xref: /linux/mm/rmap.c (revision 447e140e66fd226350b3ce86cffc965eaae4c856)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         folio_lock
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 				      unsigned long uaddr)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 				      unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /*
771  * At what user virtual address is page expected in vma?
772  * Caller should check the page is actually part of the vma.
773  */
774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775 {
776 	struct folio *folio = page_folio(page);
777 	pgoff_t pgoff;
778 
779 	if (folio_test_anon(folio)) {
780 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781 		/*
782 		 * Note: swapoff's unuse_vma() is more efficient with this
783 		 * check, and needs it to match anon_vma when KSM is active.
784 		 */
785 		if (!vma->anon_vma || !page__anon_vma ||
786 		    vma->anon_vma->root != page__anon_vma->root)
787 			return -EFAULT;
788 	} else if (!vma->vm_file) {
789 		return -EFAULT;
790 	} else if (vma->vm_file->f_mapping != folio->mapping) {
791 		return -EFAULT;
792 	}
793 
794 	/* The !page__anon_vma above handles KSM folios */
795 	pgoff = folio->index + folio_page_idx(folio, page);
796 	return vma_address(vma, pgoff, 1);
797 }
798 
799 /*
800  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
802  * represents.
803  */
804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805 {
806 	pgd_t *pgd;
807 	p4d_t *p4d;
808 	pud_t *pud;
809 	pmd_t *pmd = NULL;
810 
811 	pgd = pgd_offset(mm, address);
812 	if (!pgd_present(*pgd))
813 		goto out;
814 
815 	p4d = p4d_offset(pgd, address);
816 	if (!p4d_present(*p4d))
817 		goto out;
818 
819 	pud = pud_offset(p4d, address);
820 	if (!pud_present(*pud))
821 		goto out;
822 
823 	pmd = pmd_offset(pud, address);
824 out:
825 	return pmd;
826 }
827 
828 struct folio_referenced_arg {
829 	int mapcount;
830 	int referenced;
831 	unsigned long vm_flags;
832 	struct mem_cgroup *memcg;
833 };
834 
835 /*
836  * arg: folio_referenced_arg will be passed
837  */
838 static bool folio_referenced_one(struct folio *folio,
839 		struct vm_area_struct *vma, unsigned long address, void *arg)
840 {
841 	struct folio_referenced_arg *pra = arg;
842 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843 	int referenced = 0;
844 	unsigned long start = address, ptes = 0;
845 
846 	while (page_vma_mapped_walk(&pvmw)) {
847 		address = pvmw.address;
848 
849 		if (vma->vm_flags & VM_LOCKED) {
850 			if (!folio_test_large(folio) || !pvmw.pte) {
851 				/* Restore the mlock which got missed */
852 				mlock_vma_folio(folio, vma);
853 				page_vma_mapped_walk_done(&pvmw);
854 				pra->vm_flags |= VM_LOCKED;
855 				return false; /* To break the loop */
856 			}
857 			/*
858 			 * For large folio fully mapped to VMA, will
859 			 * be handled after the pvmw loop.
860 			 *
861 			 * For large folio cross VMA boundaries, it's
862 			 * expected to be picked  by page reclaim. But
863 			 * should skip reference of pages which are in
864 			 * the range of VM_LOCKED vma. As page reclaim
865 			 * should just count the reference of pages out
866 			 * the range of VM_LOCKED vma.
867 			 */
868 			ptes++;
869 			pra->mapcount--;
870 			continue;
871 		}
872 
873 		if (pvmw.pte) {
874 			if (lru_gen_enabled() &&
875 			    pte_young(ptep_get(pvmw.pte))) {
876 				lru_gen_look_around(&pvmw);
877 				referenced++;
878 			}
879 
880 			if (ptep_clear_flush_young_notify(vma, address,
881 						pvmw.pte))
882 				referenced++;
883 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
884 			if (pmdp_clear_flush_young_notify(vma, address,
885 						pvmw.pmd))
886 				referenced++;
887 		} else {
888 			/* unexpected pmd-mapped folio? */
889 			WARN_ON_ONCE(1);
890 		}
891 
892 		pra->mapcount--;
893 	}
894 
895 	if ((vma->vm_flags & VM_LOCKED) &&
896 			folio_test_large(folio) &&
897 			folio_within_vma(folio, vma)) {
898 		unsigned long s_align, e_align;
899 
900 		s_align = ALIGN_DOWN(start, PMD_SIZE);
901 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
902 
903 		/* folio doesn't cross page table boundary and fully mapped */
904 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
905 			/* Restore the mlock which got missed */
906 			mlock_vma_folio(folio, vma);
907 			pra->vm_flags |= VM_LOCKED;
908 			return false; /* To break the loop */
909 		}
910 	}
911 
912 	if (referenced)
913 		folio_clear_idle(folio);
914 	if (folio_test_clear_young(folio))
915 		referenced++;
916 
917 	if (referenced) {
918 		pra->referenced++;
919 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
920 	}
921 
922 	if (!pra->mapcount)
923 		return false; /* To break the loop */
924 
925 	return true;
926 }
927 
928 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
929 {
930 	struct folio_referenced_arg *pra = arg;
931 	struct mem_cgroup *memcg = pra->memcg;
932 
933 	/*
934 	 * Ignore references from this mapping if it has no recency. If the
935 	 * folio has been used in another mapping, we will catch it; if this
936 	 * other mapping is already gone, the unmap path will have set the
937 	 * referenced flag or activated the folio in zap_pte_range().
938 	 */
939 	if (!vma_has_recency(vma))
940 		return true;
941 
942 	/*
943 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
944 	 * of references from different cgroups.
945 	 */
946 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
947 		return true;
948 
949 	return false;
950 }
951 
952 /**
953  * folio_referenced() - Test if the folio was referenced.
954  * @folio: The folio to test.
955  * @is_locked: Caller holds lock on the folio.
956  * @memcg: target memory cgroup
957  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
958  *
959  * Quick test_and_clear_referenced for all mappings of a folio,
960  *
961  * Return: The number of mappings which referenced the folio. Return -1 if
962  * the function bailed out due to rmap lock contention.
963  */
964 int folio_referenced(struct folio *folio, int is_locked,
965 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
966 {
967 	bool we_locked = false;
968 	struct folio_referenced_arg pra = {
969 		.mapcount = folio_mapcount(folio),
970 		.memcg = memcg,
971 	};
972 	struct rmap_walk_control rwc = {
973 		.rmap_one = folio_referenced_one,
974 		.arg = (void *)&pra,
975 		.anon_lock = folio_lock_anon_vma_read,
976 		.try_lock = true,
977 		.invalid_vma = invalid_folio_referenced_vma,
978 	};
979 
980 	*vm_flags = 0;
981 	if (!pra.mapcount)
982 		return 0;
983 
984 	if (!folio_raw_mapping(folio))
985 		return 0;
986 
987 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
988 		we_locked = folio_trylock(folio);
989 		if (!we_locked)
990 			return 1;
991 	}
992 
993 	rmap_walk(folio, &rwc);
994 	*vm_flags = pra.vm_flags;
995 
996 	if (we_locked)
997 		folio_unlock(folio);
998 
999 	return rwc.contended ? -1 : pra.referenced;
1000 }
1001 
1002 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1003 {
1004 	int cleaned = 0;
1005 	struct vm_area_struct *vma = pvmw->vma;
1006 	struct mmu_notifier_range range;
1007 	unsigned long address = pvmw->address;
1008 
1009 	/*
1010 	 * We have to assume the worse case ie pmd for invalidation. Note that
1011 	 * the folio can not be freed from this function.
1012 	 */
1013 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1014 				vma->vm_mm, address, vma_address_end(pvmw));
1015 	mmu_notifier_invalidate_range_start(&range);
1016 
1017 	while (page_vma_mapped_walk(pvmw)) {
1018 		int ret = 0;
1019 
1020 		address = pvmw->address;
1021 		if (pvmw->pte) {
1022 			pte_t *pte = pvmw->pte;
1023 			pte_t entry = ptep_get(pte);
1024 
1025 			if (!pte_dirty(entry) && !pte_write(entry))
1026 				continue;
1027 
1028 			flush_cache_page(vma, address, pte_pfn(entry));
1029 			entry = ptep_clear_flush(vma, address, pte);
1030 			entry = pte_wrprotect(entry);
1031 			entry = pte_mkclean(entry);
1032 			set_pte_at(vma->vm_mm, address, pte, entry);
1033 			ret = 1;
1034 		} else {
1035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036 			pmd_t *pmd = pvmw->pmd;
1037 			pmd_t entry;
1038 
1039 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1040 				continue;
1041 
1042 			flush_cache_range(vma, address,
1043 					  address + HPAGE_PMD_SIZE);
1044 			entry = pmdp_invalidate(vma, address, pmd);
1045 			entry = pmd_wrprotect(entry);
1046 			entry = pmd_mkclean(entry);
1047 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1048 			ret = 1;
1049 #else
1050 			/* unexpected pmd-mapped folio? */
1051 			WARN_ON_ONCE(1);
1052 #endif
1053 		}
1054 
1055 		if (ret)
1056 			cleaned++;
1057 	}
1058 
1059 	mmu_notifier_invalidate_range_end(&range);
1060 
1061 	return cleaned;
1062 }
1063 
1064 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1065 			     unsigned long address, void *arg)
1066 {
1067 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1068 	int *cleaned = arg;
1069 
1070 	*cleaned += page_vma_mkclean_one(&pvmw);
1071 
1072 	return true;
1073 }
1074 
1075 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1076 {
1077 	if (vma->vm_flags & VM_SHARED)
1078 		return false;
1079 
1080 	return true;
1081 }
1082 
1083 int folio_mkclean(struct folio *folio)
1084 {
1085 	int cleaned = 0;
1086 	struct address_space *mapping;
1087 	struct rmap_walk_control rwc = {
1088 		.arg = (void *)&cleaned,
1089 		.rmap_one = page_mkclean_one,
1090 		.invalid_vma = invalid_mkclean_vma,
1091 	};
1092 
1093 	BUG_ON(!folio_test_locked(folio));
1094 
1095 	if (!folio_mapped(folio))
1096 		return 0;
1097 
1098 	mapping = folio_mapping(folio);
1099 	if (!mapping)
1100 		return 0;
1101 
1102 	rmap_walk(folio, &rwc);
1103 
1104 	return cleaned;
1105 }
1106 EXPORT_SYMBOL_GPL(folio_mkclean);
1107 
1108 /**
1109  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1110  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1111  *                     within the @vma of shared mappings. And since clean PTEs
1112  *                     should also be readonly, write protects them too.
1113  * @pfn: start pfn.
1114  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1115  * @pgoff: page offset that the @pfn mapped with.
1116  * @vma: vma that @pfn mapped within.
1117  *
1118  * Returns the number of cleaned PTEs (including PMDs).
1119  */
1120 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1121 		      struct vm_area_struct *vma)
1122 {
1123 	struct page_vma_mapped_walk pvmw = {
1124 		.pfn		= pfn,
1125 		.nr_pages	= nr_pages,
1126 		.pgoff		= pgoff,
1127 		.vma		= vma,
1128 		.flags		= PVMW_SYNC,
1129 	};
1130 
1131 	if (invalid_mkclean_vma(vma, NULL))
1132 		return 0;
1133 
1134 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1135 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1136 
1137 	return page_vma_mkclean_one(&pvmw);
1138 }
1139 
1140 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1141 		struct page *page, int nr_pages, enum rmap_level level,
1142 		int *nr_pmdmapped)
1143 {
1144 	atomic_t *mapped = &folio->_nr_pages_mapped;
1145 	const int orig_nr_pages = nr_pages;
1146 	int first, nr = 0;
1147 
1148 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1149 
1150 	switch (level) {
1151 	case RMAP_LEVEL_PTE:
1152 		if (!folio_test_large(folio)) {
1153 			nr = atomic_inc_and_test(&page->_mapcount);
1154 			break;
1155 		}
1156 
1157 		do {
1158 			first = atomic_inc_and_test(&page->_mapcount);
1159 			if (first) {
1160 				first = atomic_inc_return_relaxed(mapped);
1161 				if (first < ENTIRELY_MAPPED)
1162 					nr++;
1163 			}
1164 		} while (page++, --nr_pages > 0);
1165 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1166 		break;
1167 	case RMAP_LEVEL_PMD:
1168 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1169 		if (first) {
1170 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1171 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1172 				*nr_pmdmapped = folio_nr_pages(folio);
1173 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1174 				/* Raced ahead of a remove and another add? */
1175 				if (unlikely(nr < 0))
1176 					nr = 0;
1177 			} else {
1178 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1179 				nr = 0;
1180 			}
1181 		}
1182 		atomic_inc(&folio->_large_mapcount);
1183 		break;
1184 	}
1185 	return nr;
1186 }
1187 
1188 /**
1189  * folio_move_anon_rmap - move a folio to our anon_vma
1190  * @folio:	The folio to move to our anon_vma
1191  * @vma:	The vma the folio belongs to
1192  *
1193  * When a folio belongs exclusively to one process after a COW event,
1194  * that folio can be moved into the anon_vma that belongs to just that
1195  * process, so the rmap code will not search the parent or sibling processes.
1196  */
1197 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1198 {
1199 	void *anon_vma = vma->anon_vma;
1200 
1201 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1202 	VM_BUG_ON_VMA(!anon_vma, vma);
1203 
1204 	anon_vma += PAGE_MAPPING_ANON;
1205 	/*
1206 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1207 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1208 	 * folio_test_anon()) will not see one without the other.
1209 	 */
1210 	WRITE_ONCE(folio->mapping, anon_vma);
1211 }
1212 
1213 /**
1214  * __folio_set_anon - set up a new anonymous rmap for a folio
1215  * @folio:	The folio to set up the new anonymous rmap for.
1216  * @vma:	VM area to add the folio to.
1217  * @address:	User virtual address of the mapping
1218  * @exclusive:	Whether the folio is exclusive to the process.
1219  */
1220 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1221 			     unsigned long address, bool exclusive)
1222 {
1223 	struct anon_vma *anon_vma = vma->anon_vma;
1224 
1225 	BUG_ON(!anon_vma);
1226 
1227 	/*
1228 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1229 	 * possible anon_vma for the folio mapping!
1230 	 */
1231 	if (!exclusive)
1232 		anon_vma = anon_vma->root;
1233 
1234 	/*
1235 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1236 	 * Make sure the compiler doesn't split the stores of anon_vma and
1237 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1238 	 * could mistake the mapping for a struct address_space and crash.
1239 	 */
1240 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1241 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1242 	folio->index = linear_page_index(vma, address);
1243 }
1244 
1245 /**
1246  * __page_check_anon_rmap - sanity check anonymous rmap addition
1247  * @folio:	The folio containing @page.
1248  * @page:	the page to check the mapping of
1249  * @vma:	the vm area in which the mapping is added
1250  * @address:	the user virtual address mapped
1251  */
1252 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1253 	struct vm_area_struct *vma, unsigned long address)
1254 {
1255 	/*
1256 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1257 	 * be set up correctly at this point.
1258 	 *
1259 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1260 	 * always holds the page locked.
1261 	 *
1262 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1263 	 * are initially only visible via the pagetables, and the pte is locked
1264 	 * over the call to folio_add_new_anon_rmap.
1265 	 */
1266 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1267 			folio);
1268 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1269 		       page);
1270 }
1271 
1272 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1273 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1274 		unsigned long address, rmap_t flags, enum rmap_level level)
1275 {
1276 	int i, nr, nr_pmdmapped = 0;
1277 
1278 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1279 	if (nr_pmdmapped)
1280 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1281 	if (nr)
1282 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1283 
1284 	if (unlikely(!folio_test_anon(folio))) {
1285 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1286 		/*
1287 		 * For a PTE-mapped large folio, we only know that the single
1288 		 * PTE is exclusive. Further, __folio_set_anon() might not get
1289 		 * folio->index right when not given the address of the head
1290 		 * page.
1291 		 */
1292 		VM_WARN_ON_FOLIO(folio_test_large(folio) &&
1293 				 level != RMAP_LEVEL_PMD, folio);
1294 		__folio_set_anon(folio, vma, address,
1295 				 !!(flags & RMAP_EXCLUSIVE));
1296 	} else if (likely(!folio_test_ksm(folio))) {
1297 		__page_check_anon_rmap(folio, page, vma, address);
1298 	}
1299 
1300 	if (flags & RMAP_EXCLUSIVE) {
1301 		switch (level) {
1302 		case RMAP_LEVEL_PTE:
1303 			for (i = 0; i < nr_pages; i++)
1304 				SetPageAnonExclusive(page + i);
1305 			break;
1306 		case RMAP_LEVEL_PMD:
1307 			SetPageAnonExclusive(page);
1308 			break;
1309 		}
1310 	}
1311 	for (i = 0; i < nr_pages; i++) {
1312 		struct page *cur_page = page + i;
1313 
1314 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1315 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1316 				  (folio_test_large(folio) &&
1317 				   folio_entire_mapcount(folio) > 1)) &&
1318 				 PageAnonExclusive(cur_page), folio);
1319 	}
1320 
1321 	/*
1322 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1323 	 * not easy to check whether the large folio is fully mapped to VMA
1324 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1325 	 * large folio.
1326 	 */
1327 	if (!folio_test_large(folio))
1328 		mlock_vma_folio(folio, vma);
1329 }
1330 
1331 /**
1332  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1333  * @folio:	The folio to add the mappings to
1334  * @page:	The first page to add
1335  * @nr_pages:	The number of pages which will be mapped
1336  * @vma:	The vm area in which the mappings are added
1337  * @address:	The user virtual address of the first page to map
1338  * @flags:	The rmap flags
1339  *
1340  * The page range of folio is defined by [first_page, first_page + nr_pages)
1341  *
1342  * The caller needs to hold the page table lock, and the page must be locked in
1343  * the anon_vma case: to serialize mapping,index checking after setting,
1344  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1345  * (but KSM folios are never downgraded).
1346  */
1347 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1348 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1349 		rmap_t flags)
1350 {
1351 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1352 			      RMAP_LEVEL_PTE);
1353 }
1354 
1355 /**
1356  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1357  * @folio:	The folio to add the mapping to
1358  * @page:	The first page to add
1359  * @vma:	The vm area in which the mapping is added
1360  * @address:	The user virtual address of the first page to map
1361  * @flags:	The rmap flags
1362  *
1363  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1364  *
1365  * The caller needs to hold the page table lock, and the page must be locked in
1366  * the anon_vma case: to serialize mapping,index checking after setting.
1367  */
1368 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1369 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1370 {
1371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1372 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1373 			      RMAP_LEVEL_PMD);
1374 #else
1375 	WARN_ON_ONCE(true);
1376 #endif
1377 }
1378 
1379 /**
1380  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1381  * @folio:	The folio to add the mapping to.
1382  * @vma:	the vm area in which the mapping is added
1383  * @address:	the user virtual address mapped
1384  *
1385  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1386  * This means the inc-and-test can be bypassed.
1387  * The folio does not have to be locked.
1388  *
1389  * If the folio is pmd-mappable, it is accounted as a THP.  As the folio
1390  * is new, it's assumed to be mapped exclusively by a single process.
1391  */
1392 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1393 		unsigned long address)
1394 {
1395 	int nr = folio_nr_pages(folio);
1396 
1397 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1398 	VM_BUG_ON_VMA(address < vma->vm_start ||
1399 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1400 	__folio_set_swapbacked(folio);
1401 	__folio_set_anon(folio, vma, address, true);
1402 
1403 	if (likely(!folio_test_large(folio))) {
1404 		/* increment count (starts at -1) */
1405 		atomic_set(&folio->_mapcount, 0);
1406 		SetPageAnonExclusive(&folio->page);
1407 	} else if (!folio_test_pmd_mappable(folio)) {
1408 		int i;
1409 
1410 		for (i = 0; i < nr; i++) {
1411 			struct page *page = folio_page(folio, i);
1412 
1413 			/* increment count (starts at -1) */
1414 			atomic_set(&page->_mapcount, 0);
1415 			SetPageAnonExclusive(page);
1416 		}
1417 
1418 		/* increment count (starts at -1) */
1419 		atomic_set(&folio->_large_mapcount, nr - 1);
1420 		atomic_set(&folio->_nr_pages_mapped, nr);
1421 	} else {
1422 		/* increment count (starts at -1) */
1423 		atomic_set(&folio->_entire_mapcount, 0);
1424 		/* increment count (starts at -1) */
1425 		atomic_set(&folio->_large_mapcount, 0);
1426 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1427 		SetPageAnonExclusive(&folio->page);
1428 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1429 	}
1430 
1431 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1432 }
1433 
1434 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1435 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1436 		enum rmap_level level)
1437 {
1438 	pg_data_t *pgdat = folio_pgdat(folio);
1439 	int nr, nr_pmdmapped = 0;
1440 
1441 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1442 
1443 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1444 	if (nr_pmdmapped)
1445 		__mod_node_page_state(pgdat, folio_test_swapbacked(folio) ?
1446 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1447 	if (nr)
1448 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1449 
1450 	/* See comments in folio_add_anon_rmap_*() */
1451 	if (!folio_test_large(folio))
1452 		mlock_vma_folio(folio, vma);
1453 }
1454 
1455 /**
1456  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1457  * @folio:	The folio to add the mappings to
1458  * @page:	The first page to add
1459  * @nr_pages:	The number of pages that will be mapped using PTEs
1460  * @vma:	The vm area in which the mappings are added
1461  *
1462  * The page range of the folio is defined by [page, page + nr_pages)
1463  *
1464  * The caller needs to hold the page table lock.
1465  */
1466 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1467 		int nr_pages, struct vm_area_struct *vma)
1468 {
1469 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1470 }
1471 
1472 /**
1473  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1474  * @folio:	The folio to add the mapping to
1475  * @page:	The first page to add
1476  * @vma:	The vm area in which the mapping is added
1477  *
1478  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1479  *
1480  * The caller needs to hold the page table lock.
1481  */
1482 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1483 		struct vm_area_struct *vma)
1484 {
1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1487 #else
1488 	WARN_ON_ONCE(true);
1489 #endif
1490 }
1491 
1492 static __always_inline void __folio_remove_rmap(struct folio *folio,
1493 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1494 		enum rmap_level level)
1495 {
1496 	atomic_t *mapped = &folio->_nr_pages_mapped;
1497 	pg_data_t *pgdat = folio_pgdat(folio);
1498 	int last, nr = 0, nr_pmdmapped = 0;
1499 	bool partially_mapped = false;
1500 	enum node_stat_item idx;
1501 
1502 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1503 
1504 	switch (level) {
1505 	case RMAP_LEVEL_PTE:
1506 		if (!folio_test_large(folio)) {
1507 			nr = atomic_add_negative(-1, &page->_mapcount);
1508 			break;
1509 		}
1510 
1511 		atomic_sub(nr_pages, &folio->_large_mapcount);
1512 		do {
1513 			last = atomic_add_negative(-1, &page->_mapcount);
1514 			if (last) {
1515 				last = atomic_dec_return_relaxed(mapped);
1516 				if (last < ENTIRELY_MAPPED)
1517 					nr++;
1518 			}
1519 		} while (page++, --nr_pages > 0);
1520 
1521 		partially_mapped = nr && atomic_read(mapped);
1522 		break;
1523 	case RMAP_LEVEL_PMD:
1524 		atomic_dec(&folio->_large_mapcount);
1525 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1526 		if (last) {
1527 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1528 			if (likely(nr < ENTIRELY_MAPPED)) {
1529 				nr_pmdmapped = folio_nr_pages(folio);
1530 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1531 				/* Raced ahead of another remove and an add? */
1532 				if (unlikely(nr < 0))
1533 					nr = 0;
1534 			} else {
1535 				/* An add of ENTIRELY_MAPPED raced ahead */
1536 				nr = 0;
1537 			}
1538 		}
1539 
1540 		partially_mapped = nr < nr_pmdmapped;
1541 		break;
1542 	}
1543 
1544 	if (nr_pmdmapped) {
1545 		/* NR_{FILE/SHMEM}_PMDMAPPED are not maintained per-memcg */
1546 		if (folio_test_anon(folio))
1547 			__lruvec_stat_mod_folio(folio, NR_ANON_THPS, -nr_pmdmapped);
1548 		else
1549 			__mod_node_page_state(pgdat,
1550 					folio_test_swapbacked(folio) ?
1551 					NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED,
1552 					-nr_pmdmapped);
1553 	}
1554 	if (nr) {
1555 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1556 		__lruvec_stat_mod_folio(folio, idx, -nr);
1557 
1558 		/*
1559 		 * Queue anon large folio for deferred split if at least one
1560 		 * page of the folio is unmapped and at least one page
1561 		 * is still mapped.
1562 		 *
1563 		 * Check partially_mapped first to ensure it is a large folio.
1564 		 */
1565 		if (folio_test_anon(folio) && partially_mapped &&
1566 		    list_empty(&folio->_deferred_list))
1567 			deferred_split_folio(folio);
1568 	}
1569 
1570 	/*
1571 	 * It would be tidy to reset folio_test_anon mapping when fully
1572 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1573 	 * which increments mapcount after us but sets mapping before us:
1574 	 * so leave the reset to free_pages_prepare, and remember that
1575 	 * it's only reliable while mapped.
1576 	 */
1577 
1578 	munlock_vma_folio(folio, vma);
1579 }
1580 
1581 /**
1582  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1583  * @folio:	The folio to remove the mappings from
1584  * @page:	The first page to remove
1585  * @nr_pages:	The number of pages that will be removed from the mapping
1586  * @vma:	The vm area from which the mappings are removed
1587  *
1588  * The page range of the folio is defined by [page, page + nr_pages)
1589  *
1590  * The caller needs to hold the page table lock.
1591  */
1592 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1593 		int nr_pages, struct vm_area_struct *vma)
1594 {
1595 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1596 }
1597 
1598 /**
1599  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1600  * @folio:	The folio to remove the mapping from
1601  * @page:	The first page to remove
1602  * @vma:	The vm area from which the mapping is removed
1603  *
1604  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1605  *
1606  * The caller needs to hold the page table lock.
1607  */
1608 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1609 		struct vm_area_struct *vma)
1610 {
1611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1612 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1613 #else
1614 	WARN_ON_ONCE(true);
1615 #endif
1616 }
1617 
1618 /*
1619  * @arg: enum ttu_flags will be passed to this argument
1620  */
1621 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1622 		     unsigned long address, void *arg)
1623 {
1624 	struct mm_struct *mm = vma->vm_mm;
1625 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1626 	pte_t pteval;
1627 	struct page *subpage;
1628 	bool anon_exclusive, ret = true;
1629 	struct mmu_notifier_range range;
1630 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1631 	unsigned long pfn;
1632 	unsigned long hsz = 0;
1633 
1634 	/*
1635 	 * When racing against e.g. zap_pte_range() on another cpu,
1636 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1637 	 * try_to_unmap() may return before page_mapped() has become false,
1638 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1639 	 */
1640 	if (flags & TTU_SYNC)
1641 		pvmw.flags = PVMW_SYNC;
1642 
1643 	if (flags & TTU_SPLIT_HUGE_PMD)
1644 		split_huge_pmd_address(vma, address, false, folio);
1645 
1646 	/*
1647 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1648 	 * For hugetlb, it could be much worse if we need to do pud
1649 	 * invalidation in the case of pmd sharing.
1650 	 *
1651 	 * Note that the folio can not be freed in this function as call of
1652 	 * try_to_unmap() must hold a reference on the folio.
1653 	 */
1654 	range.end = vma_address_end(&pvmw);
1655 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1656 				address, range.end);
1657 	if (folio_test_hugetlb(folio)) {
1658 		/*
1659 		 * If sharing is possible, start and end will be adjusted
1660 		 * accordingly.
1661 		 */
1662 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1663 						     &range.end);
1664 
1665 		/* We need the huge page size for set_huge_pte_at() */
1666 		hsz = huge_page_size(hstate_vma(vma));
1667 	}
1668 	mmu_notifier_invalidate_range_start(&range);
1669 
1670 	while (page_vma_mapped_walk(&pvmw)) {
1671 		/* Unexpected PMD-mapped THP? */
1672 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1673 
1674 		/*
1675 		 * If the folio is in an mlock()d vma, we must not swap it out.
1676 		 */
1677 		if (!(flags & TTU_IGNORE_MLOCK) &&
1678 		    (vma->vm_flags & VM_LOCKED)) {
1679 			/* Restore the mlock which got missed */
1680 			if (!folio_test_large(folio))
1681 				mlock_vma_folio(folio, vma);
1682 			page_vma_mapped_walk_done(&pvmw);
1683 			ret = false;
1684 			break;
1685 		}
1686 
1687 		pfn = pte_pfn(ptep_get(pvmw.pte));
1688 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1689 		address = pvmw.address;
1690 		anon_exclusive = folio_test_anon(folio) &&
1691 				 PageAnonExclusive(subpage);
1692 
1693 		if (folio_test_hugetlb(folio)) {
1694 			bool anon = folio_test_anon(folio);
1695 
1696 			/*
1697 			 * The try_to_unmap() is only passed a hugetlb page
1698 			 * in the case where the hugetlb page is poisoned.
1699 			 */
1700 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1701 			/*
1702 			 * huge_pmd_unshare may unmap an entire PMD page.
1703 			 * There is no way of knowing exactly which PMDs may
1704 			 * be cached for this mm, so we must flush them all.
1705 			 * start/end were already adjusted above to cover this
1706 			 * range.
1707 			 */
1708 			flush_cache_range(vma, range.start, range.end);
1709 
1710 			/*
1711 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1712 			 * held in write mode.  Caller needs to explicitly
1713 			 * do this outside rmap routines.
1714 			 *
1715 			 * We also must hold hugetlb vma_lock in write mode.
1716 			 * Lock order dictates acquiring vma_lock BEFORE
1717 			 * i_mmap_rwsem.  We can only try lock here and fail
1718 			 * if unsuccessful.
1719 			 */
1720 			if (!anon) {
1721 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1722 				if (!hugetlb_vma_trylock_write(vma)) {
1723 					page_vma_mapped_walk_done(&pvmw);
1724 					ret = false;
1725 					break;
1726 				}
1727 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1728 					hugetlb_vma_unlock_write(vma);
1729 					flush_tlb_range(vma,
1730 						range.start, range.end);
1731 					/*
1732 					 * The ref count of the PMD page was
1733 					 * dropped which is part of the way map
1734 					 * counting is done for shared PMDs.
1735 					 * Return 'true' here.  When there is
1736 					 * no other sharing, huge_pmd_unshare
1737 					 * returns false and we will unmap the
1738 					 * actual page and drop map count
1739 					 * to zero.
1740 					 */
1741 					page_vma_mapped_walk_done(&pvmw);
1742 					break;
1743 				}
1744 				hugetlb_vma_unlock_write(vma);
1745 			}
1746 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1747 		} else {
1748 			flush_cache_page(vma, address, pfn);
1749 			/* Nuke the page table entry. */
1750 			if (should_defer_flush(mm, flags)) {
1751 				/*
1752 				 * We clear the PTE but do not flush so potentially
1753 				 * a remote CPU could still be writing to the folio.
1754 				 * If the entry was previously clean then the
1755 				 * architecture must guarantee that a clear->dirty
1756 				 * transition on a cached TLB entry is written through
1757 				 * and traps if the PTE is unmapped.
1758 				 */
1759 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1760 
1761 				set_tlb_ubc_flush_pending(mm, pteval, address);
1762 			} else {
1763 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1764 			}
1765 		}
1766 
1767 		/*
1768 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1769 		 * we may want to replace a none pte with a marker pte if
1770 		 * it's file-backed, so we don't lose the tracking info.
1771 		 */
1772 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1773 
1774 		/* Set the dirty flag on the folio now the pte is gone. */
1775 		if (pte_dirty(pteval))
1776 			folio_mark_dirty(folio);
1777 
1778 		/* Update high watermark before we lower rss */
1779 		update_hiwater_rss(mm);
1780 
1781 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1782 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1783 			if (folio_test_hugetlb(folio)) {
1784 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1785 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1786 						hsz);
1787 			} else {
1788 				dec_mm_counter(mm, mm_counter(folio));
1789 				set_pte_at(mm, address, pvmw.pte, pteval);
1790 			}
1791 
1792 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1793 			/*
1794 			 * The guest indicated that the page content is of no
1795 			 * interest anymore. Simply discard the pte, vmscan
1796 			 * will take care of the rest.
1797 			 * A future reference will then fault in a new zero
1798 			 * page. When userfaultfd is active, we must not drop
1799 			 * this page though, as its main user (postcopy
1800 			 * migration) will not expect userfaults on already
1801 			 * copied pages.
1802 			 */
1803 			dec_mm_counter(mm, mm_counter(folio));
1804 		} else if (folio_test_anon(folio)) {
1805 			swp_entry_t entry = page_swap_entry(subpage);
1806 			pte_t swp_pte;
1807 			/*
1808 			 * Store the swap location in the pte.
1809 			 * See handle_pte_fault() ...
1810 			 */
1811 			if (unlikely(folio_test_swapbacked(folio) !=
1812 					folio_test_swapcache(folio))) {
1813 				WARN_ON_ONCE(1);
1814 				ret = false;
1815 				page_vma_mapped_walk_done(&pvmw);
1816 				break;
1817 			}
1818 
1819 			/* MADV_FREE page check */
1820 			if (!folio_test_swapbacked(folio)) {
1821 				int ref_count, map_count;
1822 
1823 				/*
1824 				 * Synchronize with gup_pte_range():
1825 				 * - clear PTE; barrier; read refcount
1826 				 * - inc refcount; barrier; read PTE
1827 				 */
1828 				smp_mb();
1829 
1830 				ref_count = folio_ref_count(folio);
1831 				map_count = folio_mapcount(folio);
1832 
1833 				/*
1834 				 * Order reads for page refcount and dirty flag
1835 				 * (see comments in __remove_mapping()).
1836 				 */
1837 				smp_rmb();
1838 
1839 				/*
1840 				 * The only page refs must be one from isolation
1841 				 * plus the rmap(s) (dropped by discard:).
1842 				 */
1843 				if (ref_count == 1 + map_count &&
1844 				    !folio_test_dirty(folio)) {
1845 					dec_mm_counter(mm, MM_ANONPAGES);
1846 					goto discard;
1847 				}
1848 
1849 				/*
1850 				 * If the folio was redirtied, it cannot be
1851 				 * discarded. Remap the page to page table.
1852 				 */
1853 				set_pte_at(mm, address, pvmw.pte, pteval);
1854 				folio_set_swapbacked(folio);
1855 				ret = false;
1856 				page_vma_mapped_walk_done(&pvmw);
1857 				break;
1858 			}
1859 
1860 			if (swap_duplicate(entry) < 0) {
1861 				set_pte_at(mm, address, pvmw.pte, pteval);
1862 				ret = false;
1863 				page_vma_mapped_walk_done(&pvmw);
1864 				break;
1865 			}
1866 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1867 				swap_free(entry);
1868 				set_pte_at(mm, address, pvmw.pte, pteval);
1869 				ret = false;
1870 				page_vma_mapped_walk_done(&pvmw);
1871 				break;
1872 			}
1873 
1874 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1875 			if (anon_exclusive &&
1876 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1877 				swap_free(entry);
1878 				set_pte_at(mm, address, pvmw.pte, pteval);
1879 				ret = false;
1880 				page_vma_mapped_walk_done(&pvmw);
1881 				break;
1882 			}
1883 			if (list_empty(&mm->mmlist)) {
1884 				spin_lock(&mmlist_lock);
1885 				if (list_empty(&mm->mmlist))
1886 					list_add(&mm->mmlist, &init_mm.mmlist);
1887 				spin_unlock(&mmlist_lock);
1888 			}
1889 			dec_mm_counter(mm, MM_ANONPAGES);
1890 			inc_mm_counter(mm, MM_SWAPENTS);
1891 			swp_pte = swp_entry_to_pte(entry);
1892 			if (anon_exclusive)
1893 				swp_pte = pte_swp_mkexclusive(swp_pte);
1894 			if (pte_soft_dirty(pteval))
1895 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1896 			if (pte_uffd_wp(pteval))
1897 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1898 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1899 		} else {
1900 			/*
1901 			 * This is a locked file-backed folio,
1902 			 * so it cannot be removed from the page
1903 			 * cache and replaced by a new folio before
1904 			 * mmu_notifier_invalidate_range_end, so no
1905 			 * concurrent thread might update its page table
1906 			 * to point at a new folio while a device is
1907 			 * still using this folio.
1908 			 *
1909 			 * See Documentation/mm/mmu_notifier.rst
1910 			 */
1911 			dec_mm_counter(mm, mm_counter_file(folio));
1912 		}
1913 discard:
1914 		if (unlikely(folio_test_hugetlb(folio)))
1915 			hugetlb_remove_rmap(folio);
1916 		else
1917 			folio_remove_rmap_pte(folio, subpage, vma);
1918 		if (vma->vm_flags & VM_LOCKED)
1919 			mlock_drain_local();
1920 		folio_put(folio);
1921 	}
1922 
1923 	mmu_notifier_invalidate_range_end(&range);
1924 
1925 	return ret;
1926 }
1927 
1928 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1929 {
1930 	return vma_is_temporary_stack(vma);
1931 }
1932 
1933 static int folio_not_mapped(struct folio *folio)
1934 {
1935 	return !folio_mapped(folio);
1936 }
1937 
1938 /**
1939  * try_to_unmap - Try to remove all page table mappings to a folio.
1940  * @folio: The folio to unmap.
1941  * @flags: action and flags
1942  *
1943  * Tries to remove all the page table entries which are mapping this
1944  * folio.  It is the caller's responsibility to check if the folio is
1945  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1946  *
1947  * Context: Caller must hold the folio lock.
1948  */
1949 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1950 {
1951 	struct rmap_walk_control rwc = {
1952 		.rmap_one = try_to_unmap_one,
1953 		.arg = (void *)flags,
1954 		.done = folio_not_mapped,
1955 		.anon_lock = folio_lock_anon_vma_read,
1956 	};
1957 
1958 	if (flags & TTU_RMAP_LOCKED)
1959 		rmap_walk_locked(folio, &rwc);
1960 	else
1961 		rmap_walk(folio, &rwc);
1962 }
1963 
1964 /*
1965  * @arg: enum ttu_flags will be passed to this argument.
1966  *
1967  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1968  * containing migration entries.
1969  */
1970 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1971 		     unsigned long address, void *arg)
1972 {
1973 	struct mm_struct *mm = vma->vm_mm;
1974 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1975 	pte_t pteval;
1976 	struct page *subpage;
1977 	bool anon_exclusive, ret = true;
1978 	struct mmu_notifier_range range;
1979 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1980 	unsigned long pfn;
1981 	unsigned long hsz = 0;
1982 
1983 	/*
1984 	 * When racing against e.g. zap_pte_range() on another cpu,
1985 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1986 	 * try_to_migrate() may return before page_mapped() has become false,
1987 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1988 	 */
1989 	if (flags & TTU_SYNC)
1990 		pvmw.flags = PVMW_SYNC;
1991 
1992 	/*
1993 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1994 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1995 	 */
1996 	if (flags & TTU_SPLIT_HUGE_PMD)
1997 		split_huge_pmd_address(vma, address, true, folio);
1998 
1999 	/*
2000 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2001 	 * For hugetlb, it could be much worse if we need to do pud
2002 	 * invalidation in the case of pmd sharing.
2003 	 *
2004 	 * Note that the page can not be free in this function as call of
2005 	 * try_to_unmap() must hold a reference on the page.
2006 	 */
2007 	range.end = vma_address_end(&pvmw);
2008 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2009 				address, range.end);
2010 	if (folio_test_hugetlb(folio)) {
2011 		/*
2012 		 * If sharing is possible, start and end will be adjusted
2013 		 * accordingly.
2014 		 */
2015 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2016 						     &range.end);
2017 
2018 		/* We need the huge page size for set_huge_pte_at() */
2019 		hsz = huge_page_size(hstate_vma(vma));
2020 	}
2021 	mmu_notifier_invalidate_range_start(&range);
2022 
2023 	while (page_vma_mapped_walk(&pvmw)) {
2024 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2025 		/* PMD-mapped THP migration entry */
2026 		if (!pvmw.pte) {
2027 			subpage = folio_page(folio,
2028 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2029 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2030 					!folio_test_pmd_mappable(folio), folio);
2031 
2032 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2033 				ret = false;
2034 				page_vma_mapped_walk_done(&pvmw);
2035 				break;
2036 			}
2037 			continue;
2038 		}
2039 #endif
2040 
2041 		/* Unexpected PMD-mapped THP? */
2042 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2043 
2044 		pfn = pte_pfn(ptep_get(pvmw.pte));
2045 
2046 		if (folio_is_zone_device(folio)) {
2047 			/*
2048 			 * Our PTE is a non-present device exclusive entry and
2049 			 * calculating the subpage as for the common case would
2050 			 * result in an invalid pointer.
2051 			 *
2052 			 * Since only PAGE_SIZE pages can currently be
2053 			 * migrated, just set it to page. This will need to be
2054 			 * changed when hugepage migrations to device private
2055 			 * memory are supported.
2056 			 */
2057 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2058 			subpage = &folio->page;
2059 		} else {
2060 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2061 		}
2062 		address = pvmw.address;
2063 		anon_exclusive = folio_test_anon(folio) &&
2064 				 PageAnonExclusive(subpage);
2065 
2066 		if (folio_test_hugetlb(folio)) {
2067 			bool anon = folio_test_anon(folio);
2068 
2069 			/*
2070 			 * huge_pmd_unshare may unmap an entire PMD page.
2071 			 * There is no way of knowing exactly which PMDs may
2072 			 * be cached for this mm, so we must flush them all.
2073 			 * start/end were already adjusted above to cover this
2074 			 * range.
2075 			 */
2076 			flush_cache_range(vma, range.start, range.end);
2077 
2078 			/*
2079 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2080 			 * held in write mode.  Caller needs to explicitly
2081 			 * do this outside rmap routines.
2082 			 *
2083 			 * We also must hold hugetlb vma_lock in write mode.
2084 			 * Lock order dictates acquiring vma_lock BEFORE
2085 			 * i_mmap_rwsem.  We can only try lock here and
2086 			 * fail if unsuccessful.
2087 			 */
2088 			if (!anon) {
2089 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2090 				if (!hugetlb_vma_trylock_write(vma)) {
2091 					page_vma_mapped_walk_done(&pvmw);
2092 					ret = false;
2093 					break;
2094 				}
2095 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2096 					hugetlb_vma_unlock_write(vma);
2097 					flush_tlb_range(vma,
2098 						range.start, range.end);
2099 
2100 					/*
2101 					 * The ref count of the PMD page was
2102 					 * dropped which is part of the way map
2103 					 * counting is done for shared PMDs.
2104 					 * Return 'true' here.  When there is
2105 					 * no other sharing, huge_pmd_unshare
2106 					 * returns false and we will unmap the
2107 					 * actual page and drop map count
2108 					 * to zero.
2109 					 */
2110 					page_vma_mapped_walk_done(&pvmw);
2111 					break;
2112 				}
2113 				hugetlb_vma_unlock_write(vma);
2114 			}
2115 			/* Nuke the hugetlb page table entry */
2116 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2117 		} else {
2118 			flush_cache_page(vma, address, pfn);
2119 			/* Nuke the page table entry. */
2120 			if (should_defer_flush(mm, flags)) {
2121 				/*
2122 				 * We clear the PTE but do not flush so potentially
2123 				 * a remote CPU could still be writing to the folio.
2124 				 * If the entry was previously clean then the
2125 				 * architecture must guarantee that a clear->dirty
2126 				 * transition on a cached TLB entry is written through
2127 				 * and traps if the PTE is unmapped.
2128 				 */
2129 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2130 
2131 				set_tlb_ubc_flush_pending(mm, pteval, address);
2132 			} else {
2133 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2134 			}
2135 		}
2136 
2137 		/* Set the dirty flag on the folio now the pte is gone. */
2138 		if (pte_dirty(pteval))
2139 			folio_mark_dirty(folio);
2140 
2141 		/* Update high watermark before we lower rss */
2142 		update_hiwater_rss(mm);
2143 
2144 		if (folio_is_device_private(folio)) {
2145 			unsigned long pfn = folio_pfn(folio);
2146 			swp_entry_t entry;
2147 			pte_t swp_pte;
2148 
2149 			if (anon_exclusive)
2150 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2151 									   subpage));
2152 
2153 			/*
2154 			 * Store the pfn of the page in a special migration
2155 			 * pte. do_swap_page() will wait until the migration
2156 			 * pte is removed and then restart fault handling.
2157 			 */
2158 			entry = pte_to_swp_entry(pteval);
2159 			if (is_writable_device_private_entry(entry))
2160 				entry = make_writable_migration_entry(pfn);
2161 			else if (anon_exclusive)
2162 				entry = make_readable_exclusive_migration_entry(pfn);
2163 			else
2164 				entry = make_readable_migration_entry(pfn);
2165 			swp_pte = swp_entry_to_pte(entry);
2166 
2167 			/*
2168 			 * pteval maps a zone device page and is therefore
2169 			 * a swap pte.
2170 			 */
2171 			if (pte_swp_soft_dirty(pteval))
2172 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2173 			if (pte_swp_uffd_wp(pteval))
2174 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2175 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2176 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2177 						folio_order(folio));
2178 			/*
2179 			 * No need to invalidate here it will synchronize on
2180 			 * against the special swap migration pte.
2181 			 */
2182 		} else if (PageHWPoison(subpage)) {
2183 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2184 			if (folio_test_hugetlb(folio)) {
2185 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2186 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2187 						hsz);
2188 			} else {
2189 				dec_mm_counter(mm, mm_counter(folio));
2190 				set_pte_at(mm, address, pvmw.pte, pteval);
2191 			}
2192 
2193 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2194 			/*
2195 			 * The guest indicated that the page content is of no
2196 			 * interest anymore. Simply discard the pte, vmscan
2197 			 * will take care of the rest.
2198 			 * A future reference will then fault in a new zero
2199 			 * page. When userfaultfd is active, we must not drop
2200 			 * this page though, as its main user (postcopy
2201 			 * migration) will not expect userfaults on already
2202 			 * copied pages.
2203 			 */
2204 			dec_mm_counter(mm, mm_counter(folio));
2205 		} else {
2206 			swp_entry_t entry;
2207 			pte_t swp_pte;
2208 
2209 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2210 				if (folio_test_hugetlb(folio))
2211 					set_huge_pte_at(mm, address, pvmw.pte,
2212 							pteval, hsz);
2213 				else
2214 					set_pte_at(mm, address, pvmw.pte, pteval);
2215 				ret = false;
2216 				page_vma_mapped_walk_done(&pvmw);
2217 				break;
2218 			}
2219 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2220 				       !anon_exclusive, subpage);
2221 
2222 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2223 			if (folio_test_hugetlb(folio)) {
2224 				if (anon_exclusive &&
2225 				    hugetlb_try_share_anon_rmap(folio)) {
2226 					set_huge_pte_at(mm, address, pvmw.pte,
2227 							pteval, hsz);
2228 					ret = false;
2229 					page_vma_mapped_walk_done(&pvmw);
2230 					break;
2231 				}
2232 			} else if (anon_exclusive &&
2233 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2234 				set_pte_at(mm, address, pvmw.pte, pteval);
2235 				ret = false;
2236 				page_vma_mapped_walk_done(&pvmw);
2237 				break;
2238 			}
2239 
2240 			/*
2241 			 * Store the pfn of the page in a special migration
2242 			 * pte. do_swap_page() will wait until the migration
2243 			 * pte is removed and then restart fault handling.
2244 			 */
2245 			if (pte_write(pteval))
2246 				entry = make_writable_migration_entry(
2247 							page_to_pfn(subpage));
2248 			else if (anon_exclusive)
2249 				entry = make_readable_exclusive_migration_entry(
2250 							page_to_pfn(subpage));
2251 			else
2252 				entry = make_readable_migration_entry(
2253 							page_to_pfn(subpage));
2254 			if (pte_young(pteval))
2255 				entry = make_migration_entry_young(entry);
2256 			if (pte_dirty(pteval))
2257 				entry = make_migration_entry_dirty(entry);
2258 			swp_pte = swp_entry_to_pte(entry);
2259 			if (pte_soft_dirty(pteval))
2260 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2261 			if (pte_uffd_wp(pteval))
2262 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2263 			if (folio_test_hugetlb(folio))
2264 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2265 						hsz);
2266 			else
2267 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2268 			trace_set_migration_pte(address, pte_val(swp_pte),
2269 						folio_order(folio));
2270 			/*
2271 			 * No need to invalidate here it will synchronize on
2272 			 * against the special swap migration pte.
2273 			 */
2274 		}
2275 
2276 		if (unlikely(folio_test_hugetlb(folio)))
2277 			hugetlb_remove_rmap(folio);
2278 		else
2279 			folio_remove_rmap_pte(folio, subpage, vma);
2280 		if (vma->vm_flags & VM_LOCKED)
2281 			mlock_drain_local();
2282 		folio_put(folio);
2283 	}
2284 
2285 	mmu_notifier_invalidate_range_end(&range);
2286 
2287 	return ret;
2288 }
2289 
2290 /**
2291  * try_to_migrate - try to replace all page table mappings with swap entries
2292  * @folio: the folio to replace page table entries for
2293  * @flags: action and flags
2294  *
2295  * Tries to remove all the page table entries which are mapping this folio and
2296  * replace them with special swap entries. Caller must hold the folio lock.
2297  */
2298 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2299 {
2300 	struct rmap_walk_control rwc = {
2301 		.rmap_one = try_to_migrate_one,
2302 		.arg = (void *)flags,
2303 		.done = folio_not_mapped,
2304 		.anon_lock = folio_lock_anon_vma_read,
2305 	};
2306 
2307 	/*
2308 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2309 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2310 	 */
2311 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2312 					TTU_SYNC | TTU_BATCH_FLUSH)))
2313 		return;
2314 
2315 	if (folio_is_zone_device(folio) &&
2316 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2317 		return;
2318 
2319 	/*
2320 	 * During exec, a temporary VMA is setup and later moved.
2321 	 * The VMA is moved under the anon_vma lock but not the
2322 	 * page tables leading to a race where migration cannot
2323 	 * find the migration ptes. Rather than increasing the
2324 	 * locking requirements of exec(), migration skips
2325 	 * temporary VMAs until after exec() completes.
2326 	 */
2327 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2328 		rwc.invalid_vma = invalid_migration_vma;
2329 
2330 	if (flags & TTU_RMAP_LOCKED)
2331 		rmap_walk_locked(folio, &rwc);
2332 	else
2333 		rmap_walk(folio, &rwc);
2334 }
2335 
2336 #ifdef CONFIG_DEVICE_PRIVATE
2337 struct make_exclusive_args {
2338 	struct mm_struct *mm;
2339 	unsigned long address;
2340 	void *owner;
2341 	bool valid;
2342 };
2343 
2344 static bool page_make_device_exclusive_one(struct folio *folio,
2345 		struct vm_area_struct *vma, unsigned long address, void *priv)
2346 {
2347 	struct mm_struct *mm = vma->vm_mm;
2348 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2349 	struct make_exclusive_args *args = priv;
2350 	pte_t pteval;
2351 	struct page *subpage;
2352 	bool ret = true;
2353 	struct mmu_notifier_range range;
2354 	swp_entry_t entry;
2355 	pte_t swp_pte;
2356 	pte_t ptent;
2357 
2358 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2359 				      vma->vm_mm, address, min(vma->vm_end,
2360 				      address + folio_size(folio)),
2361 				      args->owner);
2362 	mmu_notifier_invalidate_range_start(&range);
2363 
2364 	while (page_vma_mapped_walk(&pvmw)) {
2365 		/* Unexpected PMD-mapped THP? */
2366 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2367 
2368 		ptent = ptep_get(pvmw.pte);
2369 		if (!pte_present(ptent)) {
2370 			ret = false;
2371 			page_vma_mapped_walk_done(&pvmw);
2372 			break;
2373 		}
2374 
2375 		subpage = folio_page(folio,
2376 				pte_pfn(ptent) - folio_pfn(folio));
2377 		address = pvmw.address;
2378 
2379 		/* Nuke the page table entry. */
2380 		flush_cache_page(vma, address, pte_pfn(ptent));
2381 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2382 
2383 		/* Set the dirty flag on the folio now the pte is gone. */
2384 		if (pte_dirty(pteval))
2385 			folio_mark_dirty(folio);
2386 
2387 		/*
2388 		 * Check that our target page is still mapped at the expected
2389 		 * address.
2390 		 */
2391 		if (args->mm == mm && args->address == address &&
2392 		    pte_write(pteval))
2393 			args->valid = true;
2394 
2395 		/*
2396 		 * Store the pfn of the page in a special migration
2397 		 * pte. do_swap_page() will wait until the migration
2398 		 * pte is removed and then restart fault handling.
2399 		 */
2400 		if (pte_write(pteval))
2401 			entry = make_writable_device_exclusive_entry(
2402 							page_to_pfn(subpage));
2403 		else
2404 			entry = make_readable_device_exclusive_entry(
2405 							page_to_pfn(subpage));
2406 		swp_pte = swp_entry_to_pte(entry);
2407 		if (pte_soft_dirty(pteval))
2408 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2409 		if (pte_uffd_wp(pteval))
2410 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2411 
2412 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2413 
2414 		/*
2415 		 * There is a reference on the page for the swap entry which has
2416 		 * been removed, so shouldn't take another.
2417 		 */
2418 		folio_remove_rmap_pte(folio, subpage, vma);
2419 	}
2420 
2421 	mmu_notifier_invalidate_range_end(&range);
2422 
2423 	return ret;
2424 }
2425 
2426 /**
2427  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2428  * @folio: The folio to replace page table entries for.
2429  * @mm: The mm_struct where the folio is expected to be mapped.
2430  * @address: Address where the folio is expected to be mapped.
2431  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2432  *
2433  * Tries to remove all the page table entries which are mapping this
2434  * folio and replace them with special device exclusive swap entries to
2435  * grant a device exclusive access to the folio.
2436  *
2437  * Context: Caller must hold the folio lock.
2438  * Return: false if the page is still mapped, or if it could not be unmapped
2439  * from the expected address. Otherwise returns true (success).
2440  */
2441 static bool folio_make_device_exclusive(struct folio *folio,
2442 		struct mm_struct *mm, unsigned long address, void *owner)
2443 {
2444 	struct make_exclusive_args args = {
2445 		.mm = mm,
2446 		.address = address,
2447 		.owner = owner,
2448 		.valid = false,
2449 	};
2450 	struct rmap_walk_control rwc = {
2451 		.rmap_one = page_make_device_exclusive_one,
2452 		.done = folio_not_mapped,
2453 		.anon_lock = folio_lock_anon_vma_read,
2454 		.arg = &args,
2455 	};
2456 
2457 	/*
2458 	 * Restrict to anonymous folios for now to avoid potential writeback
2459 	 * issues.
2460 	 */
2461 	if (!folio_test_anon(folio))
2462 		return false;
2463 
2464 	rmap_walk(folio, &rwc);
2465 
2466 	return args.valid && !folio_mapcount(folio);
2467 }
2468 
2469 /**
2470  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2471  * @mm: mm_struct of associated target process
2472  * @start: start of the region to mark for exclusive device access
2473  * @end: end address of region
2474  * @pages: returns the pages which were successfully marked for exclusive access
2475  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2476  *
2477  * Returns: number of pages found in the range by GUP. A page is marked for
2478  * exclusive access only if the page pointer is non-NULL.
2479  *
2480  * This function finds ptes mapping page(s) to the given address range, locks
2481  * them and replaces mappings with special swap entries preventing userspace CPU
2482  * access. On fault these entries are replaced with the original mapping after
2483  * calling MMU notifiers.
2484  *
2485  * A driver using this to program access from a device must use a mmu notifier
2486  * critical section to hold a device specific lock during programming. Once
2487  * programming is complete it should drop the page lock and reference after
2488  * which point CPU access to the page will revoke the exclusive access.
2489  */
2490 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2491 				unsigned long end, struct page **pages,
2492 				void *owner)
2493 {
2494 	long npages = (end - start) >> PAGE_SHIFT;
2495 	long i;
2496 
2497 	npages = get_user_pages_remote(mm, start, npages,
2498 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2499 				       pages, NULL);
2500 	if (npages < 0)
2501 		return npages;
2502 
2503 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2504 		struct folio *folio = page_folio(pages[i]);
2505 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2506 			folio_put(folio);
2507 			pages[i] = NULL;
2508 			continue;
2509 		}
2510 
2511 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2512 			folio_unlock(folio);
2513 			folio_put(folio);
2514 			pages[i] = NULL;
2515 		}
2516 	}
2517 
2518 	return npages;
2519 }
2520 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2521 #endif
2522 
2523 void __put_anon_vma(struct anon_vma *anon_vma)
2524 {
2525 	struct anon_vma *root = anon_vma->root;
2526 
2527 	anon_vma_free(anon_vma);
2528 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2529 		anon_vma_free(root);
2530 }
2531 
2532 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2533 					    struct rmap_walk_control *rwc)
2534 {
2535 	struct anon_vma *anon_vma;
2536 
2537 	if (rwc->anon_lock)
2538 		return rwc->anon_lock(folio, rwc);
2539 
2540 	/*
2541 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2542 	 * because that depends on page_mapped(); but not all its usages
2543 	 * are holding mmap_lock. Users without mmap_lock are required to
2544 	 * take a reference count to prevent the anon_vma disappearing
2545 	 */
2546 	anon_vma = folio_anon_vma(folio);
2547 	if (!anon_vma)
2548 		return NULL;
2549 
2550 	if (anon_vma_trylock_read(anon_vma))
2551 		goto out;
2552 
2553 	if (rwc->try_lock) {
2554 		anon_vma = NULL;
2555 		rwc->contended = true;
2556 		goto out;
2557 	}
2558 
2559 	anon_vma_lock_read(anon_vma);
2560 out:
2561 	return anon_vma;
2562 }
2563 
2564 /*
2565  * rmap_walk_anon - do something to anonymous page using the object-based
2566  * rmap method
2567  * @folio: the folio to be handled
2568  * @rwc: control variable according to each walk type
2569  * @locked: caller holds relevant rmap lock
2570  *
2571  * Find all the mappings of a folio using the mapping pointer and the vma
2572  * chains contained in the anon_vma struct it points to.
2573  */
2574 static void rmap_walk_anon(struct folio *folio,
2575 		struct rmap_walk_control *rwc, bool locked)
2576 {
2577 	struct anon_vma *anon_vma;
2578 	pgoff_t pgoff_start, pgoff_end;
2579 	struct anon_vma_chain *avc;
2580 
2581 	if (locked) {
2582 		anon_vma = folio_anon_vma(folio);
2583 		/* anon_vma disappear under us? */
2584 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2585 	} else {
2586 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2587 	}
2588 	if (!anon_vma)
2589 		return;
2590 
2591 	pgoff_start = folio_pgoff(folio);
2592 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2593 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2594 			pgoff_start, pgoff_end) {
2595 		struct vm_area_struct *vma = avc->vma;
2596 		unsigned long address = vma_address(vma, pgoff_start,
2597 				folio_nr_pages(folio));
2598 
2599 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2600 		cond_resched();
2601 
2602 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2603 			continue;
2604 
2605 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2606 			break;
2607 		if (rwc->done && rwc->done(folio))
2608 			break;
2609 	}
2610 
2611 	if (!locked)
2612 		anon_vma_unlock_read(anon_vma);
2613 }
2614 
2615 /*
2616  * rmap_walk_file - do something to file page using the object-based rmap method
2617  * @folio: the folio to be handled
2618  * @rwc: control variable according to each walk type
2619  * @locked: caller holds relevant rmap lock
2620  *
2621  * Find all the mappings of a folio using the mapping pointer and the vma chains
2622  * contained in the address_space struct it points to.
2623  */
2624 static void rmap_walk_file(struct folio *folio,
2625 		struct rmap_walk_control *rwc, bool locked)
2626 {
2627 	struct address_space *mapping = folio_mapping(folio);
2628 	pgoff_t pgoff_start, pgoff_end;
2629 	struct vm_area_struct *vma;
2630 
2631 	/*
2632 	 * The page lock not only makes sure that page->mapping cannot
2633 	 * suddenly be NULLified by truncation, it makes sure that the
2634 	 * structure at mapping cannot be freed and reused yet,
2635 	 * so we can safely take mapping->i_mmap_rwsem.
2636 	 */
2637 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2638 
2639 	if (!mapping)
2640 		return;
2641 
2642 	pgoff_start = folio_pgoff(folio);
2643 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2644 	if (!locked) {
2645 		if (i_mmap_trylock_read(mapping))
2646 			goto lookup;
2647 
2648 		if (rwc->try_lock) {
2649 			rwc->contended = true;
2650 			return;
2651 		}
2652 
2653 		i_mmap_lock_read(mapping);
2654 	}
2655 lookup:
2656 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2657 			pgoff_start, pgoff_end) {
2658 		unsigned long address = vma_address(vma, pgoff_start,
2659 			       folio_nr_pages(folio));
2660 
2661 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2662 		cond_resched();
2663 
2664 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2665 			continue;
2666 
2667 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2668 			goto done;
2669 		if (rwc->done && rwc->done(folio))
2670 			goto done;
2671 	}
2672 
2673 done:
2674 	if (!locked)
2675 		i_mmap_unlock_read(mapping);
2676 }
2677 
2678 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2679 {
2680 	if (unlikely(folio_test_ksm(folio)))
2681 		rmap_walk_ksm(folio, rwc);
2682 	else if (folio_test_anon(folio))
2683 		rmap_walk_anon(folio, rwc, false);
2684 	else
2685 		rmap_walk_file(folio, rwc, false);
2686 }
2687 
2688 /* Like rmap_walk, but caller holds relevant rmap lock */
2689 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2690 {
2691 	/* no ksm support for now */
2692 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2693 	if (folio_test_anon(folio))
2694 		rmap_walk_anon(folio, rwc, true);
2695 	else
2696 		rmap_walk_file(folio, rwc, true);
2697 }
2698 
2699 #ifdef CONFIG_HUGETLB_PAGE
2700 /*
2701  * The following two functions are for anonymous (private mapped) hugepages.
2702  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2703  * and no lru code, because we handle hugepages differently from common pages.
2704  */
2705 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2706 		unsigned long address, rmap_t flags)
2707 {
2708 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2709 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2710 
2711 	atomic_inc(&folio->_entire_mapcount);
2712 	atomic_inc(&folio->_large_mapcount);
2713 	if (flags & RMAP_EXCLUSIVE)
2714 		SetPageAnonExclusive(&folio->page);
2715 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2716 			 PageAnonExclusive(&folio->page), folio);
2717 }
2718 
2719 void hugetlb_add_new_anon_rmap(struct folio *folio,
2720 		struct vm_area_struct *vma, unsigned long address)
2721 {
2722 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2723 
2724 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2725 	/* increment count (starts at -1) */
2726 	atomic_set(&folio->_entire_mapcount, 0);
2727 	atomic_set(&folio->_large_mapcount, 0);
2728 	folio_clear_hugetlb_restore_reserve(folio);
2729 	__folio_set_anon(folio, vma, address, true);
2730 	SetPageAnonExclusive(&folio->page);
2731 }
2732 #endif /* CONFIG_HUGETLB_PAGE */
2733