1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 */ 40 41 #include <linux/mm.h> 42 #include <linux/pagemap.h> 43 #include <linux/swap.h> 44 #include <linux/swapops.h> 45 #include <linux/slab.h> 46 #include <linux/init.h> 47 #include <linux/rmap.h> 48 #include <linux/rcupdate.h> 49 #include <linux/module.h> 50 #include <linux/memcontrol.h> 51 #include <linux/mmu_notifier.h> 52 #include <linux/migrate.h> 53 54 #include <asm/tlbflush.h> 55 56 #include "internal.h" 57 58 static struct kmem_cache *anon_vma_cachep; 59 60 static inline struct anon_vma *anon_vma_alloc(void) 61 { 62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 63 } 64 65 static inline void anon_vma_free(struct anon_vma *anon_vma) 66 { 67 kmem_cache_free(anon_vma_cachep, anon_vma); 68 } 69 70 /** 71 * anon_vma_prepare - attach an anon_vma to a memory region 72 * @vma: the memory region in question 73 * 74 * This makes sure the memory mapping described by 'vma' has 75 * an 'anon_vma' attached to it, so that we can associate the 76 * anonymous pages mapped into it with that anon_vma. 77 * 78 * The common case will be that we already have one, but if 79 * if not we either need to find an adjacent mapping that we 80 * can re-use the anon_vma from (very common when the only 81 * reason for splitting a vma has been mprotect()), or we 82 * allocate a new one. 83 * 84 * Anon-vma allocations are very subtle, because we may have 85 * optimistically looked up an anon_vma in page_lock_anon_vma() 86 * and that may actually touch the spinlock even in the newly 87 * allocated vma (it depends on RCU to make sure that the 88 * anon_vma isn't actually destroyed). 89 * 90 * As a result, we need to do proper anon_vma locking even 91 * for the new allocation. At the same time, we do not want 92 * to do any locking for the common case of already having 93 * an anon_vma. 94 * 95 * This must be called with the mmap_sem held for reading. 96 */ 97 int anon_vma_prepare(struct vm_area_struct *vma) 98 { 99 struct anon_vma *anon_vma = vma->anon_vma; 100 101 might_sleep(); 102 if (unlikely(!anon_vma)) { 103 struct mm_struct *mm = vma->vm_mm; 104 struct anon_vma *allocated; 105 106 anon_vma = find_mergeable_anon_vma(vma); 107 allocated = NULL; 108 if (!anon_vma) { 109 anon_vma = anon_vma_alloc(); 110 if (unlikely(!anon_vma)) 111 return -ENOMEM; 112 allocated = anon_vma; 113 } 114 spin_lock(&anon_vma->lock); 115 116 /* page_table_lock to protect against threads */ 117 spin_lock(&mm->page_table_lock); 118 if (likely(!vma->anon_vma)) { 119 vma->anon_vma = anon_vma; 120 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 121 allocated = NULL; 122 } 123 spin_unlock(&mm->page_table_lock); 124 125 spin_unlock(&anon_vma->lock); 126 if (unlikely(allocated)) 127 anon_vma_free(allocated); 128 } 129 return 0; 130 } 131 132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 133 { 134 BUG_ON(vma->anon_vma != next->anon_vma); 135 list_del(&next->anon_vma_node); 136 } 137 138 void __anon_vma_link(struct vm_area_struct *vma) 139 { 140 struct anon_vma *anon_vma = vma->anon_vma; 141 142 if (anon_vma) 143 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 144 } 145 146 void anon_vma_link(struct vm_area_struct *vma) 147 { 148 struct anon_vma *anon_vma = vma->anon_vma; 149 150 if (anon_vma) { 151 spin_lock(&anon_vma->lock); 152 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 153 spin_unlock(&anon_vma->lock); 154 } 155 } 156 157 void anon_vma_unlink(struct vm_area_struct *vma) 158 { 159 struct anon_vma *anon_vma = vma->anon_vma; 160 int empty; 161 162 if (!anon_vma) 163 return; 164 165 spin_lock(&anon_vma->lock); 166 list_del(&vma->anon_vma_node); 167 168 /* We must garbage collect the anon_vma if it's empty */ 169 empty = list_empty(&anon_vma->head); 170 spin_unlock(&anon_vma->lock); 171 172 if (empty) 173 anon_vma_free(anon_vma); 174 } 175 176 static void anon_vma_ctor(void *data) 177 { 178 struct anon_vma *anon_vma = data; 179 180 spin_lock_init(&anon_vma->lock); 181 INIT_LIST_HEAD(&anon_vma->head); 182 } 183 184 void __init anon_vma_init(void) 185 { 186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 188 } 189 190 /* 191 * Getting a lock on a stable anon_vma from a page off the LRU is 192 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 193 */ 194 static struct anon_vma *page_lock_anon_vma(struct page *page) 195 { 196 struct anon_vma *anon_vma; 197 unsigned long anon_mapping; 198 199 rcu_read_lock(); 200 anon_mapping = (unsigned long) page->mapping; 201 if (!(anon_mapping & PAGE_MAPPING_ANON)) 202 goto out; 203 if (!page_mapped(page)) 204 goto out; 205 206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 207 spin_lock(&anon_vma->lock); 208 return anon_vma; 209 out: 210 rcu_read_unlock(); 211 return NULL; 212 } 213 214 static void page_unlock_anon_vma(struct anon_vma *anon_vma) 215 { 216 spin_unlock(&anon_vma->lock); 217 rcu_read_unlock(); 218 } 219 220 /* 221 * At what user virtual address is page expected in @vma? 222 * Returns virtual address or -EFAULT if page's index/offset is not 223 * within the range mapped the @vma. 224 */ 225 static inline unsigned long 226 vma_address(struct page *page, struct vm_area_struct *vma) 227 { 228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 229 unsigned long address; 230 231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 233 /* page should be within @vma mapping range */ 234 return -EFAULT; 235 } 236 return address; 237 } 238 239 /* 240 * At what user virtual address is page expected in vma? checking that the 241 * page matches the vma: currently only used on anon pages, by unuse_vma; 242 */ 243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 244 { 245 if (PageAnon(page)) { 246 if ((void *)vma->anon_vma != 247 (void *)page->mapping - PAGE_MAPPING_ANON) 248 return -EFAULT; 249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 250 if (!vma->vm_file || 251 vma->vm_file->f_mapping != page->mapping) 252 return -EFAULT; 253 } else 254 return -EFAULT; 255 return vma_address(page, vma); 256 } 257 258 /* 259 * Check that @page is mapped at @address into @mm. 260 * 261 * If @sync is false, page_check_address may perform a racy check to avoid 262 * the page table lock when the pte is not present (helpful when reclaiming 263 * highly shared pages). 264 * 265 * On success returns with pte mapped and locked. 266 */ 267 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 268 unsigned long address, spinlock_t **ptlp, int sync) 269 { 270 pgd_t *pgd; 271 pud_t *pud; 272 pmd_t *pmd; 273 pte_t *pte; 274 spinlock_t *ptl; 275 276 pgd = pgd_offset(mm, address); 277 if (!pgd_present(*pgd)) 278 return NULL; 279 280 pud = pud_offset(pgd, address); 281 if (!pud_present(*pud)) 282 return NULL; 283 284 pmd = pmd_offset(pud, address); 285 if (!pmd_present(*pmd)) 286 return NULL; 287 288 pte = pte_offset_map(pmd, address); 289 /* Make a quick check before getting the lock */ 290 if (!sync && !pte_present(*pte)) { 291 pte_unmap(pte); 292 return NULL; 293 } 294 295 ptl = pte_lockptr(mm, pmd); 296 spin_lock(ptl); 297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 298 *ptlp = ptl; 299 return pte; 300 } 301 pte_unmap_unlock(pte, ptl); 302 return NULL; 303 } 304 305 /** 306 * page_mapped_in_vma - check whether a page is really mapped in a VMA 307 * @page: the page to test 308 * @vma: the VMA to test 309 * 310 * Returns 1 if the page is mapped into the page tables of the VMA, 0 311 * if the page is not mapped into the page tables of this VMA. Only 312 * valid for normal file or anonymous VMAs. 313 */ 314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 315 { 316 unsigned long address; 317 pte_t *pte; 318 spinlock_t *ptl; 319 320 address = vma_address(page, vma); 321 if (address == -EFAULT) /* out of vma range */ 322 return 0; 323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 324 if (!pte) /* the page is not in this mm */ 325 return 0; 326 pte_unmap_unlock(pte, ptl); 327 328 return 1; 329 } 330 331 /* 332 * Subfunctions of page_referenced: page_referenced_one called 333 * repeatedly from either page_referenced_anon or page_referenced_file. 334 */ 335 static int page_referenced_one(struct page *page, 336 struct vm_area_struct *vma, 337 unsigned int *mapcount, 338 unsigned long *vm_flags) 339 { 340 struct mm_struct *mm = vma->vm_mm; 341 unsigned long address; 342 pte_t *pte; 343 spinlock_t *ptl; 344 int referenced = 0; 345 346 address = vma_address(page, vma); 347 if (address == -EFAULT) 348 goto out; 349 350 pte = page_check_address(page, mm, address, &ptl, 0); 351 if (!pte) 352 goto out; 353 354 /* 355 * Don't want to elevate referenced for mlocked page that gets this far, 356 * in order that it progresses to try_to_unmap and is moved to the 357 * unevictable list. 358 */ 359 if (vma->vm_flags & VM_LOCKED) { 360 *mapcount = 1; /* break early from loop */ 361 goto out_unmap; 362 } 363 364 if (ptep_clear_flush_young_notify(vma, address, pte)) { 365 /* 366 * Don't treat a reference through a sequentially read 367 * mapping as such. If the page has been used in 368 * another mapping, we will catch it; if this other 369 * mapping is already gone, the unmap path will have 370 * set PG_referenced or activated the page. 371 */ 372 if (likely(!VM_SequentialReadHint(vma))) 373 referenced++; 374 } 375 376 /* Pretend the page is referenced if the task has the 377 swap token and is in the middle of a page fault. */ 378 if (mm != current->mm && has_swap_token(mm) && 379 rwsem_is_locked(&mm->mmap_sem)) 380 referenced++; 381 382 out_unmap: 383 (*mapcount)--; 384 pte_unmap_unlock(pte, ptl); 385 out: 386 if (referenced) 387 *vm_flags |= vma->vm_flags; 388 return referenced; 389 } 390 391 static int page_referenced_anon(struct page *page, 392 struct mem_cgroup *mem_cont, 393 unsigned long *vm_flags) 394 { 395 unsigned int mapcount; 396 struct anon_vma *anon_vma; 397 struct vm_area_struct *vma; 398 int referenced = 0; 399 400 anon_vma = page_lock_anon_vma(page); 401 if (!anon_vma) 402 return referenced; 403 404 mapcount = page_mapcount(page); 405 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 406 /* 407 * If we are reclaiming on behalf of a cgroup, skip 408 * counting on behalf of references from different 409 * cgroups 410 */ 411 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 412 continue; 413 referenced += page_referenced_one(page, vma, 414 &mapcount, vm_flags); 415 if (!mapcount) 416 break; 417 } 418 419 page_unlock_anon_vma(anon_vma); 420 return referenced; 421 } 422 423 /** 424 * page_referenced_file - referenced check for object-based rmap 425 * @page: the page we're checking references on. 426 * @mem_cont: target memory controller 427 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 428 * 429 * For an object-based mapped page, find all the places it is mapped and 430 * check/clear the referenced flag. This is done by following the page->mapping 431 * pointer, then walking the chain of vmas it holds. It returns the number 432 * of references it found. 433 * 434 * This function is only called from page_referenced for object-based pages. 435 */ 436 static int page_referenced_file(struct page *page, 437 struct mem_cgroup *mem_cont, 438 unsigned long *vm_flags) 439 { 440 unsigned int mapcount; 441 struct address_space *mapping = page->mapping; 442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 443 struct vm_area_struct *vma; 444 struct prio_tree_iter iter; 445 int referenced = 0; 446 447 /* 448 * The caller's checks on page->mapping and !PageAnon have made 449 * sure that this is a file page: the check for page->mapping 450 * excludes the case just before it gets set on an anon page. 451 */ 452 BUG_ON(PageAnon(page)); 453 454 /* 455 * The page lock not only makes sure that page->mapping cannot 456 * suddenly be NULLified by truncation, it makes sure that the 457 * structure at mapping cannot be freed and reused yet, 458 * so we can safely take mapping->i_mmap_lock. 459 */ 460 BUG_ON(!PageLocked(page)); 461 462 spin_lock(&mapping->i_mmap_lock); 463 464 /* 465 * i_mmap_lock does not stabilize mapcount at all, but mapcount 466 * is more likely to be accurate if we note it after spinning. 467 */ 468 mapcount = page_mapcount(page); 469 470 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 471 /* 472 * If we are reclaiming on behalf of a cgroup, skip 473 * counting on behalf of references from different 474 * cgroups 475 */ 476 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 477 continue; 478 referenced += page_referenced_one(page, vma, 479 &mapcount, vm_flags); 480 if (!mapcount) 481 break; 482 } 483 484 spin_unlock(&mapping->i_mmap_lock); 485 return referenced; 486 } 487 488 /** 489 * page_referenced - test if the page was referenced 490 * @page: the page to test 491 * @is_locked: caller holds lock on the page 492 * @mem_cont: target memory controller 493 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 494 * 495 * Quick test_and_clear_referenced for all mappings to a page, 496 * returns the number of ptes which referenced the page. 497 */ 498 int page_referenced(struct page *page, 499 int is_locked, 500 struct mem_cgroup *mem_cont, 501 unsigned long *vm_flags) 502 { 503 int referenced = 0; 504 505 if (TestClearPageReferenced(page)) 506 referenced++; 507 508 *vm_flags = 0; 509 if (page_mapped(page) && page->mapping) { 510 if (PageAnon(page)) 511 referenced += page_referenced_anon(page, mem_cont, 512 vm_flags); 513 else if (is_locked) 514 referenced += page_referenced_file(page, mem_cont, 515 vm_flags); 516 else if (!trylock_page(page)) 517 referenced++; 518 else { 519 if (page->mapping) 520 referenced += page_referenced_file(page, 521 mem_cont, vm_flags); 522 unlock_page(page); 523 } 524 } 525 526 if (page_test_and_clear_young(page)) 527 referenced++; 528 529 return referenced; 530 } 531 532 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) 533 { 534 struct mm_struct *mm = vma->vm_mm; 535 unsigned long address; 536 pte_t *pte; 537 spinlock_t *ptl; 538 int ret = 0; 539 540 address = vma_address(page, vma); 541 if (address == -EFAULT) 542 goto out; 543 544 pte = page_check_address(page, mm, address, &ptl, 1); 545 if (!pte) 546 goto out; 547 548 if (pte_dirty(*pte) || pte_write(*pte)) { 549 pte_t entry; 550 551 flush_cache_page(vma, address, pte_pfn(*pte)); 552 entry = ptep_clear_flush_notify(vma, address, pte); 553 entry = pte_wrprotect(entry); 554 entry = pte_mkclean(entry); 555 set_pte_at(mm, address, pte, entry); 556 ret = 1; 557 } 558 559 pte_unmap_unlock(pte, ptl); 560 out: 561 return ret; 562 } 563 564 static int page_mkclean_file(struct address_space *mapping, struct page *page) 565 { 566 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 567 struct vm_area_struct *vma; 568 struct prio_tree_iter iter; 569 int ret = 0; 570 571 BUG_ON(PageAnon(page)); 572 573 spin_lock(&mapping->i_mmap_lock); 574 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 575 if (vma->vm_flags & VM_SHARED) 576 ret += page_mkclean_one(page, vma); 577 } 578 spin_unlock(&mapping->i_mmap_lock); 579 return ret; 580 } 581 582 int page_mkclean(struct page *page) 583 { 584 int ret = 0; 585 586 BUG_ON(!PageLocked(page)); 587 588 if (page_mapped(page)) { 589 struct address_space *mapping = page_mapping(page); 590 if (mapping) { 591 ret = page_mkclean_file(mapping, page); 592 if (page_test_dirty(page)) { 593 page_clear_dirty(page); 594 ret = 1; 595 } 596 } 597 } 598 599 return ret; 600 } 601 EXPORT_SYMBOL_GPL(page_mkclean); 602 603 /** 604 * __page_set_anon_rmap - setup new anonymous rmap 605 * @page: the page to add the mapping to 606 * @vma: the vm area in which the mapping is added 607 * @address: the user virtual address mapped 608 */ 609 static void __page_set_anon_rmap(struct page *page, 610 struct vm_area_struct *vma, unsigned long address) 611 { 612 struct anon_vma *anon_vma = vma->anon_vma; 613 614 BUG_ON(!anon_vma); 615 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 616 page->mapping = (struct address_space *) anon_vma; 617 618 page->index = linear_page_index(vma, address); 619 620 /* 621 * nr_mapped state can be updated without turning off 622 * interrupts because it is not modified via interrupt. 623 */ 624 __inc_zone_page_state(page, NR_ANON_PAGES); 625 } 626 627 /** 628 * __page_check_anon_rmap - sanity check anonymous rmap addition 629 * @page: the page to add the mapping to 630 * @vma: the vm area in which the mapping is added 631 * @address: the user virtual address mapped 632 */ 633 static void __page_check_anon_rmap(struct page *page, 634 struct vm_area_struct *vma, unsigned long address) 635 { 636 #ifdef CONFIG_DEBUG_VM 637 /* 638 * The page's anon-rmap details (mapping and index) are guaranteed to 639 * be set up correctly at this point. 640 * 641 * We have exclusion against page_add_anon_rmap because the caller 642 * always holds the page locked, except if called from page_dup_rmap, 643 * in which case the page is already known to be setup. 644 * 645 * We have exclusion against page_add_new_anon_rmap because those pages 646 * are initially only visible via the pagetables, and the pte is locked 647 * over the call to page_add_new_anon_rmap. 648 */ 649 struct anon_vma *anon_vma = vma->anon_vma; 650 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 651 BUG_ON(page->mapping != (struct address_space *)anon_vma); 652 BUG_ON(page->index != linear_page_index(vma, address)); 653 #endif 654 } 655 656 /** 657 * page_add_anon_rmap - add pte mapping to an anonymous page 658 * @page: the page to add the mapping to 659 * @vma: the vm area in which the mapping is added 660 * @address: the user virtual address mapped 661 * 662 * The caller needs to hold the pte lock and the page must be locked. 663 */ 664 void page_add_anon_rmap(struct page *page, 665 struct vm_area_struct *vma, unsigned long address) 666 { 667 VM_BUG_ON(!PageLocked(page)); 668 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 669 if (atomic_inc_and_test(&page->_mapcount)) 670 __page_set_anon_rmap(page, vma, address); 671 else 672 __page_check_anon_rmap(page, vma, address); 673 } 674 675 /** 676 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 677 * @page: the page to add the mapping to 678 * @vma: the vm area in which the mapping is added 679 * @address: the user virtual address mapped 680 * 681 * Same as page_add_anon_rmap but must only be called on *new* pages. 682 * This means the inc-and-test can be bypassed. 683 * Page does not have to be locked. 684 */ 685 void page_add_new_anon_rmap(struct page *page, 686 struct vm_area_struct *vma, unsigned long address) 687 { 688 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 689 SetPageSwapBacked(page); 690 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 691 __page_set_anon_rmap(page, vma, address); 692 if (page_evictable(page, vma)) 693 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 694 else 695 add_page_to_unevictable_list(page); 696 } 697 698 /** 699 * page_add_file_rmap - add pte mapping to a file page 700 * @page: the page to add the mapping to 701 * 702 * The caller needs to hold the pte lock. 703 */ 704 void page_add_file_rmap(struct page *page) 705 { 706 if (atomic_inc_and_test(&page->_mapcount)) { 707 __inc_zone_page_state(page, NR_FILE_MAPPED); 708 mem_cgroup_update_mapped_file_stat(page, 1); 709 } 710 } 711 712 #ifdef CONFIG_DEBUG_VM 713 /** 714 * page_dup_rmap - duplicate pte mapping to a page 715 * @page: the page to add the mapping to 716 * @vma: the vm area being duplicated 717 * @address: the user virtual address mapped 718 * 719 * For copy_page_range only: minimal extract from page_add_file_rmap / 720 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's 721 * quicker. 722 * 723 * The caller needs to hold the pte lock. 724 */ 725 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) 726 { 727 if (PageAnon(page)) 728 __page_check_anon_rmap(page, vma, address); 729 atomic_inc(&page->_mapcount); 730 } 731 #endif 732 733 /** 734 * page_remove_rmap - take down pte mapping from a page 735 * @page: page to remove mapping from 736 * 737 * The caller needs to hold the pte lock. 738 */ 739 void page_remove_rmap(struct page *page) 740 { 741 if (atomic_add_negative(-1, &page->_mapcount)) { 742 /* 743 * Now that the last pte has gone, s390 must transfer dirty 744 * flag from storage key to struct page. We can usually skip 745 * this if the page is anon, so about to be freed; but perhaps 746 * not if it's in swapcache - there might be another pte slot 747 * containing the swap entry, but page not yet written to swap. 748 */ 749 if ((!PageAnon(page) || PageSwapCache(page)) && 750 page_test_dirty(page)) { 751 page_clear_dirty(page); 752 set_page_dirty(page); 753 } 754 if (PageAnon(page)) 755 mem_cgroup_uncharge_page(page); 756 __dec_zone_page_state(page, 757 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 758 mem_cgroup_update_mapped_file_stat(page, -1); 759 /* 760 * It would be tidy to reset the PageAnon mapping here, 761 * but that might overwrite a racing page_add_anon_rmap 762 * which increments mapcount after us but sets mapping 763 * before us: so leave the reset to free_hot_cold_page, 764 * and remember that it's only reliable while mapped. 765 * Leaving it set also helps swapoff to reinstate ptes 766 * faster for those pages still in swapcache. 767 */ 768 } 769 } 770 771 /* 772 * Subfunctions of try_to_unmap: try_to_unmap_one called 773 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 774 */ 775 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 776 int migration) 777 { 778 struct mm_struct *mm = vma->vm_mm; 779 unsigned long address; 780 pte_t *pte; 781 pte_t pteval; 782 spinlock_t *ptl; 783 int ret = SWAP_AGAIN; 784 785 address = vma_address(page, vma); 786 if (address == -EFAULT) 787 goto out; 788 789 pte = page_check_address(page, mm, address, &ptl, 0); 790 if (!pte) 791 goto out; 792 793 /* 794 * If the page is mlock()d, we cannot swap it out. 795 * If it's recently referenced (perhaps page_referenced 796 * skipped over this mm) then we should reactivate it. 797 */ 798 if (!migration) { 799 if (vma->vm_flags & VM_LOCKED) { 800 ret = SWAP_MLOCK; 801 goto out_unmap; 802 } 803 if (ptep_clear_flush_young_notify(vma, address, pte)) { 804 ret = SWAP_FAIL; 805 goto out_unmap; 806 } 807 } 808 809 /* Nuke the page table entry. */ 810 flush_cache_page(vma, address, page_to_pfn(page)); 811 pteval = ptep_clear_flush_notify(vma, address, pte); 812 813 /* Move the dirty bit to the physical page now the pte is gone. */ 814 if (pte_dirty(pteval)) 815 set_page_dirty(page); 816 817 /* Update high watermark before we lower rss */ 818 update_hiwater_rss(mm); 819 820 if (PageAnon(page)) { 821 swp_entry_t entry = { .val = page_private(page) }; 822 823 if (PageSwapCache(page)) { 824 /* 825 * Store the swap location in the pte. 826 * See handle_pte_fault() ... 827 */ 828 swap_duplicate(entry); 829 if (list_empty(&mm->mmlist)) { 830 spin_lock(&mmlist_lock); 831 if (list_empty(&mm->mmlist)) 832 list_add(&mm->mmlist, &init_mm.mmlist); 833 spin_unlock(&mmlist_lock); 834 } 835 dec_mm_counter(mm, anon_rss); 836 } else if (PAGE_MIGRATION) { 837 /* 838 * Store the pfn of the page in a special migration 839 * pte. do_swap_page() will wait until the migration 840 * pte is removed and then restart fault handling. 841 */ 842 BUG_ON(!migration); 843 entry = make_migration_entry(page, pte_write(pteval)); 844 } 845 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 846 BUG_ON(pte_file(*pte)); 847 } else if (PAGE_MIGRATION && migration) { 848 /* Establish migration entry for a file page */ 849 swp_entry_t entry; 850 entry = make_migration_entry(page, pte_write(pteval)); 851 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 852 } else 853 dec_mm_counter(mm, file_rss); 854 855 856 page_remove_rmap(page); 857 page_cache_release(page); 858 859 out_unmap: 860 pte_unmap_unlock(pte, ptl); 861 out: 862 return ret; 863 } 864 865 /* 866 * objrmap doesn't work for nonlinear VMAs because the assumption that 867 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 868 * Consequently, given a particular page and its ->index, we cannot locate the 869 * ptes which are mapping that page without an exhaustive linear search. 870 * 871 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 872 * maps the file to which the target page belongs. The ->vm_private_data field 873 * holds the current cursor into that scan. Successive searches will circulate 874 * around the vma's virtual address space. 875 * 876 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 877 * more scanning pressure is placed against them as well. Eventually pages 878 * will become fully unmapped and are eligible for eviction. 879 * 880 * For very sparsely populated VMAs this is a little inefficient - chances are 881 * there there won't be many ptes located within the scan cluster. In this case 882 * maybe we could scan further - to the end of the pte page, perhaps. 883 * 884 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 885 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 886 * rather than unmapping them. If we encounter the "check_page" that vmscan is 887 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 888 */ 889 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 890 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 891 892 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 893 struct vm_area_struct *vma, struct page *check_page) 894 { 895 struct mm_struct *mm = vma->vm_mm; 896 pgd_t *pgd; 897 pud_t *pud; 898 pmd_t *pmd; 899 pte_t *pte; 900 pte_t pteval; 901 spinlock_t *ptl; 902 struct page *page; 903 unsigned long address; 904 unsigned long end; 905 int ret = SWAP_AGAIN; 906 int locked_vma = 0; 907 908 address = (vma->vm_start + cursor) & CLUSTER_MASK; 909 end = address + CLUSTER_SIZE; 910 if (address < vma->vm_start) 911 address = vma->vm_start; 912 if (end > vma->vm_end) 913 end = vma->vm_end; 914 915 pgd = pgd_offset(mm, address); 916 if (!pgd_present(*pgd)) 917 return ret; 918 919 pud = pud_offset(pgd, address); 920 if (!pud_present(*pud)) 921 return ret; 922 923 pmd = pmd_offset(pud, address); 924 if (!pmd_present(*pmd)) 925 return ret; 926 927 /* 928 * MLOCK_PAGES => feature is configured. 929 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, 930 * keep the sem while scanning the cluster for mlocking pages. 931 */ 932 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { 933 locked_vma = (vma->vm_flags & VM_LOCKED); 934 if (!locked_vma) 935 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 936 } 937 938 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 939 940 /* Update high watermark before we lower rss */ 941 update_hiwater_rss(mm); 942 943 for (; address < end; pte++, address += PAGE_SIZE) { 944 if (!pte_present(*pte)) 945 continue; 946 page = vm_normal_page(vma, address, *pte); 947 BUG_ON(!page || PageAnon(page)); 948 949 if (locked_vma) { 950 mlock_vma_page(page); /* no-op if already mlocked */ 951 if (page == check_page) 952 ret = SWAP_MLOCK; 953 continue; /* don't unmap */ 954 } 955 956 if (ptep_clear_flush_young_notify(vma, address, pte)) 957 continue; 958 959 /* Nuke the page table entry. */ 960 flush_cache_page(vma, address, pte_pfn(*pte)); 961 pteval = ptep_clear_flush_notify(vma, address, pte); 962 963 /* If nonlinear, store the file page offset in the pte. */ 964 if (page->index != linear_page_index(vma, address)) 965 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 966 967 /* Move the dirty bit to the physical page now the pte is gone. */ 968 if (pte_dirty(pteval)) 969 set_page_dirty(page); 970 971 page_remove_rmap(page); 972 page_cache_release(page); 973 dec_mm_counter(mm, file_rss); 974 (*mapcount)--; 975 } 976 pte_unmap_unlock(pte - 1, ptl); 977 if (locked_vma) 978 up_read(&vma->vm_mm->mmap_sem); 979 return ret; 980 } 981 982 /* 983 * common handling for pages mapped in VM_LOCKED vmas 984 */ 985 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) 986 { 987 int mlocked = 0; 988 989 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 990 if (vma->vm_flags & VM_LOCKED) { 991 mlock_vma_page(page); 992 mlocked++; /* really mlocked the page */ 993 } 994 up_read(&vma->vm_mm->mmap_sem); 995 } 996 return mlocked; 997 } 998 999 /** 1000 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1001 * rmap method 1002 * @page: the page to unmap/unlock 1003 * @unlock: request for unlock rather than unmap [unlikely] 1004 * @migration: unmapping for migration - ignored if @unlock 1005 * 1006 * Find all the mappings of a page using the mapping pointer and the vma chains 1007 * contained in the anon_vma struct it points to. 1008 * 1009 * This function is only called from try_to_unmap/try_to_munlock for 1010 * anonymous pages. 1011 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1012 * where the page was found will be held for write. So, we won't recheck 1013 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1014 * 'LOCKED. 1015 */ 1016 static int try_to_unmap_anon(struct page *page, int unlock, int migration) 1017 { 1018 struct anon_vma *anon_vma; 1019 struct vm_area_struct *vma; 1020 unsigned int mlocked = 0; 1021 int ret = SWAP_AGAIN; 1022 1023 if (MLOCK_PAGES && unlikely(unlock)) 1024 ret = SWAP_SUCCESS; /* default for try_to_munlock() */ 1025 1026 anon_vma = page_lock_anon_vma(page); 1027 if (!anon_vma) 1028 return ret; 1029 1030 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 1031 if (MLOCK_PAGES && unlikely(unlock)) { 1032 if (!((vma->vm_flags & VM_LOCKED) && 1033 page_mapped_in_vma(page, vma))) 1034 continue; /* must visit all unlocked vmas */ 1035 ret = SWAP_MLOCK; /* saw at least one mlocked vma */ 1036 } else { 1037 ret = try_to_unmap_one(page, vma, migration); 1038 if (ret == SWAP_FAIL || !page_mapped(page)) 1039 break; 1040 } 1041 if (ret == SWAP_MLOCK) { 1042 mlocked = try_to_mlock_page(page, vma); 1043 if (mlocked) 1044 break; /* stop if actually mlocked page */ 1045 } 1046 } 1047 1048 page_unlock_anon_vma(anon_vma); 1049 1050 if (mlocked) 1051 ret = SWAP_MLOCK; /* actually mlocked the page */ 1052 else if (ret == SWAP_MLOCK) 1053 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1060 * @page: the page to unmap/unlock 1061 * @unlock: request for unlock rather than unmap [unlikely] 1062 * @migration: unmapping for migration - ignored if @unlock 1063 * 1064 * Find all the mappings of a page using the mapping pointer and the vma chains 1065 * contained in the address_space struct it points to. 1066 * 1067 * This function is only called from try_to_unmap/try_to_munlock for 1068 * object-based pages. 1069 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1070 * where the page was found will be held for write. So, we won't recheck 1071 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1072 * 'LOCKED. 1073 */ 1074 static int try_to_unmap_file(struct page *page, int unlock, int migration) 1075 { 1076 struct address_space *mapping = page->mapping; 1077 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1078 struct vm_area_struct *vma; 1079 struct prio_tree_iter iter; 1080 int ret = SWAP_AGAIN; 1081 unsigned long cursor; 1082 unsigned long max_nl_cursor = 0; 1083 unsigned long max_nl_size = 0; 1084 unsigned int mapcount; 1085 unsigned int mlocked = 0; 1086 1087 if (MLOCK_PAGES && unlikely(unlock)) 1088 ret = SWAP_SUCCESS; /* default for try_to_munlock() */ 1089 1090 spin_lock(&mapping->i_mmap_lock); 1091 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1092 if (MLOCK_PAGES && unlikely(unlock)) { 1093 if (!((vma->vm_flags & VM_LOCKED) && 1094 page_mapped_in_vma(page, vma))) 1095 continue; /* must visit all vmas */ 1096 ret = SWAP_MLOCK; 1097 } else { 1098 ret = try_to_unmap_one(page, vma, migration); 1099 if (ret == SWAP_FAIL || !page_mapped(page)) 1100 goto out; 1101 } 1102 if (ret == SWAP_MLOCK) { 1103 mlocked = try_to_mlock_page(page, vma); 1104 if (mlocked) 1105 break; /* stop if actually mlocked page */ 1106 } 1107 } 1108 1109 if (mlocked) 1110 goto out; 1111 1112 if (list_empty(&mapping->i_mmap_nonlinear)) 1113 goto out; 1114 1115 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1116 shared.vm_set.list) { 1117 if (MLOCK_PAGES && unlikely(unlock)) { 1118 if (!(vma->vm_flags & VM_LOCKED)) 1119 continue; /* must visit all vmas */ 1120 ret = SWAP_MLOCK; /* leave mlocked == 0 */ 1121 goto out; /* no need to look further */ 1122 } 1123 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) 1124 continue; 1125 cursor = (unsigned long) vma->vm_private_data; 1126 if (cursor > max_nl_cursor) 1127 max_nl_cursor = cursor; 1128 cursor = vma->vm_end - vma->vm_start; 1129 if (cursor > max_nl_size) 1130 max_nl_size = cursor; 1131 } 1132 1133 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1134 ret = SWAP_FAIL; 1135 goto out; 1136 } 1137 1138 /* 1139 * We don't try to search for this page in the nonlinear vmas, 1140 * and page_referenced wouldn't have found it anyway. Instead 1141 * just walk the nonlinear vmas trying to age and unmap some. 1142 * The mapcount of the page we came in with is irrelevant, 1143 * but even so use it as a guide to how hard we should try? 1144 */ 1145 mapcount = page_mapcount(page); 1146 if (!mapcount) 1147 goto out; 1148 cond_resched_lock(&mapping->i_mmap_lock); 1149 1150 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1151 if (max_nl_cursor == 0) 1152 max_nl_cursor = CLUSTER_SIZE; 1153 1154 do { 1155 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1156 shared.vm_set.list) { 1157 if (!MLOCK_PAGES && !migration && 1158 (vma->vm_flags & VM_LOCKED)) 1159 continue; 1160 cursor = (unsigned long) vma->vm_private_data; 1161 while ( cursor < max_nl_cursor && 1162 cursor < vma->vm_end - vma->vm_start) { 1163 ret = try_to_unmap_cluster(cursor, &mapcount, 1164 vma, page); 1165 if (ret == SWAP_MLOCK) 1166 mlocked = 2; /* to return below */ 1167 cursor += CLUSTER_SIZE; 1168 vma->vm_private_data = (void *) cursor; 1169 if ((int)mapcount <= 0) 1170 goto out; 1171 } 1172 vma->vm_private_data = (void *) max_nl_cursor; 1173 } 1174 cond_resched_lock(&mapping->i_mmap_lock); 1175 max_nl_cursor += CLUSTER_SIZE; 1176 } while (max_nl_cursor <= max_nl_size); 1177 1178 /* 1179 * Don't loop forever (perhaps all the remaining pages are 1180 * in locked vmas). Reset cursor on all unreserved nonlinear 1181 * vmas, now forgetting on which ones it had fallen behind. 1182 */ 1183 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1184 vma->vm_private_data = NULL; 1185 out: 1186 spin_unlock(&mapping->i_mmap_lock); 1187 if (mlocked) 1188 ret = SWAP_MLOCK; /* actually mlocked the page */ 1189 else if (ret == SWAP_MLOCK) 1190 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ 1191 return ret; 1192 } 1193 1194 /** 1195 * try_to_unmap - try to remove all page table mappings to a page 1196 * @page: the page to get unmapped 1197 * @migration: migration flag 1198 * 1199 * Tries to remove all the page table entries which are mapping this 1200 * page, used in the pageout path. Caller must hold the page lock. 1201 * Return values are: 1202 * 1203 * SWAP_SUCCESS - we succeeded in removing all mappings 1204 * SWAP_AGAIN - we missed a mapping, try again later 1205 * SWAP_FAIL - the page is unswappable 1206 * SWAP_MLOCK - page is mlocked. 1207 */ 1208 int try_to_unmap(struct page *page, int migration) 1209 { 1210 int ret; 1211 1212 BUG_ON(!PageLocked(page)); 1213 1214 if (PageAnon(page)) 1215 ret = try_to_unmap_anon(page, 0, migration); 1216 else 1217 ret = try_to_unmap_file(page, 0, migration); 1218 if (ret != SWAP_MLOCK && !page_mapped(page)) 1219 ret = SWAP_SUCCESS; 1220 return ret; 1221 } 1222 1223 /** 1224 * try_to_munlock - try to munlock a page 1225 * @page: the page to be munlocked 1226 * 1227 * Called from munlock code. Checks all of the VMAs mapping the page 1228 * to make sure nobody else has this page mlocked. The page will be 1229 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1230 * 1231 * Return values are: 1232 * 1233 * SWAP_SUCCESS - no vma's holding page mlocked. 1234 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1235 * SWAP_MLOCK - page is now mlocked. 1236 */ 1237 int try_to_munlock(struct page *page) 1238 { 1239 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1240 1241 if (PageAnon(page)) 1242 return try_to_unmap_anon(page, 1, 0); 1243 else 1244 return try_to_unmap_file(page, 1, 0); 1245 } 1246 1247