xref: /linux/mm/rmap.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include "internal.h"
57 
58 static struct kmem_cache *anon_vma_cachep;
59 
60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64 
65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 	kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69 
70 /**
71  * anon_vma_prepare - attach an anon_vma to a memory region
72  * @vma: the memory region in question
73  *
74  * This makes sure the memory mapping described by 'vma' has
75  * an 'anon_vma' attached to it, so that we can associate the
76  * anonymous pages mapped into it with that anon_vma.
77  *
78  * The common case will be that we already have one, but if
79  * if not we either need to find an adjacent mapping that we
80  * can re-use the anon_vma from (very common when the only
81  * reason for splitting a vma has been mprotect()), or we
82  * allocate a new one.
83  *
84  * Anon-vma allocations are very subtle, because we may have
85  * optimistically looked up an anon_vma in page_lock_anon_vma()
86  * and that may actually touch the spinlock even in the newly
87  * allocated vma (it depends on RCU to make sure that the
88  * anon_vma isn't actually destroyed).
89  *
90  * As a result, we need to do proper anon_vma locking even
91  * for the new allocation. At the same time, we do not want
92  * to do any locking for the common case of already having
93  * an anon_vma.
94  *
95  * This must be called with the mmap_sem held for reading.
96  */
97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 	struct anon_vma *anon_vma = vma->anon_vma;
100 
101 	might_sleep();
102 	if (unlikely(!anon_vma)) {
103 		struct mm_struct *mm = vma->vm_mm;
104 		struct anon_vma *allocated;
105 
106 		anon_vma = find_mergeable_anon_vma(vma);
107 		allocated = NULL;
108 		if (!anon_vma) {
109 			anon_vma = anon_vma_alloc();
110 			if (unlikely(!anon_vma))
111 				return -ENOMEM;
112 			allocated = anon_vma;
113 		}
114 		spin_lock(&anon_vma->lock);
115 
116 		/* page_table_lock to protect against threads */
117 		spin_lock(&mm->page_table_lock);
118 		if (likely(!vma->anon_vma)) {
119 			vma->anon_vma = anon_vma;
120 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 			allocated = NULL;
122 		}
123 		spin_unlock(&mm->page_table_lock);
124 
125 		spin_unlock(&anon_vma->lock);
126 		if (unlikely(allocated))
127 			anon_vma_free(allocated);
128 	}
129 	return 0;
130 }
131 
132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 	BUG_ON(vma->anon_vma != next->anon_vma);
135 	list_del(&next->anon_vma_node);
136 }
137 
138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 	struct anon_vma *anon_vma = vma->anon_vma;
141 
142 	if (anon_vma)
143 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145 
146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 	struct anon_vma *anon_vma = vma->anon_vma;
149 
150 	if (anon_vma) {
151 		spin_lock(&anon_vma->lock);
152 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 		spin_unlock(&anon_vma->lock);
154 	}
155 }
156 
157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 	struct anon_vma *anon_vma = vma->anon_vma;
160 	int empty;
161 
162 	if (!anon_vma)
163 		return;
164 
165 	spin_lock(&anon_vma->lock);
166 	list_del(&vma->anon_vma_node);
167 
168 	/* We must garbage collect the anon_vma if it's empty */
169 	empty = list_empty(&anon_vma->head);
170 	spin_unlock(&anon_vma->lock);
171 
172 	if (empty)
173 		anon_vma_free(anon_vma);
174 }
175 
176 static void anon_vma_ctor(void *data)
177 {
178 	struct anon_vma *anon_vma = data;
179 
180 	spin_lock_init(&anon_vma->lock);
181 	INIT_LIST_HEAD(&anon_vma->head);
182 }
183 
184 void __init anon_vma_init(void)
185 {
186 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189 
190 /*
191  * Getting a lock on a stable anon_vma from a page off the LRU is
192  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193  */
194 static struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 	struct anon_vma *anon_vma;
197 	unsigned long anon_mapping;
198 
199 	rcu_read_lock();
200 	anon_mapping = (unsigned long) page->mapping;
201 	if (!(anon_mapping & PAGE_MAPPING_ANON))
202 		goto out;
203 	if (!page_mapped(page))
204 		goto out;
205 
206 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 	spin_lock(&anon_vma->lock);
208 	return anon_vma;
209 out:
210 	rcu_read_unlock();
211 	return NULL;
212 }
213 
214 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 	spin_unlock(&anon_vma->lock);
217 	rcu_read_unlock();
218 }
219 
220 /*
221  * At what user virtual address is page expected in @vma?
222  * Returns virtual address or -EFAULT if page's index/offset is not
223  * within the range mapped the @vma.
224  */
225 static inline unsigned long
226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 	unsigned long address;
230 
231 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 		/* page should be within @vma mapping range */
234 		return -EFAULT;
235 	}
236 	return address;
237 }
238 
239 /*
240  * At what user virtual address is page expected in vma? checking that the
241  * page matches the vma: currently only used on anon pages, by unuse_vma;
242  */
243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 	if (PageAnon(page)) {
246 		if ((void *)vma->anon_vma !=
247 		    (void *)page->mapping - PAGE_MAPPING_ANON)
248 			return -EFAULT;
249 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 		if (!vma->vm_file ||
251 		    vma->vm_file->f_mapping != page->mapping)
252 			return -EFAULT;
253 	} else
254 		return -EFAULT;
255 	return vma_address(page, vma);
256 }
257 
258 /*
259  * Check that @page is mapped at @address into @mm.
260  *
261  * If @sync is false, page_check_address may perform a racy check to avoid
262  * the page table lock when the pte is not present (helpful when reclaiming
263  * highly shared pages).
264  *
265  * On success returns with pte mapped and locked.
266  */
267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 			  unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 	pgd_t *pgd;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	spinlock_t *ptl;
275 
276 	pgd = pgd_offset(mm, address);
277 	if (!pgd_present(*pgd))
278 		return NULL;
279 
280 	pud = pud_offset(pgd, address);
281 	if (!pud_present(*pud))
282 		return NULL;
283 
284 	pmd = pmd_offset(pud, address);
285 	if (!pmd_present(*pmd))
286 		return NULL;
287 
288 	pte = pte_offset_map(pmd, address);
289 	/* Make a quick check before getting the lock */
290 	if (!sync && !pte_present(*pte)) {
291 		pte_unmap(pte);
292 		return NULL;
293 	}
294 
295 	ptl = pte_lockptr(mm, pmd);
296 	spin_lock(ptl);
297 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 		*ptlp = ptl;
299 		return pte;
300 	}
301 	pte_unmap_unlock(pte, ptl);
302 	return NULL;
303 }
304 
305 /**
306  * page_mapped_in_vma - check whether a page is really mapped in a VMA
307  * @page: the page to test
308  * @vma: the VMA to test
309  *
310  * Returns 1 if the page is mapped into the page tables of the VMA, 0
311  * if the page is not mapped into the page tables of this VMA.  Only
312  * valid for normal file or anonymous VMAs.
313  */
314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 	unsigned long address;
317 	pte_t *pte;
318 	spinlock_t *ptl;
319 
320 	address = vma_address(page, vma);
321 	if (address == -EFAULT)		/* out of vma range */
322 		return 0;
323 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 	if (!pte)			/* the page is not in this mm */
325 		return 0;
326 	pte_unmap_unlock(pte, ptl);
327 
328 	return 1;
329 }
330 
331 /*
332  * Subfunctions of page_referenced: page_referenced_one called
333  * repeatedly from either page_referenced_anon or page_referenced_file.
334  */
335 static int page_referenced_one(struct page *page,
336 			       struct vm_area_struct *vma,
337 			       unsigned int *mapcount,
338 			       unsigned long *vm_flags)
339 {
340 	struct mm_struct *mm = vma->vm_mm;
341 	unsigned long address;
342 	pte_t *pte;
343 	spinlock_t *ptl;
344 	int referenced = 0;
345 
346 	address = vma_address(page, vma);
347 	if (address == -EFAULT)
348 		goto out;
349 
350 	pte = page_check_address(page, mm, address, &ptl, 0);
351 	if (!pte)
352 		goto out;
353 
354 	/*
355 	 * Don't want to elevate referenced for mlocked page that gets this far,
356 	 * in order that it progresses to try_to_unmap and is moved to the
357 	 * unevictable list.
358 	 */
359 	if (vma->vm_flags & VM_LOCKED) {
360 		*mapcount = 1;	/* break early from loop */
361 		goto out_unmap;
362 	}
363 
364 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
365 		/*
366 		 * Don't treat a reference through a sequentially read
367 		 * mapping as such.  If the page has been used in
368 		 * another mapping, we will catch it; if this other
369 		 * mapping is already gone, the unmap path will have
370 		 * set PG_referenced or activated the page.
371 		 */
372 		if (likely(!VM_SequentialReadHint(vma)))
373 			referenced++;
374 	}
375 
376 	/* Pretend the page is referenced if the task has the
377 	   swap token and is in the middle of a page fault. */
378 	if (mm != current->mm && has_swap_token(mm) &&
379 			rwsem_is_locked(&mm->mmap_sem))
380 		referenced++;
381 
382 out_unmap:
383 	(*mapcount)--;
384 	pte_unmap_unlock(pte, ptl);
385 out:
386 	if (referenced)
387 		*vm_flags |= vma->vm_flags;
388 	return referenced;
389 }
390 
391 static int page_referenced_anon(struct page *page,
392 				struct mem_cgroup *mem_cont,
393 				unsigned long *vm_flags)
394 {
395 	unsigned int mapcount;
396 	struct anon_vma *anon_vma;
397 	struct vm_area_struct *vma;
398 	int referenced = 0;
399 
400 	anon_vma = page_lock_anon_vma(page);
401 	if (!anon_vma)
402 		return referenced;
403 
404 	mapcount = page_mapcount(page);
405 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
406 		/*
407 		 * If we are reclaiming on behalf of a cgroup, skip
408 		 * counting on behalf of references from different
409 		 * cgroups
410 		 */
411 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
412 			continue;
413 		referenced += page_referenced_one(page, vma,
414 						  &mapcount, vm_flags);
415 		if (!mapcount)
416 			break;
417 	}
418 
419 	page_unlock_anon_vma(anon_vma);
420 	return referenced;
421 }
422 
423 /**
424  * page_referenced_file - referenced check for object-based rmap
425  * @page: the page we're checking references on.
426  * @mem_cont: target memory controller
427  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
428  *
429  * For an object-based mapped page, find all the places it is mapped and
430  * check/clear the referenced flag.  This is done by following the page->mapping
431  * pointer, then walking the chain of vmas it holds.  It returns the number
432  * of references it found.
433  *
434  * This function is only called from page_referenced for object-based pages.
435  */
436 static int page_referenced_file(struct page *page,
437 				struct mem_cgroup *mem_cont,
438 				unsigned long *vm_flags)
439 {
440 	unsigned int mapcount;
441 	struct address_space *mapping = page->mapping;
442 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 	struct vm_area_struct *vma;
444 	struct prio_tree_iter iter;
445 	int referenced = 0;
446 
447 	/*
448 	 * The caller's checks on page->mapping and !PageAnon have made
449 	 * sure that this is a file page: the check for page->mapping
450 	 * excludes the case just before it gets set on an anon page.
451 	 */
452 	BUG_ON(PageAnon(page));
453 
454 	/*
455 	 * The page lock not only makes sure that page->mapping cannot
456 	 * suddenly be NULLified by truncation, it makes sure that the
457 	 * structure at mapping cannot be freed and reused yet,
458 	 * so we can safely take mapping->i_mmap_lock.
459 	 */
460 	BUG_ON(!PageLocked(page));
461 
462 	spin_lock(&mapping->i_mmap_lock);
463 
464 	/*
465 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
466 	 * is more likely to be accurate if we note it after spinning.
467 	 */
468 	mapcount = page_mapcount(page);
469 
470 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
471 		/*
472 		 * If we are reclaiming on behalf of a cgroup, skip
473 		 * counting on behalf of references from different
474 		 * cgroups
475 		 */
476 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
477 			continue;
478 		referenced += page_referenced_one(page, vma,
479 						  &mapcount, vm_flags);
480 		if (!mapcount)
481 			break;
482 	}
483 
484 	spin_unlock(&mapping->i_mmap_lock);
485 	return referenced;
486 }
487 
488 /**
489  * page_referenced - test if the page was referenced
490  * @page: the page to test
491  * @is_locked: caller holds lock on the page
492  * @mem_cont: target memory controller
493  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
494  *
495  * Quick test_and_clear_referenced for all mappings to a page,
496  * returns the number of ptes which referenced the page.
497  */
498 int page_referenced(struct page *page,
499 		    int is_locked,
500 		    struct mem_cgroup *mem_cont,
501 		    unsigned long *vm_flags)
502 {
503 	int referenced = 0;
504 
505 	if (TestClearPageReferenced(page))
506 		referenced++;
507 
508 	*vm_flags = 0;
509 	if (page_mapped(page) && page->mapping) {
510 		if (PageAnon(page))
511 			referenced += page_referenced_anon(page, mem_cont,
512 								vm_flags);
513 		else if (is_locked)
514 			referenced += page_referenced_file(page, mem_cont,
515 								vm_flags);
516 		else if (!trylock_page(page))
517 			referenced++;
518 		else {
519 			if (page->mapping)
520 				referenced += page_referenced_file(page,
521 							mem_cont, vm_flags);
522 			unlock_page(page);
523 		}
524 	}
525 
526 	if (page_test_and_clear_young(page))
527 		referenced++;
528 
529 	return referenced;
530 }
531 
532 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
533 {
534 	struct mm_struct *mm = vma->vm_mm;
535 	unsigned long address;
536 	pte_t *pte;
537 	spinlock_t *ptl;
538 	int ret = 0;
539 
540 	address = vma_address(page, vma);
541 	if (address == -EFAULT)
542 		goto out;
543 
544 	pte = page_check_address(page, mm, address, &ptl, 1);
545 	if (!pte)
546 		goto out;
547 
548 	if (pte_dirty(*pte) || pte_write(*pte)) {
549 		pte_t entry;
550 
551 		flush_cache_page(vma, address, pte_pfn(*pte));
552 		entry = ptep_clear_flush_notify(vma, address, pte);
553 		entry = pte_wrprotect(entry);
554 		entry = pte_mkclean(entry);
555 		set_pte_at(mm, address, pte, entry);
556 		ret = 1;
557 	}
558 
559 	pte_unmap_unlock(pte, ptl);
560 out:
561 	return ret;
562 }
563 
564 static int page_mkclean_file(struct address_space *mapping, struct page *page)
565 {
566 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
567 	struct vm_area_struct *vma;
568 	struct prio_tree_iter iter;
569 	int ret = 0;
570 
571 	BUG_ON(PageAnon(page));
572 
573 	spin_lock(&mapping->i_mmap_lock);
574 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
575 		if (vma->vm_flags & VM_SHARED)
576 			ret += page_mkclean_one(page, vma);
577 	}
578 	spin_unlock(&mapping->i_mmap_lock);
579 	return ret;
580 }
581 
582 int page_mkclean(struct page *page)
583 {
584 	int ret = 0;
585 
586 	BUG_ON(!PageLocked(page));
587 
588 	if (page_mapped(page)) {
589 		struct address_space *mapping = page_mapping(page);
590 		if (mapping) {
591 			ret = page_mkclean_file(mapping, page);
592 			if (page_test_dirty(page)) {
593 				page_clear_dirty(page);
594 				ret = 1;
595 			}
596 		}
597 	}
598 
599 	return ret;
600 }
601 EXPORT_SYMBOL_GPL(page_mkclean);
602 
603 /**
604  * __page_set_anon_rmap - setup new anonymous rmap
605  * @page:	the page to add the mapping to
606  * @vma:	the vm area in which the mapping is added
607  * @address:	the user virtual address mapped
608  */
609 static void __page_set_anon_rmap(struct page *page,
610 	struct vm_area_struct *vma, unsigned long address)
611 {
612 	struct anon_vma *anon_vma = vma->anon_vma;
613 
614 	BUG_ON(!anon_vma);
615 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
616 	page->mapping = (struct address_space *) anon_vma;
617 
618 	page->index = linear_page_index(vma, address);
619 
620 	/*
621 	 * nr_mapped state can be updated without turning off
622 	 * interrupts because it is not modified via interrupt.
623 	 */
624 	__inc_zone_page_state(page, NR_ANON_PAGES);
625 }
626 
627 /**
628  * __page_check_anon_rmap - sanity check anonymous rmap addition
629  * @page:	the page to add the mapping to
630  * @vma:	the vm area in which the mapping is added
631  * @address:	the user virtual address mapped
632  */
633 static void __page_check_anon_rmap(struct page *page,
634 	struct vm_area_struct *vma, unsigned long address)
635 {
636 #ifdef CONFIG_DEBUG_VM
637 	/*
638 	 * The page's anon-rmap details (mapping and index) are guaranteed to
639 	 * be set up correctly at this point.
640 	 *
641 	 * We have exclusion against page_add_anon_rmap because the caller
642 	 * always holds the page locked, except if called from page_dup_rmap,
643 	 * in which case the page is already known to be setup.
644 	 *
645 	 * We have exclusion against page_add_new_anon_rmap because those pages
646 	 * are initially only visible via the pagetables, and the pte is locked
647 	 * over the call to page_add_new_anon_rmap.
648 	 */
649 	struct anon_vma *anon_vma = vma->anon_vma;
650 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
651 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
652 	BUG_ON(page->index != linear_page_index(vma, address));
653 #endif
654 }
655 
656 /**
657  * page_add_anon_rmap - add pte mapping to an anonymous page
658  * @page:	the page to add the mapping to
659  * @vma:	the vm area in which the mapping is added
660  * @address:	the user virtual address mapped
661  *
662  * The caller needs to hold the pte lock and the page must be locked.
663  */
664 void page_add_anon_rmap(struct page *page,
665 	struct vm_area_struct *vma, unsigned long address)
666 {
667 	VM_BUG_ON(!PageLocked(page));
668 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
669 	if (atomic_inc_and_test(&page->_mapcount))
670 		__page_set_anon_rmap(page, vma, address);
671 	else
672 		__page_check_anon_rmap(page, vma, address);
673 }
674 
675 /**
676  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
677  * @page:	the page to add the mapping to
678  * @vma:	the vm area in which the mapping is added
679  * @address:	the user virtual address mapped
680  *
681  * Same as page_add_anon_rmap but must only be called on *new* pages.
682  * This means the inc-and-test can be bypassed.
683  * Page does not have to be locked.
684  */
685 void page_add_new_anon_rmap(struct page *page,
686 	struct vm_area_struct *vma, unsigned long address)
687 {
688 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
689 	SetPageSwapBacked(page);
690 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
691 	__page_set_anon_rmap(page, vma, address);
692 	if (page_evictable(page, vma))
693 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
694 	else
695 		add_page_to_unevictable_list(page);
696 }
697 
698 /**
699  * page_add_file_rmap - add pte mapping to a file page
700  * @page: the page to add the mapping to
701  *
702  * The caller needs to hold the pte lock.
703  */
704 void page_add_file_rmap(struct page *page)
705 {
706 	if (atomic_inc_and_test(&page->_mapcount)) {
707 		__inc_zone_page_state(page, NR_FILE_MAPPED);
708 		mem_cgroup_update_mapped_file_stat(page, 1);
709 	}
710 }
711 
712 #ifdef CONFIG_DEBUG_VM
713 /**
714  * page_dup_rmap - duplicate pte mapping to a page
715  * @page:	the page to add the mapping to
716  * @vma:	the vm area being duplicated
717  * @address:	the user virtual address mapped
718  *
719  * For copy_page_range only: minimal extract from page_add_file_rmap /
720  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
721  * quicker.
722  *
723  * The caller needs to hold the pte lock.
724  */
725 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
726 {
727 	if (PageAnon(page))
728 		__page_check_anon_rmap(page, vma, address);
729 	atomic_inc(&page->_mapcount);
730 }
731 #endif
732 
733 /**
734  * page_remove_rmap - take down pte mapping from a page
735  * @page: page to remove mapping from
736  *
737  * The caller needs to hold the pte lock.
738  */
739 void page_remove_rmap(struct page *page)
740 {
741 	if (atomic_add_negative(-1, &page->_mapcount)) {
742 		/*
743 		 * Now that the last pte has gone, s390 must transfer dirty
744 		 * flag from storage key to struct page.  We can usually skip
745 		 * this if the page is anon, so about to be freed; but perhaps
746 		 * not if it's in swapcache - there might be another pte slot
747 		 * containing the swap entry, but page not yet written to swap.
748 		 */
749 		if ((!PageAnon(page) || PageSwapCache(page)) &&
750 		    page_test_dirty(page)) {
751 			page_clear_dirty(page);
752 			set_page_dirty(page);
753 		}
754 		if (PageAnon(page))
755 			mem_cgroup_uncharge_page(page);
756 		__dec_zone_page_state(page,
757 			PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
758 		mem_cgroup_update_mapped_file_stat(page, -1);
759 		/*
760 		 * It would be tidy to reset the PageAnon mapping here,
761 		 * but that might overwrite a racing page_add_anon_rmap
762 		 * which increments mapcount after us but sets mapping
763 		 * before us: so leave the reset to free_hot_cold_page,
764 		 * and remember that it's only reliable while mapped.
765 		 * Leaving it set also helps swapoff to reinstate ptes
766 		 * faster for those pages still in swapcache.
767 		 */
768 	}
769 }
770 
771 /*
772  * Subfunctions of try_to_unmap: try_to_unmap_one called
773  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
774  */
775 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
776 				int migration)
777 {
778 	struct mm_struct *mm = vma->vm_mm;
779 	unsigned long address;
780 	pte_t *pte;
781 	pte_t pteval;
782 	spinlock_t *ptl;
783 	int ret = SWAP_AGAIN;
784 
785 	address = vma_address(page, vma);
786 	if (address == -EFAULT)
787 		goto out;
788 
789 	pte = page_check_address(page, mm, address, &ptl, 0);
790 	if (!pte)
791 		goto out;
792 
793 	/*
794 	 * If the page is mlock()d, we cannot swap it out.
795 	 * If it's recently referenced (perhaps page_referenced
796 	 * skipped over this mm) then we should reactivate it.
797 	 */
798 	if (!migration) {
799 		if (vma->vm_flags & VM_LOCKED) {
800 			ret = SWAP_MLOCK;
801 			goto out_unmap;
802 		}
803 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
804 			ret = SWAP_FAIL;
805 			goto out_unmap;
806 		}
807   	}
808 
809 	/* Nuke the page table entry. */
810 	flush_cache_page(vma, address, page_to_pfn(page));
811 	pteval = ptep_clear_flush_notify(vma, address, pte);
812 
813 	/* Move the dirty bit to the physical page now the pte is gone. */
814 	if (pte_dirty(pteval))
815 		set_page_dirty(page);
816 
817 	/* Update high watermark before we lower rss */
818 	update_hiwater_rss(mm);
819 
820 	if (PageAnon(page)) {
821 		swp_entry_t entry = { .val = page_private(page) };
822 
823 		if (PageSwapCache(page)) {
824 			/*
825 			 * Store the swap location in the pte.
826 			 * See handle_pte_fault() ...
827 			 */
828 			swap_duplicate(entry);
829 			if (list_empty(&mm->mmlist)) {
830 				spin_lock(&mmlist_lock);
831 				if (list_empty(&mm->mmlist))
832 					list_add(&mm->mmlist, &init_mm.mmlist);
833 				spin_unlock(&mmlist_lock);
834 			}
835 			dec_mm_counter(mm, anon_rss);
836 		} else if (PAGE_MIGRATION) {
837 			/*
838 			 * Store the pfn of the page in a special migration
839 			 * pte. do_swap_page() will wait until the migration
840 			 * pte is removed and then restart fault handling.
841 			 */
842 			BUG_ON(!migration);
843 			entry = make_migration_entry(page, pte_write(pteval));
844 		}
845 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
846 		BUG_ON(pte_file(*pte));
847 	} else if (PAGE_MIGRATION && migration) {
848 		/* Establish migration entry for a file page */
849 		swp_entry_t entry;
850 		entry = make_migration_entry(page, pte_write(pteval));
851 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
852 	} else
853 		dec_mm_counter(mm, file_rss);
854 
855 
856 	page_remove_rmap(page);
857 	page_cache_release(page);
858 
859 out_unmap:
860 	pte_unmap_unlock(pte, ptl);
861 out:
862 	return ret;
863 }
864 
865 /*
866  * objrmap doesn't work for nonlinear VMAs because the assumption that
867  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
868  * Consequently, given a particular page and its ->index, we cannot locate the
869  * ptes which are mapping that page without an exhaustive linear search.
870  *
871  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
872  * maps the file to which the target page belongs.  The ->vm_private_data field
873  * holds the current cursor into that scan.  Successive searches will circulate
874  * around the vma's virtual address space.
875  *
876  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
877  * more scanning pressure is placed against them as well.   Eventually pages
878  * will become fully unmapped and are eligible for eviction.
879  *
880  * For very sparsely populated VMAs this is a little inefficient - chances are
881  * there there won't be many ptes located within the scan cluster.  In this case
882  * maybe we could scan further - to the end of the pte page, perhaps.
883  *
884  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
885  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
886  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
887  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
888  */
889 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
890 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
891 
892 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
893 		struct vm_area_struct *vma, struct page *check_page)
894 {
895 	struct mm_struct *mm = vma->vm_mm;
896 	pgd_t *pgd;
897 	pud_t *pud;
898 	pmd_t *pmd;
899 	pte_t *pte;
900 	pte_t pteval;
901 	spinlock_t *ptl;
902 	struct page *page;
903 	unsigned long address;
904 	unsigned long end;
905 	int ret = SWAP_AGAIN;
906 	int locked_vma = 0;
907 
908 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
909 	end = address + CLUSTER_SIZE;
910 	if (address < vma->vm_start)
911 		address = vma->vm_start;
912 	if (end > vma->vm_end)
913 		end = vma->vm_end;
914 
915 	pgd = pgd_offset(mm, address);
916 	if (!pgd_present(*pgd))
917 		return ret;
918 
919 	pud = pud_offset(pgd, address);
920 	if (!pud_present(*pud))
921 		return ret;
922 
923 	pmd = pmd_offset(pud, address);
924 	if (!pmd_present(*pmd))
925 		return ret;
926 
927 	/*
928 	 * MLOCK_PAGES => feature is configured.
929 	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
930 	 * keep the sem while scanning the cluster for mlocking pages.
931 	 */
932 	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
933 		locked_vma = (vma->vm_flags & VM_LOCKED);
934 		if (!locked_vma)
935 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
936 	}
937 
938 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
939 
940 	/* Update high watermark before we lower rss */
941 	update_hiwater_rss(mm);
942 
943 	for (; address < end; pte++, address += PAGE_SIZE) {
944 		if (!pte_present(*pte))
945 			continue;
946 		page = vm_normal_page(vma, address, *pte);
947 		BUG_ON(!page || PageAnon(page));
948 
949 		if (locked_vma) {
950 			mlock_vma_page(page);   /* no-op if already mlocked */
951 			if (page == check_page)
952 				ret = SWAP_MLOCK;
953 			continue;	/* don't unmap */
954 		}
955 
956 		if (ptep_clear_flush_young_notify(vma, address, pte))
957 			continue;
958 
959 		/* Nuke the page table entry. */
960 		flush_cache_page(vma, address, pte_pfn(*pte));
961 		pteval = ptep_clear_flush_notify(vma, address, pte);
962 
963 		/* If nonlinear, store the file page offset in the pte. */
964 		if (page->index != linear_page_index(vma, address))
965 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
966 
967 		/* Move the dirty bit to the physical page now the pte is gone. */
968 		if (pte_dirty(pteval))
969 			set_page_dirty(page);
970 
971 		page_remove_rmap(page);
972 		page_cache_release(page);
973 		dec_mm_counter(mm, file_rss);
974 		(*mapcount)--;
975 	}
976 	pte_unmap_unlock(pte - 1, ptl);
977 	if (locked_vma)
978 		up_read(&vma->vm_mm->mmap_sem);
979 	return ret;
980 }
981 
982 /*
983  * common handling for pages mapped in VM_LOCKED vmas
984  */
985 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
986 {
987 	int mlocked = 0;
988 
989 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
990 		if (vma->vm_flags & VM_LOCKED) {
991 			mlock_vma_page(page);
992 			mlocked++;	/* really mlocked the page */
993 		}
994 		up_read(&vma->vm_mm->mmap_sem);
995 	}
996 	return mlocked;
997 }
998 
999 /**
1000  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1001  * rmap method
1002  * @page: the page to unmap/unlock
1003  * @unlock:  request for unlock rather than unmap [unlikely]
1004  * @migration:  unmapping for migration - ignored if @unlock
1005  *
1006  * Find all the mappings of a page using the mapping pointer and the vma chains
1007  * contained in the anon_vma struct it points to.
1008  *
1009  * This function is only called from try_to_unmap/try_to_munlock for
1010  * anonymous pages.
1011  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1012  * where the page was found will be held for write.  So, we won't recheck
1013  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1014  * 'LOCKED.
1015  */
1016 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1017 {
1018 	struct anon_vma *anon_vma;
1019 	struct vm_area_struct *vma;
1020 	unsigned int mlocked = 0;
1021 	int ret = SWAP_AGAIN;
1022 
1023 	if (MLOCK_PAGES && unlikely(unlock))
1024 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1025 
1026 	anon_vma = page_lock_anon_vma(page);
1027 	if (!anon_vma)
1028 		return ret;
1029 
1030 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1031 		if (MLOCK_PAGES && unlikely(unlock)) {
1032 			if (!((vma->vm_flags & VM_LOCKED) &&
1033 			      page_mapped_in_vma(page, vma)))
1034 				continue;  /* must visit all unlocked vmas */
1035 			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1036 		} else {
1037 			ret = try_to_unmap_one(page, vma, migration);
1038 			if (ret == SWAP_FAIL || !page_mapped(page))
1039 				break;
1040 		}
1041 		if (ret == SWAP_MLOCK) {
1042 			mlocked = try_to_mlock_page(page, vma);
1043 			if (mlocked)
1044 				break;	/* stop if actually mlocked page */
1045 		}
1046 	}
1047 
1048 	page_unlock_anon_vma(anon_vma);
1049 
1050 	if (mlocked)
1051 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1052 	else if (ret == SWAP_MLOCK)
1053 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1054 
1055 	return ret;
1056 }
1057 
1058 /**
1059  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1060  * @page: the page to unmap/unlock
1061  * @unlock:  request for unlock rather than unmap [unlikely]
1062  * @migration:  unmapping for migration - ignored if @unlock
1063  *
1064  * Find all the mappings of a page using the mapping pointer and the vma chains
1065  * contained in the address_space struct it points to.
1066  *
1067  * This function is only called from try_to_unmap/try_to_munlock for
1068  * object-based pages.
1069  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1070  * where the page was found will be held for write.  So, we won't recheck
1071  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1072  * 'LOCKED.
1073  */
1074 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1075 {
1076 	struct address_space *mapping = page->mapping;
1077 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1078 	struct vm_area_struct *vma;
1079 	struct prio_tree_iter iter;
1080 	int ret = SWAP_AGAIN;
1081 	unsigned long cursor;
1082 	unsigned long max_nl_cursor = 0;
1083 	unsigned long max_nl_size = 0;
1084 	unsigned int mapcount;
1085 	unsigned int mlocked = 0;
1086 
1087 	if (MLOCK_PAGES && unlikely(unlock))
1088 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1089 
1090 	spin_lock(&mapping->i_mmap_lock);
1091 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1092 		if (MLOCK_PAGES && unlikely(unlock)) {
1093 			if (!((vma->vm_flags & VM_LOCKED) &&
1094 						page_mapped_in_vma(page, vma)))
1095 				continue;	/* must visit all vmas */
1096 			ret = SWAP_MLOCK;
1097 		} else {
1098 			ret = try_to_unmap_one(page, vma, migration);
1099 			if (ret == SWAP_FAIL || !page_mapped(page))
1100 				goto out;
1101 		}
1102 		if (ret == SWAP_MLOCK) {
1103 			mlocked = try_to_mlock_page(page, vma);
1104 			if (mlocked)
1105 				break;  /* stop if actually mlocked page */
1106 		}
1107 	}
1108 
1109 	if (mlocked)
1110 		goto out;
1111 
1112 	if (list_empty(&mapping->i_mmap_nonlinear))
1113 		goto out;
1114 
1115 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1116 						shared.vm_set.list) {
1117 		if (MLOCK_PAGES && unlikely(unlock)) {
1118 			if (!(vma->vm_flags & VM_LOCKED))
1119 				continue;	/* must visit all vmas */
1120 			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1121 			goto out;		/* no need to look further */
1122 		}
1123 		if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1124 			continue;
1125 		cursor = (unsigned long) vma->vm_private_data;
1126 		if (cursor > max_nl_cursor)
1127 			max_nl_cursor = cursor;
1128 		cursor = vma->vm_end - vma->vm_start;
1129 		if (cursor > max_nl_size)
1130 			max_nl_size = cursor;
1131 	}
1132 
1133 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1134 		ret = SWAP_FAIL;
1135 		goto out;
1136 	}
1137 
1138 	/*
1139 	 * We don't try to search for this page in the nonlinear vmas,
1140 	 * and page_referenced wouldn't have found it anyway.  Instead
1141 	 * just walk the nonlinear vmas trying to age and unmap some.
1142 	 * The mapcount of the page we came in with is irrelevant,
1143 	 * but even so use it as a guide to how hard we should try?
1144 	 */
1145 	mapcount = page_mapcount(page);
1146 	if (!mapcount)
1147 		goto out;
1148 	cond_resched_lock(&mapping->i_mmap_lock);
1149 
1150 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1151 	if (max_nl_cursor == 0)
1152 		max_nl_cursor = CLUSTER_SIZE;
1153 
1154 	do {
1155 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1156 						shared.vm_set.list) {
1157 			if (!MLOCK_PAGES && !migration &&
1158 			    (vma->vm_flags & VM_LOCKED))
1159 				continue;
1160 			cursor = (unsigned long) vma->vm_private_data;
1161 			while ( cursor < max_nl_cursor &&
1162 				cursor < vma->vm_end - vma->vm_start) {
1163 				ret = try_to_unmap_cluster(cursor, &mapcount,
1164 								vma, page);
1165 				if (ret == SWAP_MLOCK)
1166 					mlocked = 2;	/* to return below */
1167 				cursor += CLUSTER_SIZE;
1168 				vma->vm_private_data = (void *) cursor;
1169 				if ((int)mapcount <= 0)
1170 					goto out;
1171 			}
1172 			vma->vm_private_data = (void *) max_nl_cursor;
1173 		}
1174 		cond_resched_lock(&mapping->i_mmap_lock);
1175 		max_nl_cursor += CLUSTER_SIZE;
1176 	} while (max_nl_cursor <= max_nl_size);
1177 
1178 	/*
1179 	 * Don't loop forever (perhaps all the remaining pages are
1180 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1181 	 * vmas, now forgetting on which ones it had fallen behind.
1182 	 */
1183 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1184 		vma->vm_private_data = NULL;
1185 out:
1186 	spin_unlock(&mapping->i_mmap_lock);
1187 	if (mlocked)
1188 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1189 	else if (ret == SWAP_MLOCK)
1190 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1191 	return ret;
1192 }
1193 
1194 /**
1195  * try_to_unmap - try to remove all page table mappings to a page
1196  * @page: the page to get unmapped
1197  * @migration: migration flag
1198  *
1199  * Tries to remove all the page table entries which are mapping this
1200  * page, used in the pageout path.  Caller must hold the page lock.
1201  * Return values are:
1202  *
1203  * SWAP_SUCCESS	- we succeeded in removing all mappings
1204  * SWAP_AGAIN	- we missed a mapping, try again later
1205  * SWAP_FAIL	- the page is unswappable
1206  * SWAP_MLOCK	- page is mlocked.
1207  */
1208 int try_to_unmap(struct page *page, int migration)
1209 {
1210 	int ret;
1211 
1212 	BUG_ON(!PageLocked(page));
1213 
1214 	if (PageAnon(page))
1215 		ret = try_to_unmap_anon(page, 0, migration);
1216 	else
1217 		ret = try_to_unmap_file(page, 0, migration);
1218 	if (ret != SWAP_MLOCK && !page_mapped(page))
1219 		ret = SWAP_SUCCESS;
1220 	return ret;
1221 }
1222 
1223 /**
1224  * try_to_munlock - try to munlock a page
1225  * @page: the page to be munlocked
1226  *
1227  * Called from munlock code.  Checks all of the VMAs mapping the page
1228  * to make sure nobody else has this page mlocked. The page will be
1229  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1230  *
1231  * Return values are:
1232  *
1233  * SWAP_SUCCESS	- no vma's holding page mlocked.
1234  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1235  * SWAP_MLOCK	- page is now mlocked.
1236  */
1237 int try_to_munlock(struct page *page)
1238 {
1239 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1240 
1241 	if (PageAnon(page))
1242 		return try_to_unmap_anon(page, 1, 0);
1243 	else
1244 		return try_to_unmap_file(page, 1, 0);
1245 }
1246 
1247