xref: /linux/mm/rmap.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_mutex
28  *         anon_vma->mutex
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35  *               inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
37  *                 mapping->tree_lock (widely used, in set_page_dirty,
38  *                           in arch-dependent flush_dcache_mmap_lock,
39  *                           within inode_wb_list_lock in __sync_single_inode)
40  *
41  * (code doesn't rely on that order so it could be switched around)
42  * ->tasklist_lock
43  *   anon_vma->mutex      (memory_failure, collect_procs_anon)
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 
62 #include <asm/tlbflush.h>
63 
64 #include "internal.h"
65 
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68 
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 	struct anon_vma *anon_vma;
72 
73 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 	if (anon_vma) {
75 		atomic_set(&anon_vma->refcount, 1);
76 		/*
77 		 * Initialise the anon_vma root to point to itself. If called
78 		 * from fork, the root will be reset to the parents anon_vma.
79 		 */
80 		anon_vma->root = anon_vma;
81 	}
82 
83 	return anon_vma;
84 }
85 
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 
90 	/*
91 	 * Synchronize against page_lock_anon_vma() such that
92 	 * we can safely hold the lock without the anon_vma getting
93 	 * freed.
94 	 *
95 	 * Relies on the full mb implied by the atomic_dec_and_test() from
96 	 * put_anon_vma() against the acquire barrier implied by
97 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 	 *
99 	 * page_lock_anon_vma()		VS	put_anon_vma()
100 	 *   mutex_trylock()			  atomic_dec_and_test()
101 	 *   LOCK				  MB
102 	 *   atomic_read()			  mutex_is_locked()
103 	 *
104 	 * LOCK should suffice since the actual taking of the lock must
105 	 * happen _before_ what follows.
106 	 */
107 	if (mutex_is_locked(&anon_vma->root->mutex)) {
108 		anon_vma_lock(anon_vma);
109 		anon_vma_unlock(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118 }
119 
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
125 /**
126  * anon_vma_prepare - attach an anon_vma to a memory region
127  * @vma: the memory region in question
128  *
129  * This makes sure the memory mapping described by 'vma' has
130  * an 'anon_vma' attached to it, so that we can associate the
131  * anonymous pages mapped into it with that anon_vma.
132  *
133  * The common case will be that we already have one, but if
134  * not we either need to find an adjacent mapping that we
135  * can re-use the anon_vma from (very common when the only
136  * reason for splitting a vma has been mprotect()), or we
137  * allocate a new one.
138  *
139  * Anon-vma allocations are very subtle, because we may have
140  * optimistically looked up an anon_vma in page_lock_anon_vma()
141  * and that may actually touch the spinlock even in the newly
142  * allocated vma (it depends on RCU to make sure that the
143  * anon_vma isn't actually destroyed).
144  *
145  * As a result, we need to do proper anon_vma locking even
146  * for the new allocation. At the same time, we do not want
147  * to do any locking for the common case of already having
148  * an anon_vma.
149  *
150  * This must be called with the mmap_sem held for reading.
151  */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 	struct anon_vma *anon_vma = vma->anon_vma;
155 	struct anon_vma_chain *avc;
156 
157 	might_sleep();
158 	if (unlikely(!anon_vma)) {
159 		struct mm_struct *mm = vma->vm_mm;
160 		struct anon_vma *allocated;
161 
162 		avc = anon_vma_chain_alloc();
163 		if (!avc)
164 			goto out_enomem;
165 
166 		anon_vma = find_mergeable_anon_vma(vma);
167 		allocated = NULL;
168 		if (!anon_vma) {
169 			anon_vma = anon_vma_alloc();
170 			if (unlikely(!anon_vma))
171 				goto out_enomem_free_avc;
172 			allocated = anon_vma;
173 		}
174 
175 		anon_vma_lock(anon_vma);
176 		/* page_table_lock to protect against threads */
177 		spin_lock(&mm->page_table_lock);
178 		if (likely(!vma->anon_vma)) {
179 			vma->anon_vma = anon_vma;
180 			avc->anon_vma = anon_vma;
181 			avc->vma = vma;
182 			list_add(&avc->same_vma, &vma->anon_vma_chain);
183 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 			allocated = NULL;
185 			avc = NULL;
186 		}
187 		spin_unlock(&mm->page_table_lock);
188 		anon_vma_unlock(anon_vma);
189 
190 		if (unlikely(allocated))
191 			put_anon_vma(allocated);
192 		if (unlikely(avc))
193 			anon_vma_chain_free(avc);
194 	}
195 	return 0;
196 
197  out_enomem_free_avc:
198 	anon_vma_chain_free(avc);
199  out_enomem:
200 	return -ENOMEM;
201 }
202 
203 static void anon_vma_chain_link(struct vm_area_struct *vma,
204 				struct anon_vma_chain *avc,
205 				struct anon_vma *anon_vma)
206 {
207 	avc->vma = vma;
208 	avc->anon_vma = anon_vma;
209 	list_add(&avc->same_vma, &vma->anon_vma_chain);
210 
211 	anon_vma_lock(anon_vma);
212 	/*
213 	 * It's critical to add new vmas to the tail of the anon_vma,
214 	 * see comment in huge_memory.c:__split_huge_page().
215 	 */
216 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
217 	anon_vma_unlock(anon_vma);
218 }
219 
220 /*
221  * Attach the anon_vmas from src to dst.
222  * Returns 0 on success, -ENOMEM on failure.
223  */
224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
225 {
226 	struct anon_vma_chain *avc, *pavc;
227 
228 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
229 		avc = anon_vma_chain_alloc();
230 		if (!avc)
231 			goto enomem_failure;
232 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
233 	}
234 	return 0;
235 
236  enomem_failure:
237 	unlink_anon_vmas(dst);
238 	return -ENOMEM;
239 }
240 
241 /*
242  * Attach vma to its own anon_vma, as well as to the anon_vmas that
243  * the corresponding VMA in the parent process is attached to.
244  * Returns 0 on success, non-zero on failure.
245  */
246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
247 {
248 	struct anon_vma_chain *avc;
249 	struct anon_vma *anon_vma;
250 
251 	/* Don't bother if the parent process has no anon_vma here. */
252 	if (!pvma->anon_vma)
253 		return 0;
254 
255 	/*
256 	 * First, attach the new VMA to the parent VMA's anon_vmas,
257 	 * so rmap can find non-COWed pages in child processes.
258 	 */
259 	if (anon_vma_clone(vma, pvma))
260 		return -ENOMEM;
261 
262 	/* Then add our own anon_vma. */
263 	anon_vma = anon_vma_alloc();
264 	if (!anon_vma)
265 		goto out_error;
266 	avc = anon_vma_chain_alloc();
267 	if (!avc)
268 		goto out_error_free_anon_vma;
269 
270 	/*
271 	 * The root anon_vma's spinlock is the lock actually used when we
272 	 * lock any of the anon_vmas in this anon_vma tree.
273 	 */
274 	anon_vma->root = pvma->anon_vma->root;
275 	/*
276 	 * With refcounts, an anon_vma can stay around longer than the
277 	 * process it belongs to. The root anon_vma needs to be pinned until
278 	 * this anon_vma is freed, because the lock lives in the root.
279 	 */
280 	get_anon_vma(anon_vma->root);
281 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
282 	vma->anon_vma = anon_vma;
283 	anon_vma_chain_link(vma, avc, anon_vma);
284 
285 	return 0;
286 
287  out_error_free_anon_vma:
288 	put_anon_vma(anon_vma);
289  out_error:
290 	unlink_anon_vmas(vma);
291 	return -ENOMEM;
292 }
293 
294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
295 {
296 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
297 	int empty;
298 
299 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
300 	if (!anon_vma)
301 		return;
302 
303 	anon_vma_lock(anon_vma);
304 	list_del(&anon_vma_chain->same_anon_vma);
305 
306 	/* We must garbage collect the anon_vma if it's empty */
307 	empty = list_empty(&anon_vma->head);
308 	anon_vma_unlock(anon_vma);
309 
310 	if (empty)
311 		put_anon_vma(anon_vma);
312 }
313 
314 void unlink_anon_vmas(struct vm_area_struct *vma)
315 {
316 	struct anon_vma_chain *avc, *next;
317 
318 	/*
319 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
320 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
321 	 */
322 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
323 		anon_vma_unlink(avc);
324 		list_del(&avc->same_vma);
325 		anon_vma_chain_free(avc);
326 	}
327 }
328 
329 static void anon_vma_ctor(void *data)
330 {
331 	struct anon_vma *anon_vma = data;
332 
333 	mutex_init(&anon_vma->mutex);
334 	atomic_set(&anon_vma->refcount, 0);
335 	INIT_LIST_HEAD(&anon_vma->head);
336 }
337 
338 void __init anon_vma_init(void)
339 {
340 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
341 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
342 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
343 }
344 
345 /*
346  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
347  *
348  * Since there is no serialization what so ever against page_remove_rmap()
349  * the best this function can do is return a locked anon_vma that might
350  * have been relevant to this page.
351  *
352  * The page might have been remapped to a different anon_vma or the anon_vma
353  * returned may already be freed (and even reused).
354  *
355  * All users of this function must be very careful when walking the anon_vma
356  * chain and verify that the page in question is indeed mapped in it
357  * [ something equivalent to page_mapped_in_vma() ].
358  *
359  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
360  * that the anon_vma pointer from page->mapping is valid if there is a
361  * mapcount, we can dereference the anon_vma after observing those.
362  */
363 struct anon_vma *page_get_anon_vma(struct page *page)
364 {
365 	struct anon_vma *anon_vma = NULL;
366 	unsigned long anon_mapping;
367 
368 	rcu_read_lock();
369 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
370 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
371 		goto out;
372 	if (!page_mapped(page))
373 		goto out;
374 
375 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
376 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
377 		anon_vma = NULL;
378 		goto out;
379 	}
380 
381 	/*
382 	 * If this page is still mapped, then its anon_vma cannot have been
383 	 * freed.  But if it has been unmapped, we have no security against the
384 	 * anon_vma structure being freed and reused (for another anon_vma:
385 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
386 	 * above cannot corrupt).
387 	 */
388 	if (!page_mapped(page)) {
389 		put_anon_vma(anon_vma);
390 		anon_vma = NULL;
391 	}
392 out:
393 	rcu_read_unlock();
394 
395 	return anon_vma;
396 }
397 
398 /*
399  * Similar to page_get_anon_vma() except it locks the anon_vma.
400  *
401  * Its a little more complex as it tries to keep the fast path to a single
402  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
403  * reference like with page_get_anon_vma() and then block on the mutex.
404  */
405 struct anon_vma *page_lock_anon_vma(struct page *page)
406 {
407 	struct anon_vma *anon_vma = NULL;
408 	unsigned long anon_mapping;
409 
410 	rcu_read_lock();
411 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
412 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
413 		goto out;
414 	if (!page_mapped(page))
415 		goto out;
416 
417 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
418 	if (mutex_trylock(&anon_vma->root->mutex)) {
419 		/*
420 		 * If we observe a !0 refcount, then holding the lock ensures
421 		 * the anon_vma will not go away, see __put_anon_vma().
422 		 */
423 		if (!atomic_read(&anon_vma->refcount)) {
424 			anon_vma_unlock(anon_vma);
425 			anon_vma = NULL;
426 		}
427 		goto out;
428 	}
429 
430 	/* trylock failed, we got to sleep */
431 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
432 		anon_vma = NULL;
433 		goto out;
434 	}
435 
436 	if (!page_mapped(page)) {
437 		put_anon_vma(anon_vma);
438 		anon_vma = NULL;
439 		goto out;
440 	}
441 
442 	/* we pinned the anon_vma, its safe to sleep */
443 	rcu_read_unlock();
444 	anon_vma_lock(anon_vma);
445 
446 	if (atomic_dec_and_test(&anon_vma->refcount)) {
447 		/*
448 		 * Oops, we held the last refcount, release the lock
449 		 * and bail -- can't simply use put_anon_vma() because
450 		 * we'll deadlock on the anon_vma_lock() recursion.
451 		 */
452 		anon_vma_unlock(anon_vma);
453 		__put_anon_vma(anon_vma);
454 		anon_vma = NULL;
455 	}
456 
457 	return anon_vma;
458 
459 out:
460 	rcu_read_unlock();
461 	return anon_vma;
462 }
463 
464 void page_unlock_anon_vma(struct anon_vma *anon_vma)
465 {
466 	anon_vma_unlock(anon_vma);
467 }
468 
469 /*
470  * At what user virtual address is page expected in @vma?
471  * Returns virtual address or -EFAULT if page's index/offset is not
472  * within the range mapped the @vma.
473  */
474 inline unsigned long
475 vma_address(struct page *page, struct vm_area_struct *vma)
476 {
477 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
478 	unsigned long address;
479 
480 	if (unlikely(is_vm_hugetlb_page(vma)))
481 		pgoff = page->index << huge_page_order(page_hstate(page));
482 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
483 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
484 		/* page should be within @vma mapping range */
485 		return -EFAULT;
486 	}
487 	return address;
488 }
489 
490 /*
491  * At what user virtual address is page expected in vma?
492  * Caller should check the page is actually part of the vma.
493  */
494 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
495 {
496 	if (PageAnon(page)) {
497 		struct anon_vma *page__anon_vma = page_anon_vma(page);
498 		/*
499 		 * Note: swapoff's unuse_vma() is more efficient with this
500 		 * check, and needs it to match anon_vma when KSM is active.
501 		 */
502 		if (!vma->anon_vma || !page__anon_vma ||
503 		    vma->anon_vma->root != page__anon_vma->root)
504 			return -EFAULT;
505 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
506 		if (!vma->vm_file ||
507 		    vma->vm_file->f_mapping != page->mapping)
508 			return -EFAULT;
509 	} else
510 		return -EFAULT;
511 	return vma_address(page, vma);
512 }
513 
514 /*
515  * Check that @page is mapped at @address into @mm.
516  *
517  * If @sync is false, page_check_address may perform a racy check to avoid
518  * the page table lock when the pte is not present (helpful when reclaiming
519  * highly shared pages).
520  *
521  * On success returns with pte mapped and locked.
522  */
523 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
524 			  unsigned long address, spinlock_t **ptlp, int sync)
525 {
526 	pgd_t *pgd;
527 	pud_t *pud;
528 	pmd_t *pmd;
529 	pte_t *pte;
530 	spinlock_t *ptl;
531 
532 	if (unlikely(PageHuge(page))) {
533 		pte = huge_pte_offset(mm, address);
534 		ptl = &mm->page_table_lock;
535 		goto check;
536 	}
537 
538 	pgd = pgd_offset(mm, address);
539 	if (!pgd_present(*pgd))
540 		return NULL;
541 
542 	pud = pud_offset(pgd, address);
543 	if (!pud_present(*pud))
544 		return NULL;
545 
546 	pmd = pmd_offset(pud, address);
547 	if (!pmd_present(*pmd))
548 		return NULL;
549 	if (pmd_trans_huge(*pmd))
550 		return NULL;
551 
552 	pte = pte_offset_map(pmd, address);
553 	/* Make a quick check before getting the lock */
554 	if (!sync && !pte_present(*pte)) {
555 		pte_unmap(pte);
556 		return NULL;
557 	}
558 
559 	ptl = pte_lockptr(mm, pmd);
560 check:
561 	spin_lock(ptl);
562 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
563 		*ptlp = ptl;
564 		return pte;
565 	}
566 	pte_unmap_unlock(pte, ptl);
567 	return NULL;
568 }
569 
570 /**
571  * page_mapped_in_vma - check whether a page is really mapped in a VMA
572  * @page: the page to test
573  * @vma: the VMA to test
574  *
575  * Returns 1 if the page is mapped into the page tables of the VMA, 0
576  * if the page is not mapped into the page tables of this VMA.  Only
577  * valid for normal file or anonymous VMAs.
578  */
579 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
580 {
581 	unsigned long address;
582 	pte_t *pte;
583 	spinlock_t *ptl;
584 
585 	address = vma_address(page, vma);
586 	if (address == -EFAULT)		/* out of vma range */
587 		return 0;
588 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
589 	if (!pte)			/* the page is not in this mm */
590 		return 0;
591 	pte_unmap_unlock(pte, ptl);
592 
593 	return 1;
594 }
595 
596 /*
597  * Subfunctions of page_referenced: page_referenced_one called
598  * repeatedly from either page_referenced_anon or page_referenced_file.
599  */
600 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
601 			unsigned long address, unsigned int *mapcount,
602 			unsigned long *vm_flags)
603 {
604 	struct mm_struct *mm = vma->vm_mm;
605 	int referenced = 0;
606 
607 	if (unlikely(PageTransHuge(page))) {
608 		pmd_t *pmd;
609 
610 		spin_lock(&mm->page_table_lock);
611 		/*
612 		 * rmap might return false positives; we must filter
613 		 * these out using page_check_address_pmd().
614 		 */
615 		pmd = page_check_address_pmd(page, mm, address,
616 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
617 		if (!pmd) {
618 			spin_unlock(&mm->page_table_lock);
619 			goto out;
620 		}
621 
622 		if (vma->vm_flags & VM_LOCKED) {
623 			spin_unlock(&mm->page_table_lock);
624 			*mapcount = 0;	/* break early from loop */
625 			*vm_flags |= VM_LOCKED;
626 			goto out;
627 		}
628 
629 		/* go ahead even if the pmd is pmd_trans_splitting() */
630 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
631 			referenced++;
632 		spin_unlock(&mm->page_table_lock);
633 	} else {
634 		pte_t *pte;
635 		spinlock_t *ptl;
636 
637 		/*
638 		 * rmap might return false positives; we must filter
639 		 * these out using page_check_address().
640 		 */
641 		pte = page_check_address(page, mm, address, &ptl, 0);
642 		if (!pte)
643 			goto out;
644 
645 		if (vma->vm_flags & VM_LOCKED) {
646 			pte_unmap_unlock(pte, ptl);
647 			*mapcount = 0;	/* break early from loop */
648 			*vm_flags |= VM_LOCKED;
649 			goto out;
650 		}
651 
652 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
653 			/*
654 			 * Don't treat a reference through a sequentially read
655 			 * mapping as such.  If the page has been used in
656 			 * another mapping, we will catch it; if this other
657 			 * mapping is already gone, the unmap path will have
658 			 * set PG_referenced or activated the page.
659 			 */
660 			if (likely(!VM_SequentialReadHint(vma)))
661 				referenced++;
662 		}
663 		pte_unmap_unlock(pte, ptl);
664 	}
665 
666 	/* Pretend the page is referenced if the task has the
667 	   swap token and is in the middle of a page fault. */
668 	if (mm != current->mm && has_swap_token(mm) &&
669 			rwsem_is_locked(&mm->mmap_sem))
670 		referenced++;
671 
672 	(*mapcount)--;
673 
674 	if (referenced)
675 		*vm_flags |= vma->vm_flags;
676 out:
677 	return referenced;
678 }
679 
680 static int page_referenced_anon(struct page *page,
681 				struct mem_cgroup *mem_cont,
682 				unsigned long *vm_flags)
683 {
684 	unsigned int mapcount;
685 	struct anon_vma *anon_vma;
686 	struct anon_vma_chain *avc;
687 	int referenced = 0;
688 
689 	anon_vma = page_lock_anon_vma(page);
690 	if (!anon_vma)
691 		return referenced;
692 
693 	mapcount = page_mapcount(page);
694 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
695 		struct vm_area_struct *vma = avc->vma;
696 		unsigned long address = vma_address(page, vma);
697 		if (address == -EFAULT)
698 			continue;
699 		/*
700 		 * If we are reclaiming on behalf of a cgroup, skip
701 		 * counting on behalf of references from different
702 		 * cgroups
703 		 */
704 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
705 			continue;
706 		referenced += page_referenced_one(page, vma, address,
707 						  &mapcount, vm_flags);
708 		if (!mapcount)
709 			break;
710 	}
711 
712 	page_unlock_anon_vma(anon_vma);
713 	return referenced;
714 }
715 
716 /**
717  * page_referenced_file - referenced check for object-based rmap
718  * @page: the page we're checking references on.
719  * @mem_cont: target memory controller
720  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
721  *
722  * For an object-based mapped page, find all the places it is mapped and
723  * check/clear the referenced flag.  This is done by following the page->mapping
724  * pointer, then walking the chain of vmas it holds.  It returns the number
725  * of references it found.
726  *
727  * This function is only called from page_referenced for object-based pages.
728  */
729 static int page_referenced_file(struct page *page,
730 				struct mem_cgroup *mem_cont,
731 				unsigned long *vm_flags)
732 {
733 	unsigned int mapcount;
734 	struct address_space *mapping = page->mapping;
735 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
736 	struct vm_area_struct *vma;
737 	struct prio_tree_iter iter;
738 	int referenced = 0;
739 
740 	/*
741 	 * The caller's checks on page->mapping and !PageAnon have made
742 	 * sure that this is a file page: the check for page->mapping
743 	 * excludes the case just before it gets set on an anon page.
744 	 */
745 	BUG_ON(PageAnon(page));
746 
747 	/*
748 	 * The page lock not only makes sure that page->mapping cannot
749 	 * suddenly be NULLified by truncation, it makes sure that the
750 	 * structure at mapping cannot be freed and reused yet,
751 	 * so we can safely take mapping->i_mmap_mutex.
752 	 */
753 	BUG_ON(!PageLocked(page));
754 
755 	mutex_lock(&mapping->i_mmap_mutex);
756 
757 	/*
758 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
759 	 * is more likely to be accurate if we note it after spinning.
760 	 */
761 	mapcount = page_mapcount(page);
762 
763 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
764 		unsigned long address = vma_address(page, vma);
765 		if (address == -EFAULT)
766 			continue;
767 		/*
768 		 * If we are reclaiming on behalf of a cgroup, skip
769 		 * counting on behalf of references from different
770 		 * cgroups
771 		 */
772 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
773 			continue;
774 		referenced += page_referenced_one(page, vma, address,
775 						  &mapcount, vm_flags);
776 		if (!mapcount)
777 			break;
778 	}
779 
780 	mutex_unlock(&mapping->i_mmap_mutex);
781 	return referenced;
782 }
783 
784 /**
785  * page_referenced - test if the page was referenced
786  * @page: the page to test
787  * @is_locked: caller holds lock on the page
788  * @mem_cont: target memory controller
789  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
790  *
791  * Quick test_and_clear_referenced for all mappings to a page,
792  * returns the number of ptes which referenced the page.
793  */
794 int page_referenced(struct page *page,
795 		    int is_locked,
796 		    struct mem_cgroup *mem_cont,
797 		    unsigned long *vm_flags)
798 {
799 	int referenced = 0;
800 	int we_locked = 0;
801 
802 	*vm_flags = 0;
803 	if (page_mapped(page) && page_rmapping(page)) {
804 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
805 			we_locked = trylock_page(page);
806 			if (!we_locked) {
807 				referenced++;
808 				goto out;
809 			}
810 		}
811 		if (unlikely(PageKsm(page)))
812 			referenced += page_referenced_ksm(page, mem_cont,
813 								vm_flags);
814 		else if (PageAnon(page))
815 			referenced += page_referenced_anon(page, mem_cont,
816 								vm_flags);
817 		else if (page->mapping)
818 			referenced += page_referenced_file(page, mem_cont,
819 								vm_flags);
820 		if (we_locked)
821 			unlock_page(page);
822 	}
823 out:
824 	if (page_test_and_clear_young(page_to_pfn(page)))
825 		referenced++;
826 
827 	return referenced;
828 }
829 
830 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
831 			    unsigned long address)
832 {
833 	struct mm_struct *mm = vma->vm_mm;
834 	pte_t *pte;
835 	spinlock_t *ptl;
836 	int ret = 0;
837 
838 	pte = page_check_address(page, mm, address, &ptl, 1);
839 	if (!pte)
840 		goto out;
841 
842 	if (pte_dirty(*pte) || pte_write(*pte)) {
843 		pte_t entry;
844 
845 		flush_cache_page(vma, address, pte_pfn(*pte));
846 		entry = ptep_clear_flush_notify(vma, address, pte);
847 		entry = pte_wrprotect(entry);
848 		entry = pte_mkclean(entry);
849 		set_pte_at(mm, address, pte, entry);
850 		ret = 1;
851 	}
852 
853 	pte_unmap_unlock(pte, ptl);
854 out:
855 	return ret;
856 }
857 
858 static int page_mkclean_file(struct address_space *mapping, struct page *page)
859 {
860 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
861 	struct vm_area_struct *vma;
862 	struct prio_tree_iter iter;
863 	int ret = 0;
864 
865 	BUG_ON(PageAnon(page));
866 
867 	mutex_lock(&mapping->i_mmap_mutex);
868 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
869 		if (vma->vm_flags & VM_SHARED) {
870 			unsigned long address = vma_address(page, vma);
871 			if (address == -EFAULT)
872 				continue;
873 			ret += page_mkclean_one(page, vma, address);
874 		}
875 	}
876 	mutex_unlock(&mapping->i_mmap_mutex);
877 	return ret;
878 }
879 
880 int page_mkclean(struct page *page)
881 {
882 	int ret = 0;
883 
884 	BUG_ON(!PageLocked(page));
885 
886 	if (page_mapped(page)) {
887 		struct address_space *mapping = page_mapping(page);
888 		if (mapping) {
889 			ret = page_mkclean_file(mapping, page);
890 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
891 				ret = 1;
892 		}
893 	}
894 
895 	return ret;
896 }
897 EXPORT_SYMBOL_GPL(page_mkclean);
898 
899 /**
900  * page_move_anon_rmap - move a page to our anon_vma
901  * @page:	the page to move to our anon_vma
902  * @vma:	the vma the page belongs to
903  * @address:	the user virtual address mapped
904  *
905  * When a page belongs exclusively to one process after a COW event,
906  * that page can be moved into the anon_vma that belongs to just that
907  * process, so the rmap code will not search the parent or sibling
908  * processes.
909  */
910 void page_move_anon_rmap(struct page *page,
911 	struct vm_area_struct *vma, unsigned long address)
912 {
913 	struct anon_vma *anon_vma = vma->anon_vma;
914 
915 	VM_BUG_ON(!PageLocked(page));
916 	VM_BUG_ON(!anon_vma);
917 	VM_BUG_ON(page->index != linear_page_index(vma, address));
918 
919 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
920 	page->mapping = (struct address_space *) anon_vma;
921 }
922 
923 /**
924  * __page_set_anon_rmap - set up new anonymous rmap
925  * @page:	Page to add to rmap
926  * @vma:	VM area to add page to.
927  * @address:	User virtual address of the mapping
928  * @exclusive:	the page is exclusively owned by the current process
929  */
930 static void __page_set_anon_rmap(struct page *page,
931 	struct vm_area_struct *vma, unsigned long address, int exclusive)
932 {
933 	struct anon_vma *anon_vma = vma->anon_vma;
934 
935 	BUG_ON(!anon_vma);
936 
937 	if (PageAnon(page))
938 		return;
939 
940 	/*
941 	 * If the page isn't exclusively mapped into this vma,
942 	 * we must use the _oldest_ possible anon_vma for the
943 	 * page mapping!
944 	 */
945 	if (!exclusive)
946 		anon_vma = anon_vma->root;
947 
948 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
949 	page->mapping = (struct address_space *) anon_vma;
950 	page->index = linear_page_index(vma, address);
951 }
952 
953 /**
954  * __page_check_anon_rmap - sanity check anonymous rmap addition
955  * @page:	the page to add the mapping to
956  * @vma:	the vm area in which the mapping is added
957  * @address:	the user virtual address mapped
958  */
959 static void __page_check_anon_rmap(struct page *page,
960 	struct vm_area_struct *vma, unsigned long address)
961 {
962 #ifdef CONFIG_DEBUG_VM
963 	/*
964 	 * The page's anon-rmap details (mapping and index) are guaranteed to
965 	 * be set up correctly at this point.
966 	 *
967 	 * We have exclusion against page_add_anon_rmap because the caller
968 	 * always holds the page locked, except if called from page_dup_rmap,
969 	 * in which case the page is already known to be setup.
970 	 *
971 	 * We have exclusion against page_add_new_anon_rmap because those pages
972 	 * are initially only visible via the pagetables, and the pte is locked
973 	 * over the call to page_add_new_anon_rmap.
974 	 */
975 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
976 	BUG_ON(page->index != linear_page_index(vma, address));
977 #endif
978 }
979 
980 /**
981  * page_add_anon_rmap - add pte mapping to an anonymous page
982  * @page:	the page to add the mapping to
983  * @vma:	the vm area in which the mapping is added
984  * @address:	the user virtual address mapped
985  *
986  * The caller needs to hold the pte lock, and the page must be locked in
987  * the anon_vma case: to serialize mapping,index checking after setting,
988  * and to ensure that PageAnon is not being upgraded racily to PageKsm
989  * (but PageKsm is never downgraded to PageAnon).
990  */
991 void page_add_anon_rmap(struct page *page,
992 	struct vm_area_struct *vma, unsigned long address)
993 {
994 	do_page_add_anon_rmap(page, vma, address, 0);
995 }
996 
997 /*
998  * Special version of the above for do_swap_page, which often runs
999  * into pages that are exclusively owned by the current process.
1000  * Everybody else should continue to use page_add_anon_rmap above.
1001  */
1002 void do_page_add_anon_rmap(struct page *page,
1003 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1004 {
1005 	int first = atomic_inc_and_test(&page->_mapcount);
1006 	if (first) {
1007 		if (!PageTransHuge(page))
1008 			__inc_zone_page_state(page, NR_ANON_PAGES);
1009 		else
1010 			__inc_zone_page_state(page,
1011 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1012 	}
1013 	if (unlikely(PageKsm(page)))
1014 		return;
1015 
1016 	VM_BUG_ON(!PageLocked(page));
1017 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1018 	if (first)
1019 		__page_set_anon_rmap(page, vma, address, exclusive);
1020 	else
1021 		__page_check_anon_rmap(page, vma, address);
1022 }
1023 
1024 /**
1025  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1026  * @page:	the page to add the mapping to
1027  * @vma:	the vm area in which the mapping is added
1028  * @address:	the user virtual address mapped
1029  *
1030  * Same as page_add_anon_rmap but must only be called on *new* pages.
1031  * This means the inc-and-test can be bypassed.
1032  * Page does not have to be locked.
1033  */
1034 void page_add_new_anon_rmap(struct page *page,
1035 	struct vm_area_struct *vma, unsigned long address)
1036 {
1037 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1038 	SetPageSwapBacked(page);
1039 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1040 	if (!PageTransHuge(page))
1041 		__inc_zone_page_state(page, NR_ANON_PAGES);
1042 	else
1043 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1044 	__page_set_anon_rmap(page, vma, address, 1);
1045 	if (page_evictable(page, vma))
1046 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1047 	else
1048 		add_page_to_unevictable_list(page);
1049 }
1050 
1051 /**
1052  * page_add_file_rmap - add pte mapping to a file page
1053  * @page: the page to add the mapping to
1054  *
1055  * The caller needs to hold the pte lock.
1056  */
1057 void page_add_file_rmap(struct page *page)
1058 {
1059 	if (atomic_inc_and_test(&page->_mapcount)) {
1060 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1061 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1062 	}
1063 }
1064 
1065 /**
1066  * page_remove_rmap - take down pte mapping from a page
1067  * @page: page to remove mapping from
1068  *
1069  * The caller needs to hold the pte lock.
1070  */
1071 void page_remove_rmap(struct page *page)
1072 {
1073 	/* page still mapped by someone else? */
1074 	if (!atomic_add_negative(-1, &page->_mapcount))
1075 		return;
1076 
1077 	/*
1078 	 * Now that the last pte has gone, s390 must transfer dirty
1079 	 * flag from storage key to struct page.  We can usually skip
1080 	 * this if the page is anon, so about to be freed; but perhaps
1081 	 * not if it's in swapcache - there might be another pte slot
1082 	 * containing the swap entry, but page not yet written to swap.
1083 	 */
1084 	if ((!PageAnon(page) || PageSwapCache(page)) &&
1085 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1086 		set_page_dirty(page);
1087 	/*
1088 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1089 	 * and not charged by memcg for now.
1090 	 */
1091 	if (unlikely(PageHuge(page)))
1092 		return;
1093 	if (PageAnon(page)) {
1094 		mem_cgroup_uncharge_page(page);
1095 		if (!PageTransHuge(page))
1096 			__dec_zone_page_state(page, NR_ANON_PAGES);
1097 		else
1098 			__dec_zone_page_state(page,
1099 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1100 	} else {
1101 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1102 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1103 	}
1104 	/*
1105 	 * It would be tidy to reset the PageAnon mapping here,
1106 	 * but that might overwrite a racing page_add_anon_rmap
1107 	 * which increments mapcount after us but sets mapping
1108 	 * before us: so leave the reset to free_hot_cold_page,
1109 	 * and remember that it's only reliable while mapped.
1110 	 * Leaving it set also helps swapoff to reinstate ptes
1111 	 * faster for those pages still in swapcache.
1112 	 */
1113 }
1114 
1115 /*
1116  * Subfunctions of try_to_unmap: try_to_unmap_one called
1117  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1118  */
1119 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1120 		     unsigned long address, enum ttu_flags flags)
1121 {
1122 	struct mm_struct *mm = vma->vm_mm;
1123 	pte_t *pte;
1124 	pte_t pteval;
1125 	spinlock_t *ptl;
1126 	int ret = SWAP_AGAIN;
1127 
1128 	pte = page_check_address(page, mm, address, &ptl, 0);
1129 	if (!pte)
1130 		goto out;
1131 
1132 	/*
1133 	 * If the page is mlock()d, we cannot swap it out.
1134 	 * If it's recently referenced (perhaps page_referenced
1135 	 * skipped over this mm) then we should reactivate it.
1136 	 */
1137 	if (!(flags & TTU_IGNORE_MLOCK)) {
1138 		if (vma->vm_flags & VM_LOCKED)
1139 			goto out_mlock;
1140 
1141 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1142 			goto out_unmap;
1143 	}
1144 	if (!(flags & TTU_IGNORE_ACCESS)) {
1145 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1146 			ret = SWAP_FAIL;
1147 			goto out_unmap;
1148 		}
1149   	}
1150 
1151 	/* Nuke the page table entry. */
1152 	flush_cache_page(vma, address, page_to_pfn(page));
1153 	pteval = ptep_clear_flush_notify(vma, address, pte);
1154 
1155 	/* Move the dirty bit to the physical page now the pte is gone. */
1156 	if (pte_dirty(pteval))
1157 		set_page_dirty(page);
1158 
1159 	/* Update high watermark before we lower rss */
1160 	update_hiwater_rss(mm);
1161 
1162 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1163 		if (PageAnon(page))
1164 			dec_mm_counter(mm, MM_ANONPAGES);
1165 		else
1166 			dec_mm_counter(mm, MM_FILEPAGES);
1167 		set_pte_at(mm, address, pte,
1168 				swp_entry_to_pte(make_hwpoison_entry(page)));
1169 	} else if (PageAnon(page)) {
1170 		swp_entry_t entry = { .val = page_private(page) };
1171 
1172 		if (PageSwapCache(page)) {
1173 			/*
1174 			 * Store the swap location in the pte.
1175 			 * See handle_pte_fault() ...
1176 			 */
1177 			if (swap_duplicate(entry) < 0) {
1178 				set_pte_at(mm, address, pte, pteval);
1179 				ret = SWAP_FAIL;
1180 				goto out_unmap;
1181 			}
1182 			if (list_empty(&mm->mmlist)) {
1183 				spin_lock(&mmlist_lock);
1184 				if (list_empty(&mm->mmlist))
1185 					list_add(&mm->mmlist, &init_mm.mmlist);
1186 				spin_unlock(&mmlist_lock);
1187 			}
1188 			dec_mm_counter(mm, MM_ANONPAGES);
1189 			inc_mm_counter(mm, MM_SWAPENTS);
1190 		} else if (PAGE_MIGRATION) {
1191 			/*
1192 			 * Store the pfn of the page in a special migration
1193 			 * pte. do_swap_page() will wait until the migration
1194 			 * pte is removed and then restart fault handling.
1195 			 */
1196 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1197 			entry = make_migration_entry(page, pte_write(pteval));
1198 		}
1199 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1200 		BUG_ON(pte_file(*pte));
1201 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1202 		/* Establish migration entry for a file page */
1203 		swp_entry_t entry;
1204 		entry = make_migration_entry(page, pte_write(pteval));
1205 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1206 	} else
1207 		dec_mm_counter(mm, MM_FILEPAGES);
1208 
1209 	page_remove_rmap(page);
1210 	page_cache_release(page);
1211 
1212 out_unmap:
1213 	pte_unmap_unlock(pte, ptl);
1214 out:
1215 	return ret;
1216 
1217 out_mlock:
1218 	pte_unmap_unlock(pte, ptl);
1219 
1220 
1221 	/*
1222 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1223 	 * unstable result and race. Plus, We can't wait here because
1224 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1225 	 * if trylock failed, the page remain in evictable lru and later
1226 	 * vmscan could retry to move the page to unevictable lru if the
1227 	 * page is actually mlocked.
1228 	 */
1229 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1230 		if (vma->vm_flags & VM_LOCKED) {
1231 			mlock_vma_page(page);
1232 			ret = SWAP_MLOCK;
1233 		}
1234 		up_read(&vma->vm_mm->mmap_sem);
1235 	}
1236 	return ret;
1237 }
1238 
1239 /*
1240  * objrmap doesn't work for nonlinear VMAs because the assumption that
1241  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1242  * Consequently, given a particular page and its ->index, we cannot locate the
1243  * ptes which are mapping that page without an exhaustive linear search.
1244  *
1245  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1246  * maps the file to which the target page belongs.  The ->vm_private_data field
1247  * holds the current cursor into that scan.  Successive searches will circulate
1248  * around the vma's virtual address space.
1249  *
1250  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1251  * more scanning pressure is placed against them as well.   Eventually pages
1252  * will become fully unmapped and are eligible for eviction.
1253  *
1254  * For very sparsely populated VMAs this is a little inefficient - chances are
1255  * there there won't be many ptes located within the scan cluster.  In this case
1256  * maybe we could scan further - to the end of the pte page, perhaps.
1257  *
1258  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1259  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1260  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1261  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1262  */
1263 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1264 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1265 
1266 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1267 		struct vm_area_struct *vma, struct page *check_page)
1268 {
1269 	struct mm_struct *mm = vma->vm_mm;
1270 	pgd_t *pgd;
1271 	pud_t *pud;
1272 	pmd_t *pmd;
1273 	pte_t *pte;
1274 	pte_t pteval;
1275 	spinlock_t *ptl;
1276 	struct page *page;
1277 	unsigned long address;
1278 	unsigned long end;
1279 	int ret = SWAP_AGAIN;
1280 	int locked_vma = 0;
1281 
1282 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1283 	end = address + CLUSTER_SIZE;
1284 	if (address < vma->vm_start)
1285 		address = vma->vm_start;
1286 	if (end > vma->vm_end)
1287 		end = vma->vm_end;
1288 
1289 	pgd = pgd_offset(mm, address);
1290 	if (!pgd_present(*pgd))
1291 		return ret;
1292 
1293 	pud = pud_offset(pgd, address);
1294 	if (!pud_present(*pud))
1295 		return ret;
1296 
1297 	pmd = pmd_offset(pud, address);
1298 	if (!pmd_present(*pmd))
1299 		return ret;
1300 
1301 	/*
1302 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1303 	 * keep the sem while scanning the cluster for mlocking pages.
1304 	 */
1305 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1306 		locked_vma = (vma->vm_flags & VM_LOCKED);
1307 		if (!locked_vma)
1308 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1309 	}
1310 
1311 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1312 
1313 	/* Update high watermark before we lower rss */
1314 	update_hiwater_rss(mm);
1315 
1316 	for (; address < end; pte++, address += PAGE_SIZE) {
1317 		if (!pte_present(*pte))
1318 			continue;
1319 		page = vm_normal_page(vma, address, *pte);
1320 		BUG_ON(!page || PageAnon(page));
1321 
1322 		if (locked_vma) {
1323 			mlock_vma_page(page);   /* no-op if already mlocked */
1324 			if (page == check_page)
1325 				ret = SWAP_MLOCK;
1326 			continue;	/* don't unmap */
1327 		}
1328 
1329 		if (ptep_clear_flush_young_notify(vma, address, pte))
1330 			continue;
1331 
1332 		/* Nuke the page table entry. */
1333 		flush_cache_page(vma, address, pte_pfn(*pte));
1334 		pteval = ptep_clear_flush_notify(vma, address, pte);
1335 
1336 		/* If nonlinear, store the file page offset in the pte. */
1337 		if (page->index != linear_page_index(vma, address))
1338 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1339 
1340 		/* Move the dirty bit to the physical page now the pte is gone. */
1341 		if (pte_dirty(pteval))
1342 			set_page_dirty(page);
1343 
1344 		page_remove_rmap(page);
1345 		page_cache_release(page);
1346 		dec_mm_counter(mm, MM_FILEPAGES);
1347 		(*mapcount)--;
1348 	}
1349 	pte_unmap_unlock(pte - 1, ptl);
1350 	if (locked_vma)
1351 		up_read(&vma->vm_mm->mmap_sem);
1352 	return ret;
1353 }
1354 
1355 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1356 {
1357 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1358 
1359 	if (!maybe_stack)
1360 		return false;
1361 
1362 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1363 						VM_STACK_INCOMPLETE_SETUP)
1364 		return true;
1365 
1366 	return false;
1367 }
1368 
1369 /**
1370  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1371  * rmap method
1372  * @page: the page to unmap/unlock
1373  * @flags: action and flags
1374  *
1375  * Find all the mappings of a page using the mapping pointer and the vma chains
1376  * contained in the anon_vma struct it points to.
1377  *
1378  * This function is only called from try_to_unmap/try_to_munlock for
1379  * anonymous pages.
1380  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1381  * where the page was found will be held for write.  So, we won't recheck
1382  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1383  * 'LOCKED.
1384  */
1385 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1386 {
1387 	struct anon_vma *anon_vma;
1388 	struct anon_vma_chain *avc;
1389 	int ret = SWAP_AGAIN;
1390 
1391 	anon_vma = page_lock_anon_vma(page);
1392 	if (!anon_vma)
1393 		return ret;
1394 
1395 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1396 		struct vm_area_struct *vma = avc->vma;
1397 		unsigned long address;
1398 
1399 		/*
1400 		 * During exec, a temporary VMA is setup and later moved.
1401 		 * The VMA is moved under the anon_vma lock but not the
1402 		 * page tables leading to a race where migration cannot
1403 		 * find the migration ptes. Rather than increasing the
1404 		 * locking requirements of exec(), migration skips
1405 		 * temporary VMAs until after exec() completes.
1406 		 */
1407 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1408 				is_vma_temporary_stack(vma))
1409 			continue;
1410 
1411 		address = vma_address(page, vma);
1412 		if (address == -EFAULT)
1413 			continue;
1414 		ret = try_to_unmap_one(page, vma, address, flags);
1415 		if (ret != SWAP_AGAIN || !page_mapped(page))
1416 			break;
1417 	}
1418 
1419 	page_unlock_anon_vma(anon_vma);
1420 	return ret;
1421 }
1422 
1423 /**
1424  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1425  * @page: the page to unmap/unlock
1426  * @flags: action and flags
1427  *
1428  * Find all the mappings of a page using the mapping pointer and the vma chains
1429  * contained in the address_space struct it points to.
1430  *
1431  * This function is only called from try_to_unmap/try_to_munlock for
1432  * object-based pages.
1433  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1434  * where the page was found will be held for write.  So, we won't recheck
1435  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1436  * 'LOCKED.
1437  */
1438 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1439 {
1440 	struct address_space *mapping = page->mapping;
1441 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1442 	struct vm_area_struct *vma;
1443 	struct prio_tree_iter iter;
1444 	int ret = SWAP_AGAIN;
1445 	unsigned long cursor;
1446 	unsigned long max_nl_cursor = 0;
1447 	unsigned long max_nl_size = 0;
1448 	unsigned int mapcount;
1449 
1450 	mutex_lock(&mapping->i_mmap_mutex);
1451 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1452 		unsigned long address = vma_address(page, vma);
1453 		if (address == -EFAULT)
1454 			continue;
1455 		ret = try_to_unmap_one(page, vma, address, flags);
1456 		if (ret != SWAP_AGAIN || !page_mapped(page))
1457 			goto out;
1458 	}
1459 
1460 	if (list_empty(&mapping->i_mmap_nonlinear))
1461 		goto out;
1462 
1463 	/*
1464 	 * We don't bother to try to find the munlocked page in nonlinears.
1465 	 * It's costly. Instead, later, page reclaim logic may call
1466 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1467 	 */
1468 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1469 		goto out;
1470 
1471 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1472 						shared.vm_set.list) {
1473 		cursor = (unsigned long) vma->vm_private_data;
1474 		if (cursor > max_nl_cursor)
1475 			max_nl_cursor = cursor;
1476 		cursor = vma->vm_end - vma->vm_start;
1477 		if (cursor > max_nl_size)
1478 			max_nl_size = cursor;
1479 	}
1480 
1481 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1482 		ret = SWAP_FAIL;
1483 		goto out;
1484 	}
1485 
1486 	/*
1487 	 * We don't try to search for this page in the nonlinear vmas,
1488 	 * and page_referenced wouldn't have found it anyway.  Instead
1489 	 * just walk the nonlinear vmas trying to age and unmap some.
1490 	 * The mapcount of the page we came in with is irrelevant,
1491 	 * but even so use it as a guide to how hard we should try?
1492 	 */
1493 	mapcount = page_mapcount(page);
1494 	if (!mapcount)
1495 		goto out;
1496 	cond_resched();
1497 
1498 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1499 	if (max_nl_cursor == 0)
1500 		max_nl_cursor = CLUSTER_SIZE;
1501 
1502 	do {
1503 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1504 						shared.vm_set.list) {
1505 			cursor = (unsigned long) vma->vm_private_data;
1506 			while ( cursor < max_nl_cursor &&
1507 				cursor < vma->vm_end - vma->vm_start) {
1508 				if (try_to_unmap_cluster(cursor, &mapcount,
1509 						vma, page) == SWAP_MLOCK)
1510 					ret = SWAP_MLOCK;
1511 				cursor += CLUSTER_SIZE;
1512 				vma->vm_private_data = (void *) cursor;
1513 				if ((int)mapcount <= 0)
1514 					goto out;
1515 			}
1516 			vma->vm_private_data = (void *) max_nl_cursor;
1517 		}
1518 		cond_resched();
1519 		max_nl_cursor += CLUSTER_SIZE;
1520 	} while (max_nl_cursor <= max_nl_size);
1521 
1522 	/*
1523 	 * Don't loop forever (perhaps all the remaining pages are
1524 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1525 	 * vmas, now forgetting on which ones it had fallen behind.
1526 	 */
1527 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1528 		vma->vm_private_data = NULL;
1529 out:
1530 	mutex_unlock(&mapping->i_mmap_mutex);
1531 	return ret;
1532 }
1533 
1534 /**
1535  * try_to_unmap - try to remove all page table mappings to a page
1536  * @page: the page to get unmapped
1537  * @flags: action and flags
1538  *
1539  * Tries to remove all the page table entries which are mapping this
1540  * page, used in the pageout path.  Caller must hold the page lock.
1541  * Return values are:
1542  *
1543  * SWAP_SUCCESS	- we succeeded in removing all mappings
1544  * SWAP_AGAIN	- we missed a mapping, try again later
1545  * SWAP_FAIL	- the page is unswappable
1546  * SWAP_MLOCK	- page is mlocked.
1547  */
1548 int try_to_unmap(struct page *page, enum ttu_flags flags)
1549 {
1550 	int ret;
1551 
1552 	BUG_ON(!PageLocked(page));
1553 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1554 
1555 	if (unlikely(PageKsm(page)))
1556 		ret = try_to_unmap_ksm(page, flags);
1557 	else if (PageAnon(page))
1558 		ret = try_to_unmap_anon(page, flags);
1559 	else
1560 		ret = try_to_unmap_file(page, flags);
1561 	if (ret != SWAP_MLOCK && !page_mapped(page))
1562 		ret = SWAP_SUCCESS;
1563 	return ret;
1564 }
1565 
1566 /**
1567  * try_to_munlock - try to munlock a page
1568  * @page: the page to be munlocked
1569  *
1570  * Called from munlock code.  Checks all of the VMAs mapping the page
1571  * to make sure nobody else has this page mlocked. The page will be
1572  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1573  *
1574  * Return values are:
1575  *
1576  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1577  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1578  * SWAP_FAIL	- page cannot be located at present
1579  * SWAP_MLOCK	- page is now mlocked.
1580  */
1581 int try_to_munlock(struct page *page)
1582 {
1583 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1584 
1585 	if (unlikely(PageKsm(page)))
1586 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1587 	else if (PageAnon(page))
1588 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1589 	else
1590 		return try_to_unmap_file(page, TTU_MUNLOCK);
1591 }
1592 
1593 void __put_anon_vma(struct anon_vma *anon_vma)
1594 {
1595 	struct anon_vma *root = anon_vma->root;
1596 
1597 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1598 		anon_vma_free(root);
1599 
1600 	anon_vma_free(anon_vma);
1601 }
1602 
1603 #ifdef CONFIG_MIGRATION
1604 /*
1605  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1606  * Called by migrate.c to remove migration ptes, but might be used more later.
1607  */
1608 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1609 		struct vm_area_struct *, unsigned long, void *), void *arg)
1610 {
1611 	struct anon_vma *anon_vma;
1612 	struct anon_vma_chain *avc;
1613 	int ret = SWAP_AGAIN;
1614 
1615 	/*
1616 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1617 	 * because that depends on page_mapped(); but not all its usages
1618 	 * are holding mmap_sem. Users without mmap_sem are required to
1619 	 * take a reference count to prevent the anon_vma disappearing
1620 	 */
1621 	anon_vma = page_anon_vma(page);
1622 	if (!anon_vma)
1623 		return ret;
1624 	anon_vma_lock(anon_vma);
1625 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1626 		struct vm_area_struct *vma = avc->vma;
1627 		unsigned long address = vma_address(page, vma);
1628 		if (address == -EFAULT)
1629 			continue;
1630 		ret = rmap_one(page, vma, address, arg);
1631 		if (ret != SWAP_AGAIN)
1632 			break;
1633 	}
1634 	anon_vma_unlock(anon_vma);
1635 	return ret;
1636 }
1637 
1638 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1639 		struct vm_area_struct *, unsigned long, void *), void *arg)
1640 {
1641 	struct address_space *mapping = page->mapping;
1642 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1643 	struct vm_area_struct *vma;
1644 	struct prio_tree_iter iter;
1645 	int ret = SWAP_AGAIN;
1646 
1647 	if (!mapping)
1648 		return ret;
1649 	mutex_lock(&mapping->i_mmap_mutex);
1650 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1651 		unsigned long address = vma_address(page, vma);
1652 		if (address == -EFAULT)
1653 			continue;
1654 		ret = rmap_one(page, vma, address, arg);
1655 		if (ret != SWAP_AGAIN)
1656 			break;
1657 	}
1658 	/*
1659 	 * No nonlinear handling: being always shared, nonlinear vmas
1660 	 * never contain migration ptes.  Decide what to do about this
1661 	 * limitation to linear when we need rmap_walk() on nonlinear.
1662 	 */
1663 	mutex_unlock(&mapping->i_mmap_mutex);
1664 	return ret;
1665 }
1666 
1667 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1668 		struct vm_area_struct *, unsigned long, void *), void *arg)
1669 {
1670 	VM_BUG_ON(!PageLocked(page));
1671 
1672 	if (unlikely(PageKsm(page)))
1673 		return rmap_walk_ksm(page, rmap_one, arg);
1674 	else if (PageAnon(page))
1675 		return rmap_walk_anon(page, rmap_one, arg);
1676 	else
1677 		return rmap_walk_file(page, rmap_one, arg);
1678 }
1679 #endif /* CONFIG_MIGRATION */
1680 
1681 #ifdef CONFIG_HUGETLB_PAGE
1682 /*
1683  * The following three functions are for anonymous (private mapped) hugepages.
1684  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1685  * and no lru code, because we handle hugepages differently from common pages.
1686  */
1687 static void __hugepage_set_anon_rmap(struct page *page,
1688 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1689 {
1690 	struct anon_vma *anon_vma = vma->anon_vma;
1691 
1692 	BUG_ON(!anon_vma);
1693 
1694 	if (PageAnon(page))
1695 		return;
1696 	if (!exclusive)
1697 		anon_vma = anon_vma->root;
1698 
1699 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1700 	page->mapping = (struct address_space *) anon_vma;
1701 	page->index = linear_page_index(vma, address);
1702 }
1703 
1704 void hugepage_add_anon_rmap(struct page *page,
1705 			    struct vm_area_struct *vma, unsigned long address)
1706 {
1707 	struct anon_vma *anon_vma = vma->anon_vma;
1708 	int first;
1709 
1710 	BUG_ON(!PageLocked(page));
1711 	BUG_ON(!anon_vma);
1712 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1713 	first = atomic_inc_and_test(&page->_mapcount);
1714 	if (first)
1715 		__hugepage_set_anon_rmap(page, vma, address, 0);
1716 }
1717 
1718 void hugepage_add_new_anon_rmap(struct page *page,
1719 			struct vm_area_struct *vma, unsigned long address)
1720 {
1721 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1722 	atomic_set(&page->_mapcount, 0);
1723 	__hugepage_set_anon_rmap(page, vma, address, 1);
1724 }
1725 #endif /* CONFIG_HUGETLB_PAGE */
1726