1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) * (see hugetlbfs below) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 28 * mapping->i_mmap_rwsem 29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * * hugetlbfs PageHuge() pages take locks in this order: 50 * mapping->i_mmap_rwsem 51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 77 #include <asm/tlbflush.h> 78 79 #define CREATE_TRACE_POINTS 80 #include <trace/events/tlb.h> 81 #include <trace/events/migrate.h> 82 83 #include "internal.h" 84 85 static struct kmem_cache *anon_vma_cachep; 86 static struct kmem_cache *anon_vma_chain_cachep; 87 88 static inline struct anon_vma *anon_vma_alloc(void) 89 { 90 struct anon_vma *anon_vma; 91 92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 93 if (anon_vma) { 94 atomic_set(&anon_vma->refcount, 1); 95 anon_vma->degree = 1; /* Reference for first vma */ 96 anon_vma->parent = anon_vma; 97 /* 98 * Initialise the anon_vma root to point to itself. If called 99 * from fork, the root will be reset to the parents anon_vma. 100 */ 101 anon_vma->root = anon_vma; 102 } 103 104 return anon_vma; 105 } 106 107 static inline void anon_vma_free(struct anon_vma *anon_vma) 108 { 109 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 110 111 /* 112 * Synchronize against folio_lock_anon_vma_read() such that 113 * we can safely hold the lock without the anon_vma getting 114 * freed. 115 * 116 * Relies on the full mb implied by the atomic_dec_and_test() from 117 * put_anon_vma() against the acquire barrier implied by 118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 119 * 120 * folio_lock_anon_vma_read() VS put_anon_vma() 121 * down_read_trylock() atomic_dec_and_test() 122 * LOCK MB 123 * atomic_read() rwsem_is_locked() 124 * 125 * LOCK should suffice since the actual taking of the lock must 126 * happen _before_ what follows. 127 */ 128 might_sleep(); 129 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 130 anon_vma_lock_write(anon_vma); 131 anon_vma_unlock_write(anon_vma); 132 } 133 134 kmem_cache_free(anon_vma_cachep, anon_vma); 135 } 136 137 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 138 { 139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 140 } 141 142 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 143 { 144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 145 } 146 147 static void anon_vma_chain_link(struct vm_area_struct *vma, 148 struct anon_vma_chain *avc, 149 struct anon_vma *anon_vma) 150 { 151 avc->vma = vma; 152 avc->anon_vma = anon_vma; 153 list_add(&avc->same_vma, &vma->anon_vma_chain); 154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 155 } 156 157 /** 158 * __anon_vma_prepare - attach an anon_vma to a memory region 159 * @vma: the memory region in question 160 * 161 * This makes sure the memory mapping described by 'vma' has 162 * an 'anon_vma' attached to it, so that we can associate the 163 * anonymous pages mapped into it with that anon_vma. 164 * 165 * The common case will be that we already have one, which 166 * is handled inline by anon_vma_prepare(). But if 167 * not we either need to find an adjacent mapping that we 168 * can re-use the anon_vma from (very common when the only 169 * reason for splitting a vma has been mprotect()), or we 170 * allocate a new one. 171 * 172 * Anon-vma allocations are very subtle, because we may have 173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 174 * and that may actually touch the rwsem even in the newly 175 * allocated vma (it depends on RCU to make sure that the 176 * anon_vma isn't actually destroyed). 177 * 178 * As a result, we need to do proper anon_vma locking even 179 * for the new allocation. At the same time, we do not want 180 * to do any locking for the common case of already having 181 * an anon_vma. 182 * 183 * This must be called with the mmap_lock held for reading. 184 */ 185 int __anon_vma_prepare(struct vm_area_struct *vma) 186 { 187 struct mm_struct *mm = vma->vm_mm; 188 struct anon_vma *anon_vma, *allocated; 189 struct anon_vma_chain *avc; 190 191 might_sleep(); 192 193 avc = anon_vma_chain_alloc(GFP_KERNEL); 194 if (!avc) 195 goto out_enomem; 196 197 anon_vma = find_mergeable_anon_vma(vma); 198 allocated = NULL; 199 if (!anon_vma) { 200 anon_vma = anon_vma_alloc(); 201 if (unlikely(!anon_vma)) 202 goto out_enomem_free_avc; 203 allocated = anon_vma; 204 } 205 206 anon_vma_lock_write(anon_vma); 207 /* page_table_lock to protect against threads */ 208 spin_lock(&mm->page_table_lock); 209 if (likely(!vma->anon_vma)) { 210 vma->anon_vma = anon_vma; 211 anon_vma_chain_link(vma, avc, anon_vma); 212 /* vma reference or self-parent link for new root */ 213 anon_vma->degree++; 214 allocated = NULL; 215 avc = NULL; 216 } 217 spin_unlock(&mm->page_table_lock); 218 anon_vma_unlock_write(anon_vma); 219 220 if (unlikely(allocated)) 221 put_anon_vma(allocated); 222 if (unlikely(avc)) 223 anon_vma_chain_free(avc); 224 225 return 0; 226 227 out_enomem_free_avc: 228 anon_vma_chain_free(avc); 229 out_enomem: 230 return -ENOMEM; 231 } 232 233 /* 234 * This is a useful helper function for locking the anon_vma root as 235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 236 * have the same vma. 237 * 238 * Such anon_vma's should have the same root, so you'd expect to see 239 * just a single mutex_lock for the whole traversal. 240 */ 241 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 242 { 243 struct anon_vma *new_root = anon_vma->root; 244 if (new_root != root) { 245 if (WARN_ON_ONCE(root)) 246 up_write(&root->rwsem); 247 root = new_root; 248 down_write(&root->rwsem); 249 } 250 return root; 251 } 252 253 static inline void unlock_anon_vma_root(struct anon_vma *root) 254 { 255 if (root) 256 up_write(&root->rwsem); 257 } 258 259 /* 260 * Attach the anon_vmas from src to dst. 261 * Returns 0 on success, -ENOMEM on failure. 262 * 263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 264 * anon_vma_fork(). The first three want an exact copy of src, while the last 265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 268 * 269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 270 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 271 * This prevents degradation of anon_vma hierarchy to endless linear chain in 272 * case of constantly forking task. On the other hand, an anon_vma with more 273 * than one child isn't reused even if there was no alive vma, thus rmap 274 * walker has a good chance of avoiding scanning the whole hierarchy when it 275 * searches where page is mapped. 276 */ 277 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 278 { 279 struct anon_vma_chain *avc, *pavc; 280 struct anon_vma *root = NULL; 281 282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 283 struct anon_vma *anon_vma; 284 285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 286 if (unlikely(!avc)) { 287 unlock_anon_vma_root(root); 288 root = NULL; 289 avc = anon_vma_chain_alloc(GFP_KERNEL); 290 if (!avc) 291 goto enomem_failure; 292 } 293 anon_vma = pavc->anon_vma; 294 root = lock_anon_vma_root(root, anon_vma); 295 anon_vma_chain_link(dst, avc, anon_vma); 296 297 /* 298 * Reuse existing anon_vma if its degree lower than two, 299 * that means it has no vma and only one anon_vma child. 300 * 301 * Do not chose parent anon_vma, otherwise first child 302 * will always reuse it. Root anon_vma is never reused: 303 * it has self-parent reference and at least one child. 304 */ 305 if (!dst->anon_vma && src->anon_vma && 306 anon_vma != src->anon_vma && anon_vma->degree < 2) 307 dst->anon_vma = anon_vma; 308 } 309 if (dst->anon_vma) 310 dst->anon_vma->degree++; 311 unlock_anon_vma_root(root); 312 return 0; 313 314 enomem_failure: 315 /* 316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 317 * decremented in unlink_anon_vmas(). 318 * We can safely do this because callers of anon_vma_clone() don't care 319 * about dst->anon_vma if anon_vma_clone() failed. 320 */ 321 dst->anon_vma = NULL; 322 unlink_anon_vmas(dst); 323 return -ENOMEM; 324 } 325 326 /* 327 * Attach vma to its own anon_vma, as well as to the anon_vmas that 328 * the corresponding VMA in the parent process is attached to. 329 * Returns 0 on success, non-zero on failure. 330 */ 331 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 332 { 333 struct anon_vma_chain *avc; 334 struct anon_vma *anon_vma; 335 int error; 336 337 /* Don't bother if the parent process has no anon_vma here. */ 338 if (!pvma->anon_vma) 339 return 0; 340 341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 342 vma->anon_vma = NULL; 343 344 /* 345 * First, attach the new VMA to the parent VMA's anon_vmas, 346 * so rmap can find non-COWed pages in child processes. 347 */ 348 error = anon_vma_clone(vma, pvma); 349 if (error) 350 return error; 351 352 /* An existing anon_vma has been reused, all done then. */ 353 if (vma->anon_vma) 354 return 0; 355 356 /* Then add our own anon_vma. */ 357 anon_vma = anon_vma_alloc(); 358 if (!anon_vma) 359 goto out_error; 360 avc = anon_vma_chain_alloc(GFP_KERNEL); 361 if (!avc) 362 goto out_error_free_anon_vma; 363 364 /* 365 * The root anon_vma's rwsem is the lock actually used when we 366 * lock any of the anon_vmas in this anon_vma tree. 367 */ 368 anon_vma->root = pvma->anon_vma->root; 369 anon_vma->parent = pvma->anon_vma; 370 /* 371 * With refcounts, an anon_vma can stay around longer than the 372 * process it belongs to. The root anon_vma needs to be pinned until 373 * this anon_vma is freed, because the lock lives in the root. 374 */ 375 get_anon_vma(anon_vma->root); 376 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 377 vma->anon_vma = anon_vma; 378 anon_vma_lock_write(anon_vma); 379 anon_vma_chain_link(vma, avc, anon_vma); 380 anon_vma->parent->degree++; 381 anon_vma_unlock_write(anon_vma); 382 383 return 0; 384 385 out_error_free_anon_vma: 386 put_anon_vma(anon_vma); 387 out_error: 388 unlink_anon_vmas(vma); 389 return -ENOMEM; 390 } 391 392 void unlink_anon_vmas(struct vm_area_struct *vma) 393 { 394 struct anon_vma_chain *avc, *next; 395 struct anon_vma *root = NULL; 396 397 /* 398 * Unlink each anon_vma chained to the VMA. This list is ordered 399 * from newest to oldest, ensuring the root anon_vma gets freed last. 400 */ 401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 402 struct anon_vma *anon_vma = avc->anon_vma; 403 404 root = lock_anon_vma_root(root, anon_vma); 405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 406 407 /* 408 * Leave empty anon_vmas on the list - we'll need 409 * to free them outside the lock. 410 */ 411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 412 anon_vma->parent->degree--; 413 continue; 414 } 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 if (vma->anon_vma) { 420 vma->anon_vma->degree--; 421 422 /* 423 * vma would still be needed after unlink, and anon_vma will be prepared 424 * when handle fault. 425 */ 426 vma->anon_vma = NULL; 427 } 428 unlock_anon_vma_root(root); 429 430 /* 431 * Iterate the list once more, it now only contains empty and unlinked 432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 433 * needing to write-acquire the anon_vma->root->rwsem. 434 */ 435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 436 struct anon_vma *anon_vma = avc->anon_vma; 437 438 VM_WARN_ON(anon_vma->degree); 439 put_anon_vma(anon_vma); 440 441 list_del(&avc->same_vma); 442 anon_vma_chain_free(avc); 443 } 444 } 445 446 static void anon_vma_ctor(void *data) 447 { 448 struct anon_vma *anon_vma = data; 449 450 init_rwsem(&anon_vma->rwsem); 451 atomic_set(&anon_vma->refcount, 0); 452 anon_vma->rb_root = RB_ROOT_CACHED; 453 } 454 455 void __init anon_vma_init(void) 456 { 457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 459 anon_vma_ctor); 460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 461 SLAB_PANIC|SLAB_ACCOUNT); 462 } 463 464 /* 465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 466 * 467 * Since there is no serialization what so ever against page_remove_rmap() 468 * the best this function can do is return a refcount increased anon_vma 469 * that might have been relevant to this page. 470 * 471 * The page might have been remapped to a different anon_vma or the anon_vma 472 * returned may already be freed (and even reused). 473 * 474 * In case it was remapped to a different anon_vma, the new anon_vma will be a 475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 476 * ensure that any anon_vma obtained from the page will still be valid for as 477 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 478 * 479 * All users of this function must be very careful when walking the anon_vma 480 * chain and verify that the page in question is indeed mapped in it 481 * [ something equivalent to page_mapped_in_vma() ]. 482 * 483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 485 * if there is a mapcount, we can dereference the anon_vma after observing 486 * those. 487 */ 488 struct anon_vma *page_get_anon_vma(struct page *page) 489 { 490 struct anon_vma *anon_vma = NULL; 491 unsigned long anon_mapping; 492 493 rcu_read_lock(); 494 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 496 goto out; 497 if (!page_mapped(page)) 498 goto out; 499 500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 501 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 502 anon_vma = NULL; 503 goto out; 504 } 505 506 /* 507 * If this page is still mapped, then its anon_vma cannot have been 508 * freed. But if it has been unmapped, we have no security against the 509 * anon_vma structure being freed and reused (for another anon_vma: 510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 511 * above cannot corrupt). 512 */ 513 if (!page_mapped(page)) { 514 rcu_read_unlock(); 515 put_anon_vma(anon_vma); 516 return NULL; 517 } 518 out: 519 rcu_read_unlock(); 520 521 return anon_vma; 522 } 523 524 /* 525 * Similar to page_get_anon_vma() except it locks the anon_vma. 526 * 527 * Its a little more complex as it tries to keep the fast path to a single 528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 529 * reference like with page_get_anon_vma() and then block on the mutex. 530 */ 531 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio) 532 { 533 struct anon_vma *anon_vma = NULL; 534 struct anon_vma *root_anon_vma; 535 unsigned long anon_mapping; 536 537 rcu_read_lock(); 538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 540 goto out; 541 if (!folio_mapped(folio)) 542 goto out; 543 544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 545 root_anon_vma = READ_ONCE(anon_vma->root); 546 if (down_read_trylock(&root_anon_vma->rwsem)) { 547 /* 548 * If the folio is still mapped, then this anon_vma is still 549 * its anon_vma, and holding the mutex ensures that it will 550 * not go away, see anon_vma_free(). 551 */ 552 if (!folio_mapped(folio)) { 553 up_read(&root_anon_vma->rwsem); 554 anon_vma = NULL; 555 } 556 goto out; 557 } 558 559 /* trylock failed, we got to sleep */ 560 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 561 anon_vma = NULL; 562 goto out; 563 } 564 565 if (!folio_mapped(folio)) { 566 rcu_read_unlock(); 567 put_anon_vma(anon_vma); 568 return NULL; 569 } 570 571 /* we pinned the anon_vma, its safe to sleep */ 572 rcu_read_unlock(); 573 anon_vma_lock_read(anon_vma); 574 575 if (atomic_dec_and_test(&anon_vma->refcount)) { 576 /* 577 * Oops, we held the last refcount, release the lock 578 * and bail -- can't simply use put_anon_vma() because 579 * we'll deadlock on the anon_vma_lock_write() recursion. 580 */ 581 anon_vma_unlock_read(anon_vma); 582 __put_anon_vma(anon_vma); 583 anon_vma = NULL; 584 } 585 586 return anon_vma; 587 588 out: 589 rcu_read_unlock(); 590 return anon_vma; 591 } 592 593 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 594 { 595 anon_vma_unlock_read(anon_vma); 596 } 597 598 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 599 /* 600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 601 * important if a PTE was dirty when it was unmapped that it's flushed 602 * before any IO is initiated on the page to prevent lost writes. Similarly, 603 * it must be flushed before freeing to prevent data leakage. 604 */ 605 void try_to_unmap_flush(void) 606 { 607 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 608 609 if (!tlb_ubc->flush_required) 610 return; 611 612 arch_tlbbatch_flush(&tlb_ubc->arch); 613 tlb_ubc->flush_required = false; 614 tlb_ubc->writable = false; 615 } 616 617 /* Flush iff there are potentially writable TLB entries that can race with IO */ 618 void try_to_unmap_flush_dirty(void) 619 { 620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 621 622 if (tlb_ubc->writable) 623 try_to_unmap_flush(); 624 } 625 626 /* 627 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 629 */ 630 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 631 #define TLB_FLUSH_BATCH_PENDING_MASK \ 632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 633 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 634 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 635 636 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 637 { 638 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 639 int batch, nbatch; 640 641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 642 tlb_ubc->flush_required = true; 643 644 /* 645 * Ensure compiler does not re-order the setting of tlb_flush_batched 646 * before the PTE is cleared. 647 */ 648 barrier(); 649 batch = atomic_read(&mm->tlb_flush_batched); 650 retry: 651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 652 /* 653 * Prevent `pending' from catching up with `flushed' because of 654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 655 * `pending' becomes large. 656 */ 657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 658 if (nbatch != batch) { 659 batch = nbatch; 660 goto retry; 661 } 662 } else { 663 atomic_inc(&mm->tlb_flush_batched); 664 } 665 666 /* 667 * If the PTE was dirty then it's best to assume it's writable. The 668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 669 * before the page is queued for IO. 670 */ 671 if (writable) 672 tlb_ubc->writable = true; 673 } 674 675 /* 676 * Returns true if the TLB flush should be deferred to the end of a batch of 677 * unmap operations to reduce IPIs. 678 */ 679 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 680 { 681 bool should_defer = false; 682 683 if (!(flags & TTU_BATCH_FLUSH)) 684 return false; 685 686 /* If remote CPUs need to be flushed then defer batch the flush */ 687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 688 should_defer = true; 689 put_cpu(); 690 691 return should_defer; 692 } 693 694 /* 695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 697 * operation such as mprotect or munmap to race between reclaim unmapping 698 * the page and flushing the page. If this race occurs, it potentially allows 699 * access to data via a stale TLB entry. Tracking all mm's that have TLB 700 * batching in flight would be expensive during reclaim so instead track 701 * whether TLB batching occurred in the past and if so then do a flush here 702 * if required. This will cost one additional flush per reclaim cycle paid 703 * by the first operation at risk such as mprotect and mumap. 704 * 705 * This must be called under the PTL so that an access to tlb_flush_batched 706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 707 * via the PTL. 708 */ 709 void flush_tlb_batched_pending(struct mm_struct *mm) 710 { 711 int batch = atomic_read(&mm->tlb_flush_batched); 712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 714 715 if (pending != flushed) { 716 flush_tlb_mm(mm); 717 /* 718 * If the new TLB flushing is pending during flushing, leave 719 * mm->tlb_flush_batched as is, to avoid losing flushing. 720 */ 721 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 723 } 724 } 725 #else 726 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 727 { 728 } 729 730 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 731 { 732 return false; 733 } 734 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 735 736 /* 737 * At what user virtual address is page expected in vma? 738 * Caller should check the page is actually part of the vma. 739 */ 740 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 741 { 742 struct folio *folio = page_folio(page); 743 if (folio_test_anon(folio)) { 744 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 745 /* 746 * Note: swapoff's unuse_vma() is more efficient with this 747 * check, and needs it to match anon_vma when KSM is active. 748 */ 749 if (!vma->anon_vma || !page__anon_vma || 750 vma->anon_vma->root != page__anon_vma->root) 751 return -EFAULT; 752 } else if (!vma->vm_file) { 753 return -EFAULT; 754 } else if (vma->vm_file->f_mapping != folio->mapping) { 755 return -EFAULT; 756 } 757 758 return vma_address(page, vma); 759 } 760 761 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 762 { 763 pgd_t *pgd; 764 p4d_t *p4d; 765 pud_t *pud; 766 pmd_t *pmd = NULL; 767 pmd_t pmde; 768 769 pgd = pgd_offset(mm, address); 770 if (!pgd_present(*pgd)) 771 goto out; 772 773 p4d = p4d_offset(pgd, address); 774 if (!p4d_present(*p4d)) 775 goto out; 776 777 pud = pud_offset(p4d, address); 778 if (!pud_present(*pud)) 779 goto out; 780 781 pmd = pmd_offset(pud, address); 782 /* 783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 784 * without holding anon_vma lock for write. So when looking for a 785 * genuine pmde (in which to find pte), test present and !THP together. 786 */ 787 pmde = *pmd; 788 barrier(); 789 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 790 pmd = NULL; 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 /* 802 * arg: folio_referenced_arg will be passed 803 */ 804 static bool folio_referenced_one(struct folio *folio, 805 struct vm_area_struct *vma, unsigned long address, void *arg) 806 { 807 struct folio_referenced_arg *pra = arg; 808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 809 int referenced = 0; 810 811 while (page_vma_mapped_walk(&pvmw)) { 812 address = pvmw.address; 813 814 if ((vma->vm_flags & VM_LOCKED) && 815 (!folio_test_large(folio) || !pvmw.pte)) { 816 /* Restore the mlock which got missed */ 817 mlock_vma_folio(folio, vma, !pvmw.pte); 818 page_vma_mapped_walk_done(&pvmw); 819 pra->vm_flags |= VM_LOCKED; 820 return false; /* To break the loop */ 821 } 822 823 if (pvmw.pte) { 824 if (ptep_clear_flush_young_notify(vma, address, 825 pvmw.pte)) { 826 /* 827 * Don't treat a reference through 828 * a sequentially read mapping as such. 829 * If the folio has been used in another mapping, 830 * we will catch it; if this other mapping is 831 * already gone, the unmap path will have set 832 * the referenced flag or activated the folio. 833 */ 834 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 835 referenced++; 836 } 837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 838 if (pmdp_clear_flush_young_notify(vma, address, 839 pvmw.pmd)) 840 referenced++; 841 } else { 842 /* unexpected pmd-mapped folio? */ 843 WARN_ON_ONCE(1); 844 } 845 846 pra->mapcount--; 847 } 848 849 if (referenced) 850 folio_clear_idle(folio); 851 if (folio_test_clear_young(folio)) 852 referenced++; 853 854 if (referenced) { 855 pra->referenced++; 856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 857 } 858 859 if (!pra->mapcount) 860 return false; /* To break the loop */ 861 862 return true; 863 } 864 865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 866 { 867 struct folio_referenced_arg *pra = arg; 868 struct mem_cgroup *memcg = pra->memcg; 869 870 if (!mm_match_cgroup(vma->vm_mm, memcg)) 871 return true; 872 873 return false; 874 } 875 876 /** 877 * folio_referenced() - Test if the folio was referenced. 878 * @folio: The folio to test. 879 * @is_locked: Caller holds lock on the folio. 880 * @memcg: target memory cgroup 881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 882 * 883 * Quick test_and_clear_referenced for all mappings of a folio, 884 * 885 * Return: The number of mappings which referenced the folio. 886 */ 887 int folio_referenced(struct folio *folio, int is_locked, 888 struct mem_cgroup *memcg, unsigned long *vm_flags) 889 { 890 int we_locked = 0; 891 struct folio_referenced_arg pra = { 892 .mapcount = folio_mapcount(folio), 893 .memcg = memcg, 894 }; 895 struct rmap_walk_control rwc = { 896 .rmap_one = folio_referenced_one, 897 .arg = (void *)&pra, 898 .anon_lock = folio_lock_anon_vma_read, 899 }; 900 901 *vm_flags = 0; 902 if (!pra.mapcount) 903 return 0; 904 905 if (!folio_raw_mapping(folio)) 906 return 0; 907 908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 909 we_locked = folio_trylock(folio); 910 if (!we_locked) 911 return 1; 912 } 913 914 /* 915 * If we are reclaiming on behalf of a cgroup, skip 916 * counting on behalf of references from different 917 * cgroups 918 */ 919 if (memcg) { 920 rwc.invalid_vma = invalid_folio_referenced_vma; 921 } 922 923 rmap_walk(folio, &rwc); 924 *vm_flags = pra.vm_flags; 925 926 if (we_locked) 927 folio_unlock(folio); 928 929 return pra.referenced; 930 } 931 932 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 933 unsigned long address, void *arg) 934 { 935 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 936 struct mmu_notifier_range range; 937 int *cleaned = arg; 938 939 /* 940 * We have to assume the worse case ie pmd for invalidation. Note that 941 * the folio can not be freed from this function. 942 */ 943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 944 0, vma, vma->vm_mm, address, 945 vma_address_end(&pvmw)); 946 mmu_notifier_invalidate_range_start(&range); 947 948 while (page_vma_mapped_walk(&pvmw)) { 949 int ret = 0; 950 951 address = pvmw.address; 952 if (pvmw.pte) { 953 pte_t entry; 954 pte_t *pte = pvmw.pte; 955 956 if (!pte_dirty(*pte) && !pte_write(*pte)) 957 continue; 958 959 flush_cache_page(vma, address, pte_pfn(*pte)); 960 entry = ptep_clear_flush(vma, address, pte); 961 entry = pte_wrprotect(entry); 962 entry = pte_mkclean(entry); 963 set_pte_at(vma->vm_mm, address, pte, entry); 964 ret = 1; 965 } else { 966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 967 pmd_t *pmd = pvmw.pmd; 968 pmd_t entry; 969 970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 971 continue; 972 973 flush_cache_page(vma, address, folio_pfn(folio)); 974 entry = pmdp_invalidate(vma, address, pmd); 975 entry = pmd_wrprotect(entry); 976 entry = pmd_mkclean(entry); 977 set_pmd_at(vma->vm_mm, address, pmd, entry); 978 ret = 1; 979 #else 980 /* unexpected pmd-mapped folio? */ 981 WARN_ON_ONCE(1); 982 #endif 983 } 984 985 /* 986 * No need to call mmu_notifier_invalidate_range() as we are 987 * downgrading page table protection not changing it to point 988 * to a new page. 989 * 990 * See Documentation/vm/mmu_notifier.rst 991 */ 992 if (ret) 993 (*cleaned)++; 994 } 995 996 mmu_notifier_invalidate_range_end(&range); 997 998 return true; 999 } 1000 1001 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1002 { 1003 if (vma->vm_flags & VM_SHARED) 1004 return false; 1005 1006 return true; 1007 } 1008 1009 int folio_mkclean(struct folio *folio) 1010 { 1011 int cleaned = 0; 1012 struct address_space *mapping; 1013 struct rmap_walk_control rwc = { 1014 .arg = (void *)&cleaned, 1015 .rmap_one = page_mkclean_one, 1016 .invalid_vma = invalid_mkclean_vma, 1017 }; 1018 1019 BUG_ON(!folio_test_locked(folio)); 1020 1021 if (!folio_mapped(folio)) 1022 return 0; 1023 1024 mapping = folio_mapping(folio); 1025 if (!mapping) 1026 return 0; 1027 1028 rmap_walk(folio, &rwc); 1029 1030 return cleaned; 1031 } 1032 EXPORT_SYMBOL_GPL(folio_mkclean); 1033 1034 /** 1035 * page_move_anon_rmap - move a page to our anon_vma 1036 * @page: the page to move to our anon_vma 1037 * @vma: the vma the page belongs to 1038 * 1039 * When a page belongs exclusively to one process after a COW event, 1040 * that page can be moved into the anon_vma that belongs to just that 1041 * process, so the rmap code will not search the parent or sibling 1042 * processes. 1043 */ 1044 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1045 { 1046 struct anon_vma *anon_vma = vma->anon_vma; 1047 1048 page = compound_head(page); 1049 1050 VM_BUG_ON_PAGE(!PageLocked(page), page); 1051 VM_BUG_ON_VMA(!anon_vma, vma); 1052 1053 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1054 /* 1055 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1056 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1057 * folio_test_anon()) will not see one without the other. 1058 */ 1059 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1060 } 1061 1062 /** 1063 * __page_set_anon_rmap - set up new anonymous rmap 1064 * @page: Page or Hugepage to add to rmap 1065 * @vma: VM area to add page to. 1066 * @address: User virtual address of the mapping 1067 * @exclusive: the page is exclusively owned by the current process 1068 */ 1069 static void __page_set_anon_rmap(struct page *page, 1070 struct vm_area_struct *vma, unsigned long address, int exclusive) 1071 { 1072 struct anon_vma *anon_vma = vma->anon_vma; 1073 1074 BUG_ON(!anon_vma); 1075 1076 if (PageAnon(page)) 1077 return; 1078 1079 /* 1080 * If the page isn't exclusively mapped into this vma, 1081 * we must use the _oldest_ possible anon_vma for the 1082 * page mapping! 1083 */ 1084 if (!exclusive) 1085 anon_vma = anon_vma->root; 1086 1087 /* 1088 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1089 * Make sure the compiler doesn't split the stores of anon_vma and 1090 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1091 * could mistake the mapping for a struct address_space and crash. 1092 */ 1093 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1094 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1095 page->index = linear_page_index(vma, address); 1096 } 1097 1098 /** 1099 * __page_check_anon_rmap - sanity check anonymous rmap addition 1100 * @page: the page to add the mapping to 1101 * @vma: the vm area in which the mapping is added 1102 * @address: the user virtual address mapped 1103 */ 1104 static void __page_check_anon_rmap(struct page *page, 1105 struct vm_area_struct *vma, unsigned long address) 1106 { 1107 struct folio *folio = page_folio(page); 1108 /* 1109 * The page's anon-rmap details (mapping and index) are guaranteed to 1110 * be set up correctly at this point. 1111 * 1112 * We have exclusion against page_add_anon_rmap because the caller 1113 * always holds the page locked. 1114 * 1115 * We have exclusion against page_add_new_anon_rmap because those pages 1116 * are initially only visible via the pagetables, and the pte is locked 1117 * over the call to page_add_new_anon_rmap. 1118 */ 1119 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1120 folio); 1121 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1122 page); 1123 } 1124 1125 /** 1126 * page_add_anon_rmap - add pte mapping to an anonymous page 1127 * @page: the page to add the mapping to 1128 * @vma: the vm area in which the mapping is added 1129 * @address: the user virtual address mapped 1130 * @compound: charge the page as compound or small page 1131 * 1132 * The caller needs to hold the pte lock, and the page must be locked in 1133 * the anon_vma case: to serialize mapping,index checking after setting, 1134 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1135 * (but PageKsm is never downgraded to PageAnon). 1136 */ 1137 void page_add_anon_rmap(struct page *page, 1138 struct vm_area_struct *vma, unsigned long address, bool compound) 1139 { 1140 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1141 } 1142 1143 /* 1144 * Special version of the above for do_swap_page, which often runs 1145 * into pages that are exclusively owned by the current process. 1146 * Everybody else should continue to use page_add_anon_rmap above. 1147 */ 1148 void do_page_add_anon_rmap(struct page *page, 1149 struct vm_area_struct *vma, unsigned long address, int flags) 1150 { 1151 bool compound = flags & RMAP_COMPOUND; 1152 bool first; 1153 1154 if (unlikely(PageKsm(page))) 1155 lock_page_memcg(page); 1156 else 1157 VM_BUG_ON_PAGE(!PageLocked(page), page); 1158 1159 if (compound) { 1160 atomic_t *mapcount; 1161 VM_BUG_ON_PAGE(!PageLocked(page), page); 1162 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1163 mapcount = compound_mapcount_ptr(page); 1164 first = atomic_inc_and_test(mapcount); 1165 } else { 1166 first = atomic_inc_and_test(&page->_mapcount); 1167 } 1168 1169 if (first) { 1170 int nr = compound ? thp_nr_pages(page) : 1; 1171 /* 1172 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1173 * these counters are not modified in interrupt context, and 1174 * pte lock(a spinlock) is held, which implies preemption 1175 * disabled. 1176 */ 1177 if (compound) 1178 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1179 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1180 } 1181 1182 if (unlikely(PageKsm(page))) 1183 unlock_page_memcg(page); 1184 1185 /* address might be in next vma when migration races vma_adjust */ 1186 else if (first) 1187 __page_set_anon_rmap(page, vma, address, 1188 flags & RMAP_EXCLUSIVE); 1189 else 1190 __page_check_anon_rmap(page, vma, address); 1191 1192 mlock_vma_page(page, vma, compound); 1193 } 1194 1195 /** 1196 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1197 * @page: the page to add the mapping to 1198 * @vma: the vm area in which the mapping is added 1199 * @address: the user virtual address mapped 1200 * @compound: charge the page as compound or small page 1201 * 1202 * Same as page_add_anon_rmap but must only be called on *new* pages. 1203 * This means the inc-and-test can be bypassed. 1204 * Page does not have to be locked. 1205 */ 1206 void page_add_new_anon_rmap(struct page *page, 1207 struct vm_area_struct *vma, unsigned long address, bool compound) 1208 { 1209 int nr = compound ? thp_nr_pages(page) : 1; 1210 1211 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1212 __SetPageSwapBacked(page); 1213 if (compound) { 1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1215 /* increment count (starts at -1) */ 1216 atomic_set(compound_mapcount_ptr(page), 0); 1217 atomic_set(compound_pincount_ptr(page), 0); 1218 1219 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1220 } else { 1221 /* Anon THP always mapped first with PMD */ 1222 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1223 /* increment count (starts at -1) */ 1224 atomic_set(&page->_mapcount, 0); 1225 } 1226 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1227 __page_set_anon_rmap(page, vma, address, 1); 1228 } 1229 1230 /** 1231 * page_add_file_rmap - add pte mapping to a file page 1232 * @page: the page to add the mapping to 1233 * @vma: the vm area in which the mapping is added 1234 * @compound: charge the page as compound or small page 1235 * 1236 * The caller needs to hold the pte lock. 1237 */ 1238 void page_add_file_rmap(struct page *page, 1239 struct vm_area_struct *vma, bool compound) 1240 { 1241 int i, nr = 0; 1242 1243 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1244 lock_page_memcg(page); 1245 if (compound && PageTransHuge(page)) { 1246 int nr_pages = thp_nr_pages(page); 1247 1248 for (i = 0; i < nr_pages; i++) { 1249 if (atomic_inc_and_test(&page[i]._mapcount)) 1250 nr++; 1251 } 1252 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1253 goto out; 1254 1255 /* 1256 * It is racy to ClearPageDoubleMap in page_remove_file_rmap(); 1257 * but page lock is held by all page_add_file_rmap() compound 1258 * callers, and SetPageDoubleMap below warns if !PageLocked: 1259 * so here is a place that DoubleMap can be safely cleared. 1260 */ 1261 VM_WARN_ON_ONCE(!PageLocked(page)); 1262 if (nr == nr_pages && PageDoubleMap(page)) 1263 ClearPageDoubleMap(page); 1264 1265 if (PageSwapBacked(page)) 1266 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1267 nr_pages); 1268 else 1269 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1270 nr_pages); 1271 } else { 1272 if (PageTransCompound(page) && page_mapping(page)) { 1273 VM_WARN_ON_ONCE(!PageLocked(page)); 1274 SetPageDoubleMap(compound_head(page)); 1275 } 1276 if (atomic_inc_and_test(&page->_mapcount)) 1277 nr++; 1278 } 1279 out: 1280 if (nr) 1281 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1282 unlock_page_memcg(page); 1283 1284 mlock_vma_page(page, vma, compound); 1285 } 1286 1287 static void page_remove_file_rmap(struct page *page, bool compound) 1288 { 1289 int i, nr = 0; 1290 1291 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1292 1293 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1294 if (unlikely(PageHuge(page))) { 1295 /* hugetlb pages are always mapped with pmds */ 1296 atomic_dec(compound_mapcount_ptr(page)); 1297 return; 1298 } 1299 1300 /* page still mapped by someone else? */ 1301 if (compound && PageTransHuge(page)) { 1302 int nr_pages = thp_nr_pages(page); 1303 1304 for (i = 0; i < nr_pages; i++) { 1305 if (atomic_add_negative(-1, &page[i]._mapcount)) 1306 nr++; 1307 } 1308 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1309 goto out; 1310 if (PageSwapBacked(page)) 1311 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, 1312 -nr_pages); 1313 else 1314 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, 1315 -nr_pages); 1316 } else { 1317 if (atomic_add_negative(-1, &page->_mapcount)) 1318 nr++; 1319 } 1320 out: 1321 if (nr) 1322 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1323 } 1324 1325 static void page_remove_anon_compound_rmap(struct page *page) 1326 { 1327 int i, nr; 1328 1329 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1330 return; 1331 1332 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1333 if (unlikely(PageHuge(page))) 1334 return; 1335 1336 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1337 return; 1338 1339 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); 1340 1341 if (TestClearPageDoubleMap(page)) { 1342 /* 1343 * Subpages can be mapped with PTEs too. Check how many of 1344 * them are still mapped. 1345 */ 1346 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { 1347 if (atomic_add_negative(-1, &page[i]._mapcount)) 1348 nr++; 1349 } 1350 1351 /* 1352 * Queue the page for deferred split if at least one small 1353 * page of the compound page is unmapped, but at least one 1354 * small page is still mapped. 1355 */ 1356 if (nr && nr < thp_nr_pages(page)) 1357 deferred_split_huge_page(page); 1358 } else { 1359 nr = thp_nr_pages(page); 1360 } 1361 1362 if (nr) 1363 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); 1364 } 1365 1366 /** 1367 * page_remove_rmap - take down pte mapping from a page 1368 * @page: page to remove mapping from 1369 * @vma: the vm area from which the mapping is removed 1370 * @compound: uncharge the page as compound or small page 1371 * 1372 * The caller needs to hold the pte lock. 1373 */ 1374 void page_remove_rmap(struct page *page, 1375 struct vm_area_struct *vma, bool compound) 1376 { 1377 lock_page_memcg(page); 1378 1379 if (!PageAnon(page)) { 1380 page_remove_file_rmap(page, compound); 1381 goto out; 1382 } 1383 1384 if (compound) { 1385 page_remove_anon_compound_rmap(page); 1386 goto out; 1387 } 1388 1389 /* page still mapped by someone else? */ 1390 if (!atomic_add_negative(-1, &page->_mapcount)) 1391 goto out; 1392 1393 /* 1394 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1395 * these counters are not modified in interrupt context, and 1396 * pte lock(a spinlock) is held, which implies preemption disabled. 1397 */ 1398 __dec_lruvec_page_state(page, NR_ANON_MAPPED); 1399 1400 if (PageTransCompound(page)) 1401 deferred_split_huge_page(compound_head(page)); 1402 1403 /* 1404 * It would be tidy to reset the PageAnon mapping here, 1405 * but that might overwrite a racing page_add_anon_rmap 1406 * which increments mapcount after us but sets mapping 1407 * before us: so leave the reset to free_unref_page, 1408 * and remember that it's only reliable while mapped. 1409 * Leaving it set also helps swapoff to reinstate ptes 1410 * faster for those pages still in swapcache. 1411 */ 1412 out: 1413 unlock_page_memcg(page); 1414 1415 munlock_vma_page(page, vma, compound); 1416 } 1417 1418 /* 1419 * @arg: enum ttu_flags will be passed to this argument 1420 */ 1421 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1422 unsigned long address, void *arg) 1423 { 1424 struct mm_struct *mm = vma->vm_mm; 1425 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1426 pte_t pteval; 1427 struct page *subpage; 1428 bool ret = true; 1429 struct mmu_notifier_range range; 1430 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1431 1432 /* 1433 * When racing against e.g. zap_pte_range() on another cpu, 1434 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1435 * try_to_unmap() may return before page_mapped() has become false, 1436 * if page table locking is skipped: use TTU_SYNC to wait for that. 1437 */ 1438 if (flags & TTU_SYNC) 1439 pvmw.flags = PVMW_SYNC; 1440 1441 if (flags & TTU_SPLIT_HUGE_PMD) 1442 split_huge_pmd_address(vma, address, false, folio); 1443 1444 /* 1445 * For THP, we have to assume the worse case ie pmd for invalidation. 1446 * For hugetlb, it could be much worse if we need to do pud 1447 * invalidation in the case of pmd sharing. 1448 * 1449 * Note that the folio can not be freed in this function as call of 1450 * try_to_unmap() must hold a reference on the folio. 1451 */ 1452 range.end = vma_address_end(&pvmw); 1453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1454 address, range.end); 1455 if (folio_test_hugetlb(folio)) { 1456 /* 1457 * If sharing is possible, start and end will be adjusted 1458 * accordingly. 1459 */ 1460 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1461 &range.end); 1462 } 1463 mmu_notifier_invalidate_range_start(&range); 1464 1465 while (page_vma_mapped_walk(&pvmw)) { 1466 /* Unexpected PMD-mapped THP? */ 1467 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1468 1469 /* 1470 * If the folio is in an mlock()d vma, we must not swap it out. 1471 */ 1472 if (!(flags & TTU_IGNORE_MLOCK) && 1473 (vma->vm_flags & VM_LOCKED)) { 1474 /* Restore the mlock which got missed */ 1475 mlock_vma_folio(folio, vma, false); 1476 page_vma_mapped_walk_done(&pvmw); 1477 ret = false; 1478 break; 1479 } 1480 1481 subpage = folio_page(folio, 1482 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1483 address = pvmw.address; 1484 1485 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1486 /* 1487 * To call huge_pmd_unshare, i_mmap_rwsem must be 1488 * held in write mode. Caller needs to explicitly 1489 * do this outside rmap routines. 1490 */ 1491 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1492 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1493 /* 1494 * huge_pmd_unshare unmapped an entire PMD 1495 * page. There is no way of knowing exactly 1496 * which PMDs may be cached for this mm, so 1497 * we must flush them all. start/end were 1498 * already adjusted above to cover this range. 1499 */ 1500 flush_cache_range(vma, range.start, range.end); 1501 flush_tlb_range(vma, range.start, range.end); 1502 mmu_notifier_invalidate_range(mm, range.start, 1503 range.end); 1504 1505 /* 1506 * The ref count of the PMD page was dropped 1507 * which is part of the way map counting 1508 * is done for shared PMDs. Return 'true' 1509 * here. When there is no other sharing, 1510 * huge_pmd_unshare returns false and we will 1511 * unmap the actual page and drop map count 1512 * to zero. 1513 */ 1514 page_vma_mapped_walk_done(&pvmw); 1515 break; 1516 } 1517 } 1518 1519 /* Nuke the page table entry. */ 1520 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1521 if (should_defer_flush(mm, flags)) { 1522 /* 1523 * We clear the PTE but do not flush so potentially 1524 * a remote CPU could still be writing to the folio. 1525 * If the entry was previously clean then the 1526 * architecture must guarantee that a clear->dirty 1527 * transition on a cached TLB entry is written through 1528 * and traps if the PTE is unmapped. 1529 */ 1530 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1531 1532 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1533 } else { 1534 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1535 } 1536 1537 /* Set the dirty flag on the folio now the pte is gone. */ 1538 if (pte_dirty(pteval)) 1539 folio_mark_dirty(folio); 1540 1541 /* Update high watermark before we lower rss */ 1542 update_hiwater_rss(mm); 1543 1544 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1545 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1546 if (folio_test_hugetlb(folio)) { 1547 hugetlb_count_sub(folio_nr_pages(folio), mm); 1548 set_huge_swap_pte_at(mm, address, 1549 pvmw.pte, pteval, 1550 vma_mmu_pagesize(vma)); 1551 } else { 1552 dec_mm_counter(mm, mm_counter(&folio->page)); 1553 set_pte_at(mm, address, pvmw.pte, pteval); 1554 } 1555 1556 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1557 /* 1558 * The guest indicated that the page content is of no 1559 * interest anymore. Simply discard the pte, vmscan 1560 * will take care of the rest. 1561 * A future reference will then fault in a new zero 1562 * page. When userfaultfd is active, we must not drop 1563 * this page though, as its main user (postcopy 1564 * migration) will not expect userfaults on already 1565 * copied pages. 1566 */ 1567 dec_mm_counter(mm, mm_counter(&folio->page)); 1568 /* We have to invalidate as we cleared the pte */ 1569 mmu_notifier_invalidate_range(mm, address, 1570 address + PAGE_SIZE); 1571 } else if (folio_test_anon(folio)) { 1572 swp_entry_t entry = { .val = page_private(subpage) }; 1573 pte_t swp_pte; 1574 /* 1575 * Store the swap location in the pte. 1576 * See handle_pte_fault() ... 1577 */ 1578 if (unlikely(folio_test_swapbacked(folio) != 1579 folio_test_swapcache(folio))) { 1580 WARN_ON_ONCE(1); 1581 ret = false; 1582 /* We have to invalidate as we cleared the pte */ 1583 mmu_notifier_invalidate_range(mm, address, 1584 address + PAGE_SIZE); 1585 page_vma_mapped_walk_done(&pvmw); 1586 break; 1587 } 1588 1589 /* MADV_FREE page check */ 1590 if (!folio_test_swapbacked(folio)) { 1591 int ref_count, map_count; 1592 1593 /* 1594 * Synchronize with gup_pte_range(): 1595 * - clear PTE; barrier; read refcount 1596 * - inc refcount; barrier; read PTE 1597 */ 1598 smp_mb(); 1599 1600 ref_count = folio_ref_count(folio); 1601 map_count = folio_mapcount(folio); 1602 1603 /* 1604 * Order reads for page refcount and dirty flag 1605 * (see comments in __remove_mapping()). 1606 */ 1607 smp_rmb(); 1608 1609 /* 1610 * The only page refs must be one from isolation 1611 * plus the rmap(s) (dropped by discard:). 1612 */ 1613 if (ref_count == 1 + map_count && 1614 !folio_test_dirty(folio)) { 1615 /* Invalidate as we cleared the pte */ 1616 mmu_notifier_invalidate_range(mm, 1617 address, address + PAGE_SIZE); 1618 dec_mm_counter(mm, MM_ANONPAGES); 1619 goto discard; 1620 } 1621 1622 /* 1623 * If the folio was redirtied, it cannot be 1624 * discarded. Remap the page to page table. 1625 */ 1626 set_pte_at(mm, address, pvmw.pte, pteval); 1627 folio_set_swapbacked(folio); 1628 ret = false; 1629 page_vma_mapped_walk_done(&pvmw); 1630 break; 1631 } 1632 1633 if (swap_duplicate(entry) < 0) { 1634 set_pte_at(mm, address, pvmw.pte, pteval); 1635 ret = false; 1636 page_vma_mapped_walk_done(&pvmw); 1637 break; 1638 } 1639 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1640 set_pte_at(mm, address, pvmw.pte, pteval); 1641 ret = false; 1642 page_vma_mapped_walk_done(&pvmw); 1643 break; 1644 } 1645 if (list_empty(&mm->mmlist)) { 1646 spin_lock(&mmlist_lock); 1647 if (list_empty(&mm->mmlist)) 1648 list_add(&mm->mmlist, &init_mm.mmlist); 1649 spin_unlock(&mmlist_lock); 1650 } 1651 dec_mm_counter(mm, MM_ANONPAGES); 1652 inc_mm_counter(mm, MM_SWAPENTS); 1653 swp_pte = swp_entry_to_pte(entry); 1654 if (pte_soft_dirty(pteval)) 1655 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1656 if (pte_uffd_wp(pteval)) 1657 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1658 set_pte_at(mm, address, pvmw.pte, swp_pte); 1659 /* Invalidate as we cleared the pte */ 1660 mmu_notifier_invalidate_range(mm, address, 1661 address + PAGE_SIZE); 1662 } else { 1663 /* 1664 * This is a locked file-backed folio, 1665 * so it cannot be removed from the page 1666 * cache and replaced by a new folio before 1667 * mmu_notifier_invalidate_range_end, so no 1668 * concurrent thread might update its page table 1669 * to point at a new folio while a device is 1670 * still using this folio. 1671 * 1672 * See Documentation/vm/mmu_notifier.rst 1673 */ 1674 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1675 } 1676 discard: 1677 /* 1678 * No need to call mmu_notifier_invalidate_range() it has be 1679 * done above for all cases requiring it to happen under page 1680 * table lock before mmu_notifier_invalidate_range_end() 1681 * 1682 * See Documentation/vm/mmu_notifier.rst 1683 */ 1684 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1685 if (vma->vm_flags & VM_LOCKED) 1686 mlock_page_drain(smp_processor_id()); 1687 folio_put(folio); 1688 } 1689 1690 mmu_notifier_invalidate_range_end(&range); 1691 1692 return ret; 1693 } 1694 1695 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1696 { 1697 return vma_is_temporary_stack(vma); 1698 } 1699 1700 static int page_not_mapped(struct folio *folio) 1701 { 1702 return !folio_mapped(folio); 1703 } 1704 1705 /** 1706 * try_to_unmap - Try to remove all page table mappings to a folio. 1707 * @folio: The folio to unmap. 1708 * @flags: action and flags 1709 * 1710 * Tries to remove all the page table entries which are mapping this 1711 * folio. It is the caller's responsibility to check if the folio is 1712 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1713 * 1714 * Context: Caller must hold the folio lock. 1715 */ 1716 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1717 { 1718 struct rmap_walk_control rwc = { 1719 .rmap_one = try_to_unmap_one, 1720 .arg = (void *)flags, 1721 .done = page_not_mapped, 1722 .anon_lock = folio_lock_anon_vma_read, 1723 }; 1724 1725 if (flags & TTU_RMAP_LOCKED) 1726 rmap_walk_locked(folio, &rwc); 1727 else 1728 rmap_walk(folio, &rwc); 1729 } 1730 1731 /* 1732 * @arg: enum ttu_flags will be passed to this argument. 1733 * 1734 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1735 * containing migration entries. 1736 */ 1737 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1738 unsigned long address, void *arg) 1739 { 1740 struct mm_struct *mm = vma->vm_mm; 1741 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1742 pte_t pteval; 1743 struct page *subpage; 1744 bool ret = true; 1745 struct mmu_notifier_range range; 1746 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1747 1748 /* 1749 * When racing against e.g. zap_pte_range() on another cpu, 1750 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1751 * try_to_migrate() may return before page_mapped() has become false, 1752 * if page table locking is skipped: use TTU_SYNC to wait for that. 1753 */ 1754 if (flags & TTU_SYNC) 1755 pvmw.flags = PVMW_SYNC; 1756 1757 /* 1758 * unmap_page() in mm/huge_memory.c is the only user of migration with 1759 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1760 */ 1761 if (flags & TTU_SPLIT_HUGE_PMD) 1762 split_huge_pmd_address(vma, address, true, folio); 1763 1764 /* 1765 * For THP, we have to assume the worse case ie pmd for invalidation. 1766 * For hugetlb, it could be much worse if we need to do pud 1767 * invalidation in the case of pmd sharing. 1768 * 1769 * Note that the page can not be free in this function as call of 1770 * try_to_unmap() must hold a reference on the page. 1771 */ 1772 range.end = vma_address_end(&pvmw); 1773 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1774 address, range.end); 1775 if (folio_test_hugetlb(folio)) { 1776 /* 1777 * If sharing is possible, start and end will be adjusted 1778 * accordingly. 1779 */ 1780 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1781 &range.end); 1782 } 1783 mmu_notifier_invalidate_range_start(&range); 1784 1785 while (page_vma_mapped_walk(&pvmw)) { 1786 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1787 /* PMD-mapped THP migration entry */ 1788 if (!pvmw.pte) { 1789 subpage = folio_page(folio, 1790 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1791 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1792 !folio_test_pmd_mappable(folio), folio); 1793 1794 set_pmd_migration_entry(&pvmw, subpage); 1795 continue; 1796 } 1797 #endif 1798 1799 /* Unexpected PMD-mapped THP? */ 1800 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1801 1802 subpage = folio_page(folio, 1803 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1804 address = pvmw.address; 1805 1806 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1807 /* 1808 * To call huge_pmd_unshare, i_mmap_rwsem must be 1809 * held in write mode. Caller needs to explicitly 1810 * do this outside rmap routines. 1811 */ 1812 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1813 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { 1814 /* 1815 * huge_pmd_unshare unmapped an entire PMD 1816 * page. There is no way of knowing exactly 1817 * which PMDs may be cached for this mm, so 1818 * we must flush them all. start/end were 1819 * already adjusted above to cover this range. 1820 */ 1821 flush_cache_range(vma, range.start, range.end); 1822 flush_tlb_range(vma, range.start, range.end); 1823 mmu_notifier_invalidate_range(mm, range.start, 1824 range.end); 1825 1826 /* 1827 * The ref count of the PMD page was dropped 1828 * which is part of the way map counting 1829 * is done for shared PMDs. Return 'true' 1830 * here. When there is no other sharing, 1831 * huge_pmd_unshare returns false and we will 1832 * unmap the actual page and drop map count 1833 * to zero. 1834 */ 1835 page_vma_mapped_walk_done(&pvmw); 1836 break; 1837 } 1838 } 1839 1840 /* Nuke the page table entry. */ 1841 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1842 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1843 1844 /* Set the dirty flag on the folio now the pte is gone. */ 1845 if (pte_dirty(pteval)) 1846 folio_mark_dirty(folio); 1847 1848 /* Update high watermark before we lower rss */ 1849 update_hiwater_rss(mm); 1850 1851 if (folio_is_zone_device(folio)) { 1852 unsigned long pfn = folio_pfn(folio); 1853 swp_entry_t entry; 1854 pte_t swp_pte; 1855 1856 /* 1857 * Store the pfn of the page in a special migration 1858 * pte. do_swap_page() will wait until the migration 1859 * pte is removed and then restart fault handling. 1860 */ 1861 entry = pte_to_swp_entry(pteval); 1862 if (is_writable_device_private_entry(entry)) 1863 entry = make_writable_migration_entry(pfn); 1864 else 1865 entry = make_readable_migration_entry(pfn); 1866 swp_pte = swp_entry_to_pte(entry); 1867 1868 /* 1869 * pteval maps a zone device page and is therefore 1870 * a swap pte. 1871 */ 1872 if (pte_swp_soft_dirty(pteval)) 1873 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1874 if (pte_swp_uffd_wp(pteval)) 1875 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1876 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1877 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 1878 compound_order(&folio->page)); 1879 /* 1880 * No need to invalidate here it will synchronize on 1881 * against the special swap migration pte. 1882 * 1883 * The assignment to subpage above was computed from a 1884 * swap PTE which results in an invalid pointer. 1885 * Since only PAGE_SIZE pages can currently be 1886 * migrated, just set it to page. This will need to be 1887 * changed when hugepage migrations to device private 1888 * memory are supported. 1889 */ 1890 subpage = &folio->page; 1891 } else if (PageHWPoison(subpage)) { 1892 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1893 if (folio_test_hugetlb(folio)) { 1894 hugetlb_count_sub(folio_nr_pages(folio), mm); 1895 set_huge_swap_pte_at(mm, address, 1896 pvmw.pte, pteval, 1897 vma_mmu_pagesize(vma)); 1898 } else { 1899 dec_mm_counter(mm, mm_counter(&folio->page)); 1900 set_pte_at(mm, address, pvmw.pte, pteval); 1901 } 1902 1903 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1904 /* 1905 * The guest indicated that the page content is of no 1906 * interest anymore. Simply discard the pte, vmscan 1907 * will take care of the rest. 1908 * A future reference will then fault in a new zero 1909 * page. When userfaultfd is active, we must not drop 1910 * this page though, as its main user (postcopy 1911 * migration) will not expect userfaults on already 1912 * copied pages. 1913 */ 1914 dec_mm_counter(mm, mm_counter(&folio->page)); 1915 /* We have to invalidate as we cleared the pte */ 1916 mmu_notifier_invalidate_range(mm, address, 1917 address + PAGE_SIZE); 1918 } else { 1919 swp_entry_t entry; 1920 pte_t swp_pte; 1921 1922 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1923 set_pte_at(mm, address, pvmw.pte, pteval); 1924 ret = false; 1925 page_vma_mapped_walk_done(&pvmw); 1926 break; 1927 } 1928 1929 /* 1930 * Store the pfn of the page in a special migration 1931 * pte. do_swap_page() will wait until the migration 1932 * pte is removed and then restart fault handling. 1933 */ 1934 if (pte_write(pteval)) 1935 entry = make_writable_migration_entry( 1936 page_to_pfn(subpage)); 1937 else 1938 entry = make_readable_migration_entry( 1939 page_to_pfn(subpage)); 1940 1941 swp_pte = swp_entry_to_pte(entry); 1942 if (pte_soft_dirty(pteval)) 1943 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1944 if (pte_uffd_wp(pteval)) 1945 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1946 set_pte_at(mm, address, pvmw.pte, swp_pte); 1947 trace_set_migration_pte(address, pte_val(swp_pte), 1948 compound_order(&folio->page)); 1949 /* 1950 * No need to invalidate here it will synchronize on 1951 * against the special swap migration pte. 1952 */ 1953 } 1954 1955 /* 1956 * No need to call mmu_notifier_invalidate_range() it has be 1957 * done above for all cases requiring it to happen under page 1958 * table lock before mmu_notifier_invalidate_range_end() 1959 * 1960 * See Documentation/vm/mmu_notifier.rst 1961 */ 1962 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1963 if (vma->vm_flags & VM_LOCKED) 1964 mlock_page_drain(smp_processor_id()); 1965 folio_put(folio); 1966 } 1967 1968 mmu_notifier_invalidate_range_end(&range); 1969 1970 return ret; 1971 } 1972 1973 /** 1974 * try_to_migrate - try to replace all page table mappings with swap entries 1975 * @folio: the folio to replace page table entries for 1976 * @flags: action and flags 1977 * 1978 * Tries to remove all the page table entries which are mapping this folio and 1979 * replace them with special swap entries. Caller must hold the folio lock. 1980 */ 1981 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 1982 { 1983 struct rmap_walk_control rwc = { 1984 .rmap_one = try_to_migrate_one, 1985 .arg = (void *)flags, 1986 .done = page_not_mapped, 1987 .anon_lock = folio_lock_anon_vma_read, 1988 }; 1989 1990 /* 1991 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 1992 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 1993 */ 1994 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 1995 TTU_SYNC))) 1996 return; 1997 1998 if (folio_is_zone_device(folio) && !folio_is_device_private(folio)) 1999 return; 2000 2001 /* 2002 * During exec, a temporary VMA is setup and later moved. 2003 * The VMA is moved under the anon_vma lock but not the 2004 * page tables leading to a race where migration cannot 2005 * find the migration ptes. Rather than increasing the 2006 * locking requirements of exec(), migration skips 2007 * temporary VMAs until after exec() completes. 2008 */ 2009 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2010 rwc.invalid_vma = invalid_migration_vma; 2011 2012 if (flags & TTU_RMAP_LOCKED) 2013 rmap_walk_locked(folio, &rwc); 2014 else 2015 rmap_walk(folio, &rwc); 2016 } 2017 2018 #ifdef CONFIG_DEVICE_PRIVATE 2019 struct make_exclusive_args { 2020 struct mm_struct *mm; 2021 unsigned long address; 2022 void *owner; 2023 bool valid; 2024 }; 2025 2026 static bool page_make_device_exclusive_one(struct folio *folio, 2027 struct vm_area_struct *vma, unsigned long address, void *priv) 2028 { 2029 struct mm_struct *mm = vma->vm_mm; 2030 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2031 struct make_exclusive_args *args = priv; 2032 pte_t pteval; 2033 struct page *subpage; 2034 bool ret = true; 2035 struct mmu_notifier_range range; 2036 swp_entry_t entry; 2037 pte_t swp_pte; 2038 2039 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2040 vma->vm_mm, address, min(vma->vm_end, 2041 address + folio_size(folio)), 2042 args->owner); 2043 mmu_notifier_invalidate_range_start(&range); 2044 2045 while (page_vma_mapped_walk(&pvmw)) { 2046 /* Unexpected PMD-mapped THP? */ 2047 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2048 2049 if (!pte_present(*pvmw.pte)) { 2050 ret = false; 2051 page_vma_mapped_walk_done(&pvmw); 2052 break; 2053 } 2054 2055 subpage = folio_page(folio, 2056 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2057 address = pvmw.address; 2058 2059 /* Nuke the page table entry. */ 2060 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2061 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2062 2063 /* Set the dirty flag on the folio now the pte is gone. */ 2064 if (pte_dirty(pteval)) 2065 folio_mark_dirty(folio); 2066 2067 /* 2068 * Check that our target page is still mapped at the expected 2069 * address. 2070 */ 2071 if (args->mm == mm && args->address == address && 2072 pte_write(pteval)) 2073 args->valid = true; 2074 2075 /* 2076 * Store the pfn of the page in a special migration 2077 * pte. do_swap_page() will wait until the migration 2078 * pte is removed and then restart fault handling. 2079 */ 2080 if (pte_write(pteval)) 2081 entry = make_writable_device_exclusive_entry( 2082 page_to_pfn(subpage)); 2083 else 2084 entry = make_readable_device_exclusive_entry( 2085 page_to_pfn(subpage)); 2086 swp_pte = swp_entry_to_pte(entry); 2087 if (pte_soft_dirty(pteval)) 2088 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2089 if (pte_uffd_wp(pteval)) 2090 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2091 2092 set_pte_at(mm, address, pvmw.pte, swp_pte); 2093 2094 /* 2095 * There is a reference on the page for the swap entry which has 2096 * been removed, so shouldn't take another. 2097 */ 2098 page_remove_rmap(subpage, vma, false); 2099 } 2100 2101 mmu_notifier_invalidate_range_end(&range); 2102 2103 return ret; 2104 } 2105 2106 /** 2107 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2108 * @folio: The folio to replace page table entries for. 2109 * @mm: The mm_struct where the folio is expected to be mapped. 2110 * @address: Address where the folio is expected to be mapped. 2111 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2112 * 2113 * Tries to remove all the page table entries which are mapping this 2114 * folio and replace them with special device exclusive swap entries to 2115 * grant a device exclusive access to the folio. 2116 * 2117 * Context: Caller must hold the folio lock. 2118 * Return: false if the page is still mapped, or if it could not be unmapped 2119 * from the expected address. Otherwise returns true (success). 2120 */ 2121 static bool folio_make_device_exclusive(struct folio *folio, 2122 struct mm_struct *mm, unsigned long address, void *owner) 2123 { 2124 struct make_exclusive_args args = { 2125 .mm = mm, 2126 .address = address, 2127 .owner = owner, 2128 .valid = false, 2129 }; 2130 struct rmap_walk_control rwc = { 2131 .rmap_one = page_make_device_exclusive_one, 2132 .done = page_not_mapped, 2133 .anon_lock = folio_lock_anon_vma_read, 2134 .arg = &args, 2135 }; 2136 2137 /* 2138 * Restrict to anonymous folios for now to avoid potential writeback 2139 * issues. 2140 */ 2141 if (!folio_test_anon(folio)) 2142 return false; 2143 2144 rmap_walk(folio, &rwc); 2145 2146 return args.valid && !folio_mapcount(folio); 2147 } 2148 2149 /** 2150 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2151 * @mm: mm_struct of assoicated target process 2152 * @start: start of the region to mark for exclusive device access 2153 * @end: end address of region 2154 * @pages: returns the pages which were successfully marked for exclusive access 2155 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2156 * 2157 * Returns: number of pages found in the range by GUP. A page is marked for 2158 * exclusive access only if the page pointer is non-NULL. 2159 * 2160 * This function finds ptes mapping page(s) to the given address range, locks 2161 * them and replaces mappings with special swap entries preventing userspace CPU 2162 * access. On fault these entries are replaced with the original mapping after 2163 * calling MMU notifiers. 2164 * 2165 * A driver using this to program access from a device must use a mmu notifier 2166 * critical section to hold a device specific lock during programming. Once 2167 * programming is complete it should drop the page lock and reference after 2168 * which point CPU access to the page will revoke the exclusive access. 2169 */ 2170 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2171 unsigned long end, struct page **pages, 2172 void *owner) 2173 { 2174 long npages = (end - start) >> PAGE_SHIFT; 2175 long i; 2176 2177 npages = get_user_pages_remote(mm, start, npages, 2178 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2179 pages, NULL, NULL); 2180 if (npages < 0) 2181 return npages; 2182 2183 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2184 struct folio *folio = page_folio(pages[i]); 2185 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2186 folio_put(folio); 2187 pages[i] = NULL; 2188 continue; 2189 } 2190 2191 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2192 folio_unlock(folio); 2193 folio_put(folio); 2194 pages[i] = NULL; 2195 } 2196 } 2197 2198 return npages; 2199 } 2200 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2201 #endif 2202 2203 void __put_anon_vma(struct anon_vma *anon_vma) 2204 { 2205 struct anon_vma *root = anon_vma->root; 2206 2207 anon_vma_free(anon_vma); 2208 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2209 anon_vma_free(root); 2210 } 2211 2212 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2213 const struct rmap_walk_control *rwc) 2214 { 2215 struct anon_vma *anon_vma; 2216 2217 if (rwc->anon_lock) 2218 return rwc->anon_lock(folio); 2219 2220 /* 2221 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2222 * because that depends on page_mapped(); but not all its usages 2223 * are holding mmap_lock. Users without mmap_lock are required to 2224 * take a reference count to prevent the anon_vma disappearing 2225 */ 2226 anon_vma = folio_anon_vma(folio); 2227 if (!anon_vma) 2228 return NULL; 2229 2230 anon_vma_lock_read(anon_vma); 2231 return anon_vma; 2232 } 2233 2234 /* 2235 * rmap_walk_anon - do something to anonymous page using the object-based 2236 * rmap method 2237 * @page: the page to be handled 2238 * @rwc: control variable according to each walk type 2239 * 2240 * Find all the mappings of a page using the mapping pointer and the vma chains 2241 * contained in the anon_vma struct it points to. 2242 */ 2243 static void rmap_walk_anon(struct folio *folio, 2244 const struct rmap_walk_control *rwc, bool locked) 2245 { 2246 struct anon_vma *anon_vma; 2247 pgoff_t pgoff_start, pgoff_end; 2248 struct anon_vma_chain *avc; 2249 2250 if (locked) { 2251 anon_vma = folio_anon_vma(folio); 2252 /* anon_vma disappear under us? */ 2253 VM_BUG_ON_FOLIO(!anon_vma, folio); 2254 } else { 2255 anon_vma = rmap_walk_anon_lock(folio, rwc); 2256 } 2257 if (!anon_vma) 2258 return; 2259 2260 pgoff_start = folio_pgoff(folio); 2261 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2262 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2263 pgoff_start, pgoff_end) { 2264 struct vm_area_struct *vma = avc->vma; 2265 unsigned long address = vma_address(&folio->page, vma); 2266 2267 VM_BUG_ON_VMA(address == -EFAULT, vma); 2268 cond_resched(); 2269 2270 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2271 continue; 2272 2273 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2274 break; 2275 if (rwc->done && rwc->done(folio)) 2276 break; 2277 } 2278 2279 if (!locked) 2280 anon_vma_unlock_read(anon_vma); 2281 } 2282 2283 /* 2284 * rmap_walk_file - do something to file page using the object-based rmap method 2285 * @page: the page to be handled 2286 * @rwc: control variable according to each walk type 2287 * 2288 * Find all the mappings of a page using the mapping pointer and the vma chains 2289 * contained in the address_space struct it points to. 2290 */ 2291 static void rmap_walk_file(struct folio *folio, 2292 const struct rmap_walk_control *rwc, bool locked) 2293 { 2294 struct address_space *mapping = folio_mapping(folio); 2295 pgoff_t pgoff_start, pgoff_end; 2296 struct vm_area_struct *vma; 2297 2298 /* 2299 * The page lock not only makes sure that page->mapping cannot 2300 * suddenly be NULLified by truncation, it makes sure that the 2301 * structure at mapping cannot be freed and reused yet, 2302 * so we can safely take mapping->i_mmap_rwsem. 2303 */ 2304 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2305 2306 if (!mapping) 2307 return; 2308 2309 pgoff_start = folio_pgoff(folio); 2310 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2311 if (!locked) 2312 i_mmap_lock_read(mapping); 2313 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2314 pgoff_start, pgoff_end) { 2315 unsigned long address = vma_address(&folio->page, vma); 2316 2317 VM_BUG_ON_VMA(address == -EFAULT, vma); 2318 cond_resched(); 2319 2320 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2321 continue; 2322 2323 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2324 goto done; 2325 if (rwc->done && rwc->done(folio)) 2326 goto done; 2327 } 2328 2329 done: 2330 if (!locked) 2331 i_mmap_unlock_read(mapping); 2332 } 2333 2334 void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc) 2335 { 2336 if (unlikely(folio_test_ksm(folio))) 2337 rmap_walk_ksm(folio, rwc); 2338 else if (folio_test_anon(folio)) 2339 rmap_walk_anon(folio, rwc, false); 2340 else 2341 rmap_walk_file(folio, rwc, false); 2342 } 2343 2344 /* Like rmap_walk, but caller holds relevant rmap lock */ 2345 void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc) 2346 { 2347 /* no ksm support for now */ 2348 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2349 if (folio_test_anon(folio)) 2350 rmap_walk_anon(folio, rwc, true); 2351 else 2352 rmap_walk_file(folio, rwc, true); 2353 } 2354 2355 #ifdef CONFIG_HUGETLB_PAGE 2356 /* 2357 * The following two functions are for anonymous (private mapped) hugepages. 2358 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2359 * and no lru code, because we handle hugepages differently from common pages. 2360 */ 2361 void hugepage_add_anon_rmap(struct page *page, 2362 struct vm_area_struct *vma, unsigned long address) 2363 { 2364 struct anon_vma *anon_vma = vma->anon_vma; 2365 int first; 2366 2367 BUG_ON(!PageLocked(page)); 2368 BUG_ON(!anon_vma); 2369 /* address might be in next vma when migration races vma_adjust */ 2370 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2371 if (first) 2372 __page_set_anon_rmap(page, vma, address, 0); 2373 } 2374 2375 void hugepage_add_new_anon_rmap(struct page *page, 2376 struct vm_area_struct *vma, unsigned long address) 2377 { 2378 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2379 atomic_set(compound_mapcount_ptr(page), 0); 2380 atomic_set(compound_pincount_ptr(page), 0); 2381 2382 __page_set_anon_rmap(page, vma, address, 1); 2383 } 2384 #endif /* CONFIG_HUGETLB_PAGE */ 2385