xref: /linux/mm/rmap.c (revision 43b3dfdd04553171488cb11d46d21948b6b90e27)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         page->flags PG_locked (lock_page)
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  *
186  * This must be called with the mmap_lock held for reading.
187  */
188 int __anon_vma_prepare(struct vm_area_struct *vma)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct anon_vma *anon_vma, *allocated;
192 	struct anon_vma_chain *avc;
193 
194 	might_sleep();
195 
196 	avc = anon_vma_chain_alloc(GFP_KERNEL);
197 	if (!avc)
198 		goto out_enomem;
199 
200 	anon_vma = find_mergeable_anon_vma(vma);
201 	allocated = NULL;
202 	if (!anon_vma) {
203 		anon_vma = anon_vma_alloc();
204 		if (unlikely(!anon_vma))
205 			goto out_enomem_free_avc;
206 		anon_vma->num_children++; /* self-parent link for new root */
207 		allocated = anon_vma;
208 	}
209 
210 	anon_vma_lock_write(anon_vma);
211 	/* page_table_lock to protect against threads */
212 	spin_lock(&mm->page_table_lock);
213 	if (likely(!vma->anon_vma)) {
214 		vma->anon_vma = anon_vma;
215 		anon_vma_chain_link(vma, avc, anon_vma);
216 		anon_vma->num_active_vmas++;
217 		allocated = NULL;
218 		avc = NULL;
219 	}
220 	spin_unlock(&mm->page_table_lock);
221 	anon_vma_unlock_write(anon_vma);
222 
223 	if (unlikely(allocated))
224 		put_anon_vma(allocated);
225 	if (unlikely(avc))
226 		anon_vma_chain_free(avc);
227 
228 	return 0;
229 
230  out_enomem_free_avc:
231 	anon_vma_chain_free(avc);
232  out_enomem:
233 	return -ENOMEM;
234 }
235 
236 /*
237  * This is a useful helper function for locking the anon_vma root as
238  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
239  * have the same vma.
240  *
241  * Such anon_vma's should have the same root, so you'd expect to see
242  * just a single mutex_lock for the whole traversal.
243  */
244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
245 {
246 	struct anon_vma *new_root = anon_vma->root;
247 	if (new_root != root) {
248 		if (WARN_ON_ONCE(root))
249 			up_write(&root->rwsem);
250 		root = new_root;
251 		down_write(&root->rwsem);
252 	}
253 	return root;
254 }
255 
256 static inline void unlock_anon_vma_root(struct anon_vma *root)
257 {
258 	if (root)
259 		up_write(&root->rwsem);
260 }
261 
262 /*
263  * Attach the anon_vmas from src to dst.
264  * Returns 0 on success, -ENOMEM on failure.
265  *
266  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
267  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
268  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
269  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
270  * call, we can identify this case by checking (!dst->anon_vma &&
271  * src->anon_vma).
272  *
273  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
274  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
275  * This prevents degradation of anon_vma hierarchy to endless linear chain in
276  * case of constantly forking task. On the other hand, an anon_vma with more
277  * than one child isn't reused even if there was no alive vma, thus rmap
278  * walker has a good chance of avoiding scanning the whole hierarchy when it
279  * searches where page is mapped.
280  */
281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
282 {
283 	struct anon_vma_chain *avc, *pavc;
284 	struct anon_vma *root = NULL;
285 
286 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
287 		struct anon_vma *anon_vma;
288 
289 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
290 		if (unlikely(!avc)) {
291 			unlock_anon_vma_root(root);
292 			root = NULL;
293 			avc = anon_vma_chain_alloc(GFP_KERNEL);
294 			if (!avc)
295 				goto enomem_failure;
296 		}
297 		anon_vma = pavc->anon_vma;
298 		root = lock_anon_vma_root(root, anon_vma);
299 		anon_vma_chain_link(dst, avc, anon_vma);
300 
301 		/*
302 		 * Reuse existing anon_vma if it has no vma and only one
303 		 * anon_vma child.
304 		 *
305 		 * Root anon_vma is never reused:
306 		 * it has self-parent reference and at least one child.
307 		 */
308 		if (!dst->anon_vma && src->anon_vma &&
309 		    anon_vma->num_children < 2 &&
310 		    anon_vma->num_active_vmas == 0)
311 			dst->anon_vma = anon_vma;
312 	}
313 	if (dst->anon_vma)
314 		dst->anon_vma->num_active_vmas++;
315 	unlock_anon_vma_root(root);
316 	return 0;
317 
318  enomem_failure:
319 	/*
320 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
321 	 * be incorrectly decremented in unlink_anon_vmas().
322 	 * We can safely do this because callers of anon_vma_clone() don't care
323 	 * about dst->anon_vma if anon_vma_clone() failed.
324 	 */
325 	dst->anon_vma = NULL;
326 	unlink_anon_vmas(dst);
327 	return -ENOMEM;
328 }
329 
330 /*
331  * Attach vma to its own anon_vma, as well as to the anon_vmas that
332  * the corresponding VMA in the parent process is attached to.
333  * Returns 0 on success, non-zero on failure.
334  */
335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
336 {
337 	struct anon_vma_chain *avc;
338 	struct anon_vma *anon_vma;
339 	int error;
340 
341 	/* Don't bother if the parent process has no anon_vma here. */
342 	if (!pvma->anon_vma)
343 		return 0;
344 
345 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
346 	vma->anon_vma = NULL;
347 
348 	/*
349 	 * First, attach the new VMA to the parent VMA's anon_vmas,
350 	 * so rmap can find non-COWed pages in child processes.
351 	 */
352 	error = anon_vma_clone(vma, pvma);
353 	if (error)
354 		return error;
355 
356 	/* An existing anon_vma has been reused, all done then. */
357 	if (vma->anon_vma)
358 		return 0;
359 
360 	/* Then add our own anon_vma. */
361 	anon_vma = anon_vma_alloc();
362 	if (!anon_vma)
363 		goto out_error;
364 	anon_vma->num_active_vmas++;
365 	avc = anon_vma_chain_alloc(GFP_KERNEL);
366 	if (!avc)
367 		goto out_error_free_anon_vma;
368 
369 	/*
370 	 * The root anon_vma's rwsem is the lock actually used when we
371 	 * lock any of the anon_vmas in this anon_vma tree.
372 	 */
373 	anon_vma->root = pvma->anon_vma->root;
374 	anon_vma->parent = pvma->anon_vma;
375 	/*
376 	 * With refcounts, an anon_vma can stay around longer than the
377 	 * process it belongs to. The root anon_vma needs to be pinned until
378 	 * this anon_vma is freed, because the lock lives in the root.
379 	 */
380 	get_anon_vma(anon_vma->root);
381 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
382 	vma->anon_vma = anon_vma;
383 	anon_vma_lock_write(anon_vma);
384 	anon_vma_chain_link(vma, avc, anon_vma);
385 	anon_vma->parent->num_children++;
386 	anon_vma_unlock_write(anon_vma);
387 
388 	return 0;
389 
390  out_error_free_anon_vma:
391 	put_anon_vma(anon_vma);
392  out_error:
393 	unlink_anon_vmas(vma);
394 	return -ENOMEM;
395 }
396 
397 void unlink_anon_vmas(struct vm_area_struct *vma)
398 {
399 	struct anon_vma_chain *avc, *next;
400 	struct anon_vma *root = NULL;
401 
402 	/*
403 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
404 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		root = lock_anon_vma_root(root, anon_vma);
410 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
411 
412 		/*
413 		 * Leave empty anon_vmas on the list - we'll need
414 		 * to free them outside the lock.
415 		 */
416 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
417 			anon_vma->parent->num_children--;
418 			continue;
419 		}
420 
421 		list_del(&avc->same_vma);
422 		anon_vma_chain_free(avc);
423 	}
424 	if (vma->anon_vma) {
425 		vma->anon_vma->num_active_vmas--;
426 
427 		/*
428 		 * vma would still be needed after unlink, and anon_vma will be prepared
429 		 * when handle fault.
430 		 */
431 		vma->anon_vma = NULL;
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against page_remove_rmap()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  */
494 struct anon_vma *folio_get_anon_vma(struct folio *folio)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	rcu_read_lock();
500 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
501 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 		goto out;
503 	if (!folio_mapped(folio))
504 		goto out;
505 
506 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 		anon_vma = NULL;
509 		goto out;
510 	}
511 
512 	/*
513 	 * If this folio is still mapped, then its anon_vma cannot have been
514 	 * freed.  But if it has been unmapped, we have no security against the
515 	 * anon_vma structure being freed and reused (for another anon_vma:
516 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 	 * above cannot corrupt).
518 	 */
519 	if (!folio_mapped(folio)) {
520 		rcu_read_unlock();
521 		put_anon_vma(anon_vma);
522 		return NULL;
523 	}
524 out:
525 	rcu_read_unlock();
526 
527 	return anon_vma;
528 }
529 
530 /*
531  * Similar to folio_get_anon_vma() except it locks the anon_vma.
532  *
533  * Its a little more complex as it tries to keep the fast path to a single
534  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535  * reference like with folio_get_anon_vma() and then block on the mutex
536  * on !rwc->try_lock case.
537  */
538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
539 					  struct rmap_walk_control *rwc)
540 {
541 	struct anon_vma *anon_vma = NULL;
542 	struct anon_vma *root_anon_vma;
543 	unsigned long anon_mapping;
544 
545 	rcu_read_lock();
546 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
547 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 		goto out;
549 	if (!folio_mapped(folio))
550 		goto out;
551 
552 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 	root_anon_vma = READ_ONCE(anon_vma->root);
554 	if (down_read_trylock(&root_anon_vma->rwsem)) {
555 		/*
556 		 * If the folio is still mapped, then this anon_vma is still
557 		 * its anon_vma, and holding the mutex ensures that it will
558 		 * not go away, see anon_vma_free().
559 		 */
560 		if (!folio_mapped(folio)) {
561 			up_read(&root_anon_vma->rwsem);
562 			anon_vma = NULL;
563 		}
564 		goto out;
565 	}
566 
567 	if (rwc && rwc->try_lock) {
568 		anon_vma = NULL;
569 		rwc->contended = true;
570 		goto out;
571 	}
572 
573 	/* trylock failed, we got to sleep */
574 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 		anon_vma = NULL;
576 		goto out;
577 	}
578 
579 	if (!folio_mapped(folio)) {
580 		rcu_read_unlock();
581 		put_anon_vma(anon_vma);
582 		return NULL;
583 	}
584 
585 	/* we pinned the anon_vma, its safe to sleep */
586 	rcu_read_unlock();
587 	anon_vma_lock_read(anon_vma);
588 
589 	if (atomic_dec_and_test(&anon_vma->refcount)) {
590 		/*
591 		 * Oops, we held the last refcount, release the lock
592 		 * and bail -- can't simply use put_anon_vma() because
593 		 * we'll deadlock on the anon_vma_lock_write() recursion.
594 		 */
595 		anon_vma_unlock_read(anon_vma);
596 		__put_anon_vma(anon_vma);
597 		anon_vma = NULL;
598 	}
599 
600 	return anon_vma;
601 
602 out:
603 	rcu_read_unlock();
604 	return anon_vma;
605 }
606 
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 /*
609  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
610  * important if a PTE was dirty when it was unmapped that it's flushed
611  * before any IO is initiated on the page to prevent lost writes. Similarly,
612  * it must be flushed before freeing to prevent data leakage.
613  */
614 void try_to_unmap_flush(void)
615 {
616 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
617 
618 	if (!tlb_ubc->flush_required)
619 		return;
620 
621 	arch_tlbbatch_flush(&tlb_ubc->arch);
622 	tlb_ubc->flush_required = false;
623 	tlb_ubc->writable = false;
624 }
625 
626 /* Flush iff there are potentially writable TLB entries that can race with IO */
627 void try_to_unmap_flush_dirty(void)
628 {
629 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 
631 	if (tlb_ubc->writable)
632 		try_to_unmap_flush();
633 }
634 
635 /*
636  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
637  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
638  */
639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
640 #define TLB_FLUSH_BATCH_PENDING_MASK			\
641 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
642 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
643 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
644 
645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
646 				      unsigned long uaddr)
647 {
648 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
649 	int batch;
650 	bool writable = pte_dirty(pteval);
651 
652 	if (!pte_accessible(mm, pteval))
653 		return;
654 
655 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
656 	tlb_ubc->flush_required = true;
657 
658 	/*
659 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
660 	 * before the PTE is cleared.
661 	 */
662 	barrier();
663 	batch = atomic_read(&mm->tlb_flush_batched);
664 retry:
665 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
666 		/*
667 		 * Prevent `pending' from catching up with `flushed' because of
668 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
669 		 * `pending' becomes large.
670 		 */
671 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
672 			goto retry;
673 	} else {
674 		atomic_inc(&mm->tlb_flush_batched);
675 	}
676 
677 	/*
678 	 * If the PTE was dirty then it's best to assume it's writable. The
679 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
680 	 * before the page is queued for IO.
681 	 */
682 	if (writable)
683 		tlb_ubc->writable = true;
684 }
685 
686 /*
687  * Returns true if the TLB flush should be deferred to the end of a batch of
688  * unmap operations to reduce IPIs.
689  */
690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
691 {
692 	if (!(flags & TTU_BATCH_FLUSH))
693 		return false;
694 
695 	return arch_tlbbatch_should_defer(mm);
696 }
697 
698 /*
699  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
700  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
701  * operation such as mprotect or munmap to race between reclaim unmapping
702  * the page and flushing the page. If this race occurs, it potentially allows
703  * access to data via a stale TLB entry. Tracking all mm's that have TLB
704  * batching in flight would be expensive during reclaim so instead track
705  * whether TLB batching occurred in the past and if so then do a flush here
706  * if required. This will cost one additional flush per reclaim cycle paid
707  * by the first operation at risk such as mprotect and mumap.
708  *
709  * This must be called under the PTL so that an access to tlb_flush_batched
710  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
711  * via the PTL.
712  */
713 void flush_tlb_batched_pending(struct mm_struct *mm)
714 {
715 	int batch = atomic_read(&mm->tlb_flush_batched);
716 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
717 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
718 
719 	if (pending != flushed) {
720 		arch_flush_tlb_batched_pending(mm);
721 		/*
722 		 * If the new TLB flushing is pending during flushing, leave
723 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
724 		 */
725 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
726 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
727 	}
728 }
729 #else
730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
731 				      unsigned long uaddr)
732 {
733 }
734 
735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
736 {
737 	return false;
738 }
739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
740 
741 /*
742  * At what user virtual address is page expected in vma?
743  * Caller should check the page is actually part of the vma.
744  */
745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
746 {
747 	struct folio *folio = page_folio(page);
748 	if (folio_test_anon(folio)) {
749 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
750 		/*
751 		 * Note: swapoff's unuse_vma() is more efficient with this
752 		 * check, and needs it to match anon_vma when KSM is active.
753 		 */
754 		if (!vma->anon_vma || !page__anon_vma ||
755 		    vma->anon_vma->root != page__anon_vma->root)
756 			return -EFAULT;
757 	} else if (!vma->vm_file) {
758 		return -EFAULT;
759 	} else if (vma->vm_file->f_mapping != folio->mapping) {
760 		return -EFAULT;
761 	}
762 
763 	return vma_address(page, vma);
764 }
765 
766 /*
767  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
768  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
769  * represents.
770  */
771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
772 {
773 	pgd_t *pgd;
774 	p4d_t *p4d;
775 	pud_t *pud;
776 	pmd_t *pmd = NULL;
777 
778 	pgd = pgd_offset(mm, address);
779 	if (!pgd_present(*pgd))
780 		goto out;
781 
782 	p4d = p4d_offset(pgd, address);
783 	if (!p4d_present(*p4d))
784 		goto out;
785 
786 	pud = pud_offset(p4d, address);
787 	if (!pud_present(*pud))
788 		goto out;
789 
790 	pmd = pmd_offset(pud, address);
791 out:
792 	return pmd;
793 }
794 
795 struct folio_referenced_arg {
796 	int mapcount;
797 	int referenced;
798 	unsigned long vm_flags;
799 	struct mem_cgroup *memcg;
800 };
801 /*
802  * arg: folio_referenced_arg will be passed
803  */
804 static bool folio_referenced_one(struct folio *folio,
805 		struct vm_area_struct *vma, unsigned long address, void *arg)
806 {
807 	struct folio_referenced_arg *pra = arg;
808 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 	int referenced = 0;
810 
811 	while (page_vma_mapped_walk(&pvmw)) {
812 		address = pvmw.address;
813 
814 		if ((vma->vm_flags & VM_LOCKED) &&
815 		    (!folio_test_large(folio) || !pvmw.pte)) {
816 			/* Restore the mlock which got missed */
817 			mlock_vma_folio(folio, vma, !pvmw.pte);
818 			page_vma_mapped_walk_done(&pvmw);
819 			pra->vm_flags |= VM_LOCKED;
820 			return false; /* To break the loop */
821 		}
822 
823 		if (pvmw.pte) {
824 			if (lru_gen_enabled() &&
825 			    pte_young(ptep_get(pvmw.pte))) {
826 				lru_gen_look_around(&pvmw);
827 				referenced++;
828 			}
829 
830 			if (ptep_clear_flush_young_notify(vma, address,
831 						pvmw.pte))
832 				referenced++;
833 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
834 			if (pmdp_clear_flush_young_notify(vma, address,
835 						pvmw.pmd))
836 				referenced++;
837 		} else {
838 			/* unexpected pmd-mapped folio? */
839 			WARN_ON_ONCE(1);
840 		}
841 
842 		pra->mapcount--;
843 	}
844 
845 	if (referenced)
846 		folio_clear_idle(folio);
847 	if (folio_test_clear_young(folio))
848 		referenced++;
849 
850 	if (referenced) {
851 		pra->referenced++;
852 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
853 	}
854 
855 	if (!pra->mapcount)
856 		return false; /* To break the loop */
857 
858 	return true;
859 }
860 
861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
862 {
863 	struct folio_referenced_arg *pra = arg;
864 	struct mem_cgroup *memcg = pra->memcg;
865 
866 	/*
867 	 * Ignore references from this mapping if it has no recency. If the
868 	 * folio has been used in another mapping, we will catch it; if this
869 	 * other mapping is already gone, the unmap path will have set the
870 	 * referenced flag or activated the folio in zap_pte_range().
871 	 */
872 	if (!vma_has_recency(vma))
873 		return true;
874 
875 	/*
876 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
877 	 * of references from different cgroups.
878 	 */
879 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
880 		return true;
881 
882 	return false;
883 }
884 
885 /**
886  * folio_referenced() - Test if the folio was referenced.
887  * @folio: The folio to test.
888  * @is_locked: Caller holds lock on the folio.
889  * @memcg: target memory cgroup
890  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
891  *
892  * Quick test_and_clear_referenced for all mappings of a folio,
893  *
894  * Return: The number of mappings which referenced the folio. Return -1 if
895  * the function bailed out due to rmap lock contention.
896  */
897 int folio_referenced(struct folio *folio, int is_locked,
898 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
899 {
900 	int we_locked = 0;
901 	struct folio_referenced_arg pra = {
902 		.mapcount = folio_mapcount(folio),
903 		.memcg = memcg,
904 	};
905 	struct rmap_walk_control rwc = {
906 		.rmap_one = folio_referenced_one,
907 		.arg = (void *)&pra,
908 		.anon_lock = folio_lock_anon_vma_read,
909 		.try_lock = true,
910 		.invalid_vma = invalid_folio_referenced_vma,
911 	};
912 
913 	*vm_flags = 0;
914 	if (!pra.mapcount)
915 		return 0;
916 
917 	if (!folio_raw_mapping(folio))
918 		return 0;
919 
920 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
921 		we_locked = folio_trylock(folio);
922 		if (!we_locked)
923 			return 1;
924 	}
925 
926 	rmap_walk(folio, &rwc);
927 	*vm_flags = pra.vm_flags;
928 
929 	if (we_locked)
930 		folio_unlock(folio);
931 
932 	return rwc.contended ? -1 : pra.referenced;
933 }
934 
935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
936 {
937 	int cleaned = 0;
938 	struct vm_area_struct *vma = pvmw->vma;
939 	struct mmu_notifier_range range;
940 	unsigned long address = pvmw->address;
941 
942 	/*
943 	 * We have to assume the worse case ie pmd for invalidation. Note that
944 	 * the folio can not be freed from this function.
945 	 */
946 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
947 				vma->vm_mm, address, vma_address_end(pvmw));
948 	mmu_notifier_invalidate_range_start(&range);
949 
950 	while (page_vma_mapped_walk(pvmw)) {
951 		int ret = 0;
952 
953 		address = pvmw->address;
954 		if (pvmw->pte) {
955 			pte_t *pte = pvmw->pte;
956 			pte_t entry = ptep_get(pte);
957 
958 			if (!pte_dirty(entry) && !pte_write(entry))
959 				continue;
960 
961 			flush_cache_page(vma, address, pte_pfn(entry));
962 			entry = ptep_clear_flush(vma, address, pte);
963 			entry = pte_wrprotect(entry);
964 			entry = pte_mkclean(entry);
965 			set_pte_at(vma->vm_mm, address, pte, entry);
966 			ret = 1;
967 		} else {
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 			pmd_t *pmd = pvmw->pmd;
970 			pmd_t entry;
971 
972 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
973 				continue;
974 
975 			flush_cache_range(vma, address,
976 					  address + HPAGE_PMD_SIZE);
977 			entry = pmdp_invalidate(vma, address, pmd);
978 			entry = pmd_wrprotect(entry);
979 			entry = pmd_mkclean(entry);
980 			set_pmd_at(vma->vm_mm, address, pmd, entry);
981 			ret = 1;
982 #else
983 			/* unexpected pmd-mapped folio? */
984 			WARN_ON_ONCE(1);
985 #endif
986 		}
987 
988 		/*
989 		 * No need to call mmu_notifier_invalidate_range() as we are
990 		 * downgrading page table protection not changing it to point
991 		 * to a new page.
992 		 *
993 		 * See Documentation/mm/mmu_notifier.rst
994 		 */
995 		if (ret)
996 			cleaned++;
997 	}
998 
999 	mmu_notifier_invalidate_range_end(&range);
1000 
1001 	return cleaned;
1002 }
1003 
1004 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1005 			     unsigned long address, void *arg)
1006 {
1007 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1008 	int *cleaned = arg;
1009 
1010 	*cleaned += page_vma_mkclean_one(&pvmw);
1011 
1012 	return true;
1013 }
1014 
1015 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1016 {
1017 	if (vma->vm_flags & VM_SHARED)
1018 		return false;
1019 
1020 	return true;
1021 }
1022 
1023 int folio_mkclean(struct folio *folio)
1024 {
1025 	int cleaned = 0;
1026 	struct address_space *mapping;
1027 	struct rmap_walk_control rwc = {
1028 		.arg = (void *)&cleaned,
1029 		.rmap_one = page_mkclean_one,
1030 		.invalid_vma = invalid_mkclean_vma,
1031 	};
1032 
1033 	BUG_ON(!folio_test_locked(folio));
1034 
1035 	if (!folio_mapped(folio))
1036 		return 0;
1037 
1038 	mapping = folio_mapping(folio);
1039 	if (!mapping)
1040 		return 0;
1041 
1042 	rmap_walk(folio, &rwc);
1043 
1044 	return cleaned;
1045 }
1046 EXPORT_SYMBOL_GPL(folio_mkclean);
1047 
1048 /**
1049  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1050  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1051  *                     within the @vma of shared mappings. And since clean PTEs
1052  *                     should also be readonly, write protects them too.
1053  * @pfn: start pfn.
1054  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1055  * @pgoff: page offset that the @pfn mapped with.
1056  * @vma: vma that @pfn mapped within.
1057  *
1058  * Returns the number of cleaned PTEs (including PMDs).
1059  */
1060 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1061 		      struct vm_area_struct *vma)
1062 {
1063 	struct page_vma_mapped_walk pvmw = {
1064 		.pfn		= pfn,
1065 		.nr_pages	= nr_pages,
1066 		.pgoff		= pgoff,
1067 		.vma		= vma,
1068 		.flags		= PVMW_SYNC,
1069 	};
1070 
1071 	if (invalid_mkclean_vma(vma, NULL))
1072 		return 0;
1073 
1074 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1075 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1076 
1077 	return page_vma_mkclean_one(&pvmw);
1078 }
1079 
1080 int folio_total_mapcount(struct folio *folio)
1081 {
1082 	int mapcount = folio_entire_mapcount(folio);
1083 	int nr_pages;
1084 	int i;
1085 
1086 	/* In the common case, avoid the loop when no pages mapped by PTE */
1087 	if (folio_nr_pages_mapped(folio) == 0)
1088 		return mapcount;
1089 	/*
1090 	 * Add all the PTE mappings of those pages mapped by PTE.
1091 	 * Limit the loop to folio_nr_pages_mapped()?
1092 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
1093 	 */
1094 	nr_pages = folio_nr_pages(folio);
1095 	for (i = 0; i < nr_pages; i++)
1096 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
1097 
1098 	/* But each of those _mapcounts was based on -1 */
1099 	mapcount += nr_pages;
1100 	return mapcount;
1101 }
1102 
1103 /**
1104  * page_move_anon_rmap - move a page to our anon_vma
1105  * @page:	the page to move to our anon_vma
1106  * @vma:	the vma the page belongs to
1107  *
1108  * When a page belongs exclusively to one process after a COW event,
1109  * that page can be moved into the anon_vma that belongs to just that
1110  * process, so the rmap code will not search the parent or sibling
1111  * processes.
1112  */
1113 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1114 {
1115 	void *anon_vma = vma->anon_vma;
1116 	struct folio *folio = page_folio(page);
1117 
1118 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1119 	VM_BUG_ON_VMA(!anon_vma, vma);
1120 
1121 	anon_vma += PAGE_MAPPING_ANON;
1122 	/*
1123 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1124 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1125 	 * folio_test_anon()) will not see one without the other.
1126 	 */
1127 	WRITE_ONCE(folio->mapping, anon_vma);
1128 	SetPageAnonExclusive(page);
1129 }
1130 
1131 /**
1132  * __page_set_anon_rmap - set up new anonymous rmap
1133  * @folio:	Folio which contains page.
1134  * @page:	Page to add to rmap.
1135  * @vma:	VM area to add page to.
1136  * @address:	User virtual address of the mapping
1137  * @exclusive:	the page is exclusively owned by the current process
1138  */
1139 static void __page_set_anon_rmap(struct folio *folio, struct page *page,
1140 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1141 {
1142 	struct anon_vma *anon_vma = vma->anon_vma;
1143 
1144 	BUG_ON(!anon_vma);
1145 
1146 	if (folio_test_anon(folio))
1147 		goto out;
1148 
1149 	/*
1150 	 * If the page isn't exclusively mapped into this vma,
1151 	 * we must use the _oldest_ possible anon_vma for the
1152 	 * page mapping!
1153 	 */
1154 	if (!exclusive)
1155 		anon_vma = anon_vma->root;
1156 
1157 	/*
1158 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1159 	 * Make sure the compiler doesn't split the stores of anon_vma and
1160 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1161 	 * could mistake the mapping for a struct address_space and crash.
1162 	 */
1163 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1164 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1165 	folio->index = linear_page_index(vma, address);
1166 out:
1167 	if (exclusive)
1168 		SetPageAnonExclusive(page);
1169 }
1170 
1171 /**
1172  * __page_check_anon_rmap - sanity check anonymous rmap addition
1173  * @folio:	The folio containing @page.
1174  * @page:	the page to check the mapping of
1175  * @vma:	the vm area in which the mapping is added
1176  * @address:	the user virtual address mapped
1177  */
1178 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1179 	struct vm_area_struct *vma, unsigned long address)
1180 {
1181 	/*
1182 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1183 	 * be set up correctly at this point.
1184 	 *
1185 	 * We have exclusion against page_add_anon_rmap because the caller
1186 	 * always holds the page locked.
1187 	 *
1188 	 * We have exclusion against page_add_new_anon_rmap because those pages
1189 	 * are initially only visible via the pagetables, and the pte is locked
1190 	 * over the call to page_add_new_anon_rmap.
1191 	 */
1192 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1193 			folio);
1194 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1195 		       page);
1196 }
1197 
1198 /**
1199  * page_add_anon_rmap - add pte mapping to an anonymous page
1200  * @page:	the page to add the mapping to
1201  * @vma:	the vm area in which the mapping is added
1202  * @address:	the user virtual address mapped
1203  * @flags:	the rmap flags
1204  *
1205  * The caller needs to hold the pte lock, and the page must be locked in
1206  * the anon_vma case: to serialize mapping,index checking after setting,
1207  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1208  * (but PageKsm is never downgraded to PageAnon).
1209  */
1210 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
1211 		unsigned long address, rmap_t flags)
1212 {
1213 	struct folio *folio = page_folio(page);
1214 	atomic_t *mapped = &folio->_nr_pages_mapped;
1215 	int nr = 0, nr_pmdmapped = 0;
1216 	bool compound = flags & RMAP_COMPOUND;
1217 	bool first = true;
1218 
1219 	/* Is page being mapped by PTE? Is this its first map to be added? */
1220 	if (likely(!compound)) {
1221 		first = atomic_inc_and_test(&page->_mapcount);
1222 		nr = first;
1223 		if (first && folio_test_large(folio)) {
1224 			nr = atomic_inc_return_relaxed(mapped);
1225 			nr = (nr < COMPOUND_MAPPED);
1226 		}
1227 	} else if (folio_test_pmd_mappable(folio)) {
1228 		/* That test is redundant: it's for safety or to optimize out */
1229 
1230 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1231 		if (first) {
1232 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1233 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1234 				nr_pmdmapped = folio_nr_pages(folio);
1235 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1236 				/* Raced ahead of a remove and another add? */
1237 				if (unlikely(nr < 0))
1238 					nr = 0;
1239 			} else {
1240 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1241 				nr = 0;
1242 			}
1243 		}
1244 	}
1245 
1246 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1247 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1248 
1249 	if (nr_pmdmapped)
1250 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
1251 	if (nr)
1252 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1253 
1254 	if (likely(!folio_test_ksm(folio))) {
1255 		/* address might be in next vma when migration races vma_merge */
1256 		if (first)
1257 			__page_set_anon_rmap(folio, page, vma, address,
1258 					     !!(flags & RMAP_EXCLUSIVE));
1259 		else
1260 			__page_check_anon_rmap(folio, page, vma, address);
1261 	}
1262 
1263 	mlock_vma_folio(folio, vma, compound);
1264 }
1265 
1266 /**
1267  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1268  * @folio:	The folio to add the mapping to.
1269  * @vma:	the vm area in which the mapping is added
1270  * @address:	the user virtual address mapped
1271  *
1272  * Like page_add_anon_rmap() but must only be called on *new* folios.
1273  * This means the inc-and-test can be bypassed.
1274  * The folio does not have to be locked.
1275  *
1276  * If the folio is large, it is accounted as a THP.  As the folio
1277  * is new, it's assumed to be mapped exclusively by a single process.
1278  */
1279 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1280 		unsigned long address)
1281 {
1282 	int nr;
1283 
1284 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1285 	__folio_set_swapbacked(folio);
1286 
1287 	if (likely(!folio_test_pmd_mappable(folio))) {
1288 		/* increment count (starts at -1) */
1289 		atomic_set(&folio->_mapcount, 0);
1290 		nr = 1;
1291 	} else {
1292 		/* increment count (starts at -1) */
1293 		atomic_set(&folio->_entire_mapcount, 0);
1294 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
1295 		nr = folio_nr_pages(folio);
1296 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
1297 	}
1298 
1299 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
1300 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
1301 }
1302 
1303 /**
1304  * page_add_file_rmap - add pte mapping to a file page
1305  * @page:	the page to add the mapping to
1306  * @vma:	the vm area in which the mapping is added
1307  * @compound:	charge the page as compound or small page
1308  *
1309  * The caller needs to hold the pte lock.
1310  */
1311 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
1312 		bool compound)
1313 {
1314 	struct folio *folio = page_folio(page);
1315 	atomic_t *mapped = &folio->_nr_pages_mapped;
1316 	int nr = 0, nr_pmdmapped = 0;
1317 	bool first;
1318 
1319 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1320 
1321 	/* Is page being mapped by PTE? Is this its first map to be added? */
1322 	if (likely(!compound)) {
1323 		first = atomic_inc_and_test(&page->_mapcount);
1324 		nr = first;
1325 		if (first && folio_test_large(folio)) {
1326 			nr = atomic_inc_return_relaxed(mapped);
1327 			nr = (nr < COMPOUND_MAPPED);
1328 		}
1329 	} else if (folio_test_pmd_mappable(folio)) {
1330 		/* That test is redundant: it's for safety or to optimize out */
1331 
1332 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1333 		if (first) {
1334 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
1335 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
1336 				nr_pmdmapped = folio_nr_pages(folio);
1337 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1338 				/* Raced ahead of a remove and another add? */
1339 				if (unlikely(nr < 0))
1340 					nr = 0;
1341 			} else {
1342 				/* Raced ahead of a remove of COMPOUND_MAPPED */
1343 				nr = 0;
1344 			}
1345 		}
1346 	}
1347 
1348 	if (nr_pmdmapped)
1349 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
1350 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
1351 	if (nr)
1352 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
1353 
1354 	mlock_vma_folio(folio, vma, compound);
1355 }
1356 
1357 /**
1358  * page_remove_rmap - take down pte mapping from a page
1359  * @page:	page to remove mapping from
1360  * @vma:	the vm area from which the mapping is removed
1361  * @compound:	uncharge the page as compound or small page
1362  *
1363  * The caller needs to hold the pte lock.
1364  */
1365 void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
1366 		bool compound)
1367 {
1368 	struct folio *folio = page_folio(page);
1369 	atomic_t *mapped = &folio->_nr_pages_mapped;
1370 	int nr = 0, nr_pmdmapped = 0;
1371 	bool last;
1372 	enum node_stat_item idx;
1373 
1374 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1375 
1376 	/* Hugetlb pages are not counted in NR_*MAPPED */
1377 	if (unlikely(folio_test_hugetlb(folio))) {
1378 		/* hugetlb pages are always mapped with pmds */
1379 		atomic_dec(&folio->_entire_mapcount);
1380 		return;
1381 	}
1382 
1383 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
1384 	if (likely(!compound)) {
1385 		last = atomic_add_negative(-1, &page->_mapcount);
1386 		nr = last;
1387 		if (last && folio_test_large(folio)) {
1388 			nr = atomic_dec_return_relaxed(mapped);
1389 			nr = (nr < COMPOUND_MAPPED);
1390 		}
1391 	} else if (folio_test_pmd_mappable(folio)) {
1392 		/* That test is redundant: it's for safety or to optimize out */
1393 
1394 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1395 		if (last) {
1396 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
1397 			if (likely(nr < COMPOUND_MAPPED)) {
1398 				nr_pmdmapped = folio_nr_pages(folio);
1399 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1400 				/* Raced ahead of another remove and an add? */
1401 				if (unlikely(nr < 0))
1402 					nr = 0;
1403 			} else {
1404 				/* An add of COMPOUND_MAPPED raced ahead */
1405 				nr = 0;
1406 			}
1407 		}
1408 	}
1409 
1410 	if (nr_pmdmapped) {
1411 		if (folio_test_anon(folio))
1412 			idx = NR_ANON_THPS;
1413 		else if (folio_test_swapbacked(folio))
1414 			idx = NR_SHMEM_PMDMAPPED;
1415 		else
1416 			idx = NR_FILE_PMDMAPPED;
1417 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
1418 	}
1419 	if (nr) {
1420 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1421 		__lruvec_stat_mod_folio(folio, idx, -nr);
1422 
1423 		/*
1424 		 * Queue anon THP for deferred split if at least one
1425 		 * page of the folio is unmapped and at least one page
1426 		 * is still mapped.
1427 		 */
1428 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
1429 			if (!compound || nr < nr_pmdmapped)
1430 				deferred_split_folio(folio);
1431 	}
1432 
1433 	/*
1434 	 * It would be tidy to reset folio_test_anon mapping when fully
1435 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
1436 	 * which increments mapcount after us but sets mapping before us:
1437 	 * so leave the reset to free_pages_prepare, and remember that
1438 	 * it's only reliable while mapped.
1439 	 */
1440 
1441 	munlock_vma_folio(folio, vma, compound);
1442 }
1443 
1444 /*
1445  * @arg: enum ttu_flags will be passed to this argument
1446  */
1447 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1448 		     unsigned long address, void *arg)
1449 {
1450 	struct mm_struct *mm = vma->vm_mm;
1451 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1452 	pte_t pteval;
1453 	struct page *subpage;
1454 	bool anon_exclusive, ret = true;
1455 	struct mmu_notifier_range range;
1456 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1457 	unsigned long pfn;
1458 
1459 	/*
1460 	 * When racing against e.g. zap_pte_range() on another cpu,
1461 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1462 	 * try_to_unmap() may return before page_mapped() has become false,
1463 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1464 	 */
1465 	if (flags & TTU_SYNC)
1466 		pvmw.flags = PVMW_SYNC;
1467 
1468 	if (flags & TTU_SPLIT_HUGE_PMD)
1469 		split_huge_pmd_address(vma, address, false, folio);
1470 
1471 	/*
1472 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1473 	 * For hugetlb, it could be much worse if we need to do pud
1474 	 * invalidation in the case of pmd sharing.
1475 	 *
1476 	 * Note that the folio can not be freed in this function as call of
1477 	 * try_to_unmap() must hold a reference on the folio.
1478 	 */
1479 	range.end = vma_address_end(&pvmw);
1480 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1481 				address, range.end);
1482 	if (folio_test_hugetlb(folio)) {
1483 		/*
1484 		 * If sharing is possible, start and end will be adjusted
1485 		 * accordingly.
1486 		 */
1487 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1488 						     &range.end);
1489 	}
1490 	mmu_notifier_invalidate_range_start(&range);
1491 
1492 	while (page_vma_mapped_walk(&pvmw)) {
1493 		/* Unexpected PMD-mapped THP? */
1494 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1495 
1496 		/*
1497 		 * If the folio is in an mlock()d vma, we must not swap it out.
1498 		 */
1499 		if (!(flags & TTU_IGNORE_MLOCK) &&
1500 		    (vma->vm_flags & VM_LOCKED)) {
1501 			/* Restore the mlock which got missed */
1502 			mlock_vma_folio(folio, vma, false);
1503 			page_vma_mapped_walk_done(&pvmw);
1504 			ret = false;
1505 			break;
1506 		}
1507 
1508 		pfn = pte_pfn(ptep_get(pvmw.pte));
1509 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1510 		address = pvmw.address;
1511 		anon_exclusive = folio_test_anon(folio) &&
1512 				 PageAnonExclusive(subpage);
1513 
1514 		if (folio_test_hugetlb(folio)) {
1515 			bool anon = folio_test_anon(folio);
1516 
1517 			/*
1518 			 * The try_to_unmap() is only passed a hugetlb page
1519 			 * in the case where the hugetlb page is poisoned.
1520 			 */
1521 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1522 			/*
1523 			 * huge_pmd_unshare may unmap an entire PMD page.
1524 			 * There is no way of knowing exactly which PMDs may
1525 			 * be cached for this mm, so we must flush them all.
1526 			 * start/end were already adjusted above to cover this
1527 			 * range.
1528 			 */
1529 			flush_cache_range(vma, range.start, range.end);
1530 
1531 			/*
1532 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1533 			 * held in write mode.  Caller needs to explicitly
1534 			 * do this outside rmap routines.
1535 			 *
1536 			 * We also must hold hugetlb vma_lock in write mode.
1537 			 * Lock order dictates acquiring vma_lock BEFORE
1538 			 * i_mmap_rwsem.  We can only try lock here and fail
1539 			 * if unsuccessful.
1540 			 */
1541 			if (!anon) {
1542 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1543 				if (!hugetlb_vma_trylock_write(vma)) {
1544 					page_vma_mapped_walk_done(&pvmw);
1545 					ret = false;
1546 					break;
1547 				}
1548 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1549 					hugetlb_vma_unlock_write(vma);
1550 					flush_tlb_range(vma,
1551 						range.start, range.end);
1552 					mmu_notifier_invalidate_range(mm,
1553 						range.start, range.end);
1554 					/*
1555 					 * The ref count of the PMD page was
1556 					 * dropped which is part of the way map
1557 					 * counting is done for shared PMDs.
1558 					 * Return 'true' here.  When there is
1559 					 * no other sharing, huge_pmd_unshare
1560 					 * returns false and we will unmap the
1561 					 * actual page and drop map count
1562 					 * to zero.
1563 					 */
1564 					page_vma_mapped_walk_done(&pvmw);
1565 					break;
1566 				}
1567 				hugetlb_vma_unlock_write(vma);
1568 			}
1569 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1570 		} else {
1571 			flush_cache_page(vma, address, pfn);
1572 			/* Nuke the page table entry. */
1573 			if (should_defer_flush(mm, flags)) {
1574 				/*
1575 				 * We clear the PTE but do not flush so potentially
1576 				 * a remote CPU could still be writing to the folio.
1577 				 * If the entry was previously clean then the
1578 				 * architecture must guarantee that a clear->dirty
1579 				 * transition on a cached TLB entry is written through
1580 				 * and traps if the PTE is unmapped.
1581 				 */
1582 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1583 
1584 				set_tlb_ubc_flush_pending(mm, pteval, address);
1585 			} else {
1586 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1587 			}
1588 		}
1589 
1590 		/*
1591 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1592 		 * we may want to replace a none pte with a marker pte if
1593 		 * it's file-backed, so we don't lose the tracking info.
1594 		 */
1595 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1596 
1597 		/* Set the dirty flag on the folio now the pte is gone. */
1598 		if (pte_dirty(pteval))
1599 			folio_mark_dirty(folio);
1600 
1601 		/* Update high watermark before we lower rss */
1602 		update_hiwater_rss(mm);
1603 
1604 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1605 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1606 			if (folio_test_hugetlb(folio)) {
1607 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1608 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1609 			} else {
1610 				dec_mm_counter(mm, mm_counter(&folio->page));
1611 				set_pte_at(mm, address, pvmw.pte, pteval);
1612 			}
1613 
1614 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1615 			/*
1616 			 * The guest indicated that the page content is of no
1617 			 * interest anymore. Simply discard the pte, vmscan
1618 			 * will take care of the rest.
1619 			 * A future reference will then fault in a new zero
1620 			 * page. When userfaultfd is active, we must not drop
1621 			 * this page though, as its main user (postcopy
1622 			 * migration) will not expect userfaults on already
1623 			 * copied pages.
1624 			 */
1625 			dec_mm_counter(mm, mm_counter(&folio->page));
1626 			/* We have to invalidate as we cleared the pte */
1627 			mmu_notifier_invalidate_range(mm, address,
1628 						      address + PAGE_SIZE);
1629 		} else if (folio_test_anon(folio)) {
1630 			swp_entry_t entry = { .val = page_private(subpage) };
1631 			pte_t swp_pte;
1632 			/*
1633 			 * Store the swap location in the pte.
1634 			 * See handle_pte_fault() ...
1635 			 */
1636 			if (unlikely(folio_test_swapbacked(folio) !=
1637 					folio_test_swapcache(folio))) {
1638 				WARN_ON_ONCE(1);
1639 				ret = false;
1640 				/* We have to invalidate as we cleared the pte */
1641 				mmu_notifier_invalidate_range(mm, address,
1642 							address + PAGE_SIZE);
1643 				page_vma_mapped_walk_done(&pvmw);
1644 				break;
1645 			}
1646 
1647 			/* MADV_FREE page check */
1648 			if (!folio_test_swapbacked(folio)) {
1649 				int ref_count, map_count;
1650 
1651 				/*
1652 				 * Synchronize with gup_pte_range():
1653 				 * - clear PTE; barrier; read refcount
1654 				 * - inc refcount; barrier; read PTE
1655 				 */
1656 				smp_mb();
1657 
1658 				ref_count = folio_ref_count(folio);
1659 				map_count = folio_mapcount(folio);
1660 
1661 				/*
1662 				 * Order reads for page refcount and dirty flag
1663 				 * (see comments in __remove_mapping()).
1664 				 */
1665 				smp_rmb();
1666 
1667 				/*
1668 				 * The only page refs must be one from isolation
1669 				 * plus the rmap(s) (dropped by discard:).
1670 				 */
1671 				if (ref_count == 1 + map_count &&
1672 				    !folio_test_dirty(folio)) {
1673 					/* Invalidate as we cleared the pte */
1674 					mmu_notifier_invalidate_range(mm,
1675 						address, address + PAGE_SIZE);
1676 					dec_mm_counter(mm, MM_ANONPAGES);
1677 					goto discard;
1678 				}
1679 
1680 				/*
1681 				 * If the folio was redirtied, it cannot be
1682 				 * discarded. Remap the page to page table.
1683 				 */
1684 				set_pte_at(mm, address, pvmw.pte, pteval);
1685 				folio_set_swapbacked(folio);
1686 				ret = false;
1687 				page_vma_mapped_walk_done(&pvmw);
1688 				break;
1689 			}
1690 
1691 			if (swap_duplicate(entry) < 0) {
1692 				set_pte_at(mm, address, pvmw.pte, pteval);
1693 				ret = false;
1694 				page_vma_mapped_walk_done(&pvmw);
1695 				break;
1696 			}
1697 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1698 				swap_free(entry);
1699 				set_pte_at(mm, address, pvmw.pte, pteval);
1700 				ret = false;
1701 				page_vma_mapped_walk_done(&pvmw);
1702 				break;
1703 			}
1704 
1705 			/* See page_try_share_anon_rmap(): clear PTE first. */
1706 			if (anon_exclusive &&
1707 			    page_try_share_anon_rmap(subpage)) {
1708 				swap_free(entry);
1709 				set_pte_at(mm, address, pvmw.pte, pteval);
1710 				ret = false;
1711 				page_vma_mapped_walk_done(&pvmw);
1712 				break;
1713 			}
1714 			if (list_empty(&mm->mmlist)) {
1715 				spin_lock(&mmlist_lock);
1716 				if (list_empty(&mm->mmlist))
1717 					list_add(&mm->mmlist, &init_mm.mmlist);
1718 				spin_unlock(&mmlist_lock);
1719 			}
1720 			dec_mm_counter(mm, MM_ANONPAGES);
1721 			inc_mm_counter(mm, MM_SWAPENTS);
1722 			swp_pte = swp_entry_to_pte(entry);
1723 			if (anon_exclusive)
1724 				swp_pte = pte_swp_mkexclusive(swp_pte);
1725 			if (pte_soft_dirty(pteval))
1726 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1727 			if (pte_uffd_wp(pteval))
1728 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1729 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1730 			/* Invalidate as we cleared the pte */
1731 			mmu_notifier_invalidate_range(mm, address,
1732 						      address + PAGE_SIZE);
1733 		} else {
1734 			/*
1735 			 * This is a locked file-backed folio,
1736 			 * so it cannot be removed from the page
1737 			 * cache and replaced by a new folio before
1738 			 * mmu_notifier_invalidate_range_end, so no
1739 			 * concurrent thread might update its page table
1740 			 * to point at a new folio while a device is
1741 			 * still using this folio.
1742 			 *
1743 			 * See Documentation/mm/mmu_notifier.rst
1744 			 */
1745 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1746 		}
1747 discard:
1748 		/*
1749 		 * No need to call mmu_notifier_invalidate_range() it has be
1750 		 * done above for all cases requiring it to happen under page
1751 		 * table lock before mmu_notifier_invalidate_range_end()
1752 		 *
1753 		 * See Documentation/mm/mmu_notifier.rst
1754 		 */
1755 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1756 		if (vma->vm_flags & VM_LOCKED)
1757 			mlock_drain_local();
1758 		folio_put(folio);
1759 	}
1760 
1761 	mmu_notifier_invalidate_range_end(&range);
1762 
1763 	return ret;
1764 }
1765 
1766 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1767 {
1768 	return vma_is_temporary_stack(vma);
1769 }
1770 
1771 static int folio_not_mapped(struct folio *folio)
1772 {
1773 	return !folio_mapped(folio);
1774 }
1775 
1776 /**
1777  * try_to_unmap - Try to remove all page table mappings to a folio.
1778  * @folio: The folio to unmap.
1779  * @flags: action and flags
1780  *
1781  * Tries to remove all the page table entries which are mapping this
1782  * folio.  It is the caller's responsibility to check if the folio is
1783  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1784  *
1785  * Context: Caller must hold the folio lock.
1786  */
1787 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1788 {
1789 	struct rmap_walk_control rwc = {
1790 		.rmap_one = try_to_unmap_one,
1791 		.arg = (void *)flags,
1792 		.done = folio_not_mapped,
1793 		.anon_lock = folio_lock_anon_vma_read,
1794 	};
1795 
1796 	if (flags & TTU_RMAP_LOCKED)
1797 		rmap_walk_locked(folio, &rwc);
1798 	else
1799 		rmap_walk(folio, &rwc);
1800 }
1801 
1802 /*
1803  * @arg: enum ttu_flags will be passed to this argument.
1804  *
1805  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1806  * containing migration entries.
1807  */
1808 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1809 		     unsigned long address, void *arg)
1810 {
1811 	struct mm_struct *mm = vma->vm_mm;
1812 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1813 	pte_t pteval;
1814 	struct page *subpage;
1815 	bool anon_exclusive, ret = true;
1816 	struct mmu_notifier_range range;
1817 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1818 	unsigned long pfn;
1819 
1820 	/*
1821 	 * When racing against e.g. zap_pte_range() on another cpu,
1822 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1823 	 * try_to_migrate() may return before page_mapped() has become false,
1824 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1825 	 */
1826 	if (flags & TTU_SYNC)
1827 		pvmw.flags = PVMW_SYNC;
1828 
1829 	/*
1830 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1831 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1832 	 */
1833 	if (flags & TTU_SPLIT_HUGE_PMD)
1834 		split_huge_pmd_address(vma, address, true, folio);
1835 
1836 	/*
1837 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1838 	 * For hugetlb, it could be much worse if we need to do pud
1839 	 * invalidation in the case of pmd sharing.
1840 	 *
1841 	 * Note that the page can not be free in this function as call of
1842 	 * try_to_unmap() must hold a reference on the page.
1843 	 */
1844 	range.end = vma_address_end(&pvmw);
1845 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1846 				address, range.end);
1847 	if (folio_test_hugetlb(folio)) {
1848 		/*
1849 		 * If sharing is possible, start and end will be adjusted
1850 		 * accordingly.
1851 		 */
1852 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1853 						     &range.end);
1854 	}
1855 	mmu_notifier_invalidate_range_start(&range);
1856 
1857 	while (page_vma_mapped_walk(&pvmw)) {
1858 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1859 		/* PMD-mapped THP migration entry */
1860 		if (!pvmw.pte) {
1861 			subpage = folio_page(folio,
1862 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1863 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1864 					!folio_test_pmd_mappable(folio), folio);
1865 
1866 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1867 				ret = false;
1868 				page_vma_mapped_walk_done(&pvmw);
1869 				break;
1870 			}
1871 			continue;
1872 		}
1873 #endif
1874 
1875 		/* Unexpected PMD-mapped THP? */
1876 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1877 
1878 		pfn = pte_pfn(ptep_get(pvmw.pte));
1879 
1880 		if (folio_is_zone_device(folio)) {
1881 			/*
1882 			 * Our PTE is a non-present device exclusive entry and
1883 			 * calculating the subpage as for the common case would
1884 			 * result in an invalid pointer.
1885 			 *
1886 			 * Since only PAGE_SIZE pages can currently be
1887 			 * migrated, just set it to page. This will need to be
1888 			 * changed when hugepage migrations to device private
1889 			 * memory are supported.
1890 			 */
1891 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1892 			subpage = &folio->page;
1893 		} else {
1894 			subpage = folio_page(folio, pfn - folio_pfn(folio));
1895 		}
1896 		address = pvmw.address;
1897 		anon_exclusive = folio_test_anon(folio) &&
1898 				 PageAnonExclusive(subpage);
1899 
1900 		if (folio_test_hugetlb(folio)) {
1901 			bool anon = folio_test_anon(folio);
1902 
1903 			/*
1904 			 * huge_pmd_unshare may unmap an entire PMD page.
1905 			 * There is no way of knowing exactly which PMDs may
1906 			 * be cached for this mm, so we must flush them all.
1907 			 * start/end were already adjusted above to cover this
1908 			 * range.
1909 			 */
1910 			flush_cache_range(vma, range.start, range.end);
1911 
1912 			/*
1913 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1914 			 * held in write mode.  Caller needs to explicitly
1915 			 * do this outside rmap routines.
1916 			 *
1917 			 * We also must hold hugetlb vma_lock in write mode.
1918 			 * Lock order dictates acquiring vma_lock BEFORE
1919 			 * i_mmap_rwsem.  We can only try lock here and
1920 			 * fail if unsuccessful.
1921 			 */
1922 			if (!anon) {
1923 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1924 				if (!hugetlb_vma_trylock_write(vma)) {
1925 					page_vma_mapped_walk_done(&pvmw);
1926 					ret = false;
1927 					break;
1928 				}
1929 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1930 					hugetlb_vma_unlock_write(vma);
1931 					flush_tlb_range(vma,
1932 						range.start, range.end);
1933 					mmu_notifier_invalidate_range(mm,
1934 						range.start, range.end);
1935 
1936 					/*
1937 					 * The ref count of the PMD page was
1938 					 * dropped which is part of the way map
1939 					 * counting is done for shared PMDs.
1940 					 * Return 'true' here.  When there is
1941 					 * no other sharing, huge_pmd_unshare
1942 					 * returns false and we will unmap the
1943 					 * actual page and drop map count
1944 					 * to zero.
1945 					 */
1946 					page_vma_mapped_walk_done(&pvmw);
1947 					break;
1948 				}
1949 				hugetlb_vma_unlock_write(vma);
1950 			}
1951 			/* Nuke the hugetlb page table entry */
1952 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1953 		} else {
1954 			flush_cache_page(vma, address, pfn);
1955 			/* Nuke the page table entry. */
1956 			if (should_defer_flush(mm, flags)) {
1957 				/*
1958 				 * We clear the PTE but do not flush so potentially
1959 				 * a remote CPU could still be writing to the folio.
1960 				 * If the entry was previously clean then the
1961 				 * architecture must guarantee that a clear->dirty
1962 				 * transition on a cached TLB entry is written through
1963 				 * and traps if the PTE is unmapped.
1964 				 */
1965 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1966 
1967 				set_tlb_ubc_flush_pending(mm, pteval, address);
1968 			} else {
1969 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1970 			}
1971 		}
1972 
1973 		/* Set the dirty flag on the folio now the pte is gone. */
1974 		if (pte_dirty(pteval))
1975 			folio_mark_dirty(folio);
1976 
1977 		/* Update high watermark before we lower rss */
1978 		update_hiwater_rss(mm);
1979 
1980 		if (folio_is_device_private(folio)) {
1981 			unsigned long pfn = folio_pfn(folio);
1982 			swp_entry_t entry;
1983 			pte_t swp_pte;
1984 
1985 			if (anon_exclusive)
1986 				BUG_ON(page_try_share_anon_rmap(subpage));
1987 
1988 			/*
1989 			 * Store the pfn of the page in a special migration
1990 			 * pte. do_swap_page() will wait until the migration
1991 			 * pte is removed and then restart fault handling.
1992 			 */
1993 			entry = pte_to_swp_entry(pteval);
1994 			if (is_writable_device_private_entry(entry))
1995 				entry = make_writable_migration_entry(pfn);
1996 			else if (anon_exclusive)
1997 				entry = make_readable_exclusive_migration_entry(pfn);
1998 			else
1999 				entry = make_readable_migration_entry(pfn);
2000 			swp_pte = swp_entry_to_pte(entry);
2001 
2002 			/*
2003 			 * pteval maps a zone device page and is therefore
2004 			 * a swap pte.
2005 			 */
2006 			if (pte_swp_soft_dirty(pteval))
2007 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2008 			if (pte_swp_uffd_wp(pteval))
2009 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2010 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2011 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2012 						compound_order(&folio->page));
2013 			/*
2014 			 * No need to invalidate here it will synchronize on
2015 			 * against the special swap migration pte.
2016 			 */
2017 		} else if (PageHWPoison(subpage)) {
2018 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2019 			if (folio_test_hugetlb(folio)) {
2020 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2021 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2022 			} else {
2023 				dec_mm_counter(mm, mm_counter(&folio->page));
2024 				set_pte_at(mm, address, pvmw.pte, pteval);
2025 			}
2026 
2027 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2028 			/*
2029 			 * The guest indicated that the page content is of no
2030 			 * interest anymore. Simply discard the pte, vmscan
2031 			 * will take care of the rest.
2032 			 * A future reference will then fault in a new zero
2033 			 * page. When userfaultfd is active, we must not drop
2034 			 * this page though, as its main user (postcopy
2035 			 * migration) will not expect userfaults on already
2036 			 * copied pages.
2037 			 */
2038 			dec_mm_counter(mm, mm_counter(&folio->page));
2039 			/* We have to invalidate as we cleared the pte */
2040 			mmu_notifier_invalidate_range(mm, address,
2041 						      address + PAGE_SIZE);
2042 		} else {
2043 			swp_entry_t entry;
2044 			pte_t swp_pte;
2045 
2046 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2047 				if (folio_test_hugetlb(folio))
2048 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2049 				else
2050 					set_pte_at(mm, address, pvmw.pte, pteval);
2051 				ret = false;
2052 				page_vma_mapped_walk_done(&pvmw);
2053 				break;
2054 			}
2055 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2056 				       !anon_exclusive, subpage);
2057 
2058 			/* See page_try_share_anon_rmap(): clear PTE first. */
2059 			if (anon_exclusive &&
2060 			    page_try_share_anon_rmap(subpage)) {
2061 				if (folio_test_hugetlb(folio))
2062 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2063 				else
2064 					set_pte_at(mm, address, pvmw.pte, pteval);
2065 				ret = false;
2066 				page_vma_mapped_walk_done(&pvmw);
2067 				break;
2068 			}
2069 
2070 			/*
2071 			 * Store the pfn of the page in a special migration
2072 			 * pte. do_swap_page() will wait until the migration
2073 			 * pte is removed and then restart fault handling.
2074 			 */
2075 			if (pte_write(pteval))
2076 				entry = make_writable_migration_entry(
2077 							page_to_pfn(subpage));
2078 			else if (anon_exclusive)
2079 				entry = make_readable_exclusive_migration_entry(
2080 							page_to_pfn(subpage));
2081 			else
2082 				entry = make_readable_migration_entry(
2083 							page_to_pfn(subpage));
2084 			if (pte_young(pteval))
2085 				entry = make_migration_entry_young(entry);
2086 			if (pte_dirty(pteval))
2087 				entry = make_migration_entry_dirty(entry);
2088 			swp_pte = swp_entry_to_pte(entry);
2089 			if (pte_soft_dirty(pteval))
2090 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2091 			if (pte_uffd_wp(pteval))
2092 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2093 			if (folio_test_hugetlb(folio))
2094 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2095 			else
2096 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2097 			trace_set_migration_pte(address, pte_val(swp_pte),
2098 						compound_order(&folio->page));
2099 			/*
2100 			 * No need to invalidate here it will synchronize on
2101 			 * against the special swap migration pte.
2102 			 */
2103 		}
2104 
2105 		/*
2106 		 * No need to call mmu_notifier_invalidate_range() it has be
2107 		 * done above for all cases requiring it to happen under page
2108 		 * table lock before mmu_notifier_invalidate_range_end()
2109 		 *
2110 		 * See Documentation/mm/mmu_notifier.rst
2111 		 */
2112 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2113 		if (vma->vm_flags & VM_LOCKED)
2114 			mlock_drain_local();
2115 		folio_put(folio);
2116 	}
2117 
2118 	mmu_notifier_invalidate_range_end(&range);
2119 
2120 	return ret;
2121 }
2122 
2123 /**
2124  * try_to_migrate - try to replace all page table mappings with swap entries
2125  * @folio: the folio to replace page table entries for
2126  * @flags: action and flags
2127  *
2128  * Tries to remove all the page table entries which are mapping this folio and
2129  * replace them with special swap entries. Caller must hold the folio lock.
2130  */
2131 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2132 {
2133 	struct rmap_walk_control rwc = {
2134 		.rmap_one = try_to_migrate_one,
2135 		.arg = (void *)flags,
2136 		.done = folio_not_mapped,
2137 		.anon_lock = folio_lock_anon_vma_read,
2138 	};
2139 
2140 	/*
2141 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2142 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2143 	 */
2144 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2145 					TTU_SYNC | TTU_BATCH_FLUSH)))
2146 		return;
2147 
2148 	if (folio_is_zone_device(folio) &&
2149 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2150 		return;
2151 
2152 	/*
2153 	 * During exec, a temporary VMA is setup and later moved.
2154 	 * The VMA is moved under the anon_vma lock but not the
2155 	 * page tables leading to a race where migration cannot
2156 	 * find the migration ptes. Rather than increasing the
2157 	 * locking requirements of exec(), migration skips
2158 	 * temporary VMAs until after exec() completes.
2159 	 */
2160 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2161 		rwc.invalid_vma = invalid_migration_vma;
2162 
2163 	if (flags & TTU_RMAP_LOCKED)
2164 		rmap_walk_locked(folio, &rwc);
2165 	else
2166 		rmap_walk(folio, &rwc);
2167 }
2168 
2169 #ifdef CONFIG_DEVICE_PRIVATE
2170 struct make_exclusive_args {
2171 	struct mm_struct *mm;
2172 	unsigned long address;
2173 	void *owner;
2174 	bool valid;
2175 };
2176 
2177 static bool page_make_device_exclusive_one(struct folio *folio,
2178 		struct vm_area_struct *vma, unsigned long address, void *priv)
2179 {
2180 	struct mm_struct *mm = vma->vm_mm;
2181 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2182 	struct make_exclusive_args *args = priv;
2183 	pte_t pteval;
2184 	struct page *subpage;
2185 	bool ret = true;
2186 	struct mmu_notifier_range range;
2187 	swp_entry_t entry;
2188 	pte_t swp_pte;
2189 	pte_t ptent;
2190 
2191 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2192 				      vma->vm_mm, address, min(vma->vm_end,
2193 				      address + folio_size(folio)),
2194 				      args->owner);
2195 	mmu_notifier_invalidate_range_start(&range);
2196 
2197 	while (page_vma_mapped_walk(&pvmw)) {
2198 		/* Unexpected PMD-mapped THP? */
2199 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2200 
2201 		ptent = ptep_get(pvmw.pte);
2202 		if (!pte_present(ptent)) {
2203 			ret = false;
2204 			page_vma_mapped_walk_done(&pvmw);
2205 			break;
2206 		}
2207 
2208 		subpage = folio_page(folio,
2209 				pte_pfn(ptent) - folio_pfn(folio));
2210 		address = pvmw.address;
2211 
2212 		/* Nuke the page table entry. */
2213 		flush_cache_page(vma, address, pte_pfn(ptent));
2214 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2215 
2216 		/* Set the dirty flag on the folio now the pte is gone. */
2217 		if (pte_dirty(pteval))
2218 			folio_mark_dirty(folio);
2219 
2220 		/*
2221 		 * Check that our target page is still mapped at the expected
2222 		 * address.
2223 		 */
2224 		if (args->mm == mm && args->address == address &&
2225 		    pte_write(pteval))
2226 			args->valid = true;
2227 
2228 		/*
2229 		 * Store the pfn of the page in a special migration
2230 		 * pte. do_swap_page() will wait until the migration
2231 		 * pte is removed and then restart fault handling.
2232 		 */
2233 		if (pte_write(pteval))
2234 			entry = make_writable_device_exclusive_entry(
2235 							page_to_pfn(subpage));
2236 		else
2237 			entry = make_readable_device_exclusive_entry(
2238 							page_to_pfn(subpage));
2239 		swp_pte = swp_entry_to_pte(entry);
2240 		if (pte_soft_dirty(pteval))
2241 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2242 		if (pte_uffd_wp(pteval))
2243 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2244 
2245 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2246 
2247 		/*
2248 		 * There is a reference on the page for the swap entry which has
2249 		 * been removed, so shouldn't take another.
2250 		 */
2251 		page_remove_rmap(subpage, vma, false);
2252 	}
2253 
2254 	mmu_notifier_invalidate_range_end(&range);
2255 
2256 	return ret;
2257 }
2258 
2259 /**
2260  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2261  * @folio: The folio to replace page table entries for.
2262  * @mm: The mm_struct where the folio is expected to be mapped.
2263  * @address: Address where the folio is expected to be mapped.
2264  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2265  *
2266  * Tries to remove all the page table entries which are mapping this
2267  * folio and replace them with special device exclusive swap entries to
2268  * grant a device exclusive access to the folio.
2269  *
2270  * Context: Caller must hold the folio lock.
2271  * Return: false if the page is still mapped, or if it could not be unmapped
2272  * from the expected address. Otherwise returns true (success).
2273  */
2274 static bool folio_make_device_exclusive(struct folio *folio,
2275 		struct mm_struct *mm, unsigned long address, void *owner)
2276 {
2277 	struct make_exclusive_args args = {
2278 		.mm = mm,
2279 		.address = address,
2280 		.owner = owner,
2281 		.valid = false,
2282 	};
2283 	struct rmap_walk_control rwc = {
2284 		.rmap_one = page_make_device_exclusive_one,
2285 		.done = folio_not_mapped,
2286 		.anon_lock = folio_lock_anon_vma_read,
2287 		.arg = &args,
2288 	};
2289 
2290 	/*
2291 	 * Restrict to anonymous folios for now to avoid potential writeback
2292 	 * issues.
2293 	 */
2294 	if (!folio_test_anon(folio))
2295 		return false;
2296 
2297 	rmap_walk(folio, &rwc);
2298 
2299 	return args.valid && !folio_mapcount(folio);
2300 }
2301 
2302 /**
2303  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2304  * @mm: mm_struct of associated target process
2305  * @start: start of the region to mark for exclusive device access
2306  * @end: end address of region
2307  * @pages: returns the pages which were successfully marked for exclusive access
2308  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2309  *
2310  * Returns: number of pages found in the range by GUP. A page is marked for
2311  * exclusive access only if the page pointer is non-NULL.
2312  *
2313  * This function finds ptes mapping page(s) to the given address range, locks
2314  * them and replaces mappings with special swap entries preventing userspace CPU
2315  * access. On fault these entries are replaced with the original mapping after
2316  * calling MMU notifiers.
2317  *
2318  * A driver using this to program access from a device must use a mmu notifier
2319  * critical section to hold a device specific lock during programming. Once
2320  * programming is complete it should drop the page lock and reference after
2321  * which point CPU access to the page will revoke the exclusive access.
2322  */
2323 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2324 				unsigned long end, struct page **pages,
2325 				void *owner)
2326 {
2327 	long npages = (end - start) >> PAGE_SHIFT;
2328 	long i;
2329 
2330 	npages = get_user_pages_remote(mm, start, npages,
2331 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2332 				       pages, NULL);
2333 	if (npages < 0)
2334 		return npages;
2335 
2336 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2337 		struct folio *folio = page_folio(pages[i]);
2338 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2339 			folio_put(folio);
2340 			pages[i] = NULL;
2341 			continue;
2342 		}
2343 
2344 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2345 			folio_unlock(folio);
2346 			folio_put(folio);
2347 			pages[i] = NULL;
2348 		}
2349 	}
2350 
2351 	return npages;
2352 }
2353 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2354 #endif
2355 
2356 void __put_anon_vma(struct anon_vma *anon_vma)
2357 {
2358 	struct anon_vma *root = anon_vma->root;
2359 
2360 	anon_vma_free(anon_vma);
2361 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2362 		anon_vma_free(root);
2363 }
2364 
2365 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2366 					    struct rmap_walk_control *rwc)
2367 {
2368 	struct anon_vma *anon_vma;
2369 
2370 	if (rwc->anon_lock)
2371 		return rwc->anon_lock(folio, rwc);
2372 
2373 	/*
2374 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2375 	 * because that depends on page_mapped(); but not all its usages
2376 	 * are holding mmap_lock. Users without mmap_lock are required to
2377 	 * take a reference count to prevent the anon_vma disappearing
2378 	 */
2379 	anon_vma = folio_anon_vma(folio);
2380 	if (!anon_vma)
2381 		return NULL;
2382 
2383 	if (anon_vma_trylock_read(anon_vma))
2384 		goto out;
2385 
2386 	if (rwc->try_lock) {
2387 		anon_vma = NULL;
2388 		rwc->contended = true;
2389 		goto out;
2390 	}
2391 
2392 	anon_vma_lock_read(anon_vma);
2393 out:
2394 	return anon_vma;
2395 }
2396 
2397 /*
2398  * rmap_walk_anon - do something to anonymous page using the object-based
2399  * rmap method
2400  * @page: the page to be handled
2401  * @rwc: control variable according to each walk type
2402  *
2403  * Find all the mappings of a page using the mapping pointer and the vma chains
2404  * contained in the anon_vma struct it points to.
2405  */
2406 static void rmap_walk_anon(struct folio *folio,
2407 		struct rmap_walk_control *rwc, bool locked)
2408 {
2409 	struct anon_vma *anon_vma;
2410 	pgoff_t pgoff_start, pgoff_end;
2411 	struct anon_vma_chain *avc;
2412 
2413 	if (locked) {
2414 		anon_vma = folio_anon_vma(folio);
2415 		/* anon_vma disappear under us? */
2416 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2417 	} else {
2418 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2419 	}
2420 	if (!anon_vma)
2421 		return;
2422 
2423 	pgoff_start = folio_pgoff(folio);
2424 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2425 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2426 			pgoff_start, pgoff_end) {
2427 		struct vm_area_struct *vma = avc->vma;
2428 		unsigned long address = vma_address(&folio->page, vma);
2429 
2430 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2431 		cond_resched();
2432 
2433 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2434 			continue;
2435 
2436 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2437 			break;
2438 		if (rwc->done && rwc->done(folio))
2439 			break;
2440 	}
2441 
2442 	if (!locked)
2443 		anon_vma_unlock_read(anon_vma);
2444 }
2445 
2446 /*
2447  * rmap_walk_file - do something to file page using the object-based rmap method
2448  * @page: the page to be handled
2449  * @rwc: control variable according to each walk type
2450  *
2451  * Find all the mappings of a page using the mapping pointer and the vma chains
2452  * contained in the address_space struct it points to.
2453  */
2454 static void rmap_walk_file(struct folio *folio,
2455 		struct rmap_walk_control *rwc, bool locked)
2456 {
2457 	struct address_space *mapping = folio_mapping(folio);
2458 	pgoff_t pgoff_start, pgoff_end;
2459 	struct vm_area_struct *vma;
2460 
2461 	/*
2462 	 * The page lock not only makes sure that page->mapping cannot
2463 	 * suddenly be NULLified by truncation, it makes sure that the
2464 	 * structure at mapping cannot be freed and reused yet,
2465 	 * so we can safely take mapping->i_mmap_rwsem.
2466 	 */
2467 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2468 
2469 	if (!mapping)
2470 		return;
2471 
2472 	pgoff_start = folio_pgoff(folio);
2473 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2474 	if (!locked) {
2475 		if (i_mmap_trylock_read(mapping))
2476 			goto lookup;
2477 
2478 		if (rwc->try_lock) {
2479 			rwc->contended = true;
2480 			return;
2481 		}
2482 
2483 		i_mmap_lock_read(mapping);
2484 	}
2485 lookup:
2486 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2487 			pgoff_start, pgoff_end) {
2488 		unsigned long address = vma_address(&folio->page, vma);
2489 
2490 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2491 		cond_resched();
2492 
2493 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2494 			continue;
2495 
2496 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2497 			goto done;
2498 		if (rwc->done && rwc->done(folio))
2499 			goto done;
2500 	}
2501 
2502 done:
2503 	if (!locked)
2504 		i_mmap_unlock_read(mapping);
2505 }
2506 
2507 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2508 {
2509 	if (unlikely(folio_test_ksm(folio)))
2510 		rmap_walk_ksm(folio, rwc);
2511 	else if (folio_test_anon(folio))
2512 		rmap_walk_anon(folio, rwc, false);
2513 	else
2514 		rmap_walk_file(folio, rwc, false);
2515 }
2516 
2517 /* Like rmap_walk, but caller holds relevant rmap lock */
2518 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2519 {
2520 	/* no ksm support for now */
2521 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2522 	if (folio_test_anon(folio))
2523 		rmap_walk_anon(folio, rwc, true);
2524 	else
2525 		rmap_walk_file(folio, rwc, true);
2526 }
2527 
2528 #ifdef CONFIG_HUGETLB_PAGE
2529 /*
2530  * The following two functions are for anonymous (private mapped) hugepages.
2531  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2532  * and no lru code, because we handle hugepages differently from common pages.
2533  *
2534  * RMAP_COMPOUND is ignored.
2535  */
2536 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2537 			    unsigned long address, rmap_t flags)
2538 {
2539 	struct folio *folio = page_folio(page);
2540 	struct anon_vma *anon_vma = vma->anon_vma;
2541 	int first;
2542 
2543 	BUG_ON(!folio_test_locked(folio));
2544 	BUG_ON(!anon_vma);
2545 	/* address might be in next vma when migration races vma_merge */
2546 	first = atomic_inc_and_test(&folio->_entire_mapcount);
2547 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2548 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2549 	if (first)
2550 		__page_set_anon_rmap(folio, page, vma, address,
2551 				     !!(flags & RMAP_EXCLUSIVE));
2552 }
2553 
2554 void hugepage_add_new_anon_rmap(struct folio *folio,
2555 			struct vm_area_struct *vma, unsigned long address)
2556 {
2557 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2558 	/* increment count (starts at -1) */
2559 	atomic_set(&folio->_entire_mapcount, 0);
2560 	folio_clear_hugetlb_restore_reserve(folio);
2561 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
2562 }
2563 #endif /* CONFIG_HUGETLB_PAGE */
2564