclean);
751 
752 /**
753  * page_move_anon_rmap - move a page to our anon_vma
754  * @page:	the page to move to our anon_vma
755  * @vma:	the vma the page belongs to
756  * @address:	the user virtual address mapped
757  *
758  * When a page belongs exclusively to one process after a COW event,
759  * that page can be moved into the anon_vma that belongs to just that
760  * process, so the rmap code will not search the parent or sibling
761  * processes.
762  */
763 void page_move_anon_rmap(struct page *page,
764 	struct vm_area_struct *vma, unsigned long address)
765 {
766 	struct anon_vma *anon_vma = vma->anon_vma;
767 
768 	VM_BUG_ON(!PageLocked(page));
769 	VM_BUG_ON(!anon_vma);
770 	VM_BUG_ON(page->index != linear_page_index(vma, address));
771 
772 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
773 	page->mapping = (struct address_space *) anon_vma;
774 }
775 
776 /**
777  * __page_set_anon_rmap - setup new anonymous rmap
778  * @page:	the page to add the mapping to
779  * @vma:	the vm area in which the mapping is added
780  * @address:	the user virtual address mapped
781  * @exclusive:	the page is exclusively owned by the current process
782  */
783 static void __page_set_anon_rmap(struct page *page,
784 	struct vm_area_struct *vma, unsigned long address, int exclusive)
785 {
786 	struct anon_vma *anon_vma = vma->anon_vma;
787 
788 	BUG_ON(!anon_vma);
789 
790 	/*
791 	 * If the page isn't exclusively mapped into this vma,
792 	 * we must use the _oldest_ possible anon_vma for the
793 	 * page mapping!
794 	 */
795 	if (!exclusive) {
796 		if (PageAnon(page))
797 			return;
798 		anon_vma = anon_vma->root;
799 	} else {
800 		/*
801 		 * In this case, swapped-out-but-not-discarded swap-cache
802 		 * is remapped. So, no need to update page->mapping here.
803 		 * We convice anon_vma poitned by page->mapping is not obsolete
804 		 * because vma->anon_vma is necessary to be a family of it.
805 		 */
806 		if (PageAnon(page))
807 			return;
808 	}
809 
810 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
811 	page->mapping = (struct address_space *) anon_vma;
812 	page->index = linear_page_index(vma, address);
813 }
814 
815 /**
816  * __page_check_anon_rmap - sanity check anonymous rmap addition
817  * @page:	the page to add the mapping to
818  * @vma:	the vm area in which the mapping is added
819  * @address:	the user virtual address mapped
820  */
821 static void __page_check_anon_rmap(struct page *page,
822 	struct vm_area_struct *vma, unsigned long address)
823 {
824 #ifdef CONFIG_DEBUG_VM
825 	/*
826 	 * The page's anon-rmap details (mapping and index) are guaranteed to
827 	 * be set up correctly at this point.
828 	 *
829 	 * We have exclusion against page_add_anon_rmap because the caller
830 	 * always holds the page locked, except if called from page_dup_rmap,
831 	 * in which case the page is already known to be setup.
832 	 *
833 	 * We have exclusion against page_add_new_anon_rmap because those pages
834 	 * are initially only visible via the pagetables, and the pte is locked
835 	 * over the call to page_add_new_anon_rmap.
836 	 */
837 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
838 	BUG_ON(page->index != linear_page_index(vma, address));
839 #endif
840 }
841 
842 /**
843  * page_add_anon_rmap - add pte mapping to an anonymous page
844  * @page:	the page to add the mapping to
845  * @vma:	the vm area in which the mapping is added
846  * @address:	the user virtual address mapped
847  *
848  * The caller needs to hold the pte lock, and the page must be locked in
849  * the anon_vma case: to serialize mapping,index checking after setting,
850  * and to ensure that PageAnon is not being upgraded racily to PageKsm
851  * (but PageKsm is never downgraded to PageAnon).
852  */
853 void page_add_anon_rmap(struct page *page,
854 	struct vm_area_struct *vma, unsigned long address)
855 {
856 	do_page_add_anon_rmap(page, vma, address, 0);
857 }
858 
859 /*
860  * Special version of the above for do_swap_page, which often runs
861  * into pages that are exclusively owned by the current process.
862  * Everybody else should continue to use page_add_anon_rmap above.
863  */
864 void do_page_add_anon_rmap(struct page *page,
865 	struct vm_area_struct *vma, unsigned long address, int exclusive)
866 {
867 	int first = atomic_inc_and_test(&page->_mapcount);
868 	if (first)
869 		__inc_zone_page_state(page, NR_ANON_PAGES);
870 	if (unlikely(PageKsm(page)))
871 		return;
872 
873 	VM_BUG_ON(!PageLocked(page));
874 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
875 	if (first)
876 		__page_set_anon_rmap(page, vma, address, exclusive);
877 	else
878 		__page_check_anon_rmap(page, vma, address);
879 }
880 
881 /**
882  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
883  * @page:	the page to add the mapping to
884  * @vma:	the vm area in which the mapping is added
885  * @address:	the user virtual address mapped
886  *
887  * Same as page_add_anon_rmap but must only be called on *new* pages.
888  * This means the inc-and-test can be bypassed.
889  * Page does not have to be locked.
890  */
891 void page_add_new_anon_rmap(struct page *page,
892 	struct vm_area_struct *vma, unsigned long address)
893 {
894 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
895 	SetPageSwapBacked(page);
896 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
897 	__inc_zone_page_state(page, NR_ANON_PAGES);
898 	__page_set_anon_rmap(page, vma, address, 1);
899 	if (page_evictable(page, vma))
900 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
901 	else
902 		add_page_to_unevictable_list(page);
903 }
904 
905 /**
906  * page_add_file_rmap - add pte mapping to a file page
907  * @page: the page to add the mapping to
908  *
909  * The caller needs to hold the pte lock.
910  */
911 void page_add_file_rmap(struct page *page)
912 {
913 	if (atomic_inc_and_test(&page->_mapcount)) {
914 		__inc_zone_page_state(page, NR_FILE_MAPPED);
915 		mem_cgroup_update_file_mapped(page, 1);
916 	}
917 }
918 
919 /**
920  * page_remove_rmap - take down pte mapping from a page
921  * @page: page to remove mapping from
922  *
923  * The caller needs to hold the pte lock.
924  */
925 void page_remove_rmap(struct page *page)
926 {
927 	/* page still mapped by someone else? */
928 	if (!atomic_add_negative(-1, &page->_mapcount))
929 		return;
930 
931 	/*
932 	 * Now that the last pte has gone, s390 must transfer dirty
933 	 * flag from storage key to struct page.  We can usually skip
934 	 * this if the page is anon, so about to be freed; but perhaps
935 	 * not if it's in swapcache - there might be another pte slot
936 	 * containing the swap entry, but page not yet written to swap.
937 	 */
938 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
939 		page_clear_dirty(page);
940 		set_page_dirty(page);
941 	}
942 	/*
943 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
944 	 * and not charged by memcg for now.
945 	 */
946 	if (unlikely(PageHuge(page)))
947 		return;
948 	if (PageAnon(page)) {
949 		mem_cgroup_uncharge_page(page);
950 		__dec_zone_page_state(page, NR_ANON_PAGES);
951 	} else {
952 		__dec_zone_page_state(page, NR_FILE_MAPPED);
953 		mem_cgroup_update_file_mapped(page, -1);
954 	}
955 	/*
956 	 * It would be tidy to reset the PageAnon mapping here,
957 	 * but that might overwrite a racing page_add_anon_rmap
958 	 * which increments mapcount after us but sets mapping
959 	 * before us: so leave the reset to free_hot_cold_page,
960 	 * and remember that it's only reliable while mapped.
961 	 * Leaving it set also helps swapoff to reinstate ptes
962 	 * faster for those pages still in swapcache.
963 	 */
964 }
965 
966 /*
967  * Subfunctions of try_to_unmap: try_to_unmap_one called
968  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
969  */
970 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
971 		     unsigned long address, enum ttu_flags flags)
972 {
973 	struct mm_struct *mm = vma->vm_mm;
974 	pte_t *pte;
975 	pte_t pteval;
976 	spinlock_t *ptl;
977 	int ret = SWAP_AGAIN;
978 
979 	pte = page_check_address(page, mm, address, &ptl, 0);
980 	if (!pte)
981 		goto out;
982 
983 	/*
984 	 * If the page is mlock()d, we cannot swap it out.
985 	 * If it's recently referenced (perhaps page_referenced
986 	 * skipped over this mm) then we should reactivate it.
987 	 */
988 	if (!(flags & TTU_IGNORE_MLOCK)) {
989 		if (vma->vm_flags & VM_LOCKED)
990 			goto out_mlock;
991 
992 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
993 			goto out_unmap;
994 	}
995 	if (!(flags & TTU_IGNORE_ACCESS)) {
996 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
997 			ret = SWAP_FAIL;
998 			goto out_unmap;
999 		}
1000   	}
1001 
1002 	/* Nuke the page table entry. */
1003 	flush_cache_page(vma, address, page_to_pfn(page));
1004 	pteval = ptep_clear_flush_notify(vma, address, pte);
1005 
1006 	/* Move the dirty bit to the physical page now the pte is gone. */
1007 	if (pte_dirty(pteval))
1008 		set_page_dirty(page);
1009 
1010 	/* Update high watermark before we lower rss */
1011 	update_hiwater_rss(mm);
1012 
1013 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1014 		if (PageAnon(page))
1015 			dec_mm_counter(mm, MM_ANONPAGES);
1016 		else
1017 			dec_mm_counter(mm, MM_FILEPAGES);
1018 		set_pte_at(mm, address, pte,
1019 				swp_entry_to_pte(make_hwpoison_entry(page)));
1020 	} else if (PageAnon(page)) {
1021 		swp_entry_t entry = { .val = page_private(page) };
1022 
1023 		if (PageSwapCache(page)) {
1024 			/*
1025 			 * Store the swap location in the pte.
1026 			 * See handle_pte_fault() ...
1027 			 */
1028 			if (swap_duplicate(entry) < 0) {
1029 				set_pte_at(mm, address, pte, pteval);
1030 				ret = SWAP_FAIL;
1031 				goto out_unmap;
1032 			}
1033 			if (list_empty(&mm->mmlist)) {
1034 				spin_lock(&mmlist_lock);
1035 				if (list_empty(&mm->mmlist))
1036 					list_add(&mm->mmlist, &init_mm.mmlist);
1037 				spin_unlock(&mmlist_lock);
1038 			}
1039 			dec_mm_counter(mm, MM_ANONPAGES);
1040 			inc_mm_counter(mm, MM_SWAPENTS);
1041 		} else if (PAGE_MIGRATION) {
1042 			/*
1043 			 * Store the pfn of the page in a special migration
1044 			 * pte. do_swap_page() will wait until the migration
1045 			 * pte is removed and then restart fault handling.
1046 			 */
1047 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1048 			entry = make_migration_entry(page, pte_write(pteval));
1049 		}
1050 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1051 		BUG_ON(pte_file(*pte));
1052 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1053 		/* Establish migration entry for a file page */
1054 		swp_entry_t entry;
1055 		entry = make_migration_entry(page, pte_write(pteval));
1056 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1057 	} else
1058 		dec_mm_counter(mm, MM_FILEPAGES);
1059 
1060 	page_remove_rmap(page);
1061 	page_cache_release(page);
1062 
1063 out_unmap:
1064 	pte_unmap_unlock(pte, ptl);
1065 out:
1066 	return ret;
1067 
1068 out_mlock:
1069 	pte_unmap_unlock(pte, ptl);
1070 
1071 
1072 	/*
1073 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1074 	 * unstable result and race. Plus, We can't wait here because
1075 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1076 	 * if trylock failed, the page remain in evictable lru and later
1077 	 * vmscan could retry to move the page to unevictable lru if the
1078 	 * page is actually mlocked.
1079 	 */
1080 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1081 		if (vma->vm_flags & VM_LOCKED) {
1082 			mlock_vma_page(page);
1083 			ret = SWAP_MLOCK;
1084 		}
1085 		up_read(&vma->vm_mm->mmap_sem);
1086 	}
1087 	return ret;
1088 }
1089 
1090 /*
1091  * objrmap doesn't work for nonlinear VMAs because the assumption that
1092  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1093  * Consequently, given a particular page and its ->index, we cannot locate the
1094  * ptes which are mapping that page without an exhaustive linear search.
1095  *
1096  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1097  * maps the file to which the target page belongs.  The ->vm_private_data field
1098  * holds the current cursor into that scan.  Successive searches will circulate
1099  * around the vma's virtual address space.
1100  *
1101  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1102  * more scanning pressure is placed against them as well.   Eventually pages
1103  * will become fully unmapped and are eligible for eviction.
1104  *
1105  * For very sparsely populated VMAs this is a little inefficient - chances are
1106  * there there won't be many ptes located within the scan cluster.  In this case
1107  * maybe we could scan further - to the end of the pte page, perhaps.
1108  *
1109  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1110  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1111  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1112  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1113  */
1114 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1115 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1116 
1117 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1118 		struct vm_area_struct *vma, struct page *check_page)
1119 {
1120 	struct mm_struct *mm = vma->vm_mm;
1121 	pgd_t *pgd;
1122 	pud_t *pud;
1123 	pmd_t *pmd;
1124 	pte_t *pte;
1125 	pte_t pteval;
1126 	spinlock_t *ptl;
1127 	struct page *page;
1128 	unsigned long address;
1129 	unsigned long end;
1130 	int ret = SWAP_AGAIN;
1131 	int locked_vma = 0;
1132 
1133 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1134 	end = address + CLUSTER_SIZE;
1135 	if (address < vma->vm_start)
1136 		address = vma->vm_start;
1137 	if (end > vma->vm_end)
1138 		end = vma->vm_end;
1139 
1140 	pgd = pgd_offset(mm, address);
1141 	if (!pgd_present(*pgd))
1142 		return ret;
1143 
1144 	pud = pud_offset(pgd, address);
1145 	if (!pud_present(*pud))
1146 		return ret;
1147 
1148 	pmd = pmd_offset(pud, address);
1149 	if (!pmd_present(*pmd))
1150 		return ret;
1151 
1152 	/*
1153 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1154 	 * keep the sem while scanning the cluster for mlocking pages.
1155 	 */
1156 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1157 		locked_vma = (vma->vm_flags & VM_LOCKED);
1158 		if (!locked_vma)
1159 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1160 	}
1161 
1162 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1163 
1164 	/* Update high watermark before we lower rss */
1165 	update_hiwater_rss(mm);
1166 
1167 	for (; address < end; pte++, address += PAGE_SIZE) {
1168 		if (!pte_present(*pte))
1169 			continue;
1170 		page = vm_normal_page(vma, address, *pte);
1171 		BUG_ON(!page || PageAnon(page));
1172 
1173 		if (locked_vma) {
1174 			mlock_vma_page(page);   /* no-op if already mlocked */
1175 			if (page == check_page)
1176 				ret = SWAP_MLOCK;
1177 			continue;	/* don't unmap */
1178 		}
1179 
1180 		if (ptep_clear_flush_young_notify(vma, address, pte))
1181 			continue;
1182 
1183 		/* Nuke the page table entry. */
1184 		flush_cache_page(vma, address, pte_pfn(*pte));
1185 		pteval = ptep_clear_flush_notify(vma, address, pte);
1186 
1187 		/* If nonlinear, store the file page offset in the pte. */
1188 		if (page->index != linear_page_index(vma, address))
1189 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1190 
1191 		/* Move the dirty bit to the physical page now the pte is gone. */
1192 		if (pte_dirty(pteval))
1193 			set_page_dirty(page);
1194 
1195 		page_remove_rmap(page);
1196 		page_cache_release(page);
1197 		dec_mm_counter(mm, MM_FILEPAGES);
1198 		(*mapcount)--;
1199 	}
1200 	pte_unmap_unlock(pte - 1, ptl);
1201 	if (locked_vma)
1202 		up_read(&vma->vm_mm->mmap_sem);
1203 	return ret;
1204 }
1205 
1206 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1207 {
1208 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1209 
1210 	if (!maybe_stack)
1211 		return false;
1212 
1213 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1214 						VM_STACK_INCOMPLETE_SETUP)
1215 		return true;
1216 
1217 	return false;
1218 }
1219 
1220 /**
1221  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1222  * rmap method
1223  * @page: the page to unmap/unlock
1224  * @flags: action and flags
1225  *
1226  * Find all the mappings of a page using the mapping pointer and the vma chains
1227  * contained in the anon_vma struct it points to.
1228  *
1229  * This function is only called from try_to_unmap/try_to_munlock for
1230  * anonymous pages.
1231  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1232  * where the page was found will be held for write.  So, we won't recheck
1233  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1234  * 'LOCKED.
1235  */
1236 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1237 {
1238 	struct anon_vma *anon_vma;
1239 	struct anon_vma_chain *avc;
1240 	int ret = SWAP_AGAIN;
1241 
1242 	anon_vma = page_lock_anon_vma(page);
1243 	if (!anon_vma)
1244 		return ret;
1245 
1246 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1247 		struct vm_area_struct *vma = avc->vma;
1248 		unsigned long address;
1249 
1250 		/*
1251 		 * During exec, a temporary VMA is setup and later moved.
1252 		 * The VMA is moved under the anon_vma lock but not the
1253 		 * page tables leading to a race where migration cannot
1254 		 * find the migration ptes. Rather than increasing the
1255 		 * locking requirements of exec(), migration skips
1256 		 * temporary VMAs until after exec() completes.
1257 		 */
1258 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1259 				is_vma_temporary_stack(vma))
1260 			continue;
1261 
1262 		address = vma_address(page, vma);
1263 		if (address == -EFAULT)
1264 			continue;
1265 		ret = try_to_unmap_one(page, vma, address, flags);
1266 		if (ret != SWAP_AGAIN || !page_mapped(page))
1267 			break;
1268 	}
1269 
1270 	page_unlock_anon_vma(anon_vma);
1271 	return ret;
1272 }
1273 
1274 /**
1275  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1276  * @page: the page to unmap/unlock
1277  * @flags: action and flags
1278  *
1279  * Find all the mappings of a page using the mapping pointer and the vma chains
1280  * contained in the address_space struct it points to.
1281  *
1282  * This function is only called from try_to_unmap/try_to_munlock for
1283  * object-based pages.
1284  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1285  * where the page was found will be held for write.  So, we won't recheck
1286  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1287  * 'LOCKED.
1288  */
1289 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1290 {
1291 	struct address_space *mapping = page->mapping;
1292 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1293 	struct vm_area_struct *vma;
1294 	struct prio_tree_iter iter;
1295 	int ret = SWAP_AGAIN;
1296 	unsigned long cursor;
1297 	unsigned long max_nl_cursor = 0;
1298 	unsigned long max_nl_size = 0;
1299 	unsigned int mapcount;
1300 
1301 	spin_lock(&mapping->i_mmap_lock);
1302 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1303 		unsigned long address = vma_address(page, vma);
1304 		if (address == -EFAULT)
1305 			continue;
1306 		ret = try_to_unmap_one(page, vma, address, flags);
1307 		if (ret != SWAP_AGAIN || !page_mapped(page))
1308 			goto out;
1309 	}
1310 
1311 	if (list_empty(&mapping->i_mmap_nonlinear))
1312 		goto out;
1313 
1314 	/*
1315 	 * We don't bother to try to find the munlocked page in nonlinears.
1316 	 * It's costly. Instead, later, page reclaim logic may call
1317 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1318 	 */
1319 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1320 		goto out;
1321 
1322 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1323 						shared.vm_set.list) {
1324 		cursor = (unsigned long) vma->vm_private_data;
1325 		if (cursor > max_nl_cursor)
1326 			max_nl_cursor = cursor;
1327 		cursor = vma->vm_end - vma->vm_start;
1328 		if (cursor > max_nl_size)
1329 			max_nl_size = cursor;
1330 	}
1331 
1332 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1333 		ret = SWAP_FAIL;
1334 		goto out;
1335 	}
1336 
1337 	/*
1338 	 * We don't try to search for this page in the nonlinear vmas,
1339 	 * and page_referenced wouldn't have found it anyway.  Instead
1340 	 * just walk the nonlinear vmas trying to age and unmap some.
1341 	 * The mapcount of the page we came in with is irrelevant,
1342 	 * but even so use it as a guide to how hard we should try?
1343 	 */
1344 	mapcount = page_mapcount(page);
1345 	if (!mapcount)
1346 		goto out;
1347 	cond_resched_lock(&mapping->i_mmap_lock);
1348 
1349 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1350 	if (max_nl_cursor == 0)
1351 		max_nl_cursor = CLUSTER_SIZE;
1352 
1353 	do {
1354 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1355 						shared.vm_set.list) {
1356 			cursor = (unsigned long) vma->vm_private_data;
1357 			while ( cursor < max_nl_cursor &&
1358 				cursor < vma->vm_end - vma->vm_start) {
1359 				if (try_to_unmap_cluster(cursor, &mapcount,
1360 						vma, page) == SWAP_MLOCK)
1361 					ret = SWAP_MLOCK;
1362 				cursor += CLUSTER_SIZE;
1363 				vma->vm_private_data = (void *) cursor;
1364 				if ((int)mapcount <= 0)
1365 					goto out;
1366 			}
1367 			vma->vm_private_data = (void *) max_nl_cursor;
1368 		}
1369 		cond_resched_lock(&mapping->i_mmap_lock);
1370 		max_nl_cursor += CLUSTER_SIZE;
1371 	} while (max_nl_cursor <= max_nl_size);
1372 
1373 	/*
1374 	 * Don't loop forever (perhaps all the remaining pages are
1375 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1376 	 * vmas, now forgetting on which ones it had fallen behind.
1377 	 */
1378 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1379 		vma->vm_private_data = NULL;
1380 out:
1381 	spin_unlock(&mapping->i_mmap_lock);
1382 	return ret;
1383 }
1384 
1385 /**
1386  * try_to_unmap - try to remove all page table mappings to a page
1387  * @page: the page to get unmapped
1388  * @flags: action and flags
1389  *
1390  * Tries to remove all the page table entries which are mapping this
1391  * page, used in the pageout path.  Caller must hold the page lock.
1392  * Return values are:
1393  *
1394  * SWAP_SUCCESS	- we succeeded in removing all mappings
1395  * SWAP_AGAIN	- we missed a mapping, try again later
1396  * SWAP_FAIL	- the page is unswappable
1397  * SWAP_MLOCK	- page is mlocked.
1398  */
1399 int try_to_unmap(struct page *page, enum ttu_flags flags)
1400 {
1401 	int ret;
1402 
1403 	BUG_ON(!PageLocked(page));
1404 
1405 	if (unlikely(PageKsm(page)))
1406 		ret = try_to_unmap_ksm(page, flags);
1407 	else if (PageAnon(page))
1408 		ret = try_to_unmap_anon(page, flags);
1409 	else
1410 		ret = try_to_unmap_file(page, flags);
1411 	if (ret != SWAP_MLOCK && !page_mapped(page))
1412 		ret = SWAP_SUCCESS;
1413 	return ret;
1414 }
1415 
1416 /**
1417  * try_to_munlock - try to munlock a page
1418  * @page: the page to be munlocked
1419  *
1420  * Called from munlock code.  Checks all of the VMAs mapping the page
1421  * to make sure nobody else has this page mlocked. The page will be
1422  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1423  *
1424  * Return values are:
1425  *
1426  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1427  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1428  * SWAP_FAIL	- page cannot be located at present
1429  * SWAP_MLOCK	- page is now mlocked.
1430  */
1431 int try_to_munlock(struct page *page)
1432 {
1433 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1434 
1435 	if (unlikely(PageKsm(page)))
1436 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1437 	else if (PageAnon(page))
1438 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1439 	else
1440 		return try_to_unmap_file(page, TTU_MUNLOCK);
1441 }
1442 
1443 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1444 /*
1445  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1446  * if necessary.  Be careful to do all the tests under the lock.  Once
1447  * we know we are the last user, nobody else can get a reference and we
1448  * can do the freeing without the lock.
1449  */
1450 void drop_anon_vma(struct anon_vma *anon_vma)
1451 {
1452 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1453 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1454 		struct anon_vma *root = anon_vma->root;
1455 		int empty = list_empty(&anon_vma->head);
1456 		int last_root_user = 0;
1457 		int root_empty = 0;
1458 
1459 		/*
1460 		 * The refcount on a non-root anon_vma got dropped.  Drop
1461 		 * the refcount on the root and check if we need to free it.
1462 		 */
1463 		if (empty && anon_vma != root) {
1464 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1465 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1466 			root_empty = list_empty(&root->head);
1467 		}
1468 		anon_vma_unlock(anon_vma);
1469 
1470 		if (empty) {
1471 			anon_vma_free(anon_vma);
1472 			if (root_empty && last_root_user)
1473 				anon_vma_free(root);
1474 		}
1475 	}
1476 }
1477 #endif
1478 
1479 #ifdef CONFIG_MIGRATION
1480 /*
1481  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1482  * Called by migrate.c to remove migration ptes, but might be used more later.
1483  */
1484 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1485 		struct vm_area_struct *, unsigned long, void *), void *arg)
1486 {
1487 	struct anon_vma *anon_vma;
1488 	struct anon_vma_chain *avc;
1489 	int ret = SWAP_AGAIN;
1490 
1491 	/*
1492 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1493 	 * because that depends on page_mapped(); but not all its usages
1494 	 * are holding mmap_sem. Users without mmap_sem are required to
1495 	 * take a reference count to prevent the anon_vma disappearing
1496 	 */
1497 	anon_vma = page_anon_vma(page);
1498 	if (!anon_vma)
1499 		return ret;
1500 	anon_vma_lock(anon_vma);
1501 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1502 		struct vm_area_struct *vma = avc->vma;
1503 		unsigned long address = vma_address(page, vma);
1504 		if (address == -EFAULT)
1505 			continue;
1506 		ret = rmap_one(page, vma, address, arg);
1507 		if (ret != SWAP_AGAIN)
1508 			break;
1509 	}
1510 	anon_vma_unlock(anon_vma);
1511 	return ret;
1512 }
1513 
1514 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1515 		struct vm_area_struct *, unsigned long, void *), void *arg)
1516 {
1517 	struct address_space *mapping = page->mapping;
1518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1519 	struct vm_area_struct *vma;
1520 	struct prio_tree_iter iter;
1521 	int ret = SWAP_AGAIN;
1522 
1523 	if (!mapping)
1524 		return ret;
1525 	spin_lock(&mapping->i_mmap_lock);
1526 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1527 		unsigned long address = vma_address(page, vma);
1528 		if (address == -EFAULT)
1529 			continue;
1530 		ret = rmap_one(page, vma, address, arg);
1531 		if (ret != SWAP_AGAIN)
1532 			break;
1533 	}
1534 	/*
1535 	 * No nonlinear handling: being always shared, nonlinear vmas
1536 	 * never contain migration ptes.  Decide what to do about this
1537 	 * limitation to linear when we need rmap_walk() on nonlinear.
1538 	 */
1539 	spin_unlock(&mapping->i_mmap_lock);
1540 	return ret;
1541 }
1542 
1543 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1544 		struct vm_area_struct *, unsigned long, void *), void *arg)
1545 {
1546 	VM_BUG_ON(!PageLocked(page));
1547 
1548 	if (unlikely(PageKsm(page)))
1549 		return rmap_walk_ksm(page, rmap_one, arg);
1550 	else if (PageAnon(page))
1551 		return rmap_walk_anon(page, rmap_one, arg);
1552 	else
1553 		return rmap_walk_file(page, rmap_one, arg);
1554 }
1555 #endif /* CONFIG_MIGRATION */
1556 
1557 #ifdef CONFIG_HUGETLB_PAGE
1558 /*
1559  * The following three functions are for anonymous (private mapped) hugepages.
1560  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1561  * and no lru code, because we handle hugepages differently from common pages.
1562  */
1563 static void __hugepage_set_anon_rmap(struct page *page,
1564 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1565 {
1566 	struct anon_vma *anon_vma = vma->anon_vma;
1567 	BUG_ON(!anon_vma);
1568 	if (!exclusive) {
1569 		struct anon_vma_chain *avc;
1570 		avc = list_entry(vma->anon_vma_chain.prev,
1571 				 struct anon_vma_chain, same_vma);
1572 		anon_vma = avc->anon_vma;
1573 	}
1574 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1575 	page->mapping = (struct address_space *) anon_vma;
1576 	page->index = linear_page_index(vma, address);
1577 }
1578 
1579 void hugepage_add_anon_rmap(struct page *page,
1580 			    struct vm_area_struct *vma, unsigned long address)
1581 {
1582 	struct anon_vma *anon_vma = vma->anon_vma;
1583 	int first;
1584 	BUG_ON(!anon_vma);
1585 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1586 	first = atomic_inc_and_test(&page->_mapcount);
1587 	if (first)
1588 		__hugepage_set_anon_rmap(page, vma, address, 0);
1589 }
1590 
1591 void hugepage_add_new_anon_rmap(struct page *page,
1592 			struct vm_area_struct *vma, unsigned long address)
1593 {
1594 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1595 	atomic_set(&page->_mapcount, 0);
1596 	__hugepage_set_anon_rmap(page, vma, address, 1);
1597 }
1598 #endif /* CONFIG_HUGETLB_PAGE */
1599