1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_mutex 28 * anon_vma->mutex 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) 36 * sb_lock (within inode_lock in fs/fs-writeback.c) 37 * mapping->tree_lock (widely used, in set_page_dirty, 38 * in arch-dependent flush_dcache_mmap_lock, 39 * within inode_wb_list_lock in __sync_single_inode) 40 * 41 * (code doesn't rely on that order so it could be switched around) 42 * ->tasklist_lock 43 * anon_vma->mutex (memory_failure, collect_procs_anon) 44 * pte map lock 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 #include <linux/module.h> 57 #include <linux/memcontrol.h> 58 #include <linux/mmu_notifier.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 62 #include <asm/tlbflush.h> 63 64 #include "internal.h" 65 66 static struct kmem_cache *anon_vma_cachep; 67 static struct kmem_cache *anon_vma_chain_cachep; 68 69 static inline struct anon_vma *anon_vma_alloc(void) 70 { 71 struct anon_vma *anon_vma; 72 73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 74 if (anon_vma) { 75 atomic_set(&anon_vma->refcount, 1); 76 /* 77 * Initialise the anon_vma root to point to itself. If called 78 * from fork, the root will be reset to the parents anon_vma. 79 */ 80 anon_vma->root = anon_vma; 81 } 82 83 return anon_vma; 84 } 85 86 static inline void anon_vma_free(struct anon_vma *anon_vma) 87 { 88 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 89 90 /* 91 * Synchronize against page_lock_anon_vma() such that 92 * we can safely hold the lock without the anon_vma getting 93 * freed. 94 * 95 * Relies on the full mb implied by the atomic_dec_and_test() from 96 * put_anon_vma() against the acquire barrier implied by 97 * mutex_trylock() from page_lock_anon_vma(). This orders: 98 * 99 * page_lock_anon_vma() VS put_anon_vma() 100 * mutex_trylock() atomic_dec_and_test() 101 * LOCK MB 102 * atomic_read() mutex_is_locked() 103 * 104 * LOCK should suffice since the actual taking of the lock must 105 * happen _before_ what follows. 106 */ 107 if (mutex_is_locked(&anon_vma->root->mutex)) { 108 anon_vma_lock(anon_vma); 109 anon_vma_unlock(anon_vma); 110 } 111 112 kmem_cache_free(anon_vma_cachep, anon_vma); 113 } 114 115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 116 { 117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 118 } 119 120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 121 { 122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 123 } 124 125 /** 126 * anon_vma_prepare - attach an anon_vma to a memory region 127 * @vma: the memory region in question 128 * 129 * This makes sure the memory mapping described by 'vma' has 130 * an 'anon_vma' attached to it, so that we can associate the 131 * anonymous pages mapped into it with that anon_vma. 132 * 133 * The common case will be that we already have one, but if 134 * not we either need to find an adjacent mapping that we 135 * can re-use the anon_vma from (very common when the only 136 * reason for splitting a vma has been mprotect()), or we 137 * allocate a new one. 138 * 139 * Anon-vma allocations are very subtle, because we may have 140 * optimistically looked up an anon_vma in page_lock_anon_vma() 141 * and that may actually touch the spinlock even in the newly 142 * allocated vma (it depends on RCU to make sure that the 143 * anon_vma isn't actually destroyed). 144 * 145 * As a result, we need to do proper anon_vma locking even 146 * for the new allocation. At the same time, we do not want 147 * to do any locking for the common case of already having 148 * an anon_vma. 149 * 150 * This must be called with the mmap_sem held for reading. 151 */ 152 int anon_vma_prepare(struct vm_area_struct *vma) 153 { 154 struct anon_vma *anon_vma = vma->anon_vma; 155 struct anon_vma_chain *avc; 156 157 might_sleep(); 158 if (unlikely(!anon_vma)) { 159 struct mm_struct *mm = vma->vm_mm; 160 struct anon_vma *allocated; 161 162 avc = anon_vma_chain_alloc(); 163 if (!avc) 164 goto out_enomem; 165 166 anon_vma = find_mergeable_anon_vma(vma); 167 allocated = NULL; 168 if (!anon_vma) { 169 anon_vma = anon_vma_alloc(); 170 if (unlikely(!anon_vma)) 171 goto out_enomem_free_avc; 172 allocated = anon_vma; 173 } 174 175 anon_vma_lock(anon_vma); 176 /* page_table_lock to protect against threads */ 177 spin_lock(&mm->page_table_lock); 178 if (likely(!vma->anon_vma)) { 179 vma->anon_vma = anon_vma; 180 avc->anon_vma = anon_vma; 181 avc->vma = vma; 182 list_add(&avc->same_vma, &vma->anon_vma_chain); 183 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 184 allocated = NULL; 185 avc = NULL; 186 } 187 spin_unlock(&mm->page_table_lock); 188 anon_vma_unlock(anon_vma); 189 190 if (unlikely(allocated)) 191 put_anon_vma(allocated); 192 if (unlikely(avc)) 193 anon_vma_chain_free(avc); 194 } 195 return 0; 196 197 out_enomem_free_avc: 198 anon_vma_chain_free(avc); 199 out_enomem: 200 return -ENOMEM; 201 } 202 203 static void anon_vma_chain_link(struct vm_area_struct *vma, 204 struct anon_vma_chain *avc, 205 struct anon_vma *anon_vma) 206 { 207 avc->vma = vma; 208 avc->anon_vma = anon_vma; 209 list_add(&avc->same_vma, &vma->anon_vma_chain); 210 211 anon_vma_lock(anon_vma); 212 /* 213 * It's critical to add new vmas to the tail of the anon_vma, 214 * see comment in huge_memory.c:__split_huge_page(). 215 */ 216 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 217 anon_vma_unlock(anon_vma); 218 } 219 220 /* 221 * Attach the anon_vmas from src to dst. 222 * Returns 0 on success, -ENOMEM on failure. 223 */ 224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 225 { 226 struct anon_vma_chain *avc, *pavc; 227 228 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 229 avc = anon_vma_chain_alloc(); 230 if (!avc) 231 goto enomem_failure; 232 anon_vma_chain_link(dst, avc, pavc->anon_vma); 233 } 234 return 0; 235 236 enomem_failure: 237 unlink_anon_vmas(dst); 238 return -ENOMEM; 239 } 240 241 /* 242 * Attach vma to its own anon_vma, as well as to the anon_vmas that 243 * the corresponding VMA in the parent process is attached to. 244 * Returns 0 on success, non-zero on failure. 245 */ 246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 247 { 248 struct anon_vma_chain *avc; 249 struct anon_vma *anon_vma; 250 251 /* Don't bother if the parent process has no anon_vma here. */ 252 if (!pvma->anon_vma) 253 return 0; 254 255 /* 256 * First, attach the new VMA to the parent VMA's anon_vmas, 257 * so rmap can find non-COWed pages in child processes. 258 */ 259 if (anon_vma_clone(vma, pvma)) 260 return -ENOMEM; 261 262 /* Then add our own anon_vma. */ 263 anon_vma = anon_vma_alloc(); 264 if (!anon_vma) 265 goto out_error; 266 avc = anon_vma_chain_alloc(); 267 if (!avc) 268 goto out_error_free_anon_vma; 269 270 /* 271 * The root anon_vma's spinlock is the lock actually used when we 272 * lock any of the anon_vmas in this anon_vma tree. 273 */ 274 anon_vma->root = pvma->anon_vma->root; 275 /* 276 * With refcounts, an anon_vma can stay around longer than the 277 * process it belongs to. The root anon_vma needs to be pinned until 278 * this anon_vma is freed, because the lock lives in the root. 279 */ 280 get_anon_vma(anon_vma->root); 281 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 282 vma->anon_vma = anon_vma; 283 anon_vma_chain_link(vma, avc, anon_vma); 284 285 return 0; 286 287 out_error_free_anon_vma: 288 put_anon_vma(anon_vma); 289 out_error: 290 unlink_anon_vmas(vma); 291 return -ENOMEM; 292 } 293 294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 295 { 296 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 297 int empty; 298 299 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 300 if (!anon_vma) 301 return; 302 303 anon_vma_lock(anon_vma); 304 list_del(&anon_vma_chain->same_anon_vma); 305 306 /* We must garbage collect the anon_vma if it's empty */ 307 empty = list_empty(&anon_vma->head); 308 anon_vma_unlock(anon_vma); 309 310 if (empty) 311 put_anon_vma(anon_vma); 312 } 313 314 void unlink_anon_vmas(struct vm_area_struct *vma) 315 { 316 struct anon_vma_chain *avc, *next; 317 318 /* 319 * Unlink each anon_vma chained to the VMA. This list is ordered 320 * from newest to oldest, ensuring the root anon_vma gets freed last. 321 */ 322 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 323 anon_vma_unlink(avc); 324 list_del(&avc->same_vma); 325 anon_vma_chain_free(avc); 326 } 327 } 328 329 static void anon_vma_ctor(void *data) 330 { 331 struct anon_vma *anon_vma = data; 332 333 mutex_init(&anon_vma->mutex); 334 atomic_set(&anon_vma->refcount, 0); 335 INIT_LIST_HEAD(&anon_vma->head); 336 } 337 338 void __init anon_vma_init(void) 339 { 340 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 341 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 342 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 343 } 344 345 /* 346 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 347 * 348 * Since there is no serialization what so ever against page_remove_rmap() 349 * the best this function can do is return a locked anon_vma that might 350 * have been relevant to this page. 351 * 352 * The page might have been remapped to a different anon_vma or the anon_vma 353 * returned may already be freed (and even reused). 354 * 355 * All users of this function must be very careful when walking the anon_vma 356 * chain and verify that the page in question is indeed mapped in it 357 * [ something equivalent to page_mapped_in_vma() ]. 358 * 359 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 360 * that the anon_vma pointer from page->mapping is valid if there is a 361 * mapcount, we can dereference the anon_vma after observing those. 362 */ 363 struct anon_vma *page_get_anon_vma(struct page *page) 364 { 365 struct anon_vma *anon_vma = NULL; 366 unsigned long anon_mapping; 367 368 rcu_read_lock(); 369 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 370 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 371 goto out; 372 if (!page_mapped(page)) 373 goto out; 374 375 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 376 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 377 anon_vma = NULL; 378 goto out; 379 } 380 381 /* 382 * If this page is still mapped, then its anon_vma cannot have been 383 * freed. But if it has been unmapped, we have no security against the 384 * anon_vma structure being freed and reused (for another anon_vma: 385 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 386 * above cannot corrupt). 387 */ 388 if (!page_mapped(page)) { 389 put_anon_vma(anon_vma); 390 anon_vma = NULL; 391 } 392 out: 393 rcu_read_unlock(); 394 395 return anon_vma; 396 } 397 398 /* 399 * Similar to page_get_anon_vma() except it locks the anon_vma. 400 * 401 * Its a little more complex as it tries to keep the fast path to a single 402 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 403 * reference like with page_get_anon_vma() and then block on the mutex. 404 */ 405 struct anon_vma *page_lock_anon_vma(struct page *page) 406 { 407 struct anon_vma *anon_vma = NULL; 408 unsigned long anon_mapping; 409 410 rcu_read_lock(); 411 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 412 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 413 goto out; 414 if (!page_mapped(page)) 415 goto out; 416 417 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 418 if (mutex_trylock(&anon_vma->root->mutex)) { 419 /* 420 * If we observe a !0 refcount, then holding the lock ensures 421 * the anon_vma will not go away, see __put_anon_vma(). 422 */ 423 if (!atomic_read(&anon_vma->refcount)) { 424 anon_vma_unlock(anon_vma); 425 anon_vma = NULL; 426 } 427 goto out; 428 } 429 430 /* trylock failed, we got to sleep */ 431 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 432 anon_vma = NULL; 433 goto out; 434 } 435 436 if (!page_mapped(page)) { 437 put_anon_vma(anon_vma); 438 anon_vma = NULL; 439 goto out; 440 } 441 442 /* we pinned the anon_vma, its safe to sleep */ 443 rcu_read_unlock(); 444 anon_vma_lock(anon_vma); 445 446 if (atomic_dec_and_test(&anon_vma->refcount)) { 447 /* 448 * Oops, we held the last refcount, release the lock 449 * and bail -- can't simply use put_anon_vma() because 450 * we'll deadlock on the anon_vma_lock() recursion. 451 */ 452 anon_vma_unlock(anon_vma); 453 __put_anon_vma(anon_vma); 454 anon_vma = NULL; 455 } 456 457 return anon_vma; 458 459 out: 460 rcu_read_unlock(); 461 return anon_vma; 462 } 463 464 void page_unlock_anon_vma(struct anon_vma *anon_vma) 465 { 466 anon_vma_unlock(anon_vma); 467 } 468 469 /* 470 * At what user virtual address is page expected in @vma? 471 * Returns virtual address or -EFAULT if page's index/offset is not 472 * within the range mapped the @vma. 473 */ 474 inline unsigned long 475 vma_address(struct page *page, struct vm_area_struct *vma) 476 { 477 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 478 unsigned long address; 479 480 if (unlikely(is_vm_hugetlb_page(vma))) 481 pgoff = page->index << huge_page_order(page_hstate(page)); 482 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 483 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 484 /* page should be within @vma mapping range */ 485 return -EFAULT; 486 } 487 return address; 488 } 489 490 /* 491 * At what user virtual address is page expected in vma? 492 * Caller should check the page is actually part of the vma. 493 */ 494 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 495 { 496 if (PageAnon(page)) { 497 struct anon_vma *page__anon_vma = page_anon_vma(page); 498 /* 499 * Note: swapoff's unuse_vma() is more efficient with this 500 * check, and needs it to match anon_vma when KSM is active. 501 */ 502 if (!vma->anon_vma || !page__anon_vma || 503 vma->anon_vma->root != page__anon_vma->root) 504 return -EFAULT; 505 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 506 if (!vma->vm_file || 507 vma->vm_file->f_mapping != page->mapping) 508 return -EFAULT; 509 } else 510 return -EFAULT; 511 return vma_address(page, vma); 512 } 513 514 /* 515 * Check that @page is mapped at @address into @mm. 516 * 517 * If @sync is false, page_check_address may perform a racy check to avoid 518 * the page table lock when the pte is not present (helpful when reclaiming 519 * highly shared pages). 520 * 521 * On success returns with pte mapped and locked. 522 */ 523 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 524 unsigned long address, spinlock_t **ptlp, int sync) 525 { 526 pgd_t *pgd; 527 pud_t *pud; 528 pmd_t *pmd; 529 pte_t *pte; 530 spinlock_t *ptl; 531 532 if (unlikely(PageHuge(page))) { 533 pte = huge_pte_offset(mm, address); 534 ptl = &mm->page_table_lock; 535 goto check; 536 } 537 538 pgd = pgd_offset(mm, address); 539 if (!pgd_present(*pgd)) 540 return NULL; 541 542 pud = pud_offset(pgd, address); 543 if (!pud_present(*pud)) 544 return NULL; 545 546 pmd = pmd_offset(pud, address); 547 if (!pmd_present(*pmd)) 548 return NULL; 549 if (pmd_trans_huge(*pmd)) 550 return NULL; 551 552 pte = pte_offset_map(pmd, address); 553 /* Make a quick check before getting the lock */ 554 if (!sync && !pte_present(*pte)) { 555 pte_unmap(pte); 556 return NULL; 557 } 558 559 ptl = pte_lockptr(mm, pmd); 560 check: 561 spin_lock(ptl); 562 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 563 *ptlp = ptl; 564 return pte; 565 } 566 pte_unmap_unlock(pte, ptl); 567 return NULL; 568 } 569 570 /** 571 * page_mapped_in_vma - check whether a page is really mapped in a VMA 572 * @page: the page to test 573 * @vma: the VMA to test 574 * 575 * Returns 1 if the page is mapped into the page tables of the VMA, 0 576 * if the page is not mapped into the page tables of this VMA. Only 577 * valid for normal file or anonymous VMAs. 578 */ 579 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 580 { 581 unsigned long address; 582 pte_t *pte; 583 spinlock_t *ptl; 584 585 address = vma_address(page, vma); 586 if (address == -EFAULT) /* out of vma range */ 587 return 0; 588 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 589 if (!pte) /* the page is not in this mm */ 590 return 0; 591 pte_unmap_unlock(pte, ptl); 592 593 return 1; 594 } 595 596 /* 597 * Subfunctions of page_referenced: page_referenced_one called 598 * repeatedly from either page_referenced_anon or page_referenced_file. 599 */ 600 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 601 unsigned long address, unsigned int *mapcount, 602 unsigned long *vm_flags) 603 { 604 struct mm_struct *mm = vma->vm_mm; 605 int referenced = 0; 606 607 if (unlikely(PageTransHuge(page))) { 608 pmd_t *pmd; 609 610 spin_lock(&mm->page_table_lock); 611 /* 612 * rmap might return false positives; we must filter 613 * these out using page_check_address_pmd(). 614 */ 615 pmd = page_check_address_pmd(page, mm, address, 616 PAGE_CHECK_ADDRESS_PMD_FLAG); 617 if (!pmd) { 618 spin_unlock(&mm->page_table_lock); 619 goto out; 620 } 621 622 if (vma->vm_flags & VM_LOCKED) { 623 spin_unlock(&mm->page_table_lock); 624 *mapcount = 0; /* break early from loop */ 625 *vm_flags |= VM_LOCKED; 626 goto out; 627 } 628 629 /* go ahead even if the pmd is pmd_trans_splitting() */ 630 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 631 referenced++; 632 spin_unlock(&mm->page_table_lock); 633 } else { 634 pte_t *pte; 635 spinlock_t *ptl; 636 637 /* 638 * rmap might return false positives; we must filter 639 * these out using page_check_address(). 640 */ 641 pte = page_check_address(page, mm, address, &ptl, 0); 642 if (!pte) 643 goto out; 644 645 if (vma->vm_flags & VM_LOCKED) { 646 pte_unmap_unlock(pte, ptl); 647 *mapcount = 0; /* break early from loop */ 648 *vm_flags |= VM_LOCKED; 649 goto out; 650 } 651 652 if (ptep_clear_flush_young_notify(vma, address, pte)) { 653 /* 654 * Don't treat a reference through a sequentially read 655 * mapping as such. If the page has been used in 656 * another mapping, we will catch it; if this other 657 * mapping is already gone, the unmap path will have 658 * set PG_referenced or activated the page. 659 */ 660 if (likely(!VM_SequentialReadHint(vma))) 661 referenced++; 662 } 663 pte_unmap_unlock(pte, ptl); 664 } 665 666 /* Pretend the page is referenced if the task has the 667 swap token and is in the middle of a page fault. */ 668 if (mm != current->mm && has_swap_token(mm) && 669 rwsem_is_locked(&mm->mmap_sem)) 670 referenced++; 671 672 (*mapcount)--; 673 674 if (referenced) 675 *vm_flags |= vma->vm_flags; 676 out: 677 return referenced; 678 } 679 680 static int page_referenced_anon(struct page *page, 681 struct mem_cgroup *mem_cont, 682 unsigned long *vm_flags) 683 { 684 unsigned int mapcount; 685 struct anon_vma *anon_vma; 686 struct anon_vma_chain *avc; 687 int referenced = 0; 688 689 anon_vma = page_lock_anon_vma(page); 690 if (!anon_vma) 691 return referenced; 692 693 mapcount = page_mapcount(page); 694 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 695 struct vm_area_struct *vma = avc->vma; 696 unsigned long address = vma_address(page, vma); 697 if (address == -EFAULT) 698 continue; 699 /* 700 * If we are reclaiming on behalf of a cgroup, skip 701 * counting on behalf of references from different 702 * cgroups 703 */ 704 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 705 continue; 706 referenced += page_referenced_one(page, vma, address, 707 &mapcount, vm_flags); 708 if (!mapcount) 709 break; 710 } 711 712 page_unlock_anon_vma(anon_vma); 713 return referenced; 714 } 715 716 /** 717 * page_referenced_file - referenced check for object-based rmap 718 * @page: the page we're checking references on. 719 * @mem_cont: target memory controller 720 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 721 * 722 * For an object-based mapped page, find all the places it is mapped and 723 * check/clear the referenced flag. This is done by following the page->mapping 724 * pointer, then walking the chain of vmas it holds. It returns the number 725 * of references it found. 726 * 727 * This function is only called from page_referenced for object-based pages. 728 */ 729 static int page_referenced_file(struct page *page, 730 struct mem_cgroup *mem_cont, 731 unsigned long *vm_flags) 732 { 733 unsigned int mapcount; 734 struct address_space *mapping = page->mapping; 735 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 736 struct vm_area_struct *vma; 737 struct prio_tree_iter iter; 738 int referenced = 0; 739 740 /* 741 * The caller's checks on page->mapping and !PageAnon have made 742 * sure that this is a file page: the check for page->mapping 743 * excludes the case just before it gets set on an anon page. 744 */ 745 BUG_ON(PageAnon(page)); 746 747 /* 748 * The page lock not only makes sure that page->mapping cannot 749 * suddenly be NULLified by truncation, it makes sure that the 750 * structure at mapping cannot be freed and reused yet, 751 * so we can safely take mapping->i_mmap_mutex. 752 */ 753 BUG_ON(!PageLocked(page)); 754 755 mutex_lock(&mapping->i_mmap_mutex); 756 757 /* 758 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 759 * is more likely to be accurate if we note it after spinning. 760 */ 761 mapcount = page_mapcount(page); 762 763 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 764 unsigned long address = vma_address(page, vma); 765 if (address == -EFAULT) 766 continue; 767 /* 768 * If we are reclaiming on behalf of a cgroup, skip 769 * counting on behalf of references from different 770 * cgroups 771 */ 772 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 773 continue; 774 referenced += page_referenced_one(page, vma, address, 775 &mapcount, vm_flags); 776 if (!mapcount) 777 break; 778 } 779 780 mutex_unlock(&mapping->i_mmap_mutex); 781 return referenced; 782 } 783 784 /** 785 * page_referenced - test if the page was referenced 786 * @page: the page to test 787 * @is_locked: caller holds lock on the page 788 * @mem_cont: target memory controller 789 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 790 * 791 * Quick test_and_clear_referenced for all mappings to a page, 792 * returns the number of ptes which referenced the page. 793 */ 794 int page_referenced(struct page *page, 795 int is_locked, 796 struct mem_cgroup *mem_cont, 797 unsigned long *vm_flags) 798 { 799 int referenced = 0; 800 int we_locked = 0; 801 802 *vm_flags = 0; 803 if (page_mapped(page) && page_rmapping(page)) { 804 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 805 we_locked = trylock_page(page); 806 if (!we_locked) { 807 referenced++; 808 goto out; 809 } 810 } 811 if (unlikely(PageKsm(page))) 812 referenced += page_referenced_ksm(page, mem_cont, 813 vm_flags); 814 else if (PageAnon(page)) 815 referenced += page_referenced_anon(page, mem_cont, 816 vm_flags); 817 else if (page->mapping) 818 referenced += page_referenced_file(page, mem_cont, 819 vm_flags); 820 if (we_locked) 821 unlock_page(page); 822 } 823 out: 824 if (page_test_and_clear_young(page_to_pfn(page))) 825 referenced++; 826 827 return referenced; 828 } 829 830 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 831 unsigned long address) 832 { 833 struct mm_struct *mm = vma->vm_mm; 834 pte_t *pte; 835 spinlock_t *ptl; 836 int ret = 0; 837 838 pte = page_check_address(page, mm, address, &ptl, 1); 839 if (!pte) 840 goto out; 841 842 if (pte_dirty(*pte) || pte_write(*pte)) { 843 pte_t entry; 844 845 flush_cache_page(vma, address, pte_pfn(*pte)); 846 entry = ptep_clear_flush_notify(vma, address, pte); 847 entry = pte_wrprotect(entry); 848 entry = pte_mkclean(entry); 849 set_pte_at(mm, address, pte, entry); 850 ret = 1; 851 } 852 853 pte_unmap_unlock(pte, ptl); 854 out: 855 return ret; 856 } 857 858 static int page_mkclean_file(struct address_space *mapping, struct page *page) 859 { 860 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 861 struct vm_area_struct *vma; 862 struct prio_tree_iter iter; 863 int ret = 0; 864 865 BUG_ON(PageAnon(page)); 866 867 mutex_lock(&mapping->i_mmap_mutex); 868 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 869 if (vma->vm_flags & VM_SHARED) { 870 unsigned long address = vma_address(page, vma); 871 if (address == -EFAULT) 872 continue; 873 ret += page_mkclean_one(page, vma, address); 874 } 875 } 876 mutex_unlock(&mapping->i_mmap_mutex); 877 return ret; 878 } 879 880 int page_mkclean(struct page *page) 881 { 882 int ret = 0; 883 884 BUG_ON(!PageLocked(page)); 885 886 if (page_mapped(page)) { 887 struct address_space *mapping = page_mapping(page); 888 if (mapping) { 889 ret = page_mkclean_file(mapping, page); 890 if (page_test_and_clear_dirty(page_to_pfn(page), 1)) 891 ret = 1; 892 } 893 } 894 895 return ret; 896 } 897 EXPORT_SYMBOL_GPL(page_mkclean); 898 899 /** 900 * page_move_anon_rmap - move a page to our anon_vma 901 * @page: the page to move to our anon_vma 902 * @vma: the vma the page belongs to 903 * @address: the user virtual address mapped 904 * 905 * When a page belongs exclusively to one process after a COW event, 906 * that page can be moved into the anon_vma that belongs to just that 907 * process, so the rmap code will not search the parent or sibling 908 * processes. 909 */ 910 void page_move_anon_rmap(struct page *page, 911 struct vm_area_struct *vma, unsigned long address) 912 { 913 struct anon_vma *anon_vma = vma->anon_vma; 914 915 VM_BUG_ON(!PageLocked(page)); 916 VM_BUG_ON(!anon_vma); 917 VM_BUG_ON(page->index != linear_page_index(vma, address)); 918 919 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 920 page->mapping = (struct address_space *) anon_vma; 921 } 922 923 /** 924 * __page_set_anon_rmap - set up new anonymous rmap 925 * @page: Page to add to rmap 926 * @vma: VM area to add page to. 927 * @address: User virtual address of the mapping 928 * @exclusive: the page is exclusively owned by the current process 929 */ 930 static void __page_set_anon_rmap(struct page *page, 931 struct vm_area_struct *vma, unsigned long address, int exclusive) 932 { 933 struct anon_vma *anon_vma = vma->anon_vma; 934 935 BUG_ON(!anon_vma); 936 937 if (PageAnon(page)) 938 return; 939 940 /* 941 * If the page isn't exclusively mapped into this vma, 942 * we must use the _oldest_ possible anon_vma for the 943 * page mapping! 944 */ 945 if (!exclusive) 946 anon_vma = anon_vma->root; 947 948 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 949 page->mapping = (struct address_space *) anon_vma; 950 page->index = linear_page_index(vma, address); 951 } 952 953 /** 954 * __page_check_anon_rmap - sanity check anonymous rmap addition 955 * @page: the page to add the mapping to 956 * @vma: the vm area in which the mapping is added 957 * @address: the user virtual address mapped 958 */ 959 static void __page_check_anon_rmap(struct page *page, 960 struct vm_area_struct *vma, unsigned long address) 961 { 962 #ifdef CONFIG_DEBUG_VM 963 /* 964 * The page's anon-rmap details (mapping and index) are guaranteed to 965 * be set up correctly at this point. 966 * 967 * We have exclusion against page_add_anon_rmap because the caller 968 * always holds the page locked, except if called from page_dup_rmap, 969 * in which case the page is already known to be setup. 970 * 971 * We have exclusion against page_add_new_anon_rmap because those pages 972 * are initially only visible via the pagetables, and the pte is locked 973 * over the call to page_add_new_anon_rmap. 974 */ 975 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 976 BUG_ON(page->index != linear_page_index(vma, address)); 977 #endif 978 } 979 980 /** 981 * page_add_anon_rmap - add pte mapping to an anonymous page 982 * @page: the page to add the mapping to 983 * @vma: the vm area in which the mapping is added 984 * @address: the user virtual address mapped 985 * 986 * The caller needs to hold the pte lock, and the page must be locked in 987 * the anon_vma case: to serialize mapping,index checking after setting, 988 * and to ensure that PageAnon is not being upgraded racily to PageKsm 989 * (but PageKsm is never downgraded to PageAnon). 990 */ 991 void page_add_anon_rmap(struct page *page, 992 struct vm_area_struct *vma, unsigned long address) 993 { 994 do_page_add_anon_rmap(page, vma, address, 0); 995 } 996 997 /* 998 * Special version of the above for do_swap_page, which often runs 999 * into pages that are exclusively owned by the current process. 1000 * Everybody else should continue to use page_add_anon_rmap above. 1001 */ 1002 void do_page_add_anon_rmap(struct page *page, 1003 struct vm_area_struct *vma, unsigned long address, int exclusive) 1004 { 1005 int first = atomic_inc_and_test(&page->_mapcount); 1006 if (first) { 1007 if (!PageTransHuge(page)) 1008 __inc_zone_page_state(page, NR_ANON_PAGES); 1009 else 1010 __inc_zone_page_state(page, 1011 NR_ANON_TRANSPARENT_HUGEPAGES); 1012 } 1013 if (unlikely(PageKsm(page))) 1014 return; 1015 1016 VM_BUG_ON(!PageLocked(page)); 1017 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1018 if (first) 1019 __page_set_anon_rmap(page, vma, address, exclusive); 1020 else 1021 __page_check_anon_rmap(page, vma, address); 1022 } 1023 1024 /** 1025 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1026 * @page: the page to add the mapping to 1027 * @vma: the vm area in which the mapping is added 1028 * @address: the user virtual address mapped 1029 * 1030 * Same as page_add_anon_rmap but must only be called on *new* pages. 1031 * This means the inc-and-test can be bypassed. 1032 * Page does not have to be locked. 1033 */ 1034 void page_add_new_anon_rmap(struct page *page, 1035 struct vm_area_struct *vma, unsigned long address) 1036 { 1037 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1038 SetPageSwapBacked(page); 1039 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1040 if (!PageTransHuge(page)) 1041 __inc_zone_page_state(page, NR_ANON_PAGES); 1042 else 1043 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1044 __page_set_anon_rmap(page, vma, address, 1); 1045 if (page_evictable(page, vma)) 1046 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1047 else 1048 add_page_to_unevictable_list(page); 1049 } 1050 1051 /** 1052 * page_add_file_rmap - add pte mapping to a file page 1053 * @page: the page to add the mapping to 1054 * 1055 * The caller needs to hold the pte lock. 1056 */ 1057 void page_add_file_rmap(struct page *page) 1058 { 1059 if (atomic_inc_and_test(&page->_mapcount)) { 1060 __inc_zone_page_state(page, NR_FILE_MAPPED); 1061 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1062 } 1063 } 1064 1065 /** 1066 * page_remove_rmap - take down pte mapping from a page 1067 * @page: page to remove mapping from 1068 * 1069 * The caller needs to hold the pte lock. 1070 */ 1071 void page_remove_rmap(struct page *page) 1072 { 1073 /* page still mapped by someone else? */ 1074 if (!atomic_add_negative(-1, &page->_mapcount)) 1075 return; 1076 1077 /* 1078 * Now that the last pte has gone, s390 must transfer dirty 1079 * flag from storage key to struct page. We can usually skip 1080 * this if the page is anon, so about to be freed; but perhaps 1081 * not if it's in swapcache - there might be another pte slot 1082 * containing the swap entry, but page not yet written to swap. 1083 */ 1084 if ((!PageAnon(page) || PageSwapCache(page)) && 1085 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1086 set_page_dirty(page); 1087 /* 1088 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1089 * and not charged by memcg for now. 1090 */ 1091 if (unlikely(PageHuge(page))) 1092 return; 1093 if (PageAnon(page)) { 1094 mem_cgroup_uncharge_page(page); 1095 if (!PageTransHuge(page)) 1096 __dec_zone_page_state(page, NR_ANON_PAGES); 1097 else 1098 __dec_zone_page_state(page, 1099 NR_ANON_TRANSPARENT_HUGEPAGES); 1100 } else { 1101 __dec_zone_page_state(page, NR_FILE_MAPPED); 1102 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1103 } 1104 /* 1105 * It would be tidy to reset the PageAnon mapping here, 1106 * but that might overwrite a racing page_add_anon_rmap 1107 * which increments mapcount after us but sets mapping 1108 * before us: so leave the reset to free_hot_cold_page, 1109 * and remember that it's only reliable while mapped. 1110 * Leaving it set also helps swapoff to reinstate ptes 1111 * faster for those pages still in swapcache. 1112 */ 1113 } 1114 1115 /* 1116 * Subfunctions of try_to_unmap: try_to_unmap_one called 1117 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 1118 */ 1119 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1120 unsigned long address, enum ttu_flags flags) 1121 { 1122 struct mm_struct *mm = vma->vm_mm; 1123 pte_t *pte; 1124 pte_t pteval; 1125 spinlock_t *ptl; 1126 int ret = SWAP_AGAIN; 1127 1128 pte = page_check_address(page, mm, address, &ptl, 0); 1129 if (!pte) 1130 goto out; 1131 1132 /* 1133 * If the page is mlock()d, we cannot swap it out. 1134 * If it's recently referenced (perhaps page_referenced 1135 * skipped over this mm) then we should reactivate it. 1136 */ 1137 if (!(flags & TTU_IGNORE_MLOCK)) { 1138 if (vma->vm_flags & VM_LOCKED) 1139 goto out_mlock; 1140 1141 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1142 goto out_unmap; 1143 } 1144 if (!(flags & TTU_IGNORE_ACCESS)) { 1145 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1146 ret = SWAP_FAIL; 1147 goto out_unmap; 1148 } 1149 } 1150 1151 /* Nuke the page table entry. */ 1152 flush_cache_page(vma, address, page_to_pfn(page)); 1153 pteval = ptep_clear_flush_notify(vma, address, pte); 1154 1155 /* Move the dirty bit to the physical page now the pte is gone. */ 1156 if (pte_dirty(pteval)) 1157 set_page_dirty(page); 1158 1159 /* Update high watermark before we lower rss */ 1160 update_hiwater_rss(mm); 1161 1162 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1163 if (PageAnon(page)) 1164 dec_mm_counter(mm, MM_ANONPAGES); 1165 else 1166 dec_mm_counter(mm, MM_FILEPAGES); 1167 set_pte_at(mm, address, pte, 1168 swp_entry_to_pte(make_hwpoison_entry(page))); 1169 } else if (PageAnon(page)) { 1170 swp_entry_t entry = { .val = page_private(page) }; 1171 1172 if (PageSwapCache(page)) { 1173 /* 1174 * Store the swap location in the pte. 1175 * See handle_pte_fault() ... 1176 */ 1177 if (swap_duplicate(entry) < 0) { 1178 set_pte_at(mm, address, pte, pteval); 1179 ret = SWAP_FAIL; 1180 goto out_unmap; 1181 } 1182 if (list_empty(&mm->mmlist)) { 1183 spin_lock(&mmlist_lock); 1184 if (list_empty(&mm->mmlist)) 1185 list_add(&mm->mmlist, &init_mm.mmlist); 1186 spin_unlock(&mmlist_lock); 1187 } 1188 dec_mm_counter(mm, MM_ANONPAGES); 1189 inc_mm_counter(mm, MM_SWAPENTS); 1190 } else if (PAGE_MIGRATION) { 1191 /* 1192 * Store the pfn of the page in a special migration 1193 * pte. do_swap_page() will wait until the migration 1194 * pte is removed and then restart fault handling. 1195 */ 1196 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1197 entry = make_migration_entry(page, pte_write(pteval)); 1198 } 1199 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1200 BUG_ON(pte_file(*pte)); 1201 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1202 /* Establish migration entry for a file page */ 1203 swp_entry_t entry; 1204 entry = make_migration_entry(page, pte_write(pteval)); 1205 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1206 } else 1207 dec_mm_counter(mm, MM_FILEPAGES); 1208 1209 page_remove_rmap(page); 1210 page_cache_release(page); 1211 1212 out_unmap: 1213 pte_unmap_unlock(pte, ptl); 1214 out: 1215 return ret; 1216 1217 out_mlock: 1218 pte_unmap_unlock(pte, ptl); 1219 1220 1221 /* 1222 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1223 * unstable result and race. Plus, We can't wait here because 1224 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1225 * if trylock failed, the page remain in evictable lru and later 1226 * vmscan could retry to move the page to unevictable lru if the 1227 * page is actually mlocked. 1228 */ 1229 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1230 if (vma->vm_flags & VM_LOCKED) { 1231 mlock_vma_page(page); 1232 ret = SWAP_MLOCK; 1233 } 1234 up_read(&vma->vm_mm->mmap_sem); 1235 } 1236 return ret; 1237 } 1238 1239 /* 1240 * objrmap doesn't work for nonlinear VMAs because the assumption that 1241 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1242 * Consequently, given a particular page and its ->index, we cannot locate the 1243 * ptes which are mapping that page without an exhaustive linear search. 1244 * 1245 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1246 * maps the file to which the target page belongs. The ->vm_private_data field 1247 * holds the current cursor into that scan. Successive searches will circulate 1248 * around the vma's virtual address space. 1249 * 1250 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1251 * more scanning pressure is placed against them as well. Eventually pages 1252 * will become fully unmapped and are eligible for eviction. 1253 * 1254 * For very sparsely populated VMAs this is a little inefficient - chances are 1255 * there there won't be many ptes located within the scan cluster. In this case 1256 * maybe we could scan further - to the end of the pte page, perhaps. 1257 * 1258 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1259 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1260 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1261 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1262 */ 1263 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1264 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1265 1266 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1267 struct vm_area_struct *vma, struct page *check_page) 1268 { 1269 struct mm_struct *mm = vma->vm_mm; 1270 pgd_t *pgd; 1271 pud_t *pud; 1272 pmd_t *pmd; 1273 pte_t *pte; 1274 pte_t pteval; 1275 spinlock_t *ptl; 1276 struct page *page; 1277 unsigned long address; 1278 unsigned long end; 1279 int ret = SWAP_AGAIN; 1280 int locked_vma = 0; 1281 1282 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1283 end = address + CLUSTER_SIZE; 1284 if (address < vma->vm_start) 1285 address = vma->vm_start; 1286 if (end > vma->vm_end) 1287 end = vma->vm_end; 1288 1289 pgd = pgd_offset(mm, address); 1290 if (!pgd_present(*pgd)) 1291 return ret; 1292 1293 pud = pud_offset(pgd, address); 1294 if (!pud_present(*pud)) 1295 return ret; 1296 1297 pmd = pmd_offset(pud, address); 1298 if (!pmd_present(*pmd)) 1299 return ret; 1300 1301 /* 1302 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1303 * keep the sem while scanning the cluster for mlocking pages. 1304 */ 1305 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1306 locked_vma = (vma->vm_flags & VM_LOCKED); 1307 if (!locked_vma) 1308 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1309 } 1310 1311 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1312 1313 /* Update high watermark before we lower rss */ 1314 update_hiwater_rss(mm); 1315 1316 for (; address < end; pte++, address += PAGE_SIZE) { 1317 if (!pte_present(*pte)) 1318 continue; 1319 page = vm_normal_page(vma, address, *pte); 1320 BUG_ON(!page || PageAnon(page)); 1321 1322 if (locked_vma) { 1323 mlock_vma_page(page); /* no-op if already mlocked */ 1324 if (page == check_page) 1325 ret = SWAP_MLOCK; 1326 continue; /* don't unmap */ 1327 } 1328 1329 if (ptep_clear_flush_young_notify(vma, address, pte)) 1330 continue; 1331 1332 /* Nuke the page table entry. */ 1333 flush_cache_page(vma, address, pte_pfn(*pte)); 1334 pteval = ptep_clear_flush_notify(vma, address, pte); 1335 1336 /* If nonlinear, store the file page offset in the pte. */ 1337 if (page->index != linear_page_index(vma, address)) 1338 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1339 1340 /* Move the dirty bit to the physical page now the pte is gone. */ 1341 if (pte_dirty(pteval)) 1342 set_page_dirty(page); 1343 1344 page_remove_rmap(page); 1345 page_cache_release(page); 1346 dec_mm_counter(mm, MM_FILEPAGES); 1347 (*mapcount)--; 1348 } 1349 pte_unmap_unlock(pte - 1, ptl); 1350 if (locked_vma) 1351 up_read(&vma->vm_mm->mmap_sem); 1352 return ret; 1353 } 1354 1355 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1356 { 1357 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1358 1359 if (!maybe_stack) 1360 return false; 1361 1362 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1363 VM_STACK_INCOMPLETE_SETUP) 1364 return true; 1365 1366 return false; 1367 } 1368 1369 /** 1370 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1371 * rmap method 1372 * @page: the page to unmap/unlock 1373 * @flags: action and flags 1374 * 1375 * Find all the mappings of a page using the mapping pointer and the vma chains 1376 * contained in the anon_vma struct it points to. 1377 * 1378 * This function is only called from try_to_unmap/try_to_munlock for 1379 * anonymous pages. 1380 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1381 * where the page was found will be held for write. So, we won't recheck 1382 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1383 * 'LOCKED. 1384 */ 1385 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1386 { 1387 struct anon_vma *anon_vma; 1388 struct anon_vma_chain *avc; 1389 int ret = SWAP_AGAIN; 1390 1391 anon_vma = page_lock_anon_vma(page); 1392 if (!anon_vma) 1393 return ret; 1394 1395 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1396 struct vm_area_struct *vma = avc->vma; 1397 unsigned long address; 1398 1399 /* 1400 * During exec, a temporary VMA is setup and later moved. 1401 * The VMA is moved under the anon_vma lock but not the 1402 * page tables leading to a race where migration cannot 1403 * find the migration ptes. Rather than increasing the 1404 * locking requirements of exec(), migration skips 1405 * temporary VMAs until after exec() completes. 1406 */ 1407 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1408 is_vma_temporary_stack(vma)) 1409 continue; 1410 1411 address = vma_address(page, vma); 1412 if (address == -EFAULT) 1413 continue; 1414 ret = try_to_unmap_one(page, vma, address, flags); 1415 if (ret != SWAP_AGAIN || !page_mapped(page)) 1416 break; 1417 } 1418 1419 page_unlock_anon_vma(anon_vma); 1420 return ret; 1421 } 1422 1423 /** 1424 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1425 * @page: the page to unmap/unlock 1426 * @flags: action and flags 1427 * 1428 * Find all the mappings of a page using the mapping pointer and the vma chains 1429 * contained in the address_space struct it points to. 1430 * 1431 * This function is only called from try_to_unmap/try_to_munlock for 1432 * object-based pages. 1433 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1434 * where the page was found will be held for write. So, we won't recheck 1435 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1436 * 'LOCKED. 1437 */ 1438 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1439 { 1440 struct address_space *mapping = page->mapping; 1441 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1442 struct vm_area_struct *vma; 1443 struct prio_tree_iter iter; 1444 int ret = SWAP_AGAIN; 1445 unsigned long cursor; 1446 unsigned long max_nl_cursor = 0; 1447 unsigned long max_nl_size = 0; 1448 unsigned int mapcount; 1449 1450 mutex_lock(&mapping->i_mmap_mutex); 1451 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1452 unsigned long address = vma_address(page, vma); 1453 if (address == -EFAULT) 1454 continue; 1455 ret = try_to_unmap_one(page, vma, address, flags); 1456 if (ret != SWAP_AGAIN || !page_mapped(page)) 1457 goto out; 1458 } 1459 1460 if (list_empty(&mapping->i_mmap_nonlinear)) 1461 goto out; 1462 1463 /* 1464 * We don't bother to try to find the munlocked page in nonlinears. 1465 * It's costly. Instead, later, page reclaim logic may call 1466 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1467 */ 1468 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1469 goto out; 1470 1471 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1472 shared.vm_set.list) { 1473 cursor = (unsigned long) vma->vm_private_data; 1474 if (cursor > max_nl_cursor) 1475 max_nl_cursor = cursor; 1476 cursor = vma->vm_end - vma->vm_start; 1477 if (cursor > max_nl_size) 1478 max_nl_size = cursor; 1479 } 1480 1481 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1482 ret = SWAP_FAIL; 1483 goto out; 1484 } 1485 1486 /* 1487 * We don't try to search for this page in the nonlinear vmas, 1488 * and page_referenced wouldn't have found it anyway. Instead 1489 * just walk the nonlinear vmas trying to age and unmap some. 1490 * The mapcount of the page we came in with is irrelevant, 1491 * but even so use it as a guide to how hard we should try? 1492 */ 1493 mapcount = page_mapcount(page); 1494 if (!mapcount) 1495 goto out; 1496 cond_resched(); 1497 1498 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1499 if (max_nl_cursor == 0) 1500 max_nl_cursor = CLUSTER_SIZE; 1501 1502 do { 1503 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1504 shared.vm_set.list) { 1505 cursor = (unsigned long) vma->vm_private_data; 1506 while ( cursor < max_nl_cursor && 1507 cursor < vma->vm_end - vma->vm_start) { 1508 if (try_to_unmap_cluster(cursor, &mapcount, 1509 vma, page) == SWAP_MLOCK) 1510 ret = SWAP_MLOCK; 1511 cursor += CLUSTER_SIZE; 1512 vma->vm_private_data = (void *) cursor; 1513 if ((int)mapcount <= 0) 1514 goto out; 1515 } 1516 vma->vm_private_data = (void *) max_nl_cursor; 1517 } 1518 cond_resched(); 1519 max_nl_cursor += CLUSTER_SIZE; 1520 } while (max_nl_cursor <= max_nl_size); 1521 1522 /* 1523 * Don't loop forever (perhaps all the remaining pages are 1524 * in locked vmas). Reset cursor on all unreserved nonlinear 1525 * vmas, now forgetting on which ones it had fallen behind. 1526 */ 1527 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1528 vma->vm_private_data = NULL; 1529 out: 1530 mutex_unlock(&mapping->i_mmap_mutex); 1531 return ret; 1532 } 1533 1534 /** 1535 * try_to_unmap - try to remove all page table mappings to a page 1536 * @page: the page to get unmapped 1537 * @flags: action and flags 1538 * 1539 * Tries to remove all the page table entries which are mapping this 1540 * page, used in the pageout path. Caller must hold the page lock. 1541 * Return values are: 1542 * 1543 * SWAP_SUCCESS - we succeeded in removing all mappings 1544 * SWAP_AGAIN - we missed a mapping, try again later 1545 * SWAP_FAIL - the page is unswappable 1546 * SWAP_MLOCK - page is mlocked. 1547 */ 1548 int try_to_unmap(struct page *page, enum ttu_flags flags) 1549 { 1550 int ret; 1551 1552 BUG_ON(!PageLocked(page)); 1553 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1554 1555 if (unlikely(PageKsm(page))) 1556 ret = try_to_unmap_ksm(page, flags); 1557 else if (PageAnon(page)) 1558 ret = try_to_unmap_anon(page, flags); 1559 else 1560 ret = try_to_unmap_file(page, flags); 1561 if (ret != SWAP_MLOCK && !page_mapped(page)) 1562 ret = SWAP_SUCCESS; 1563 return ret; 1564 } 1565 1566 /** 1567 * try_to_munlock - try to munlock a page 1568 * @page: the page to be munlocked 1569 * 1570 * Called from munlock code. Checks all of the VMAs mapping the page 1571 * to make sure nobody else has this page mlocked. The page will be 1572 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1573 * 1574 * Return values are: 1575 * 1576 * SWAP_AGAIN - no vma is holding page mlocked, or, 1577 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1578 * SWAP_FAIL - page cannot be located at present 1579 * SWAP_MLOCK - page is now mlocked. 1580 */ 1581 int try_to_munlock(struct page *page) 1582 { 1583 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1584 1585 if (unlikely(PageKsm(page))) 1586 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1587 else if (PageAnon(page)) 1588 return try_to_unmap_anon(page, TTU_MUNLOCK); 1589 else 1590 return try_to_unmap_file(page, TTU_MUNLOCK); 1591 } 1592 1593 void __put_anon_vma(struct anon_vma *anon_vma) 1594 { 1595 struct anon_vma *root = anon_vma->root; 1596 1597 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1598 anon_vma_free(root); 1599 1600 anon_vma_free(anon_vma); 1601 } 1602 1603 #ifdef CONFIG_MIGRATION 1604 /* 1605 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1606 * Called by migrate.c to remove migration ptes, but might be used more later. 1607 */ 1608 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1609 struct vm_area_struct *, unsigned long, void *), void *arg) 1610 { 1611 struct anon_vma *anon_vma; 1612 struct anon_vma_chain *avc; 1613 int ret = SWAP_AGAIN; 1614 1615 /* 1616 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1617 * because that depends on page_mapped(); but not all its usages 1618 * are holding mmap_sem. Users without mmap_sem are required to 1619 * take a reference count to prevent the anon_vma disappearing 1620 */ 1621 anon_vma = page_anon_vma(page); 1622 if (!anon_vma) 1623 return ret; 1624 anon_vma_lock(anon_vma); 1625 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1626 struct vm_area_struct *vma = avc->vma; 1627 unsigned long address = vma_address(page, vma); 1628 if (address == -EFAULT) 1629 continue; 1630 ret = rmap_one(page, vma, address, arg); 1631 if (ret != SWAP_AGAIN) 1632 break; 1633 } 1634 anon_vma_unlock(anon_vma); 1635 return ret; 1636 } 1637 1638 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1639 struct vm_area_struct *, unsigned long, void *), void *arg) 1640 { 1641 struct address_space *mapping = page->mapping; 1642 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1643 struct vm_area_struct *vma; 1644 struct prio_tree_iter iter; 1645 int ret = SWAP_AGAIN; 1646 1647 if (!mapping) 1648 return ret; 1649 mutex_lock(&mapping->i_mmap_mutex); 1650 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1651 unsigned long address = vma_address(page, vma); 1652 if (address == -EFAULT) 1653 continue; 1654 ret = rmap_one(page, vma, address, arg); 1655 if (ret != SWAP_AGAIN) 1656 break; 1657 } 1658 /* 1659 * No nonlinear handling: being always shared, nonlinear vmas 1660 * never contain migration ptes. Decide what to do about this 1661 * limitation to linear when we need rmap_walk() on nonlinear. 1662 */ 1663 mutex_unlock(&mapping->i_mmap_mutex); 1664 return ret; 1665 } 1666 1667 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1668 struct vm_area_struct *, unsigned long, void *), void *arg) 1669 { 1670 VM_BUG_ON(!PageLocked(page)); 1671 1672 if (unlikely(PageKsm(page))) 1673 return rmap_walk_ksm(page, rmap_one, arg); 1674 else if (PageAnon(page)) 1675 return rmap_walk_anon(page, rmap_one, arg); 1676 else 1677 return rmap_walk_file(page, rmap_one, arg); 1678 } 1679 #endif /* CONFIG_MIGRATION */ 1680 1681 #ifdef CONFIG_HUGETLB_PAGE 1682 /* 1683 * The following three functions are for anonymous (private mapped) hugepages. 1684 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1685 * and no lru code, because we handle hugepages differently from common pages. 1686 */ 1687 static void __hugepage_set_anon_rmap(struct page *page, 1688 struct vm_area_struct *vma, unsigned long address, int exclusive) 1689 { 1690 struct anon_vma *anon_vma = vma->anon_vma; 1691 1692 BUG_ON(!anon_vma); 1693 1694 if (PageAnon(page)) 1695 return; 1696 if (!exclusive) 1697 anon_vma = anon_vma->root; 1698 1699 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1700 page->mapping = (struct address_space *) anon_vma; 1701 page->index = linear_page_index(vma, address); 1702 } 1703 1704 void hugepage_add_anon_rmap(struct page *page, 1705 struct vm_area_struct *vma, unsigned long address) 1706 { 1707 struct anon_vma *anon_vma = vma->anon_vma; 1708 int first; 1709 1710 BUG_ON(!PageLocked(page)); 1711 BUG_ON(!anon_vma); 1712 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1713 first = atomic_inc_and_test(&page->_mapcount); 1714 if (first) 1715 __hugepage_set_anon_rmap(page, vma, address, 0); 1716 } 1717 1718 void hugepage_add_new_anon_rmap(struct page *page, 1719 struct vm_area_struct *vma, unsigned long address) 1720 { 1721 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1722 atomic_set(&page->_mapcount, 0); 1723 __hugepage_set_anon_rmap(page, vma, address, 1); 1724 } 1725 #endif /* CONFIG_HUGETLB_PAGE */ 1726