1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in __set_page_dirty_buffers) 35 * lock_page_memcg move_lock (in __set_page_dirty_buffers) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in lock_page_lruvec_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 77 #include <asm/tlbflush.h> 78 79 #include <trace/events/tlb.h> 80 81 #include "internal.h" 82 83 static struct kmem_cache *anon_vma_cachep; 84 static struct kmem_cache *anon_vma_chain_cachep; 85 86 static inline struct anon_vma *anon_vma_alloc(void) 87 { 88 struct anon_vma *anon_vma; 89 90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 91 if (anon_vma) { 92 atomic_set(&anon_vma->refcount, 1); 93 anon_vma->degree = 1; /* Reference for first vma */ 94 anon_vma->parent = anon_vma; 95 /* 96 * Initialise the anon_vma root to point to itself. If called 97 * from fork, the root will be reset to the parents anon_vma. 98 */ 99 anon_vma->root = anon_vma; 100 } 101 102 return anon_vma; 103 } 104 105 static inline void anon_vma_free(struct anon_vma *anon_vma) 106 { 107 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 108 109 /* 110 * Synchronize against page_lock_anon_vma_read() such that 111 * we can safely hold the lock without the anon_vma getting 112 * freed. 113 * 114 * Relies on the full mb implied by the atomic_dec_and_test() from 115 * put_anon_vma() against the acquire barrier implied by 116 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 117 * 118 * page_lock_anon_vma_read() VS put_anon_vma() 119 * down_read_trylock() atomic_dec_and_test() 120 * LOCK MB 121 * atomic_read() rwsem_is_locked() 122 * 123 * LOCK should suffice since the actual taking of the lock must 124 * happen _before_ what follows. 125 */ 126 might_sleep(); 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 128 anon_vma_lock_write(anon_vma); 129 anon_vma_unlock_write(anon_vma); 130 } 131 132 kmem_cache_free(anon_vma_cachep, anon_vma); 133 } 134 135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 136 { 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 138 } 139 140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 141 { 142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 143 } 144 145 static void anon_vma_chain_link(struct vm_area_struct *vma, 146 struct anon_vma_chain *avc, 147 struct anon_vma *anon_vma) 148 { 149 avc->vma = vma; 150 avc->anon_vma = anon_vma; 151 list_add(&avc->same_vma, &vma->anon_vma_chain); 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 153 } 154 155 /** 156 * __anon_vma_prepare - attach an anon_vma to a memory region 157 * @vma: the memory region in question 158 * 159 * This makes sure the memory mapping described by 'vma' has 160 * an 'anon_vma' attached to it, so that we can associate the 161 * anonymous pages mapped into it with that anon_vma. 162 * 163 * The common case will be that we already have one, which 164 * is handled inline by anon_vma_prepare(). But if 165 * not we either need to find an adjacent mapping that we 166 * can re-use the anon_vma from (very common when the only 167 * reason for splitting a vma has been mprotect()), or we 168 * allocate a new one. 169 * 170 * Anon-vma allocations are very subtle, because we may have 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 172 * and that may actually touch the rwsem even in the newly 173 * allocated vma (it depends on RCU to make sure that the 174 * anon_vma isn't actually destroyed). 175 * 176 * As a result, we need to do proper anon_vma locking even 177 * for the new allocation. At the same time, we do not want 178 * to do any locking for the common case of already having 179 * an anon_vma. 180 * 181 * This must be called with the mmap_lock held for reading. 182 */ 183 int __anon_vma_prepare(struct vm_area_struct *vma) 184 { 185 struct mm_struct *mm = vma->vm_mm; 186 struct anon_vma *anon_vma, *allocated; 187 struct anon_vma_chain *avc; 188 189 might_sleep(); 190 191 avc = anon_vma_chain_alloc(GFP_KERNEL); 192 if (!avc) 193 goto out_enomem; 194 195 anon_vma = find_mergeable_anon_vma(vma); 196 allocated = NULL; 197 if (!anon_vma) { 198 anon_vma = anon_vma_alloc(); 199 if (unlikely(!anon_vma)) 200 goto out_enomem_free_avc; 201 allocated = anon_vma; 202 } 203 204 anon_vma_lock_write(anon_vma); 205 /* page_table_lock to protect against threads */ 206 spin_lock(&mm->page_table_lock); 207 if (likely(!vma->anon_vma)) { 208 vma->anon_vma = anon_vma; 209 anon_vma_chain_link(vma, avc, anon_vma); 210 /* vma reference or self-parent link for new root */ 211 anon_vma->degree++; 212 allocated = NULL; 213 avc = NULL; 214 } 215 spin_unlock(&mm->page_table_lock); 216 anon_vma_unlock_write(anon_vma); 217 218 if (unlikely(allocated)) 219 put_anon_vma(allocated); 220 if (unlikely(avc)) 221 anon_vma_chain_free(avc); 222 223 return 0; 224 225 out_enomem_free_avc: 226 anon_vma_chain_free(avc); 227 out_enomem: 228 return -ENOMEM; 229 } 230 231 /* 232 * This is a useful helper function for locking the anon_vma root as 233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 234 * have the same vma. 235 * 236 * Such anon_vma's should have the same root, so you'd expect to see 237 * just a single mutex_lock for the whole traversal. 238 */ 239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 240 { 241 struct anon_vma *new_root = anon_vma->root; 242 if (new_root != root) { 243 if (WARN_ON_ONCE(root)) 244 up_write(&root->rwsem); 245 root = new_root; 246 down_write(&root->rwsem); 247 } 248 return root; 249 } 250 251 static inline void unlock_anon_vma_root(struct anon_vma *root) 252 { 253 if (root) 254 up_write(&root->rwsem); 255 } 256 257 /* 258 * Attach the anon_vmas from src to dst. 259 * Returns 0 on success, -ENOMEM on failure. 260 * 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 262 * anon_vma_fork(). The first three want an exact copy of src, while the last 263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 266 * 267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 268 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 269 * This prevents degradation of anon_vma hierarchy to endless linear chain in 270 * case of constantly forking task. On the other hand, an anon_vma with more 271 * than one child isn't reused even if there was no alive vma, thus rmap 272 * walker has a good chance of avoiding scanning the whole hierarchy when it 273 * searches where page is mapped. 274 */ 275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 276 { 277 struct anon_vma_chain *avc, *pavc; 278 struct anon_vma *root = NULL; 279 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 281 struct anon_vma *anon_vma; 282 283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 284 if (unlikely(!avc)) { 285 unlock_anon_vma_root(root); 286 root = NULL; 287 avc = anon_vma_chain_alloc(GFP_KERNEL); 288 if (!avc) 289 goto enomem_failure; 290 } 291 anon_vma = pavc->anon_vma; 292 root = lock_anon_vma_root(root, anon_vma); 293 anon_vma_chain_link(dst, avc, anon_vma); 294 295 /* 296 * Reuse existing anon_vma if its degree lower than two, 297 * that means it has no vma and only one anon_vma child. 298 * 299 * Do not chose parent anon_vma, otherwise first child 300 * will always reuse it. Root anon_vma is never reused: 301 * it has self-parent reference and at least one child. 302 */ 303 if (!dst->anon_vma && src->anon_vma && 304 anon_vma != src->anon_vma && anon_vma->degree < 2) 305 dst->anon_vma = anon_vma; 306 } 307 if (dst->anon_vma) 308 dst->anon_vma->degree++; 309 unlock_anon_vma_root(root); 310 return 0; 311 312 enomem_failure: 313 /* 314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 315 * decremented in unlink_anon_vmas(). 316 * We can safely do this because callers of anon_vma_clone() don't care 317 * about dst->anon_vma if anon_vma_clone() failed. 318 */ 319 dst->anon_vma = NULL; 320 unlink_anon_vmas(dst); 321 return -ENOMEM; 322 } 323 324 /* 325 * Attach vma to its own anon_vma, as well as to the anon_vmas that 326 * the corresponding VMA in the parent process is attached to. 327 * Returns 0 on success, non-zero on failure. 328 */ 329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 330 { 331 struct anon_vma_chain *avc; 332 struct anon_vma *anon_vma; 333 int error; 334 335 /* Don't bother if the parent process has no anon_vma here. */ 336 if (!pvma->anon_vma) 337 return 0; 338 339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 340 vma->anon_vma = NULL; 341 342 /* 343 * First, attach the new VMA to the parent VMA's anon_vmas, 344 * so rmap can find non-COWed pages in child processes. 345 */ 346 error = anon_vma_clone(vma, pvma); 347 if (error) 348 return error; 349 350 /* An existing anon_vma has been reused, all done then. */ 351 if (vma->anon_vma) 352 return 0; 353 354 /* Then add our own anon_vma. */ 355 anon_vma = anon_vma_alloc(); 356 if (!anon_vma) 357 goto out_error; 358 avc = anon_vma_chain_alloc(GFP_KERNEL); 359 if (!avc) 360 goto out_error_free_anon_vma; 361 362 /* 363 * The root anon_vma's rwsem is the lock actually used when we 364 * lock any of the anon_vmas in this anon_vma tree. 365 */ 366 anon_vma->root = pvma->anon_vma->root; 367 anon_vma->parent = pvma->anon_vma; 368 /* 369 * With refcounts, an anon_vma can stay around longer than the 370 * process it belongs to. The root anon_vma needs to be pinned until 371 * this anon_vma is freed, because the lock lives in the root. 372 */ 373 get_anon_vma(anon_vma->root); 374 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 375 vma->anon_vma = anon_vma; 376 anon_vma_lock_write(anon_vma); 377 anon_vma_chain_link(vma, avc, anon_vma); 378 anon_vma->parent->degree++; 379 anon_vma_unlock_write(anon_vma); 380 381 return 0; 382 383 out_error_free_anon_vma: 384 put_anon_vma(anon_vma); 385 out_error: 386 unlink_anon_vmas(vma); 387 return -ENOMEM; 388 } 389 390 void unlink_anon_vmas(struct vm_area_struct *vma) 391 { 392 struct anon_vma_chain *avc, *next; 393 struct anon_vma *root = NULL; 394 395 /* 396 * Unlink each anon_vma chained to the VMA. This list is ordered 397 * from newest to oldest, ensuring the root anon_vma gets freed last. 398 */ 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 400 struct anon_vma *anon_vma = avc->anon_vma; 401 402 root = lock_anon_vma_root(root, anon_vma); 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 404 405 /* 406 * Leave empty anon_vmas on the list - we'll need 407 * to free them outside the lock. 408 */ 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 410 anon_vma->parent->degree--; 411 continue; 412 } 413 414 list_del(&avc->same_vma); 415 anon_vma_chain_free(avc); 416 } 417 if (vma->anon_vma) { 418 vma->anon_vma->degree--; 419 420 /* 421 * vma would still be needed after unlink, and anon_vma will be prepared 422 * when handle fault. 423 */ 424 vma->anon_vma = NULL; 425 } 426 unlock_anon_vma_root(root); 427 428 /* 429 * Iterate the list once more, it now only contains empty and unlinked 430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 431 * needing to write-acquire the anon_vma->root->rwsem. 432 */ 433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 434 struct anon_vma *anon_vma = avc->anon_vma; 435 436 VM_WARN_ON(anon_vma->degree); 437 put_anon_vma(anon_vma); 438 439 list_del(&avc->same_vma); 440 anon_vma_chain_free(avc); 441 } 442 } 443 444 static void anon_vma_ctor(void *data) 445 { 446 struct anon_vma *anon_vma = data; 447 448 init_rwsem(&anon_vma->rwsem); 449 atomic_set(&anon_vma->refcount, 0); 450 anon_vma->rb_root = RB_ROOT_CACHED; 451 } 452 453 void __init anon_vma_init(void) 454 { 455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 457 anon_vma_ctor); 458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 459 SLAB_PANIC|SLAB_ACCOUNT); 460 } 461 462 /* 463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 464 * 465 * Since there is no serialization what so ever against page_remove_rmap() 466 * the best this function can do is return a refcount increased anon_vma 467 * that might have been relevant to this page. 468 * 469 * The page might have been remapped to a different anon_vma or the anon_vma 470 * returned may already be freed (and even reused). 471 * 472 * In case it was remapped to a different anon_vma, the new anon_vma will be a 473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 474 * ensure that any anon_vma obtained from the page will still be valid for as 475 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 476 * 477 * All users of this function must be very careful when walking the anon_vma 478 * chain and verify that the page in question is indeed mapped in it 479 * [ something equivalent to page_mapped_in_vma() ]. 480 * 481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 483 * if there is a mapcount, we can dereference the anon_vma after observing 484 * those. 485 */ 486 struct anon_vma *page_get_anon_vma(struct page *page) 487 { 488 struct anon_vma *anon_vma = NULL; 489 unsigned long anon_mapping; 490 491 rcu_read_lock(); 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 494 goto out; 495 if (!page_mapped(page)) 496 goto out; 497 498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 499 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 500 anon_vma = NULL; 501 goto out; 502 } 503 504 /* 505 * If this page is still mapped, then its anon_vma cannot have been 506 * freed. But if it has been unmapped, we have no security against the 507 * anon_vma structure being freed and reused (for another anon_vma: 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 509 * above cannot corrupt). 510 */ 511 if (!page_mapped(page)) { 512 rcu_read_unlock(); 513 put_anon_vma(anon_vma); 514 return NULL; 515 } 516 out: 517 rcu_read_unlock(); 518 519 return anon_vma; 520 } 521 522 /* 523 * Similar to page_get_anon_vma() except it locks the anon_vma. 524 * 525 * Its a little more complex as it tries to keep the fast path to a single 526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 527 * reference like with page_get_anon_vma() and then block on the mutex. 528 */ 529 struct anon_vma *page_lock_anon_vma_read(struct page *page) 530 { 531 struct anon_vma *anon_vma = NULL; 532 struct anon_vma *root_anon_vma; 533 unsigned long anon_mapping; 534 535 rcu_read_lock(); 536 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 538 goto out; 539 if (!page_mapped(page)) 540 goto out; 541 542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 543 root_anon_vma = READ_ONCE(anon_vma->root); 544 if (down_read_trylock(&root_anon_vma->rwsem)) { 545 /* 546 * If the page is still mapped, then this anon_vma is still 547 * its anon_vma, and holding the mutex ensures that it will 548 * not go away, see anon_vma_free(). 549 */ 550 if (!page_mapped(page)) { 551 up_read(&root_anon_vma->rwsem); 552 anon_vma = NULL; 553 } 554 goto out; 555 } 556 557 /* trylock failed, we got to sleep */ 558 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 559 anon_vma = NULL; 560 goto out; 561 } 562 563 if (!page_mapped(page)) { 564 rcu_read_unlock(); 565 put_anon_vma(anon_vma); 566 return NULL; 567 } 568 569 /* we pinned the anon_vma, its safe to sleep */ 570 rcu_read_unlock(); 571 anon_vma_lock_read(anon_vma); 572 573 if (atomic_dec_and_test(&anon_vma->refcount)) { 574 /* 575 * Oops, we held the last refcount, release the lock 576 * and bail -- can't simply use put_anon_vma() because 577 * we'll deadlock on the anon_vma_lock_write() recursion. 578 */ 579 anon_vma_unlock_read(anon_vma); 580 __put_anon_vma(anon_vma); 581 anon_vma = NULL; 582 } 583 584 return anon_vma; 585 586 out: 587 rcu_read_unlock(); 588 return anon_vma; 589 } 590 591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 592 { 593 anon_vma_unlock_read(anon_vma); 594 } 595 596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 597 /* 598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 599 * important if a PTE was dirty when it was unmapped that it's flushed 600 * before any IO is initiated on the page to prevent lost writes. Similarly, 601 * it must be flushed before freeing to prevent data leakage. 602 */ 603 void try_to_unmap_flush(void) 604 { 605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 606 607 if (!tlb_ubc->flush_required) 608 return; 609 610 arch_tlbbatch_flush(&tlb_ubc->arch); 611 tlb_ubc->flush_required = false; 612 tlb_ubc->writable = false; 613 } 614 615 /* Flush iff there are potentially writable TLB entries that can race with IO */ 616 void try_to_unmap_flush_dirty(void) 617 { 618 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 619 620 if (tlb_ubc->writable) 621 try_to_unmap_flush(); 622 } 623 624 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 625 { 626 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 627 628 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 629 tlb_ubc->flush_required = true; 630 631 /* 632 * Ensure compiler does not re-order the setting of tlb_flush_batched 633 * before the PTE is cleared. 634 */ 635 barrier(); 636 mm->tlb_flush_batched = true; 637 638 /* 639 * If the PTE was dirty then it's best to assume it's writable. The 640 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 641 * before the page is queued for IO. 642 */ 643 if (writable) 644 tlb_ubc->writable = true; 645 } 646 647 /* 648 * Returns true if the TLB flush should be deferred to the end of a batch of 649 * unmap operations to reduce IPIs. 650 */ 651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 652 { 653 bool should_defer = false; 654 655 if (!(flags & TTU_BATCH_FLUSH)) 656 return false; 657 658 /* If remote CPUs need to be flushed then defer batch the flush */ 659 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 660 should_defer = true; 661 put_cpu(); 662 663 return should_defer; 664 } 665 666 /* 667 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 668 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 669 * operation such as mprotect or munmap to race between reclaim unmapping 670 * the page and flushing the page. If this race occurs, it potentially allows 671 * access to data via a stale TLB entry. Tracking all mm's that have TLB 672 * batching in flight would be expensive during reclaim so instead track 673 * whether TLB batching occurred in the past and if so then do a flush here 674 * if required. This will cost one additional flush per reclaim cycle paid 675 * by the first operation at risk such as mprotect and mumap. 676 * 677 * This must be called under the PTL so that an access to tlb_flush_batched 678 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 679 * via the PTL. 680 */ 681 void flush_tlb_batched_pending(struct mm_struct *mm) 682 { 683 if (data_race(mm->tlb_flush_batched)) { 684 flush_tlb_mm(mm); 685 686 /* 687 * Do not allow the compiler to re-order the clearing of 688 * tlb_flush_batched before the tlb is flushed. 689 */ 690 barrier(); 691 mm->tlb_flush_batched = false; 692 } 693 } 694 #else 695 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 696 { 697 } 698 699 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 700 { 701 return false; 702 } 703 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 704 705 /* 706 * At what user virtual address is page expected in vma? 707 * Caller should check the page is actually part of the vma. 708 */ 709 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 710 { 711 if (PageAnon(page)) { 712 struct anon_vma *page__anon_vma = page_anon_vma(page); 713 /* 714 * Note: swapoff's unuse_vma() is more efficient with this 715 * check, and needs it to match anon_vma when KSM is active. 716 */ 717 if (!vma->anon_vma || !page__anon_vma || 718 vma->anon_vma->root != page__anon_vma->root) 719 return -EFAULT; 720 } else if (!vma->vm_file) { 721 return -EFAULT; 722 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) { 723 return -EFAULT; 724 } 725 726 return vma_address(page, vma); 727 } 728 729 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 730 { 731 pgd_t *pgd; 732 p4d_t *p4d; 733 pud_t *pud; 734 pmd_t *pmd = NULL; 735 pmd_t pmde; 736 737 pgd = pgd_offset(mm, address); 738 if (!pgd_present(*pgd)) 739 goto out; 740 741 p4d = p4d_offset(pgd, address); 742 if (!p4d_present(*p4d)) 743 goto out; 744 745 pud = pud_offset(p4d, address); 746 if (!pud_present(*pud)) 747 goto out; 748 749 pmd = pmd_offset(pud, address); 750 /* 751 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 752 * without holding anon_vma lock for write. So when looking for a 753 * genuine pmde (in which to find pte), test present and !THP together. 754 */ 755 pmde = *pmd; 756 barrier(); 757 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 758 pmd = NULL; 759 out: 760 return pmd; 761 } 762 763 struct page_referenced_arg { 764 int mapcount; 765 int referenced; 766 unsigned long vm_flags; 767 struct mem_cgroup *memcg; 768 }; 769 /* 770 * arg: page_referenced_arg will be passed 771 */ 772 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 773 unsigned long address, void *arg) 774 { 775 struct page_referenced_arg *pra = arg; 776 struct page_vma_mapped_walk pvmw = { 777 .page = page, 778 .vma = vma, 779 .address = address, 780 }; 781 int referenced = 0; 782 783 while (page_vma_mapped_walk(&pvmw)) { 784 address = pvmw.address; 785 786 if (vma->vm_flags & VM_LOCKED) { 787 page_vma_mapped_walk_done(&pvmw); 788 pra->vm_flags |= VM_LOCKED; 789 return false; /* To break the loop */ 790 } 791 792 if (pvmw.pte) { 793 if (ptep_clear_flush_young_notify(vma, address, 794 pvmw.pte)) { 795 /* 796 * Don't treat a reference through 797 * a sequentially read mapping as such. 798 * If the page has been used in another mapping, 799 * we will catch it; if this other mapping is 800 * already gone, the unmap path will have set 801 * PG_referenced or activated the page. 802 */ 803 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 804 referenced++; 805 } 806 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 807 if (pmdp_clear_flush_young_notify(vma, address, 808 pvmw.pmd)) 809 referenced++; 810 } else { 811 /* unexpected pmd-mapped page? */ 812 WARN_ON_ONCE(1); 813 } 814 815 pra->mapcount--; 816 } 817 818 if (referenced) 819 clear_page_idle(page); 820 if (test_and_clear_page_young(page)) 821 referenced++; 822 823 if (referenced) { 824 pra->referenced++; 825 pra->vm_flags |= vma->vm_flags; 826 } 827 828 if (!pra->mapcount) 829 return false; /* To break the loop */ 830 831 return true; 832 } 833 834 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 835 { 836 struct page_referenced_arg *pra = arg; 837 struct mem_cgroup *memcg = pra->memcg; 838 839 if (!mm_match_cgroup(vma->vm_mm, memcg)) 840 return true; 841 842 return false; 843 } 844 845 /** 846 * page_referenced - test if the page was referenced 847 * @page: the page to test 848 * @is_locked: caller holds lock on the page 849 * @memcg: target memory cgroup 850 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 851 * 852 * Quick test_and_clear_referenced for all mappings to a page, 853 * returns the number of ptes which referenced the page. 854 */ 855 int page_referenced(struct page *page, 856 int is_locked, 857 struct mem_cgroup *memcg, 858 unsigned long *vm_flags) 859 { 860 int we_locked = 0; 861 struct page_referenced_arg pra = { 862 .mapcount = total_mapcount(page), 863 .memcg = memcg, 864 }; 865 struct rmap_walk_control rwc = { 866 .rmap_one = page_referenced_one, 867 .arg = (void *)&pra, 868 .anon_lock = page_lock_anon_vma_read, 869 }; 870 871 *vm_flags = 0; 872 if (!pra.mapcount) 873 return 0; 874 875 if (!page_rmapping(page)) 876 return 0; 877 878 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 879 we_locked = trylock_page(page); 880 if (!we_locked) 881 return 1; 882 } 883 884 /* 885 * If we are reclaiming on behalf of a cgroup, skip 886 * counting on behalf of references from different 887 * cgroups 888 */ 889 if (memcg) { 890 rwc.invalid_vma = invalid_page_referenced_vma; 891 } 892 893 rmap_walk(page, &rwc); 894 *vm_flags = pra.vm_flags; 895 896 if (we_locked) 897 unlock_page(page); 898 899 return pra.referenced; 900 } 901 902 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 903 unsigned long address, void *arg) 904 { 905 struct page_vma_mapped_walk pvmw = { 906 .page = page, 907 .vma = vma, 908 .address = address, 909 .flags = PVMW_SYNC, 910 }; 911 struct mmu_notifier_range range; 912 int *cleaned = arg; 913 914 /* 915 * We have to assume the worse case ie pmd for invalidation. Note that 916 * the page can not be free from this function. 917 */ 918 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 919 0, vma, vma->vm_mm, address, 920 vma_address_end(page, vma)); 921 mmu_notifier_invalidate_range_start(&range); 922 923 while (page_vma_mapped_walk(&pvmw)) { 924 int ret = 0; 925 926 address = pvmw.address; 927 if (pvmw.pte) { 928 pte_t entry; 929 pte_t *pte = pvmw.pte; 930 931 if (!pte_dirty(*pte) && !pte_write(*pte)) 932 continue; 933 934 flush_cache_page(vma, address, pte_pfn(*pte)); 935 entry = ptep_clear_flush(vma, address, pte); 936 entry = pte_wrprotect(entry); 937 entry = pte_mkclean(entry); 938 set_pte_at(vma->vm_mm, address, pte, entry); 939 ret = 1; 940 } else { 941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 942 pmd_t *pmd = pvmw.pmd; 943 pmd_t entry; 944 945 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 946 continue; 947 948 flush_cache_page(vma, address, page_to_pfn(page)); 949 entry = pmdp_invalidate(vma, address, pmd); 950 entry = pmd_wrprotect(entry); 951 entry = pmd_mkclean(entry); 952 set_pmd_at(vma->vm_mm, address, pmd, entry); 953 ret = 1; 954 #else 955 /* unexpected pmd-mapped page? */ 956 WARN_ON_ONCE(1); 957 #endif 958 } 959 960 /* 961 * No need to call mmu_notifier_invalidate_range() as we are 962 * downgrading page table protection not changing it to point 963 * to a new page. 964 * 965 * See Documentation/vm/mmu_notifier.rst 966 */ 967 if (ret) 968 (*cleaned)++; 969 } 970 971 mmu_notifier_invalidate_range_end(&range); 972 973 return true; 974 } 975 976 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 977 { 978 if (vma->vm_flags & VM_SHARED) 979 return false; 980 981 return true; 982 } 983 984 int page_mkclean(struct page *page) 985 { 986 int cleaned = 0; 987 struct address_space *mapping; 988 struct rmap_walk_control rwc = { 989 .arg = (void *)&cleaned, 990 .rmap_one = page_mkclean_one, 991 .invalid_vma = invalid_mkclean_vma, 992 }; 993 994 BUG_ON(!PageLocked(page)); 995 996 if (!page_mapped(page)) 997 return 0; 998 999 mapping = page_mapping(page); 1000 if (!mapping) 1001 return 0; 1002 1003 rmap_walk(page, &rwc); 1004 1005 return cleaned; 1006 } 1007 EXPORT_SYMBOL_GPL(page_mkclean); 1008 1009 /** 1010 * page_move_anon_rmap - move a page to our anon_vma 1011 * @page: the page to move to our anon_vma 1012 * @vma: the vma the page belongs to 1013 * 1014 * When a page belongs exclusively to one process after a COW event, 1015 * that page can be moved into the anon_vma that belongs to just that 1016 * process, so the rmap code will not search the parent or sibling 1017 * processes. 1018 */ 1019 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1020 { 1021 struct anon_vma *anon_vma = vma->anon_vma; 1022 1023 page = compound_head(page); 1024 1025 VM_BUG_ON_PAGE(!PageLocked(page), page); 1026 VM_BUG_ON_VMA(!anon_vma, vma); 1027 1028 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1029 /* 1030 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1031 * simultaneously, so a concurrent reader (eg page_referenced()'s 1032 * PageAnon()) will not see one without the other. 1033 */ 1034 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1035 } 1036 1037 /** 1038 * __page_set_anon_rmap - set up new anonymous rmap 1039 * @page: Page or Hugepage to add to rmap 1040 * @vma: VM area to add page to. 1041 * @address: User virtual address of the mapping 1042 * @exclusive: the page is exclusively owned by the current process 1043 */ 1044 static void __page_set_anon_rmap(struct page *page, 1045 struct vm_area_struct *vma, unsigned long address, int exclusive) 1046 { 1047 struct anon_vma *anon_vma = vma->anon_vma; 1048 1049 BUG_ON(!anon_vma); 1050 1051 if (PageAnon(page)) 1052 return; 1053 1054 /* 1055 * If the page isn't exclusively mapped into this vma, 1056 * we must use the _oldest_ possible anon_vma for the 1057 * page mapping! 1058 */ 1059 if (!exclusive) 1060 anon_vma = anon_vma->root; 1061 1062 /* 1063 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1064 * Make sure the compiler doesn't split the stores of anon_vma and 1065 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1066 * could mistake the mapping for a struct address_space and crash. 1067 */ 1068 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1070 page->index = linear_page_index(vma, address); 1071 } 1072 1073 /** 1074 * __page_check_anon_rmap - sanity check anonymous rmap addition 1075 * @page: the page to add the mapping to 1076 * @vma: the vm area in which the mapping is added 1077 * @address: the user virtual address mapped 1078 */ 1079 static void __page_check_anon_rmap(struct page *page, 1080 struct vm_area_struct *vma, unsigned long address) 1081 { 1082 /* 1083 * The page's anon-rmap details (mapping and index) are guaranteed to 1084 * be set up correctly at this point. 1085 * 1086 * We have exclusion against page_add_anon_rmap because the caller 1087 * always holds the page locked. 1088 * 1089 * We have exclusion against page_add_new_anon_rmap because those pages 1090 * are initially only visible via the pagetables, and the pte is locked 1091 * over the call to page_add_new_anon_rmap. 1092 */ 1093 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); 1094 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1095 page); 1096 } 1097 1098 /** 1099 * page_add_anon_rmap - add pte mapping to an anonymous page 1100 * @page: the page to add the mapping to 1101 * @vma: the vm area in which the mapping is added 1102 * @address: the user virtual address mapped 1103 * @compound: charge the page as compound or small page 1104 * 1105 * The caller needs to hold the pte lock, and the page must be locked in 1106 * the anon_vma case: to serialize mapping,index checking after setting, 1107 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1108 * (but PageKsm is never downgraded to PageAnon). 1109 */ 1110 void page_add_anon_rmap(struct page *page, 1111 struct vm_area_struct *vma, unsigned long address, bool compound) 1112 { 1113 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1114 } 1115 1116 /* 1117 * Special version of the above for do_swap_page, which often runs 1118 * into pages that are exclusively owned by the current process. 1119 * Everybody else should continue to use page_add_anon_rmap above. 1120 */ 1121 void do_page_add_anon_rmap(struct page *page, 1122 struct vm_area_struct *vma, unsigned long address, int flags) 1123 { 1124 bool compound = flags & RMAP_COMPOUND; 1125 bool first; 1126 1127 if (unlikely(PageKsm(page))) 1128 lock_page_memcg(page); 1129 else 1130 VM_BUG_ON_PAGE(!PageLocked(page), page); 1131 1132 if (compound) { 1133 atomic_t *mapcount; 1134 VM_BUG_ON_PAGE(!PageLocked(page), page); 1135 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1136 mapcount = compound_mapcount_ptr(page); 1137 first = atomic_inc_and_test(mapcount); 1138 } else { 1139 first = atomic_inc_and_test(&page->_mapcount); 1140 } 1141 1142 if (first) { 1143 int nr = compound ? thp_nr_pages(page) : 1; 1144 /* 1145 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1146 * these counters are not modified in interrupt context, and 1147 * pte lock(a spinlock) is held, which implies preemption 1148 * disabled. 1149 */ 1150 if (compound) 1151 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1152 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1153 } 1154 1155 if (unlikely(PageKsm(page))) { 1156 unlock_page_memcg(page); 1157 return; 1158 } 1159 1160 /* address might be in next vma when migration races vma_adjust */ 1161 if (first) 1162 __page_set_anon_rmap(page, vma, address, 1163 flags & RMAP_EXCLUSIVE); 1164 else 1165 __page_check_anon_rmap(page, vma, address); 1166 } 1167 1168 /** 1169 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1170 * @page: the page to add the mapping to 1171 * @vma: the vm area in which the mapping is added 1172 * @address: the user virtual address mapped 1173 * @compound: charge the page as compound or small page 1174 * 1175 * Same as page_add_anon_rmap but must only be called on *new* pages. 1176 * This means the inc-and-test can be bypassed. 1177 * Page does not have to be locked. 1178 */ 1179 void page_add_new_anon_rmap(struct page *page, 1180 struct vm_area_struct *vma, unsigned long address, bool compound) 1181 { 1182 int nr = compound ? thp_nr_pages(page) : 1; 1183 1184 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1185 __SetPageSwapBacked(page); 1186 if (compound) { 1187 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1188 /* increment count (starts at -1) */ 1189 atomic_set(compound_mapcount_ptr(page), 0); 1190 if (hpage_pincount_available(page)) 1191 atomic_set(compound_pincount_ptr(page), 0); 1192 1193 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1194 } else { 1195 /* Anon THP always mapped first with PMD */ 1196 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1197 /* increment count (starts at -1) */ 1198 atomic_set(&page->_mapcount, 0); 1199 } 1200 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1201 __page_set_anon_rmap(page, vma, address, 1); 1202 } 1203 1204 /** 1205 * page_add_file_rmap - add pte mapping to a file page 1206 * @page: the page to add the mapping to 1207 * @compound: charge the page as compound or small page 1208 * 1209 * The caller needs to hold the pte lock. 1210 */ 1211 void page_add_file_rmap(struct page *page, bool compound) 1212 { 1213 int i, nr = 1; 1214 1215 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1216 lock_page_memcg(page); 1217 if (compound && PageTransHuge(page)) { 1218 int nr_pages = thp_nr_pages(page); 1219 1220 for (i = 0, nr = 0; i < nr_pages; i++) { 1221 if (atomic_inc_and_test(&page[i]._mapcount)) 1222 nr++; 1223 } 1224 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1225 goto out; 1226 if (PageSwapBacked(page)) 1227 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1228 nr_pages); 1229 else 1230 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1231 nr_pages); 1232 } else { 1233 if (PageTransCompound(page) && page_mapping(page)) { 1234 struct page *head = compound_head(page); 1235 1236 VM_WARN_ON_ONCE(!PageLocked(page)); 1237 1238 SetPageDoubleMap(head); 1239 if (PageMlocked(page)) 1240 clear_page_mlock(head); 1241 } 1242 if (!atomic_inc_and_test(&page->_mapcount)) 1243 goto out; 1244 } 1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1246 out: 1247 unlock_page_memcg(page); 1248 } 1249 1250 static void page_remove_file_rmap(struct page *page, bool compound) 1251 { 1252 int i, nr = 1; 1253 1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1255 1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1257 if (unlikely(PageHuge(page))) { 1258 /* hugetlb pages are always mapped with pmds */ 1259 atomic_dec(compound_mapcount_ptr(page)); 1260 return; 1261 } 1262 1263 /* page still mapped by someone else? */ 1264 if (compound && PageTransHuge(page)) { 1265 int nr_pages = thp_nr_pages(page); 1266 1267 for (i = 0, nr = 0; i < nr_pages; i++) { 1268 if (atomic_add_negative(-1, &page[i]._mapcount)) 1269 nr++; 1270 } 1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1272 return; 1273 if (PageSwapBacked(page)) 1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1275 -nr_pages); 1276 else 1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1278 -nr_pages); 1279 } else { 1280 if (!atomic_add_negative(-1, &page->_mapcount)) 1281 return; 1282 } 1283 1284 /* 1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1286 * these counters are not modified in interrupt context, and 1287 * pte lock(a spinlock) is held, which implies preemption disabled. 1288 */ 1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1290 1291 if (unlikely(PageMlocked(page))) 1292 clear_page_mlock(page); 1293 } 1294 1295 static void page_remove_anon_compound_rmap(struct page *page) 1296 { 1297 int i, nr; 1298 1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1300 return; 1301 1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1303 if (unlikely(PageHuge(page))) 1304 return; 1305 1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1307 return; 1308 1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1310 1311 if (TestClearPageDoubleMap(page)) { 1312 /* 1313 * Subpages can be mapped with PTEs too. Check how many of 1314 * them are still mapped. 1315 */ 1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1317 if (atomic_add_negative(-1, &page[i]._mapcount)) 1318 nr++; 1319 } 1320 1321 /* 1322 * Queue the page for deferred split if at least one small 1323 * page of the compound page is unmapped, but at least one 1324 * small page is still mapped. 1325 */ 1326 if (nr && nr < thp_nr_pages(page)) 1327 deferred_split_huge_page(page); 1328 } else { 1329 nr = thp_nr_pages(page); 1330 } 1331 1332 if (unlikely(PageMlocked(page))) 1333 clear_page_mlock(page); 1334 1335 if (nr) 1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1337 } 1338 1339 /** 1340 * page_remove_rmap - take down pte mapping from a page 1341 * @page: page to remove mapping from 1342 * @compound: uncharge the page as compound or small page 1343 * 1344 * The caller needs to hold the pte lock. 1345 */ 1346 void page_remove_rmap(struct page *page, bool compound) 1347 { 1348 lock_page_memcg(page); 1349 1350 if (!PageAnon(page)) { 1351 page_remove_file_rmap(page, compound); 1352 goto out; 1353 } 1354 1355 if (compound) { 1356 page_remove_anon_compound_rmap(page); 1357 goto out; 1358 } 1359 1360 /* page still mapped by someone else? */ 1361 if (!atomic_add_negative(-1, &page->_mapcount)) 1362 goto out; 1363 1364 /* 1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1366 * these counters are not modified in interrupt context, and 1367 * pte lock(a spinlock) is held, which implies preemption disabled. 1368 */ 1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1370 1371 if (unlikely(PageMlocked(page))) 1372 clear_page_mlock(page); 1373 1374 if (PageTransCompound(page)) 1375 deferred_split_huge_page(compound_head(page)); 1376 1377 /* 1378 * It would be tidy to reset the PageAnon mapping here, 1379 * but that might overwrite a racing page_add_anon_rmap 1380 * which increments mapcount after us but sets mapping 1381 * before us: so leave the reset to free_unref_page, 1382 * and remember that it's only reliable while mapped. 1383 * Leaving it set also helps swapoff to reinstate ptes 1384 * faster for those pages still in swapcache. 1385 */ 1386 out: 1387 unlock_page_memcg(page); 1388 } 1389 1390 /* 1391 * @arg: enum ttu_flags will be passed to this argument 1392 */ 1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1394 unsigned long address, void *arg) 1395 { 1396 struct mm_struct *mm = vma->vm_mm; 1397 struct page_vma_mapped_walk pvmw = { 1398 .page = page, 1399 .vma = vma, 1400 .address = address, 1401 }; 1402 pte_t pteval; 1403 struct page *subpage; 1404 bool ret = true; 1405 struct mmu_notifier_range range; 1406 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1407 1408 /* 1409 * When racing against e.g. zap_pte_range() on another cpu, 1410 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1411 * try_to_unmap() may return before page_mapped() has become false, 1412 * if page table locking is skipped: use TTU_SYNC to wait for that. 1413 */ 1414 if (flags & TTU_SYNC) 1415 pvmw.flags = PVMW_SYNC; 1416 1417 if (flags & TTU_SPLIT_HUGE_PMD) 1418 split_huge_pmd_address(vma, address, false, page); 1419 1420 /* 1421 * For THP, we have to assume the worse case ie pmd for invalidation. 1422 * For hugetlb, it could be much worse if we need to do pud 1423 * invalidation in the case of pmd sharing. 1424 * 1425 * Note that the page can not be free in this function as call of 1426 * try_to_unmap() must hold a reference on the page. 1427 */ 1428 range.end = PageKsm(page) ? 1429 address + PAGE_SIZE : vma_address_end(page, vma); 1430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1431 address, range.end); 1432 if (PageHuge(page)) { 1433 /* 1434 * If sharing is possible, start and end will be adjusted 1435 * accordingly. 1436 */ 1437 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1438 &range.end); 1439 } 1440 mmu_notifier_invalidate_range_start(&range); 1441 1442 while (page_vma_mapped_walk(&pvmw)) { 1443 /* 1444 * If the page is mlock()d, we cannot swap it out. 1445 */ 1446 if (!(flags & TTU_IGNORE_MLOCK) && 1447 (vma->vm_flags & VM_LOCKED)) { 1448 /* 1449 * PTE-mapped THP are never marked as mlocked: so do 1450 * not set it on a DoubleMap THP, nor on an Anon THP 1451 * (which may still be PTE-mapped after DoubleMap was 1452 * cleared). But stop unmapping even in those cases. 1453 */ 1454 if (!PageTransCompound(page) || (PageHead(page) && 1455 !PageDoubleMap(page) && !PageAnon(page))) 1456 mlock_vma_page(page); 1457 page_vma_mapped_walk_done(&pvmw); 1458 ret = false; 1459 break; 1460 } 1461 1462 /* Unexpected PMD-mapped THP? */ 1463 VM_BUG_ON_PAGE(!pvmw.pte, page); 1464 1465 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1466 address = pvmw.address; 1467 1468 if (PageHuge(page) && !PageAnon(page)) { 1469 /* 1470 * To call huge_pmd_unshare, i_mmap_rwsem must be 1471 * held in write mode. Caller needs to explicitly 1472 * do this outside rmap routines. 1473 */ 1474 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1475 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1476 /* 1477 * huge_pmd_unshare unmapped an entire PMD 1478 * page. There is no way of knowing exactly 1479 * which PMDs may be cached for this mm, so 1480 * we must flush them all. start/end were 1481 * already adjusted above to cover this range. 1482 */ 1483 flush_cache_range(vma, range.start, range.end); 1484 flush_tlb_range(vma, range.start, range.end); 1485 mmu_notifier_invalidate_range(mm, range.start, 1486 range.end); 1487 1488 /* 1489 * The ref count of the PMD page was dropped 1490 * which is part of the way map counting 1491 * is done for shared PMDs. Return 'true' 1492 * here. When there is no other sharing, 1493 * huge_pmd_unshare returns false and we will 1494 * unmap the actual page and drop map count 1495 * to zero. 1496 */ 1497 page_vma_mapped_walk_done(&pvmw); 1498 break; 1499 } 1500 } 1501 1502 /* Nuke the page table entry. */ 1503 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1504 if (should_defer_flush(mm, flags)) { 1505 /* 1506 * We clear the PTE but do not flush so potentially 1507 * a remote CPU could still be writing to the page. 1508 * If the entry was previously clean then the 1509 * architecture must guarantee that a clear->dirty 1510 * transition on a cached TLB entry is written through 1511 * and traps if the PTE is unmapped. 1512 */ 1513 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1514 1515 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1516 } else { 1517 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1518 } 1519 1520 /* Move the dirty bit to the page. Now the pte is gone. */ 1521 if (pte_dirty(pteval)) 1522 set_page_dirty(page); 1523 1524 /* Update high watermark before we lower rss */ 1525 update_hiwater_rss(mm); 1526 1527 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1528 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1529 if (PageHuge(page)) { 1530 hugetlb_count_sub(compound_nr(page), mm); 1531 set_huge_swap_pte_at(mm, address, 1532 pvmw.pte, pteval, 1533 vma_mmu_pagesize(vma)); 1534 } else { 1535 dec_mm_counter(mm, mm_counter(page)); 1536 set_pte_at(mm, address, pvmw.pte, pteval); 1537 } 1538 1539 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1540 /* 1541 * The guest indicated that the page content is of no 1542 * interest anymore. Simply discard the pte, vmscan 1543 * will take care of the rest. 1544 * A future reference will then fault in a new zero 1545 * page. When userfaultfd is active, we must not drop 1546 * this page though, as its main user (postcopy 1547 * migration) will not expect userfaults on already 1548 * copied pages. 1549 */ 1550 dec_mm_counter(mm, mm_counter(page)); 1551 /* We have to invalidate as we cleared the pte */ 1552 mmu_notifier_invalidate_range(mm, address, 1553 address + PAGE_SIZE); 1554 } else if (PageAnon(page)) { 1555 swp_entry_t entry = { .val = page_private(subpage) }; 1556 pte_t swp_pte; 1557 /* 1558 * Store the swap location in the pte. 1559 * See handle_pte_fault() ... 1560 */ 1561 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1562 WARN_ON_ONCE(1); 1563 ret = false; 1564 /* We have to invalidate as we cleared the pte */ 1565 mmu_notifier_invalidate_range(mm, address, 1566 address + PAGE_SIZE); 1567 page_vma_mapped_walk_done(&pvmw); 1568 break; 1569 } 1570 1571 /* MADV_FREE page check */ 1572 if (!PageSwapBacked(page)) { 1573 if (!PageDirty(page)) { 1574 /* Invalidate as we cleared the pte */ 1575 mmu_notifier_invalidate_range(mm, 1576 address, address + PAGE_SIZE); 1577 dec_mm_counter(mm, MM_ANONPAGES); 1578 goto discard; 1579 } 1580 1581 /* 1582 * If the page was redirtied, it cannot be 1583 * discarded. Remap the page to page table. 1584 */ 1585 set_pte_at(mm, address, pvmw.pte, pteval); 1586 SetPageSwapBacked(page); 1587 ret = false; 1588 page_vma_mapped_walk_done(&pvmw); 1589 break; 1590 } 1591 1592 if (swap_duplicate(entry) < 0) { 1593 set_pte_at(mm, address, pvmw.pte, pteval); 1594 ret = false; 1595 page_vma_mapped_walk_done(&pvmw); 1596 break; 1597 } 1598 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1599 set_pte_at(mm, address, pvmw.pte, pteval); 1600 ret = false; 1601 page_vma_mapped_walk_done(&pvmw); 1602 break; 1603 } 1604 if (list_empty(&mm->mmlist)) { 1605 spin_lock(&mmlist_lock); 1606 if (list_empty(&mm->mmlist)) 1607 list_add(&mm->mmlist, &init_mm.mmlist); 1608 spin_unlock(&mmlist_lock); 1609 } 1610 dec_mm_counter(mm, MM_ANONPAGES); 1611 inc_mm_counter(mm, MM_SWAPENTS); 1612 swp_pte = swp_entry_to_pte(entry); 1613 if (pte_soft_dirty(pteval)) 1614 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1615 if (pte_uffd_wp(pteval)) 1616 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1617 set_pte_at(mm, address, pvmw.pte, swp_pte); 1618 /* Invalidate as we cleared the pte */ 1619 mmu_notifier_invalidate_range(mm, address, 1620 address + PAGE_SIZE); 1621 } else { 1622 /* 1623 * This is a locked file-backed page, thus it cannot 1624 * be removed from the page cache and replaced by a new 1625 * page before mmu_notifier_invalidate_range_end, so no 1626 * concurrent thread might update its page table to 1627 * point at new page while a device still is using this 1628 * page. 1629 * 1630 * See Documentation/vm/mmu_notifier.rst 1631 */ 1632 dec_mm_counter(mm, mm_counter_file(page)); 1633 } 1634 discard: 1635 /* 1636 * No need to call mmu_notifier_invalidate_range() it has be 1637 * done above for all cases requiring it to happen under page 1638 * table lock before mmu_notifier_invalidate_range_end() 1639 * 1640 * See Documentation/vm/mmu_notifier.rst 1641 */ 1642 page_remove_rmap(subpage, PageHuge(page)); 1643 put_page(page); 1644 } 1645 1646 mmu_notifier_invalidate_range_end(&range); 1647 1648 return ret; 1649 } 1650 1651 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1652 { 1653 return vma_is_temporary_stack(vma); 1654 } 1655 1656 static int page_not_mapped(struct page *page) 1657 { 1658 return !page_mapped(page); 1659 } 1660 1661 /** 1662 * try_to_unmap - try to remove all page table mappings to a page 1663 * @page: the page to get unmapped 1664 * @flags: action and flags 1665 * 1666 * Tries to remove all the page table entries which are mapping this 1667 * page, used in the pageout path. Caller must hold the page lock. 1668 * 1669 * It is the caller's responsibility to check if the page is still 1670 * mapped when needed (use TTU_SYNC to prevent accounting races). 1671 */ 1672 void try_to_unmap(struct page *page, enum ttu_flags flags) 1673 { 1674 struct rmap_walk_control rwc = { 1675 .rmap_one = try_to_unmap_one, 1676 .arg = (void *)flags, 1677 .done = page_not_mapped, 1678 .anon_lock = page_lock_anon_vma_read, 1679 }; 1680 1681 if (flags & TTU_RMAP_LOCKED) 1682 rmap_walk_locked(page, &rwc); 1683 else 1684 rmap_walk(page, &rwc); 1685 } 1686 1687 /* 1688 * @arg: enum ttu_flags will be passed to this argument. 1689 * 1690 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1691 * containing migration entries. 1692 */ 1693 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma, 1694 unsigned long address, void *arg) 1695 { 1696 struct mm_struct *mm = vma->vm_mm; 1697 struct page_vma_mapped_walk pvmw = { 1698 .page = page, 1699 .vma = vma, 1700 .address = address, 1701 }; 1702 pte_t pteval; 1703 struct page *subpage; 1704 bool ret = true; 1705 struct mmu_notifier_range range; 1706 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1707 1708 /* 1709 * When racing against e.g. zap_pte_range() on another cpu, 1710 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1711 * try_to_migrate() may return before page_mapped() has become false, 1712 * if page table locking is skipped: use TTU_SYNC to wait for that. 1713 */ 1714 if (flags & TTU_SYNC) 1715 pvmw.flags = PVMW_SYNC; 1716 1717 /* 1718 * unmap_page() in mm/huge_memory.c is the only user of migration with 1719 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1720 */ 1721 if (flags & TTU_SPLIT_HUGE_PMD) 1722 split_huge_pmd_address(vma, address, true, page); 1723 1724 /* 1725 * For THP, we have to assume the worse case ie pmd for invalidation. 1726 * For hugetlb, it could be much worse if we need to do pud 1727 * invalidation in the case of pmd sharing. 1728 * 1729 * Note that the page can not be free in this function as call of 1730 * try_to_unmap() must hold a reference on the page. 1731 */ 1732 range.end = PageKsm(page) ? 1733 address + PAGE_SIZE : vma_address_end(page, vma); 1734 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1735 address, range.end); 1736 if (PageHuge(page)) { 1737 /* 1738 * If sharing is possible, start and end will be adjusted 1739 * accordingly. 1740 */ 1741 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1742 &range.end); 1743 } 1744 mmu_notifier_invalidate_range_start(&range); 1745 1746 while (page_vma_mapped_walk(&pvmw)) { 1747 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1748 /* PMD-mapped THP migration entry */ 1749 if (!pvmw.pte) { 1750 VM_BUG_ON_PAGE(PageHuge(page) || 1751 !PageTransCompound(page), page); 1752 1753 set_pmd_migration_entry(&pvmw, page); 1754 continue; 1755 } 1756 #endif 1757 1758 /* Unexpected PMD-mapped THP? */ 1759 VM_BUG_ON_PAGE(!pvmw.pte, page); 1760 1761 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1762 address = pvmw.address; 1763 1764 if (PageHuge(page) && !PageAnon(page)) { 1765 /* 1766 * To call huge_pmd_unshare, i_mmap_rwsem must be 1767 * held in write mode. Caller needs to explicitly 1768 * do this outside rmap routines. 1769 */ 1770 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1771 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1772 /* 1773 * huge_pmd_unshare unmapped an entire PMD 1774 * page. There is no way of knowing exactly 1775 * which PMDs may be cached for this mm, so 1776 * we must flush them all. start/end were 1777 * already adjusted above to cover this range. 1778 */ 1779 flush_cache_range(vma, range.start, range.end); 1780 flush_tlb_range(vma, range.start, range.end); 1781 mmu_notifier_invalidate_range(mm, range.start, 1782 range.end); 1783 1784 /* 1785 * The ref count of the PMD page was dropped 1786 * which is part of the way map counting 1787 * is done for shared PMDs. Return 'true' 1788 * here. When there is no other sharing, 1789 * huge_pmd_unshare returns false and we will 1790 * unmap the actual page and drop map count 1791 * to zero. 1792 */ 1793 page_vma_mapped_walk_done(&pvmw); 1794 break; 1795 } 1796 } 1797 1798 /* Nuke the page table entry. */ 1799 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1800 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1801 1802 /* Move the dirty bit to the page. Now the pte is gone. */ 1803 if (pte_dirty(pteval)) 1804 set_page_dirty(page); 1805 1806 /* Update high watermark before we lower rss */ 1807 update_hiwater_rss(mm); 1808 1809 if (is_zone_device_page(page)) { 1810 swp_entry_t entry; 1811 pte_t swp_pte; 1812 1813 /* 1814 * Store the pfn of the page in a special migration 1815 * pte. do_swap_page() will wait until the migration 1816 * pte is removed and then restart fault handling. 1817 */ 1818 entry = make_readable_migration_entry( 1819 page_to_pfn(page)); 1820 swp_pte = swp_entry_to_pte(entry); 1821 1822 /* 1823 * pteval maps a zone device page and is therefore 1824 * a swap pte. 1825 */ 1826 if (pte_swp_soft_dirty(pteval)) 1827 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1828 if (pte_swp_uffd_wp(pteval)) 1829 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1830 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1831 /* 1832 * No need to invalidate here it will synchronize on 1833 * against the special swap migration pte. 1834 * 1835 * The assignment to subpage above was computed from a 1836 * swap PTE which results in an invalid pointer. 1837 * Since only PAGE_SIZE pages can currently be 1838 * migrated, just set it to page. This will need to be 1839 * changed when hugepage migrations to device private 1840 * memory are supported. 1841 */ 1842 subpage = page; 1843 } else if (PageHWPoison(page)) { 1844 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1845 if (PageHuge(page)) { 1846 hugetlb_count_sub(compound_nr(page), mm); 1847 set_huge_swap_pte_at(mm, address, 1848 pvmw.pte, pteval, 1849 vma_mmu_pagesize(vma)); 1850 } else { 1851 dec_mm_counter(mm, mm_counter(page)); 1852 set_pte_at(mm, address, pvmw.pte, pteval); 1853 } 1854 1855 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1856 /* 1857 * The guest indicated that the page content is of no 1858 * interest anymore. Simply discard the pte, vmscan 1859 * will take care of the rest. 1860 * A future reference will then fault in a new zero 1861 * page. When userfaultfd is active, we must not drop 1862 * this page though, as its main user (postcopy 1863 * migration) will not expect userfaults on already 1864 * copied pages. 1865 */ 1866 dec_mm_counter(mm, mm_counter(page)); 1867 /* We have to invalidate as we cleared the pte */ 1868 mmu_notifier_invalidate_range(mm, address, 1869 address + PAGE_SIZE); 1870 } else { 1871 swp_entry_t entry; 1872 pte_t swp_pte; 1873 1874 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1875 set_pte_at(mm, address, pvmw.pte, pteval); 1876 ret = false; 1877 page_vma_mapped_walk_done(&pvmw); 1878 break; 1879 } 1880 1881 /* 1882 * Store the pfn of the page in a special migration 1883 * pte. do_swap_page() will wait until the migration 1884 * pte is removed and then restart fault handling. 1885 */ 1886 if (pte_write(pteval)) 1887 entry = make_writable_migration_entry( 1888 page_to_pfn(subpage)); 1889 else 1890 entry = make_readable_migration_entry( 1891 page_to_pfn(subpage)); 1892 1893 swp_pte = swp_entry_to_pte(entry); 1894 if (pte_soft_dirty(pteval)) 1895 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1896 if (pte_uffd_wp(pteval)) 1897 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1898 set_pte_at(mm, address, pvmw.pte, swp_pte); 1899 /* 1900 * No need to invalidate here it will synchronize on 1901 * against the special swap migration pte. 1902 */ 1903 } 1904 1905 /* 1906 * No need to call mmu_notifier_invalidate_range() it has be 1907 * done above for all cases requiring it to happen under page 1908 * table lock before mmu_notifier_invalidate_range_end() 1909 * 1910 * See Documentation/vm/mmu_notifier.rst 1911 */ 1912 page_remove_rmap(subpage, PageHuge(page)); 1913 put_page(page); 1914 } 1915 1916 mmu_notifier_invalidate_range_end(&range); 1917 1918 return ret; 1919 } 1920 1921 /** 1922 * try_to_migrate - try to replace all page table mappings with swap entries 1923 * @page: the page to replace page table entries for 1924 * @flags: action and flags 1925 * 1926 * Tries to remove all the page table entries which are mapping this page and 1927 * replace them with special swap entries. Caller must hold the page lock. 1928 */ 1929 void try_to_migrate(struct page *page, enum ttu_flags flags) 1930 { 1931 struct rmap_walk_control rwc = { 1932 .rmap_one = try_to_migrate_one, 1933 .arg = (void *)flags, 1934 .done = page_not_mapped, 1935 .anon_lock = page_lock_anon_vma_read, 1936 }; 1937 1938 /* 1939 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 1940 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 1941 */ 1942 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 1943 TTU_SYNC))) 1944 return; 1945 1946 if (is_zone_device_page(page) && !is_device_private_page(page)) 1947 return; 1948 1949 /* 1950 * During exec, a temporary VMA is setup and later moved. 1951 * The VMA is moved under the anon_vma lock but not the 1952 * page tables leading to a race where migration cannot 1953 * find the migration ptes. Rather than increasing the 1954 * locking requirements of exec(), migration skips 1955 * temporary VMAs until after exec() completes. 1956 */ 1957 if (!PageKsm(page) && PageAnon(page)) 1958 rwc.invalid_vma = invalid_migration_vma; 1959 1960 if (flags & TTU_RMAP_LOCKED) 1961 rmap_walk_locked(page, &rwc); 1962 else 1963 rmap_walk(page, &rwc); 1964 } 1965 1966 /* 1967 * Walks the vma's mapping a page and mlocks the page if any locked vma's are 1968 * found. Once one is found the page is locked and the scan can be terminated. 1969 */ 1970 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, 1971 unsigned long address, void *unused) 1972 { 1973 struct page_vma_mapped_walk pvmw = { 1974 .page = page, 1975 .vma = vma, 1976 .address = address, 1977 }; 1978 1979 /* An un-locked vma doesn't have any pages to lock, continue the scan */ 1980 if (!(vma->vm_flags & VM_LOCKED)) 1981 return true; 1982 1983 while (page_vma_mapped_walk(&pvmw)) { 1984 /* 1985 * Need to recheck under the ptl to serialise with 1986 * __munlock_pagevec_fill() after VM_LOCKED is cleared in 1987 * munlock_vma_pages_range(). 1988 */ 1989 if (vma->vm_flags & VM_LOCKED) { 1990 /* 1991 * PTE-mapped THP are never marked as mlocked; but 1992 * this function is never called on a DoubleMap THP, 1993 * nor on an Anon THP (which may still be PTE-mapped 1994 * after DoubleMap was cleared). 1995 */ 1996 mlock_vma_page(page); 1997 /* 1998 * No need to scan further once the page is marked 1999 * as mlocked. 2000 */ 2001 page_vma_mapped_walk_done(&pvmw); 2002 return false; 2003 } 2004 } 2005 2006 return true; 2007 } 2008 2009 /** 2010 * page_mlock - try to mlock a page 2011 * @page: the page to be mlocked 2012 * 2013 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks 2014 * the page if any are found. The page will be returned with PG_mlocked cleared 2015 * if it is not mapped by any locked vmas. 2016 */ 2017 void page_mlock(struct page *page) 2018 { 2019 struct rmap_walk_control rwc = { 2020 .rmap_one = page_mlock_one, 2021 .done = page_not_mapped, 2022 .anon_lock = page_lock_anon_vma_read, 2023 2024 }; 2025 2026 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 2027 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 2028 2029 /* Anon THP are only marked as mlocked when singly mapped */ 2030 if (PageTransCompound(page) && PageAnon(page)) 2031 return; 2032 2033 rmap_walk(page, &rwc); 2034 } 2035 2036 #ifdef CONFIG_DEVICE_PRIVATE 2037 struct make_exclusive_args { 2038 struct mm_struct *mm; 2039 unsigned long address; 2040 void *owner; 2041 bool valid; 2042 }; 2043 2044 static bool page_make_device_exclusive_one(struct page *page, 2045 struct vm_area_struct *vma, unsigned long address, void *priv) 2046 { 2047 struct mm_struct *mm = vma->vm_mm; 2048 struct page_vma_mapped_walk pvmw = { 2049 .page = page, 2050 .vma = vma, 2051 .address = address, 2052 }; 2053 struct make_exclusive_args *args = priv; 2054 pte_t pteval; 2055 struct page *subpage; 2056 bool ret = true; 2057 struct mmu_notifier_range range; 2058 swp_entry_t entry; 2059 pte_t swp_pte; 2060 2061 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2062 vma->vm_mm, address, min(vma->vm_end, 2063 address + page_size(page)), args->owner); 2064 mmu_notifier_invalidate_range_start(&range); 2065 2066 while (page_vma_mapped_walk(&pvmw)) { 2067 /* Unexpected PMD-mapped THP? */ 2068 VM_BUG_ON_PAGE(!pvmw.pte, page); 2069 2070 if (!pte_present(*pvmw.pte)) { 2071 ret = false; 2072 page_vma_mapped_walk_done(&pvmw); 2073 break; 2074 } 2075 2076 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 2077 address = pvmw.address; 2078 2079 /* Nuke the page table entry. */ 2080 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2081 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2082 2083 /* Move the dirty bit to the page. Now the pte is gone. */ 2084 if (pte_dirty(pteval)) 2085 set_page_dirty(page); 2086 2087 /* 2088 * Check that our target page is still mapped at the expected 2089 * address. 2090 */ 2091 if (args->mm == mm && args->address == address && 2092 pte_write(pteval)) 2093 args->valid = true; 2094 2095 /* 2096 * Store the pfn of the page in a special migration 2097 * pte. do_swap_page() will wait until the migration 2098 * pte is removed and then restart fault handling. 2099 */ 2100 if (pte_write(pteval)) 2101 entry = make_writable_device_exclusive_entry( 2102 page_to_pfn(subpage)); 2103 else 2104 entry = make_readable_device_exclusive_entry( 2105 page_to_pfn(subpage)); 2106 swp_pte = swp_entry_to_pte(entry); 2107 if (pte_soft_dirty(pteval)) 2108 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2109 if (pte_uffd_wp(pteval)) 2110 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2111 2112 set_pte_at(mm, address, pvmw.pte, swp_pte); 2113 2114 /* 2115 * There is a reference on the page for the swap entry which has 2116 * been removed, so shouldn't take another. 2117 */ 2118 page_remove_rmap(subpage, false); 2119 } 2120 2121 mmu_notifier_invalidate_range_end(&range); 2122 2123 return ret; 2124 } 2125 2126 /** 2127 * page_make_device_exclusive - mark the page exclusively owned by a device 2128 * @page: the page to replace page table entries for 2129 * @mm: the mm_struct where the page is expected to be mapped 2130 * @address: address where the page is expected to be mapped 2131 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2132 * 2133 * Tries to remove all the page table entries which are mapping this page and 2134 * replace them with special device exclusive swap entries to grant a device 2135 * exclusive access to the page. Caller must hold the page lock. 2136 * 2137 * Returns false if the page is still mapped, or if it could not be unmapped 2138 * from the expected address. Otherwise returns true (success). 2139 */ 2140 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm, 2141 unsigned long address, void *owner) 2142 { 2143 struct make_exclusive_args args = { 2144 .mm = mm, 2145 .address = address, 2146 .owner = owner, 2147 .valid = false, 2148 }; 2149 struct rmap_walk_control rwc = { 2150 .rmap_one = page_make_device_exclusive_one, 2151 .done = page_not_mapped, 2152 .anon_lock = page_lock_anon_vma_read, 2153 .arg = &args, 2154 }; 2155 2156 /* 2157 * Restrict to anonymous pages for now to avoid potential writeback 2158 * issues. Also tail pages shouldn't be passed to rmap_walk so skip 2159 * those. 2160 */ 2161 if (!PageAnon(page) || PageTail(page)) 2162 return false; 2163 2164 rmap_walk(page, &rwc); 2165 2166 return args.valid && !page_mapcount(page); 2167 } 2168 2169 /** 2170 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2171 * @mm: mm_struct of assoicated target process 2172 * @start: start of the region to mark for exclusive device access 2173 * @end: end address of region 2174 * @pages: returns the pages which were successfully marked for exclusive access 2175 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2176 * 2177 * Returns: number of pages found in the range by GUP. A page is marked for 2178 * exclusive access only if the page pointer is non-NULL. 2179 * 2180 * This function finds ptes mapping page(s) to the given address range, locks 2181 * them and replaces mappings with special swap entries preventing userspace CPU 2182 * access. On fault these entries are replaced with the original mapping after 2183 * calling MMU notifiers. 2184 * 2185 * A driver using this to program access from a device must use a mmu notifier 2186 * critical section to hold a device specific lock during programming. Once 2187 * programming is complete it should drop the page lock and reference after 2188 * which point CPU access to the page will revoke the exclusive access. 2189 */ 2190 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2191 unsigned long end, struct page **pages, 2192 void *owner) 2193 { 2194 long npages = (end - start) >> PAGE_SHIFT; 2195 long i; 2196 2197 npages = get_user_pages_remote(mm, start, npages, 2198 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2199 pages, NULL, NULL); 2200 if (npages < 0) 2201 return npages; 2202 2203 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2204 if (!trylock_page(pages[i])) { 2205 put_page(pages[i]); 2206 pages[i] = NULL; 2207 continue; 2208 } 2209 2210 if (!page_make_device_exclusive(pages[i], mm, start, owner)) { 2211 unlock_page(pages[i]); 2212 put_page(pages[i]); 2213 pages[i] = NULL; 2214 } 2215 } 2216 2217 return npages; 2218 } 2219 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2220 #endif 2221 2222 void __put_anon_vma(struct anon_vma *anon_vma) 2223 { 2224 struct anon_vma *root = anon_vma->root; 2225 2226 anon_vma_free(anon_vma); 2227 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2228 anon_vma_free(root); 2229 } 2230 2231 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 2232 struct rmap_walk_control *rwc) 2233 { 2234 struct anon_vma *anon_vma; 2235 2236 if (rwc->anon_lock) 2237 return rwc->anon_lock(page); 2238 2239 /* 2240 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 2241 * because that depends on page_mapped(); but not all its usages 2242 * are holding mmap_lock. Users without mmap_lock are required to 2243 * take a reference count to prevent the anon_vma disappearing 2244 */ 2245 anon_vma = page_anon_vma(page); 2246 if (!anon_vma) 2247 return NULL; 2248 2249 anon_vma_lock_read(anon_vma); 2250 return anon_vma; 2251 } 2252 2253 /* 2254 * rmap_walk_anon - do something to anonymous page using the object-based 2255 * rmap method 2256 * @page: the page to be handled 2257 * @rwc: control variable according to each walk type 2258 * 2259 * Find all the mappings of a page using the mapping pointer and the vma chains 2260 * contained in the anon_vma struct it points to. 2261 * 2262 * When called from page_mlock(), the mmap_lock of the mm containing the vma 2263 * where the page was found will be held for write. So, we won't recheck 2264 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 2265 * LOCKED. 2266 */ 2267 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 2268 bool locked) 2269 { 2270 struct anon_vma *anon_vma; 2271 pgoff_t pgoff_start, pgoff_end; 2272 struct anon_vma_chain *avc; 2273 2274 if (locked) { 2275 anon_vma = page_anon_vma(page); 2276 /* anon_vma disappear under us? */ 2277 VM_BUG_ON_PAGE(!anon_vma, page); 2278 } else { 2279 anon_vma = rmap_walk_anon_lock(page, rwc); 2280 } 2281 if (!anon_vma) 2282 return; 2283 2284 pgoff_start = page_to_pgoff(page); 2285 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 2286 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2287 pgoff_start, pgoff_end) { 2288 struct vm_area_struct *vma = avc->vma; 2289 unsigned long address = vma_address(page, vma); 2290 2291 VM_BUG_ON_VMA(address == -EFAULT, vma); 2292 cond_resched(); 2293 2294 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2295 continue; 2296 2297 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 2298 break; 2299 if (rwc->done && rwc->done(page)) 2300 break; 2301 } 2302 2303 if (!locked) 2304 anon_vma_unlock_read(anon_vma); 2305 } 2306 2307 /* 2308 * rmap_walk_file - do something to file page using the object-based rmap method 2309 * @page: the page to be handled 2310 * @rwc: control variable according to each walk type 2311 * 2312 * Find all the mappings of a page using the mapping pointer and the vma chains 2313 * contained in the address_space struct it points to. 2314 * 2315 * When called from page_mlock(), the mmap_lock of the mm containing the vma 2316 * where the page was found will be held for write. So, we won't recheck 2317 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 2318 * LOCKED. 2319 */ 2320 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 2321 bool locked) 2322 { 2323 struct address_space *mapping = page_mapping(page); 2324 pgoff_t pgoff_start, pgoff_end; 2325 struct vm_area_struct *vma; 2326 2327 /* 2328 * The page lock not only makes sure that page->mapping cannot 2329 * suddenly be NULLified by truncation, it makes sure that the 2330 * structure at mapping cannot be freed and reused yet, 2331 * so we can safely take mapping->i_mmap_rwsem. 2332 */ 2333 VM_BUG_ON_PAGE(!PageLocked(page), page); 2334 2335 if (!mapping) 2336 return; 2337 2338 pgoff_start = page_to_pgoff(page); 2339 pgoff_end = pgoff_start + thp_nr_pages(page) - 1; 2340 if (!locked) 2341 i_mmap_lock_read(mapping); 2342 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2343 pgoff_start, pgoff_end) { 2344 unsigned long address = vma_address(page, vma); 2345 2346 VM_BUG_ON_VMA(address == -EFAULT, vma); 2347 cond_resched(); 2348 2349 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2350 continue; 2351 2352 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 2353 goto done; 2354 if (rwc->done && rwc->done(page)) 2355 goto done; 2356 } 2357 2358 done: 2359 if (!locked) 2360 i_mmap_unlock_read(mapping); 2361 } 2362 2363 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 2364 { 2365 if (unlikely(PageKsm(page))) 2366 rmap_walk_ksm(page, rwc); 2367 else if (PageAnon(page)) 2368 rmap_walk_anon(page, rwc, false); 2369 else 2370 rmap_walk_file(page, rwc, false); 2371 } 2372 2373 /* Like rmap_walk, but caller holds relevant rmap lock */ 2374 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 2375 { 2376 /* no ksm support for now */ 2377 VM_BUG_ON_PAGE(PageKsm(page), page); 2378 if (PageAnon(page)) 2379 rmap_walk_anon(page, rwc, true); 2380 else 2381 rmap_walk_file(page, rwc, true); 2382 } 2383 2384 #ifdef CONFIG_HUGETLB_PAGE 2385 /* 2386 * The following two functions are for anonymous (private mapped) hugepages. 2387 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2388 * and no lru code, because we handle hugepages differently from common pages. 2389 */ 2390 void hugepage_add_anon_rmap(struct page *page, 2391 struct vm_area_struct *vma, unsigned long address) 2392 { 2393 struct anon_vma *anon_vma = vma->anon_vma; 2394 int first; 2395 2396 BUG_ON(!PageLocked(page)); 2397 BUG_ON(!anon_vma); 2398 /* address might be in next vma when migration races vma_adjust */ 2399 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2400 if (first) 2401 __page_set_anon_rmap(page, vma, address, 0); 2402 } 2403 2404 void hugepage_add_new_anon_rmap(struct page *page, 2405 struct vm_area_struct *vma, unsigned long address) 2406 { 2407 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2408 atomic_set(compound_mapcount_ptr(page), 0); 2409 if (hpage_pincount_available(page)) 2410 atomic_set(compound_pincount_ptr(page), 0); 2411 2412 __page_set_anon_rmap(page, vma, address, 1); 2413 } 2414 #endif /* CONFIG_HUGETLB_PAGE */ 2415