xref: /linux/mm/rmap.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28  *           mapping->i_mmap_rwsem
29  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30  *             anon_vma->rwsem
31  *               mm->page_table_lock or pte_lock
32  *                 swap_lock (in swap_duplicate, swap_info_get)
33  *                   mmlist_lock (in mmput, drain_mmlist and others)
34  *                   mapping->private_lock (in block_dirty_folio)
35  *                     folio_lock_memcg move_lock (in block_dirty_folio)
36  *                       i_pages lock (widely used)
37  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                     i_pages lock (widely used, in set_page_dirty,
42  *                               in arch-dependent flush_dcache_mmap_lock,
43  *                               within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * * hugetlbfs PageHuge() pages take locks in this order:
50  *         mapping->i_mmap_rwsem
51  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52  *             page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/tlb.h>
82 #include <trace/events/migrate.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against folio_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
121 	 *
122 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266  * anon_vma_fork(). The first three want an exact copy of src, while the last
267  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270  *
271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
274  * case of constantly forking task. On the other hand, an anon_vma with more
275  * than one child isn't reused even if there was no alive vma, thus rmap
276  * walker has a good chance of avoiding scanning the whole hierarchy when it
277  * searches where page is mapped.
278  */
279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 	struct anon_vma_chain *avc, *pavc;
282 	struct anon_vma *root = NULL;
283 
284 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 		struct anon_vma *anon_vma;
286 
287 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 		if (unlikely(!avc)) {
289 			unlock_anon_vma_root(root);
290 			root = NULL;
291 			avc = anon_vma_chain_alloc(GFP_KERNEL);
292 			if (!avc)
293 				goto enomem_failure;
294 		}
295 		anon_vma = pavc->anon_vma;
296 		root = lock_anon_vma_root(root, anon_vma);
297 		anon_vma_chain_link(dst, avc, anon_vma);
298 
299 		/*
300 		 * Reuse existing anon_vma if it has no vma and only one
301 		 * anon_vma child.
302 		 *
303 		 * Root anon_vma is never reused:
304 		 * it has self-parent reference and at least one child.
305 		 */
306 		if (!dst->anon_vma && src->anon_vma &&
307 		    anon_vma->num_children < 2 &&
308 		    anon_vma->num_active_vmas == 0)
309 			dst->anon_vma = anon_vma;
310 	}
311 	if (dst->anon_vma)
312 		dst->anon_vma->num_active_vmas++;
313 	unlock_anon_vma_root(root);
314 	return 0;
315 
316  enomem_failure:
317 	/*
318 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
319 	 * decremented in unlink_anon_vmas().
320 	 * We can safely do this because callers of anon_vma_clone() don't care
321 	 * about dst->anon_vma if anon_vma_clone() failed.
322 	 */
323 	dst->anon_vma = NULL;
324 	unlink_anon_vmas(dst);
325 	return -ENOMEM;
326 }
327 
328 /*
329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
330  * the corresponding VMA in the parent process is attached to.
331  * Returns 0 on success, non-zero on failure.
332  */
333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 	struct anon_vma_chain *avc;
336 	struct anon_vma *anon_vma;
337 	int error;
338 
339 	/* Don't bother if the parent process has no anon_vma here. */
340 	if (!pvma->anon_vma)
341 		return 0;
342 
343 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 	vma->anon_vma = NULL;
345 
346 	/*
347 	 * First, attach the new VMA to the parent VMA's anon_vmas,
348 	 * so rmap can find non-COWed pages in child processes.
349 	 */
350 	error = anon_vma_clone(vma, pvma);
351 	if (error)
352 		return error;
353 
354 	/* An existing anon_vma has been reused, all done then. */
355 	if (vma->anon_vma)
356 		return 0;
357 
358 	/* Then add our own anon_vma. */
359 	anon_vma = anon_vma_alloc();
360 	if (!anon_vma)
361 		goto out_error;
362 	anon_vma->num_active_vmas++;
363 	avc = anon_vma_chain_alloc(GFP_KERNEL);
364 	if (!avc)
365 		goto out_error_free_anon_vma;
366 
367 	/*
368 	 * The root anon_vma's rwsem is the lock actually used when we
369 	 * lock any of the anon_vmas in this anon_vma tree.
370 	 */
371 	anon_vma->root = pvma->anon_vma->root;
372 	anon_vma->parent = pvma->anon_vma;
373 	/*
374 	 * With refcounts, an anon_vma can stay around longer than the
375 	 * process it belongs to. The root anon_vma needs to be pinned until
376 	 * this anon_vma is freed, because the lock lives in the root.
377 	 */
378 	get_anon_vma(anon_vma->root);
379 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
380 	vma->anon_vma = anon_vma;
381 	anon_vma_lock_write(anon_vma);
382 	anon_vma_chain_link(vma, avc, anon_vma);
383 	anon_vma->parent->num_children++;
384 	anon_vma_unlock_write(anon_vma);
385 
386 	return 0;
387 
388  out_error_free_anon_vma:
389 	put_anon_vma(anon_vma);
390  out_error:
391 	unlink_anon_vmas(vma);
392 	return -ENOMEM;
393 }
394 
395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 	struct anon_vma_chain *avc, *next;
398 	struct anon_vma *root = NULL;
399 
400 	/*
401 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
402 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 	 */
404 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 		struct anon_vma *anon_vma = avc->anon_vma;
406 
407 		root = lock_anon_vma_root(root, anon_vma);
408 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409 
410 		/*
411 		 * Leave empty anon_vmas on the list - we'll need
412 		 * to free them outside the lock.
413 		 */
414 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 			anon_vma->parent->num_children--;
416 			continue;
417 		}
418 
419 		list_del(&avc->same_vma);
420 		anon_vma_chain_free(avc);
421 	}
422 	if (vma->anon_vma) {
423 		vma->anon_vma->num_active_vmas--;
424 
425 		/*
426 		 * vma would still be needed after unlink, and anon_vma will be prepared
427 		 * when handle fault.
428 		 */
429 		vma->anon_vma = NULL;
430 	}
431 	unlock_anon_vma_root(root);
432 
433 	/*
434 	 * Iterate the list once more, it now only contains empty and unlinked
435 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 	 * needing to write-acquire the anon_vma->root->rwsem.
437 	 */
438 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 		struct anon_vma *anon_vma = avc->anon_vma;
440 
441 		VM_WARN_ON(anon_vma->num_children);
442 		VM_WARN_ON(anon_vma->num_active_vmas);
443 		put_anon_vma(anon_vma);
444 
445 		list_del(&avc->same_vma);
446 		anon_vma_chain_free(avc);
447 	}
448 }
449 
450 static void anon_vma_ctor(void *data)
451 {
452 	struct anon_vma *anon_vma = data;
453 
454 	init_rwsem(&anon_vma->rwsem);
455 	atomic_set(&anon_vma->refcount, 0);
456 	anon_vma->rb_root = RB_ROOT_CACHED;
457 }
458 
459 void __init anon_vma_init(void)
460 {
461 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
462 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
463 			anon_vma_ctor);
464 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
465 			SLAB_PANIC|SLAB_ACCOUNT);
466 }
467 
468 /*
469  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
470  *
471  * Since there is no serialization what so ever against page_remove_rmap()
472  * the best this function can do is return a refcount increased anon_vma
473  * that might have been relevant to this page.
474  *
475  * The page might have been remapped to a different anon_vma or the anon_vma
476  * returned may already be freed (and even reused).
477  *
478  * In case it was remapped to a different anon_vma, the new anon_vma will be a
479  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
480  * ensure that any anon_vma obtained from the page will still be valid for as
481  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
482  *
483  * All users of this function must be very careful when walking the anon_vma
484  * chain and verify that the page in question is indeed mapped in it
485  * [ something equivalent to page_mapped_in_vma() ].
486  *
487  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
488  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
489  * if there is a mapcount, we can dereference the anon_vma after observing
490  * those.
491  */
492 struct anon_vma *page_get_anon_vma(struct page *page)
493 {
494 	struct anon_vma *anon_vma = NULL;
495 	unsigned long anon_mapping;
496 
497 	rcu_read_lock();
498 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
499 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
500 		goto out;
501 	if (!page_mapped(page))
502 		goto out;
503 
504 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
505 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
506 		anon_vma = NULL;
507 		goto out;
508 	}
509 
510 	/*
511 	 * If this page is still mapped, then its anon_vma cannot have been
512 	 * freed.  But if it has been unmapped, we have no security against the
513 	 * anon_vma structure being freed and reused (for another anon_vma:
514 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
515 	 * above cannot corrupt).
516 	 */
517 	if (!page_mapped(page)) {
518 		rcu_read_unlock();
519 		put_anon_vma(anon_vma);
520 		return NULL;
521 	}
522 out:
523 	rcu_read_unlock();
524 
525 	return anon_vma;
526 }
527 
528 /*
529  * Similar to page_get_anon_vma() except it locks the anon_vma.
530  *
531  * Its a little more complex as it tries to keep the fast path to a single
532  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
533  * reference like with page_get_anon_vma() and then block on the mutex
534  * on !rwc->try_lock case.
535  */
536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
537 					  struct rmap_walk_control *rwc)
538 {
539 	struct anon_vma *anon_vma = NULL;
540 	struct anon_vma *root_anon_vma;
541 	unsigned long anon_mapping;
542 
543 	rcu_read_lock();
544 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
545 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
546 		goto out;
547 	if (!folio_mapped(folio))
548 		goto out;
549 
550 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
551 	root_anon_vma = READ_ONCE(anon_vma->root);
552 	if (down_read_trylock(&root_anon_vma->rwsem)) {
553 		/*
554 		 * If the folio is still mapped, then this anon_vma is still
555 		 * its anon_vma, and holding the mutex ensures that it will
556 		 * not go away, see anon_vma_free().
557 		 */
558 		if (!folio_mapped(folio)) {
559 			up_read(&root_anon_vma->rwsem);
560 			anon_vma = NULL;
561 		}
562 		goto out;
563 	}
564 
565 	if (rwc && rwc->try_lock) {
566 		anon_vma = NULL;
567 		rwc->contended = true;
568 		goto out;
569 	}
570 
571 	/* trylock failed, we got to sleep */
572 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
573 		anon_vma = NULL;
574 		goto out;
575 	}
576 
577 	if (!folio_mapped(folio)) {
578 		rcu_read_unlock();
579 		put_anon_vma(anon_vma);
580 		return NULL;
581 	}
582 
583 	/* we pinned the anon_vma, its safe to sleep */
584 	rcu_read_unlock();
585 	anon_vma_lock_read(anon_vma);
586 
587 	if (atomic_dec_and_test(&anon_vma->refcount)) {
588 		/*
589 		 * Oops, we held the last refcount, release the lock
590 		 * and bail -- can't simply use put_anon_vma() because
591 		 * we'll deadlock on the anon_vma_lock_write() recursion.
592 		 */
593 		anon_vma_unlock_read(anon_vma);
594 		__put_anon_vma(anon_vma);
595 		anon_vma = NULL;
596 	}
597 
598 	return anon_vma;
599 
600 out:
601 	rcu_read_unlock();
602 	return anon_vma;
603 }
604 
605 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
606 {
607 	anon_vma_unlock_read(anon_vma);
608 }
609 
610 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
611 /*
612  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
613  * important if a PTE was dirty when it was unmapped that it's flushed
614  * before any IO is initiated on the page to prevent lost writes. Similarly,
615  * it must be flushed before freeing to prevent data leakage.
616  */
617 void try_to_unmap_flush(void)
618 {
619 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
620 
621 	if (!tlb_ubc->flush_required)
622 		return;
623 
624 	arch_tlbbatch_flush(&tlb_ubc->arch);
625 	tlb_ubc->flush_required = false;
626 	tlb_ubc->writable = false;
627 }
628 
629 /* Flush iff there are potentially writable TLB entries that can race with IO */
630 void try_to_unmap_flush_dirty(void)
631 {
632 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
633 
634 	if (tlb_ubc->writable)
635 		try_to_unmap_flush();
636 }
637 
638 /*
639  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
640  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
641  */
642 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
643 #define TLB_FLUSH_BATCH_PENDING_MASK			\
644 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
645 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
646 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
647 
648 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
649 {
650 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
651 	int batch, nbatch;
652 
653 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
654 	tlb_ubc->flush_required = true;
655 
656 	/*
657 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
658 	 * before the PTE is cleared.
659 	 */
660 	barrier();
661 	batch = atomic_read(&mm->tlb_flush_batched);
662 retry:
663 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
664 		/*
665 		 * Prevent `pending' from catching up with `flushed' because of
666 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
667 		 * `pending' becomes large.
668 		 */
669 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
670 		if (nbatch != batch) {
671 			batch = nbatch;
672 			goto retry;
673 		}
674 	} else {
675 		atomic_inc(&mm->tlb_flush_batched);
676 	}
677 
678 	/*
679 	 * If the PTE was dirty then it's best to assume it's writable. The
680 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
681 	 * before the page is queued for IO.
682 	 */
683 	if (writable)
684 		tlb_ubc->writable = true;
685 }
686 
687 /*
688  * Returns true if the TLB flush should be deferred to the end of a batch of
689  * unmap operations to reduce IPIs.
690  */
691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692 {
693 	bool should_defer = false;
694 
695 	if (!(flags & TTU_BATCH_FLUSH))
696 		return false;
697 
698 	/* If remote CPUs need to be flushed then defer batch the flush */
699 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
700 		should_defer = true;
701 	put_cpu();
702 
703 	return should_defer;
704 }
705 
706 /*
707  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
708  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
709  * operation such as mprotect or munmap to race between reclaim unmapping
710  * the page and flushing the page. If this race occurs, it potentially allows
711  * access to data via a stale TLB entry. Tracking all mm's that have TLB
712  * batching in flight would be expensive during reclaim so instead track
713  * whether TLB batching occurred in the past and if so then do a flush here
714  * if required. This will cost one additional flush per reclaim cycle paid
715  * by the first operation at risk such as mprotect and mumap.
716  *
717  * This must be called under the PTL so that an access to tlb_flush_batched
718  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
719  * via the PTL.
720  */
721 void flush_tlb_batched_pending(struct mm_struct *mm)
722 {
723 	int batch = atomic_read(&mm->tlb_flush_batched);
724 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
725 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
726 
727 	if (pending != flushed) {
728 		flush_tlb_mm(mm);
729 		/*
730 		 * If the new TLB flushing is pending during flushing, leave
731 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
732 		 */
733 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
734 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
735 	}
736 }
737 #else
738 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
739 {
740 }
741 
742 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
743 {
744 	return false;
745 }
746 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
747 
748 /*
749  * At what user virtual address is page expected in vma?
750  * Caller should check the page is actually part of the vma.
751  */
752 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
753 {
754 	struct folio *folio = page_folio(page);
755 	if (folio_test_anon(folio)) {
756 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
757 		/*
758 		 * Note: swapoff's unuse_vma() is more efficient with this
759 		 * check, and needs it to match anon_vma when KSM is active.
760 		 */
761 		if (!vma->anon_vma || !page__anon_vma ||
762 		    vma->anon_vma->root != page__anon_vma->root)
763 			return -EFAULT;
764 	} else if (!vma->vm_file) {
765 		return -EFAULT;
766 	} else if (vma->vm_file->f_mapping != folio->mapping) {
767 		return -EFAULT;
768 	}
769 
770 	return vma_address(page, vma);
771 }
772 
773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
774 {
775 	pgd_t *pgd;
776 	p4d_t *p4d;
777 	pud_t *pud;
778 	pmd_t *pmd = NULL;
779 	pmd_t pmde;
780 
781 	pgd = pgd_offset(mm, address);
782 	if (!pgd_present(*pgd))
783 		goto out;
784 
785 	p4d = p4d_offset(pgd, address);
786 	if (!p4d_present(*p4d))
787 		goto out;
788 
789 	pud = pud_offset(p4d, address);
790 	if (!pud_present(*pud))
791 		goto out;
792 
793 	pmd = pmd_offset(pud, address);
794 	/*
795 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
796 	 * without holding anon_vma lock for write.  So when looking for a
797 	 * genuine pmde (in which to find pte), test present and !THP together.
798 	 */
799 	pmde = *pmd;
800 	barrier();
801 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
802 		pmd = NULL;
803 out:
804 	return pmd;
805 }
806 
807 struct folio_referenced_arg {
808 	int mapcount;
809 	int referenced;
810 	unsigned long vm_flags;
811 	struct mem_cgroup *memcg;
812 };
813 /*
814  * arg: folio_referenced_arg will be passed
815  */
816 static bool folio_referenced_one(struct folio *folio,
817 		struct vm_area_struct *vma, unsigned long address, void *arg)
818 {
819 	struct folio_referenced_arg *pra = arg;
820 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
821 	int referenced = 0;
822 
823 	while (page_vma_mapped_walk(&pvmw)) {
824 		address = pvmw.address;
825 
826 		if ((vma->vm_flags & VM_LOCKED) &&
827 		    (!folio_test_large(folio) || !pvmw.pte)) {
828 			/* Restore the mlock which got missed */
829 			mlock_vma_folio(folio, vma, !pvmw.pte);
830 			page_vma_mapped_walk_done(&pvmw);
831 			pra->vm_flags |= VM_LOCKED;
832 			return false; /* To break the loop */
833 		}
834 
835 		if (pvmw.pte) {
836 			if (ptep_clear_flush_young_notify(vma, address,
837 						pvmw.pte)) {
838 				/*
839 				 * Don't treat a reference through
840 				 * a sequentially read mapping as such.
841 				 * If the folio has been used in another mapping,
842 				 * we will catch it; if this other mapping is
843 				 * already gone, the unmap path will have set
844 				 * the referenced flag or activated the folio.
845 				 */
846 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
847 					referenced++;
848 			}
849 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
850 			if (pmdp_clear_flush_young_notify(vma, address,
851 						pvmw.pmd))
852 				referenced++;
853 		} else {
854 			/* unexpected pmd-mapped folio? */
855 			WARN_ON_ONCE(1);
856 		}
857 
858 		pra->mapcount--;
859 	}
860 
861 	if (referenced)
862 		folio_clear_idle(folio);
863 	if (folio_test_clear_young(folio))
864 		referenced++;
865 
866 	if (referenced) {
867 		pra->referenced++;
868 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
869 	}
870 
871 	if (!pra->mapcount)
872 		return false; /* To break the loop */
873 
874 	return true;
875 }
876 
877 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
878 {
879 	struct folio_referenced_arg *pra = arg;
880 	struct mem_cgroup *memcg = pra->memcg;
881 
882 	if (!mm_match_cgroup(vma->vm_mm, memcg))
883 		return true;
884 
885 	return false;
886 }
887 
888 /**
889  * folio_referenced() - Test if the folio was referenced.
890  * @folio: The folio to test.
891  * @is_locked: Caller holds lock on the folio.
892  * @memcg: target memory cgroup
893  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
894  *
895  * Quick test_and_clear_referenced for all mappings of a folio,
896  *
897  * Return: The number of mappings which referenced the folio. Return -1 if
898  * the function bailed out due to rmap lock contention.
899  */
900 int folio_referenced(struct folio *folio, int is_locked,
901 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
902 {
903 	int we_locked = 0;
904 	struct folio_referenced_arg pra = {
905 		.mapcount = folio_mapcount(folio),
906 		.memcg = memcg,
907 	};
908 	struct rmap_walk_control rwc = {
909 		.rmap_one = folio_referenced_one,
910 		.arg = (void *)&pra,
911 		.anon_lock = folio_lock_anon_vma_read,
912 		.try_lock = true,
913 	};
914 
915 	*vm_flags = 0;
916 	if (!pra.mapcount)
917 		return 0;
918 
919 	if (!folio_raw_mapping(folio))
920 		return 0;
921 
922 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
923 		we_locked = folio_trylock(folio);
924 		if (!we_locked)
925 			return 1;
926 	}
927 
928 	/*
929 	 * If we are reclaiming on behalf of a cgroup, skip
930 	 * counting on behalf of references from different
931 	 * cgroups
932 	 */
933 	if (memcg) {
934 		rwc.invalid_vma = invalid_folio_referenced_vma;
935 	}
936 
937 	rmap_walk(folio, &rwc);
938 	*vm_flags = pra.vm_flags;
939 
940 	if (we_locked)
941 		folio_unlock(folio);
942 
943 	return rwc.contended ? -1 : pra.referenced;
944 }
945 
946 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
947 {
948 	int cleaned = 0;
949 	struct vm_area_struct *vma = pvmw->vma;
950 	struct mmu_notifier_range range;
951 	unsigned long address = pvmw->address;
952 
953 	/*
954 	 * We have to assume the worse case ie pmd for invalidation. Note that
955 	 * the folio can not be freed from this function.
956 	 */
957 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
958 				0, vma, vma->vm_mm, address,
959 				vma_address_end(pvmw));
960 	mmu_notifier_invalidate_range_start(&range);
961 
962 	while (page_vma_mapped_walk(pvmw)) {
963 		int ret = 0;
964 
965 		address = pvmw->address;
966 		if (pvmw->pte) {
967 			pte_t entry;
968 			pte_t *pte = pvmw->pte;
969 
970 			if (!pte_dirty(*pte) && !pte_write(*pte))
971 				continue;
972 
973 			flush_cache_page(vma, address, pte_pfn(*pte));
974 			entry = ptep_clear_flush(vma, address, pte);
975 			entry = pte_wrprotect(entry);
976 			entry = pte_mkclean(entry);
977 			set_pte_at(vma->vm_mm, address, pte, entry);
978 			ret = 1;
979 		} else {
980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
981 			pmd_t *pmd = pvmw->pmd;
982 			pmd_t entry;
983 
984 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
985 				continue;
986 
987 			flush_cache_range(vma, address,
988 					  address + HPAGE_PMD_SIZE);
989 			entry = pmdp_invalidate(vma, address, pmd);
990 			entry = pmd_wrprotect(entry);
991 			entry = pmd_mkclean(entry);
992 			set_pmd_at(vma->vm_mm, address, pmd, entry);
993 			ret = 1;
994 #else
995 			/* unexpected pmd-mapped folio? */
996 			WARN_ON_ONCE(1);
997 #endif
998 		}
999 
1000 		/*
1001 		 * No need to call mmu_notifier_invalidate_range() as we are
1002 		 * downgrading page table protection not changing it to point
1003 		 * to a new page.
1004 		 *
1005 		 * See Documentation/mm/mmu_notifier.rst
1006 		 */
1007 		if (ret)
1008 			cleaned++;
1009 	}
1010 
1011 	mmu_notifier_invalidate_range_end(&range);
1012 
1013 	return cleaned;
1014 }
1015 
1016 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1017 			     unsigned long address, void *arg)
1018 {
1019 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1020 	int *cleaned = arg;
1021 
1022 	*cleaned += page_vma_mkclean_one(&pvmw);
1023 
1024 	return true;
1025 }
1026 
1027 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1028 {
1029 	if (vma->vm_flags & VM_SHARED)
1030 		return false;
1031 
1032 	return true;
1033 }
1034 
1035 int folio_mkclean(struct folio *folio)
1036 {
1037 	int cleaned = 0;
1038 	struct address_space *mapping;
1039 	struct rmap_walk_control rwc = {
1040 		.arg = (void *)&cleaned,
1041 		.rmap_one = page_mkclean_one,
1042 		.invalid_vma = invalid_mkclean_vma,
1043 	};
1044 
1045 	BUG_ON(!folio_test_locked(folio));
1046 
1047 	if (!folio_mapped(folio))
1048 		return 0;
1049 
1050 	mapping = folio_mapping(folio);
1051 	if (!mapping)
1052 		return 0;
1053 
1054 	rmap_walk(folio, &rwc);
1055 
1056 	return cleaned;
1057 }
1058 EXPORT_SYMBOL_GPL(folio_mkclean);
1059 
1060 /**
1061  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1062  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1063  *                     within the @vma of shared mappings. And since clean PTEs
1064  *                     should also be readonly, write protects them too.
1065  * @pfn: start pfn.
1066  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1067  * @pgoff: page offset that the @pfn mapped with.
1068  * @vma: vma that @pfn mapped within.
1069  *
1070  * Returns the number of cleaned PTEs (including PMDs).
1071  */
1072 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1073 		      struct vm_area_struct *vma)
1074 {
1075 	struct page_vma_mapped_walk pvmw = {
1076 		.pfn		= pfn,
1077 		.nr_pages	= nr_pages,
1078 		.pgoff		= pgoff,
1079 		.vma		= vma,
1080 		.flags		= PVMW_SYNC,
1081 	};
1082 
1083 	if (invalid_mkclean_vma(vma, NULL))
1084 		return 0;
1085 
1086 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
1087 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1088 
1089 	return page_vma_mkclean_one(&pvmw);
1090 }
1091 
1092 /**
1093  * page_move_anon_rmap - move a page to our anon_vma
1094  * @page:	the page to move to our anon_vma
1095  * @vma:	the vma the page belongs to
1096  *
1097  * When a page belongs exclusively to one process after a COW event,
1098  * that page can be moved into the anon_vma that belongs to just that
1099  * process, so the rmap code will not search the parent or sibling
1100  * processes.
1101  */
1102 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1103 {
1104 	struct anon_vma *anon_vma = vma->anon_vma;
1105 	struct page *subpage = page;
1106 
1107 	page = compound_head(page);
1108 
1109 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1110 	VM_BUG_ON_VMA(!anon_vma, vma);
1111 
1112 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1113 	/*
1114 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1115 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1116 	 * folio_test_anon()) will not see one without the other.
1117 	 */
1118 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1119 	SetPageAnonExclusive(subpage);
1120 }
1121 
1122 /**
1123  * __page_set_anon_rmap - set up new anonymous rmap
1124  * @page:	Page or Hugepage to add to rmap
1125  * @vma:	VM area to add page to.
1126  * @address:	User virtual address of the mapping
1127  * @exclusive:	the page is exclusively owned by the current process
1128  */
1129 static void __page_set_anon_rmap(struct page *page,
1130 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1131 {
1132 	struct anon_vma *anon_vma = vma->anon_vma;
1133 
1134 	BUG_ON(!anon_vma);
1135 
1136 	if (PageAnon(page))
1137 		goto out;
1138 
1139 	/*
1140 	 * If the page isn't exclusively mapped into this vma,
1141 	 * we must use the _oldest_ possible anon_vma for the
1142 	 * page mapping!
1143 	 */
1144 	if (!exclusive)
1145 		anon_vma = anon_vma->root;
1146 
1147 	/*
1148 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1149 	 * Make sure the compiler doesn't split the stores of anon_vma and
1150 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1151 	 * could mistake the mapping for a struct address_space and crash.
1152 	 */
1153 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1154 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1155 	page->index = linear_page_index(vma, address);
1156 out:
1157 	if (exclusive)
1158 		SetPageAnonExclusive(page);
1159 }
1160 
1161 /**
1162  * __page_check_anon_rmap - sanity check anonymous rmap addition
1163  * @page:	the page to add the mapping to
1164  * @vma:	the vm area in which the mapping is added
1165  * @address:	the user virtual address mapped
1166  */
1167 static void __page_check_anon_rmap(struct page *page,
1168 	struct vm_area_struct *vma, unsigned long address)
1169 {
1170 	struct folio *folio = page_folio(page);
1171 	/*
1172 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1173 	 * be set up correctly at this point.
1174 	 *
1175 	 * We have exclusion against page_add_anon_rmap because the caller
1176 	 * always holds the page locked.
1177 	 *
1178 	 * We have exclusion against page_add_new_anon_rmap because those pages
1179 	 * are initially only visible via the pagetables, and the pte is locked
1180 	 * over the call to page_add_new_anon_rmap.
1181 	 */
1182 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1183 			folio);
1184 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1185 		       page);
1186 }
1187 
1188 /**
1189  * page_add_anon_rmap - add pte mapping to an anonymous page
1190  * @page:	the page to add the mapping to
1191  * @vma:	the vm area in which the mapping is added
1192  * @address:	the user virtual address mapped
1193  * @flags:	the rmap flags
1194  *
1195  * The caller needs to hold the pte lock, and the page must be locked in
1196  * the anon_vma case: to serialize mapping,index checking after setting,
1197  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1198  * (but PageKsm is never downgraded to PageAnon).
1199  */
1200 void page_add_anon_rmap(struct page *page,
1201 	struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1202 {
1203 	bool compound = flags & RMAP_COMPOUND;
1204 	bool first;
1205 
1206 	if (unlikely(PageKsm(page)))
1207 		lock_page_memcg(page);
1208 	else
1209 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1210 
1211 	if (compound) {
1212 		atomic_t *mapcount;
1213 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1214 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 		mapcount = compound_mapcount_ptr(page);
1216 		first = atomic_inc_and_test(mapcount);
1217 	} else {
1218 		first = atomic_inc_and_test(&page->_mapcount);
1219 	}
1220 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
1221 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
1222 
1223 	if (first) {
1224 		int nr = compound ? thp_nr_pages(page) : 1;
1225 		/*
1226 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1227 		 * these counters are not modified in interrupt context, and
1228 		 * pte lock(a spinlock) is held, which implies preemption
1229 		 * disabled.
1230 		 */
1231 		if (compound)
1232 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1233 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1234 	}
1235 
1236 	if (unlikely(PageKsm(page)))
1237 		unlock_page_memcg(page);
1238 
1239 	/* address might be in next vma when migration races vma_adjust */
1240 	else if (first)
1241 		__page_set_anon_rmap(page, vma, address,
1242 				     !!(flags & RMAP_EXCLUSIVE));
1243 	else
1244 		__page_check_anon_rmap(page, vma, address);
1245 
1246 	mlock_vma_page(page, vma, compound);
1247 }
1248 
1249 /**
1250  * page_add_new_anon_rmap - add mapping to a new anonymous page
1251  * @page:	the page to add the mapping to
1252  * @vma:	the vm area in which the mapping is added
1253  * @address:	the user virtual address mapped
1254  *
1255  * If it's a compound page, it is accounted as a compound page. As the page
1256  * is new, it's assume to get mapped exclusively by a single process.
1257  *
1258  * Same as page_add_anon_rmap but must only be called on *new* pages.
1259  * This means the inc-and-test can be bypassed.
1260  * Page does not have to be locked.
1261  */
1262 void page_add_new_anon_rmap(struct page *page,
1263 	struct vm_area_struct *vma, unsigned long address)
1264 {
1265 	const bool compound = PageCompound(page);
1266 	int nr = compound ? thp_nr_pages(page) : 1;
1267 
1268 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1269 	__SetPageSwapBacked(page);
1270 	if (compound) {
1271 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1272 		/* increment count (starts at -1) */
1273 		atomic_set(compound_mapcount_ptr(page), 0);
1274 		atomic_set(compound_pincount_ptr(page), 0);
1275 
1276 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1277 	} else {
1278 		/* increment count (starts at -1) */
1279 		atomic_set(&page->_mapcount, 0);
1280 	}
1281 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1282 	__page_set_anon_rmap(page, vma, address, 1);
1283 }
1284 
1285 /**
1286  * page_add_file_rmap - add pte mapping to a file page
1287  * @page:	the page to add the mapping to
1288  * @vma:	the vm area in which the mapping is added
1289  * @compound:	charge the page as compound or small page
1290  *
1291  * The caller needs to hold the pte lock.
1292  */
1293 void page_add_file_rmap(struct page *page,
1294 	struct vm_area_struct *vma, bool compound)
1295 {
1296 	int i, nr = 0;
1297 
1298 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1299 	lock_page_memcg(page);
1300 	if (compound && PageTransHuge(page)) {
1301 		int nr_pages = thp_nr_pages(page);
1302 
1303 		for (i = 0; i < nr_pages; i++) {
1304 			if (atomic_inc_and_test(&page[i]._mapcount))
1305 				nr++;
1306 		}
1307 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1308 			goto out;
1309 
1310 		/*
1311 		 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1312 		 * but page lock is held by all page_add_file_rmap() compound
1313 		 * callers, and SetPageDoubleMap below warns if !PageLocked:
1314 		 * so here is a place that DoubleMap can be safely cleared.
1315 		 */
1316 		VM_WARN_ON_ONCE(!PageLocked(page));
1317 		if (nr == nr_pages && PageDoubleMap(page))
1318 			ClearPageDoubleMap(page);
1319 
1320 		if (PageSwapBacked(page))
1321 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1322 						nr_pages);
1323 		else
1324 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1325 						nr_pages);
1326 	} else {
1327 		if (PageTransCompound(page) && page_mapping(page)) {
1328 			VM_WARN_ON_ONCE(!PageLocked(page));
1329 			SetPageDoubleMap(compound_head(page));
1330 		}
1331 		if (atomic_inc_and_test(&page->_mapcount))
1332 			nr++;
1333 	}
1334 out:
1335 	if (nr)
1336 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1337 	unlock_page_memcg(page);
1338 
1339 	mlock_vma_page(page, vma, compound);
1340 }
1341 
1342 static void page_remove_file_rmap(struct page *page, bool compound)
1343 {
1344 	int i, nr = 0;
1345 
1346 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1347 
1348 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1349 	if (unlikely(PageHuge(page))) {
1350 		/* hugetlb pages are always mapped with pmds */
1351 		atomic_dec(compound_mapcount_ptr(page));
1352 		return;
1353 	}
1354 
1355 	/* page still mapped by someone else? */
1356 	if (compound && PageTransHuge(page)) {
1357 		int nr_pages = thp_nr_pages(page);
1358 
1359 		for (i = 0; i < nr_pages; i++) {
1360 			if (atomic_add_negative(-1, &page[i]._mapcount))
1361 				nr++;
1362 		}
1363 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1364 			goto out;
1365 		if (PageSwapBacked(page))
1366 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1367 						-nr_pages);
1368 		else
1369 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1370 						-nr_pages);
1371 	} else {
1372 		if (atomic_add_negative(-1, &page->_mapcount))
1373 			nr++;
1374 	}
1375 out:
1376 	if (nr)
1377 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1378 }
1379 
1380 static void page_remove_anon_compound_rmap(struct page *page)
1381 {
1382 	int i, nr;
1383 
1384 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1385 		return;
1386 
1387 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1388 	if (unlikely(PageHuge(page)))
1389 		return;
1390 
1391 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1392 		return;
1393 
1394 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1395 
1396 	if (TestClearPageDoubleMap(page)) {
1397 		/*
1398 		 * Subpages can be mapped with PTEs too. Check how many of
1399 		 * them are still mapped.
1400 		 */
1401 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1402 			if (atomic_add_negative(-1, &page[i]._mapcount))
1403 				nr++;
1404 		}
1405 
1406 		/*
1407 		 * Queue the page for deferred split if at least one small
1408 		 * page of the compound page is unmapped, but at least one
1409 		 * small page is still mapped.
1410 		 */
1411 		if (nr && nr < thp_nr_pages(page))
1412 			deferred_split_huge_page(page);
1413 	} else {
1414 		nr = thp_nr_pages(page);
1415 	}
1416 
1417 	if (nr)
1418 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1419 }
1420 
1421 /**
1422  * page_remove_rmap - take down pte mapping from a page
1423  * @page:	page to remove mapping from
1424  * @vma:	the vm area from which the mapping is removed
1425  * @compound:	uncharge the page as compound or small page
1426  *
1427  * The caller needs to hold the pte lock.
1428  */
1429 void page_remove_rmap(struct page *page,
1430 	struct vm_area_struct *vma, bool compound)
1431 {
1432 	lock_page_memcg(page);
1433 
1434 	if (!PageAnon(page)) {
1435 		page_remove_file_rmap(page, compound);
1436 		goto out;
1437 	}
1438 
1439 	if (compound) {
1440 		page_remove_anon_compound_rmap(page);
1441 		goto out;
1442 	}
1443 
1444 	/* page still mapped by someone else? */
1445 	if (!atomic_add_negative(-1, &page->_mapcount))
1446 		goto out;
1447 
1448 	/*
1449 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1450 	 * these counters are not modified in interrupt context, and
1451 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1452 	 */
1453 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1454 
1455 	if (PageTransCompound(page))
1456 		deferred_split_huge_page(compound_head(page));
1457 
1458 	/*
1459 	 * It would be tidy to reset the PageAnon mapping here,
1460 	 * but that might overwrite a racing page_add_anon_rmap
1461 	 * which increments mapcount after us but sets mapping
1462 	 * before us: so leave the reset to free_unref_page,
1463 	 * and remember that it's only reliable while mapped.
1464 	 * Leaving it set also helps swapoff to reinstate ptes
1465 	 * faster for those pages still in swapcache.
1466 	 */
1467 out:
1468 	unlock_page_memcg(page);
1469 
1470 	munlock_vma_page(page, vma, compound);
1471 }
1472 
1473 /*
1474  * @arg: enum ttu_flags will be passed to this argument
1475  */
1476 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1477 		     unsigned long address, void *arg)
1478 {
1479 	struct mm_struct *mm = vma->vm_mm;
1480 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1481 	pte_t pteval;
1482 	struct page *subpage;
1483 	bool anon_exclusive, ret = true;
1484 	struct mmu_notifier_range range;
1485 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1486 
1487 	/*
1488 	 * When racing against e.g. zap_pte_range() on another cpu,
1489 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1490 	 * try_to_unmap() may return before page_mapped() has become false,
1491 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1492 	 */
1493 	if (flags & TTU_SYNC)
1494 		pvmw.flags = PVMW_SYNC;
1495 
1496 	if (flags & TTU_SPLIT_HUGE_PMD)
1497 		split_huge_pmd_address(vma, address, false, folio);
1498 
1499 	/*
1500 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1501 	 * For hugetlb, it could be much worse if we need to do pud
1502 	 * invalidation in the case of pmd sharing.
1503 	 *
1504 	 * Note that the folio can not be freed in this function as call of
1505 	 * try_to_unmap() must hold a reference on the folio.
1506 	 */
1507 	range.end = vma_address_end(&pvmw);
1508 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1509 				address, range.end);
1510 	if (folio_test_hugetlb(folio)) {
1511 		/*
1512 		 * If sharing is possible, start and end will be adjusted
1513 		 * accordingly.
1514 		 */
1515 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1516 						     &range.end);
1517 	}
1518 	mmu_notifier_invalidate_range_start(&range);
1519 
1520 	while (page_vma_mapped_walk(&pvmw)) {
1521 		/* Unexpected PMD-mapped THP? */
1522 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1523 
1524 		/*
1525 		 * If the folio is in an mlock()d vma, we must not swap it out.
1526 		 */
1527 		if (!(flags & TTU_IGNORE_MLOCK) &&
1528 		    (vma->vm_flags & VM_LOCKED)) {
1529 			/* Restore the mlock which got missed */
1530 			mlock_vma_folio(folio, vma, false);
1531 			page_vma_mapped_walk_done(&pvmw);
1532 			ret = false;
1533 			break;
1534 		}
1535 
1536 		subpage = folio_page(folio,
1537 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1538 		address = pvmw.address;
1539 		anon_exclusive = folio_test_anon(folio) &&
1540 				 PageAnonExclusive(subpage);
1541 
1542 		if (folio_test_hugetlb(folio)) {
1543 			bool anon = folio_test_anon(folio);
1544 
1545 			/*
1546 			 * The try_to_unmap() is only passed a hugetlb page
1547 			 * in the case where the hugetlb page is poisoned.
1548 			 */
1549 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1550 			/*
1551 			 * huge_pmd_unshare may unmap an entire PMD page.
1552 			 * There is no way of knowing exactly which PMDs may
1553 			 * be cached for this mm, so we must flush them all.
1554 			 * start/end were already adjusted above to cover this
1555 			 * range.
1556 			 */
1557 			flush_cache_range(vma, range.start, range.end);
1558 
1559 			/*
1560 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1561 			 * held in write mode.  Caller needs to explicitly
1562 			 * do this outside rmap routines.
1563 			 */
1564 			VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1565 			if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1566 				flush_tlb_range(vma, range.start, range.end);
1567 				mmu_notifier_invalidate_range(mm, range.start,
1568 							      range.end);
1569 
1570 				/*
1571 				 * The ref count of the PMD page was dropped
1572 				 * which is part of the way map counting
1573 				 * is done for shared PMDs.  Return 'true'
1574 				 * here.  When there is no other sharing,
1575 				 * huge_pmd_unshare returns false and we will
1576 				 * unmap the actual page and drop map count
1577 				 * to zero.
1578 				 */
1579 				page_vma_mapped_walk_done(&pvmw);
1580 				break;
1581 			}
1582 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1583 		} else {
1584 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1585 			/*
1586 			 * Nuke the page table entry. When having to clear
1587 			 * PageAnonExclusive(), we always have to flush.
1588 			 */
1589 			if (should_defer_flush(mm, flags) && !anon_exclusive) {
1590 				/*
1591 				 * We clear the PTE but do not flush so potentially
1592 				 * a remote CPU could still be writing to the folio.
1593 				 * If the entry was previously clean then the
1594 				 * architecture must guarantee that a clear->dirty
1595 				 * transition on a cached TLB entry is written through
1596 				 * and traps if the PTE is unmapped.
1597 				 */
1598 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1599 
1600 				set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1601 			} else {
1602 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1603 			}
1604 		}
1605 
1606 		/*
1607 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1608 		 * we may want to replace a none pte with a marker pte if
1609 		 * it's file-backed, so we don't lose the tracking info.
1610 		 */
1611 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1612 
1613 		/* Set the dirty flag on the folio now the pte is gone. */
1614 		if (pte_dirty(pteval))
1615 			folio_mark_dirty(folio);
1616 
1617 		/* Update high watermark before we lower rss */
1618 		update_hiwater_rss(mm);
1619 
1620 		if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1621 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1622 			if (folio_test_hugetlb(folio)) {
1623 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1624 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
1625 			} else {
1626 				dec_mm_counter(mm, mm_counter(&folio->page));
1627 				set_pte_at(mm, address, pvmw.pte, pteval);
1628 			}
1629 
1630 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1631 			/*
1632 			 * The guest indicated that the page content is of no
1633 			 * interest anymore. Simply discard the pte, vmscan
1634 			 * will take care of the rest.
1635 			 * A future reference will then fault in a new zero
1636 			 * page. When userfaultfd is active, we must not drop
1637 			 * this page though, as its main user (postcopy
1638 			 * migration) will not expect userfaults on already
1639 			 * copied pages.
1640 			 */
1641 			dec_mm_counter(mm, mm_counter(&folio->page));
1642 			/* We have to invalidate as we cleared the pte */
1643 			mmu_notifier_invalidate_range(mm, address,
1644 						      address + PAGE_SIZE);
1645 		} else if (folio_test_anon(folio)) {
1646 			swp_entry_t entry = { .val = page_private(subpage) };
1647 			pte_t swp_pte;
1648 			/*
1649 			 * Store the swap location in the pte.
1650 			 * See handle_pte_fault() ...
1651 			 */
1652 			if (unlikely(folio_test_swapbacked(folio) !=
1653 					folio_test_swapcache(folio))) {
1654 				WARN_ON_ONCE(1);
1655 				ret = false;
1656 				/* We have to invalidate as we cleared the pte */
1657 				mmu_notifier_invalidate_range(mm, address,
1658 							address + PAGE_SIZE);
1659 				page_vma_mapped_walk_done(&pvmw);
1660 				break;
1661 			}
1662 
1663 			/* MADV_FREE page check */
1664 			if (!folio_test_swapbacked(folio)) {
1665 				int ref_count, map_count;
1666 
1667 				/*
1668 				 * Synchronize with gup_pte_range():
1669 				 * - clear PTE; barrier; read refcount
1670 				 * - inc refcount; barrier; read PTE
1671 				 */
1672 				smp_mb();
1673 
1674 				ref_count = folio_ref_count(folio);
1675 				map_count = folio_mapcount(folio);
1676 
1677 				/*
1678 				 * Order reads for page refcount and dirty flag
1679 				 * (see comments in __remove_mapping()).
1680 				 */
1681 				smp_rmb();
1682 
1683 				/*
1684 				 * The only page refs must be one from isolation
1685 				 * plus the rmap(s) (dropped by discard:).
1686 				 */
1687 				if (ref_count == 1 + map_count &&
1688 				    !folio_test_dirty(folio)) {
1689 					/* Invalidate as we cleared the pte */
1690 					mmu_notifier_invalidate_range(mm,
1691 						address, address + PAGE_SIZE);
1692 					dec_mm_counter(mm, MM_ANONPAGES);
1693 					goto discard;
1694 				}
1695 
1696 				/*
1697 				 * If the folio was redirtied, it cannot be
1698 				 * discarded. Remap the page to page table.
1699 				 */
1700 				set_pte_at(mm, address, pvmw.pte, pteval);
1701 				folio_set_swapbacked(folio);
1702 				ret = false;
1703 				page_vma_mapped_walk_done(&pvmw);
1704 				break;
1705 			}
1706 
1707 			if (swap_duplicate(entry) < 0) {
1708 				set_pte_at(mm, address, pvmw.pte, pteval);
1709 				ret = false;
1710 				page_vma_mapped_walk_done(&pvmw);
1711 				break;
1712 			}
1713 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1714 				swap_free(entry);
1715 				set_pte_at(mm, address, pvmw.pte, pteval);
1716 				ret = false;
1717 				page_vma_mapped_walk_done(&pvmw);
1718 				break;
1719 			}
1720 			if (anon_exclusive &&
1721 			    page_try_share_anon_rmap(subpage)) {
1722 				swap_free(entry);
1723 				set_pte_at(mm, address, pvmw.pte, pteval);
1724 				ret = false;
1725 				page_vma_mapped_walk_done(&pvmw);
1726 				break;
1727 			}
1728 			/*
1729 			 * Note: We *don't* remember if the page was mapped
1730 			 * exclusively in the swap pte if the architecture
1731 			 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In
1732 			 * that case, swapin code has to re-determine that
1733 			 * manually and might detect the page as possibly
1734 			 * shared, for example, if there are other references on
1735 			 * the page or if the page is under writeback. We made
1736 			 * sure that there are no GUP pins on the page that
1737 			 * would rely on it, so for GUP pins this is fine.
1738 			 */
1739 			if (list_empty(&mm->mmlist)) {
1740 				spin_lock(&mmlist_lock);
1741 				if (list_empty(&mm->mmlist))
1742 					list_add(&mm->mmlist, &init_mm.mmlist);
1743 				spin_unlock(&mmlist_lock);
1744 			}
1745 			dec_mm_counter(mm, MM_ANONPAGES);
1746 			inc_mm_counter(mm, MM_SWAPENTS);
1747 			swp_pte = swp_entry_to_pte(entry);
1748 			if (anon_exclusive)
1749 				swp_pte = pte_swp_mkexclusive(swp_pte);
1750 			if (pte_soft_dirty(pteval))
1751 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1752 			if (pte_uffd_wp(pteval))
1753 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1754 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1755 			/* Invalidate as we cleared the pte */
1756 			mmu_notifier_invalidate_range(mm, address,
1757 						      address + PAGE_SIZE);
1758 		} else {
1759 			/*
1760 			 * This is a locked file-backed folio,
1761 			 * so it cannot be removed from the page
1762 			 * cache and replaced by a new folio before
1763 			 * mmu_notifier_invalidate_range_end, so no
1764 			 * concurrent thread might update its page table
1765 			 * to point at a new folio while a device is
1766 			 * still using this folio.
1767 			 *
1768 			 * See Documentation/mm/mmu_notifier.rst
1769 			 */
1770 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1771 		}
1772 discard:
1773 		/*
1774 		 * No need to call mmu_notifier_invalidate_range() it has be
1775 		 * done above for all cases requiring it to happen under page
1776 		 * table lock before mmu_notifier_invalidate_range_end()
1777 		 *
1778 		 * See Documentation/mm/mmu_notifier.rst
1779 		 */
1780 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1781 		if (vma->vm_flags & VM_LOCKED)
1782 			mlock_page_drain_local();
1783 		folio_put(folio);
1784 	}
1785 
1786 	mmu_notifier_invalidate_range_end(&range);
1787 
1788 	return ret;
1789 }
1790 
1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1792 {
1793 	return vma_is_temporary_stack(vma);
1794 }
1795 
1796 static int page_not_mapped(struct folio *folio)
1797 {
1798 	return !folio_mapped(folio);
1799 }
1800 
1801 /**
1802  * try_to_unmap - Try to remove all page table mappings to a folio.
1803  * @folio: The folio to unmap.
1804  * @flags: action and flags
1805  *
1806  * Tries to remove all the page table entries which are mapping this
1807  * folio.  It is the caller's responsibility to check if the folio is
1808  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1809  *
1810  * Context: Caller must hold the folio lock.
1811  */
1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1813 {
1814 	struct rmap_walk_control rwc = {
1815 		.rmap_one = try_to_unmap_one,
1816 		.arg = (void *)flags,
1817 		.done = page_not_mapped,
1818 		.anon_lock = folio_lock_anon_vma_read,
1819 	};
1820 
1821 	if (flags & TTU_RMAP_LOCKED)
1822 		rmap_walk_locked(folio, &rwc);
1823 	else
1824 		rmap_walk(folio, &rwc);
1825 }
1826 
1827 /*
1828  * @arg: enum ttu_flags will be passed to this argument.
1829  *
1830  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1831  * containing migration entries.
1832  */
1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1834 		     unsigned long address, void *arg)
1835 {
1836 	struct mm_struct *mm = vma->vm_mm;
1837 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1838 	pte_t pteval;
1839 	struct page *subpage;
1840 	bool anon_exclusive, ret = true;
1841 	struct mmu_notifier_range range;
1842 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1843 
1844 	/*
1845 	 * When racing against e.g. zap_pte_range() on another cpu,
1846 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1847 	 * try_to_migrate() may return before page_mapped() has become false,
1848 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1849 	 */
1850 	if (flags & TTU_SYNC)
1851 		pvmw.flags = PVMW_SYNC;
1852 
1853 	/*
1854 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1855 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1856 	 */
1857 	if (flags & TTU_SPLIT_HUGE_PMD)
1858 		split_huge_pmd_address(vma, address, true, folio);
1859 
1860 	/*
1861 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1862 	 * For hugetlb, it could be much worse if we need to do pud
1863 	 * invalidation in the case of pmd sharing.
1864 	 *
1865 	 * Note that the page can not be free in this function as call of
1866 	 * try_to_unmap() must hold a reference on the page.
1867 	 */
1868 	range.end = vma_address_end(&pvmw);
1869 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1870 				address, range.end);
1871 	if (folio_test_hugetlb(folio)) {
1872 		/*
1873 		 * If sharing is possible, start and end will be adjusted
1874 		 * accordingly.
1875 		 */
1876 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1877 						     &range.end);
1878 	}
1879 	mmu_notifier_invalidate_range_start(&range);
1880 
1881 	while (page_vma_mapped_walk(&pvmw)) {
1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1883 		/* PMD-mapped THP migration entry */
1884 		if (!pvmw.pte) {
1885 			subpage = folio_page(folio,
1886 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1887 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1888 					!folio_test_pmd_mappable(folio), folio);
1889 
1890 			if (set_pmd_migration_entry(&pvmw, subpage)) {
1891 				ret = false;
1892 				page_vma_mapped_walk_done(&pvmw);
1893 				break;
1894 			}
1895 			continue;
1896 		}
1897 #endif
1898 
1899 		/* Unexpected PMD-mapped THP? */
1900 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1901 
1902 		if (folio_is_zone_device(folio)) {
1903 			/*
1904 			 * Our PTE is a non-present device exclusive entry and
1905 			 * calculating the subpage as for the common case would
1906 			 * result in an invalid pointer.
1907 			 *
1908 			 * Since only PAGE_SIZE pages can currently be
1909 			 * migrated, just set it to page. This will need to be
1910 			 * changed when hugepage migrations to device private
1911 			 * memory are supported.
1912 			 */
1913 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
1914 			subpage = &folio->page;
1915 		} else {
1916 			subpage = folio_page(folio,
1917 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1918 		}
1919 		address = pvmw.address;
1920 		anon_exclusive = folio_test_anon(folio) &&
1921 				 PageAnonExclusive(subpage);
1922 
1923 		if (folio_test_hugetlb(folio)) {
1924 			bool anon = folio_test_anon(folio);
1925 
1926 			/*
1927 			 * huge_pmd_unshare may unmap an entire PMD page.
1928 			 * There is no way of knowing exactly which PMDs may
1929 			 * be cached for this mm, so we must flush them all.
1930 			 * start/end were already adjusted above to cover this
1931 			 * range.
1932 			 */
1933 			flush_cache_range(vma, range.start, range.end);
1934 
1935 			/*
1936 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1937 			 * held in write mode.  Caller needs to explicitly
1938 			 * do this outside rmap routines.
1939 			 */
1940 			VM_BUG_ON(!anon && !(flags & TTU_RMAP_LOCKED));
1941 			if (!anon && huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1942 				flush_tlb_range(vma, range.start, range.end);
1943 				mmu_notifier_invalidate_range(mm, range.start,
1944 							      range.end);
1945 
1946 				/*
1947 				 * The ref count of the PMD page was dropped
1948 				 * which is part of the way map counting
1949 				 * is done for shared PMDs.  Return 'true'
1950 				 * here.  When there is no other sharing,
1951 				 * huge_pmd_unshare returns false and we will
1952 				 * unmap the actual page and drop map count
1953 				 * to zero.
1954 				 */
1955 				page_vma_mapped_walk_done(&pvmw);
1956 				break;
1957 			}
1958 
1959 			/* Nuke the hugetlb page table entry */
1960 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1961 		} else {
1962 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1963 			/* Nuke the page table entry. */
1964 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1965 		}
1966 
1967 		/* Set the dirty flag on the folio now the pte is gone. */
1968 		if (pte_dirty(pteval))
1969 			folio_mark_dirty(folio);
1970 
1971 		/* Update high watermark before we lower rss */
1972 		update_hiwater_rss(mm);
1973 
1974 		if (folio_is_device_private(folio)) {
1975 			unsigned long pfn = folio_pfn(folio);
1976 			swp_entry_t entry;
1977 			pte_t swp_pte;
1978 
1979 			if (anon_exclusive)
1980 				BUG_ON(page_try_share_anon_rmap(subpage));
1981 
1982 			/*
1983 			 * Store the pfn of the page in a special migration
1984 			 * pte. do_swap_page() will wait until the migration
1985 			 * pte is removed and then restart fault handling.
1986 			 */
1987 			entry = pte_to_swp_entry(pteval);
1988 			if (is_writable_device_private_entry(entry))
1989 				entry = make_writable_migration_entry(pfn);
1990 			else if (anon_exclusive)
1991 				entry = make_readable_exclusive_migration_entry(pfn);
1992 			else
1993 				entry = make_readable_migration_entry(pfn);
1994 			swp_pte = swp_entry_to_pte(entry);
1995 
1996 			/*
1997 			 * pteval maps a zone device page and is therefore
1998 			 * a swap pte.
1999 			 */
2000 			if (pte_swp_soft_dirty(pteval))
2001 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2002 			if (pte_swp_uffd_wp(pteval))
2003 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2004 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2005 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2006 						compound_order(&folio->page));
2007 			/*
2008 			 * No need to invalidate here it will synchronize on
2009 			 * against the special swap migration pte.
2010 			 */
2011 		} else if (PageHWPoison(subpage)) {
2012 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2013 			if (folio_test_hugetlb(folio)) {
2014 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2015 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
2016 			} else {
2017 				dec_mm_counter(mm, mm_counter(&folio->page));
2018 				set_pte_at(mm, address, pvmw.pte, pteval);
2019 			}
2020 
2021 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2022 			/*
2023 			 * The guest indicated that the page content is of no
2024 			 * interest anymore. Simply discard the pte, vmscan
2025 			 * will take care of the rest.
2026 			 * A future reference will then fault in a new zero
2027 			 * page. When userfaultfd is active, we must not drop
2028 			 * this page though, as its main user (postcopy
2029 			 * migration) will not expect userfaults on already
2030 			 * copied pages.
2031 			 */
2032 			dec_mm_counter(mm, mm_counter(&folio->page));
2033 			/* We have to invalidate as we cleared the pte */
2034 			mmu_notifier_invalidate_range(mm, address,
2035 						      address + PAGE_SIZE);
2036 		} else {
2037 			swp_entry_t entry;
2038 			pte_t swp_pte;
2039 
2040 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2041 				if (folio_test_hugetlb(folio))
2042 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2043 				else
2044 					set_pte_at(mm, address, pvmw.pte, pteval);
2045 				ret = false;
2046 				page_vma_mapped_walk_done(&pvmw);
2047 				break;
2048 			}
2049 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2050 				       !anon_exclusive, subpage);
2051 			if (anon_exclusive &&
2052 			    page_try_share_anon_rmap(subpage)) {
2053 				if (folio_test_hugetlb(folio))
2054 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
2055 				else
2056 					set_pte_at(mm, address, pvmw.pte, pteval);
2057 				ret = false;
2058 				page_vma_mapped_walk_done(&pvmw);
2059 				break;
2060 			}
2061 
2062 			/*
2063 			 * Store the pfn of the page in a special migration
2064 			 * pte. do_swap_page() will wait until the migration
2065 			 * pte is removed and then restart fault handling.
2066 			 */
2067 			if (pte_write(pteval))
2068 				entry = make_writable_migration_entry(
2069 							page_to_pfn(subpage));
2070 			else if (anon_exclusive)
2071 				entry = make_readable_exclusive_migration_entry(
2072 							page_to_pfn(subpage));
2073 			else
2074 				entry = make_readable_migration_entry(
2075 							page_to_pfn(subpage));
2076 
2077 			swp_pte = swp_entry_to_pte(entry);
2078 			if (pte_soft_dirty(pteval))
2079 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2080 			if (pte_uffd_wp(pteval))
2081 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2082 			if (folio_test_hugetlb(folio))
2083 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
2084 			else
2085 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2086 			trace_set_migration_pte(address, pte_val(swp_pte),
2087 						compound_order(&folio->page));
2088 			/*
2089 			 * No need to invalidate here it will synchronize on
2090 			 * against the special swap migration pte.
2091 			 */
2092 		}
2093 
2094 		/*
2095 		 * No need to call mmu_notifier_invalidate_range() it has be
2096 		 * done above for all cases requiring it to happen under page
2097 		 * table lock before mmu_notifier_invalidate_range_end()
2098 		 *
2099 		 * See Documentation/mm/mmu_notifier.rst
2100 		 */
2101 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
2102 		if (vma->vm_flags & VM_LOCKED)
2103 			mlock_page_drain_local();
2104 		folio_put(folio);
2105 	}
2106 
2107 	mmu_notifier_invalidate_range_end(&range);
2108 
2109 	return ret;
2110 }
2111 
2112 /**
2113  * try_to_migrate - try to replace all page table mappings with swap entries
2114  * @folio: the folio to replace page table entries for
2115  * @flags: action and flags
2116  *
2117  * Tries to remove all the page table entries which are mapping this folio and
2118  * replace them with special swap entries. Caller must hold the folio lock.
2119  */
2120 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2121 {
2122 	struct rmap_walk_control rwc = {
2123 		.rmap_one = try_to_migrate_one,
2124 		.arg = (void *)flags,
2125 		.done = page_not_mapped,
2126 		.anon_lock = folio_lock_anon_vma_read,
2127 	};
2128 
2129 	/*
2130 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2131 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2132 	 */
2133 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2134 					TTU_SYNC)))
2135 		return;
2136 
2137 	if (folio_is_zone_device(folio) &&
2138 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2139 		return;
2140 
2141 	/*
2142 	 * During exec, a temporary VMA is setup and later moved.
2143 	 * The VMA is moved under the anon_vma lock but not the
2144 	 * page tables leading to a race where migration cannot
2145 	 * find the migration ptes. Rather than increasing the
2146 	 * locking requirements of exec(), migration skips
2147 	 * temporary VMAs until after exec() completes.
2148 	 */
2149 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2150 		rwc.invalid_vma = invalid_migration_vma;
2151 
2152 	if (flags & TTU_RMAP_LOCKED)
2153 		rmap_walk_locked(folio, &rwc);
2154 	else
2155 		rmap_walk(folio, &rwc);
2156 }
2157 
2158 #ifdef CONFIG_DEVICE_PRIVATE
2159 struct make_exclusive_args {
2160 	struct mm_struct *mm;
2161 	unsigned long address;
2162 	void *owner;
2163 	bool valid;
2164 };
2165 
2166 static bool page_make_device_exclusive_one(struct folio *folio,
2167 		struct vm_area_struct *vma, unsigned long address, void *priv)
2168 {
2169 	struct mm_struct *mm = vma->vm_mm;
2170 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2171 	struct make_exclusive_args *args = priv;
2172 	pte_t pteval;
2173 	struct page *subpage;
2174 	bool ret = true;
2175 	struct mmu_notifier_range range;
2176 	swp_entry_t entry;
2177 	pte_t swp_pte;
2178 
2179 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2180 				      vma->vm_mm, address, min(vma->vm_end,
2181 				      address + folio_size(folio)),
2182 				      args->owner);
2183 	mmu_notifier_invalidate_range_start(&range);
2184 
2185 	while (page_vma_mapped_walk(&pvmw)) {
2186 		/* Unexpected PMD-mapped THP? */
2187 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2188 
2189 		if (!pte_present(*pvmw.pte)) {
2190 			ret = false;
2191 			page_vma_mapped_walk_done(&pvmw);
2192 			break;
2193 		}
2194 
2195 		subpage = folio_page(folio,
2196 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2197 		address = pvmw.address;
2198 
2199 		/* Nuke the page table entry. */
2200 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2201 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2202 
2203 		/* Set the dirty flag on the folio now the pte is gone. */
2204 		if (pte_dirty(pteval))
2205 			folio_mark_dirty(folio);
2206 
2207 		/*
2208 		 * Check that our target page is still mapped at the expected
2209 		 * address.
2210 		 */
2211 		if (args->mm == mm && args->address == address &&
2212 		    pte_write(pteval))
2213 			args->valid = true;
2214 
2215 		/*
2216 		 * Store the pfn of the page in a special migration
2217 		 * pte. do_swap_page() will wait until the migration
2218 		 * pte is removed and then restart fault handling.
2219 		 */
2220 		if (pte_write(pteval))
2221 			entry = make_writable_device_exclusive_entry(
2222 							page_to_pfn(subpage));
2223 		else
2224 			entry = make_readable_device_exclusive_entry(
2225 							page_to_pfn(subpage));
2226 		swp_pte = swp_entry_to_pte(entry);
2227 		if (pte_soft_dirty(pteval))
2228 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2229 		if (pte_uffd_wp(pteval))
2230 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2231 
2232 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2233 
2234 		/*
2235 		 * There is a reference on the page for the swap entry which has
2236 		 * been removed, so shouldn't take another.
2237 		 */
2238 		page_remove_rmap(subpage, vma, false);
2239 	}
2240 
2241 	mmu_notifier_invalidate_range_end(&range);
2242 
2243 	return ret;
2244 }
2245 
2246 /**
2247  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2248  * @folio: The folio to replace page table entries for.
2249  * @mm: The mm_struct where the folio is expected to be mapped.
2250  * @address: Address where the folio is expected to be mapped.
2251  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2252  *
2253  * Tries to remove all the page table entries which are mapping this
2254  * folio and replace them with special device exclusive swap entries to
2255  * grant a device exclusive access to the folio.
2256  *
2257  * Context: Caller must hold the folio lock.
2258  * Return: false if the page is still mapped, or if it could not be unmapped
2259  * from the expected address. Otherwise returns true (success).
2260  */
2261 static bool folio_make_device_exclusive(struct folio *folio,
2262 		struct mm_struct *mm, unsigned long address, void *owner)
2263 {
2264 	struct make_exclusive_args args = {
2265 		.mm = mm,
2266 		.address = address,
2267 		.owner = owner,
2268 		.valid = false,
2269 	};
2270 	struct rmap_walk_control rwc = {
2271 		.rmap_one = page_make_device_exclusive_one,
2272 		.done = page_not_mapped,
2273 		.anon_lock = folio_lock_anon_vma_read,
2274 		.arg = &args,
2275 	};
2276 
2277 	/*
2278 	 * Restrict to anonymous folios for now to avoid potential writeback
2279 	 * issues.
2280 	 */
2281 	if (!folio_test_anon(folio))
2282 		return false;
2283 
2284 	rmap_walk(folio, &rwc);
2285 
2286 	return args.valid && !folio_mapcount(folio);
2287 }
2288 
2289 /**
2290  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2291  * @mm: mm_struct of associated target process
2292  * @start: start of the region to mark for exclusive device access
2293  * @end: end address of region
2294  * @pages: returns the pages which were successfully marked for exclusive access
2295  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2296  *
2297  * Returns: number of pages found in the range by GUP. A page is marked for
2298  * exclusive access only if the page pointer is non-NULL.
2299  *
2300  * This function finds ptes mapping page(s) to the given address range, locks
2301  * them and replaces mappings with special swap entries preventing userspace CPU
2302  * access. On fault these entries are replaced with the original mapping after
2303  * calling MMU notifiers.
2304  *
2305  * A driver using this to program access from a device must use a mmu notifier
2306  * critical section to hold a device specific lock during programming. Once
2307  * programming is complete it should drop the page lock and reference after
2308  * which point CPU access to the page will revoke the exclusive access.
2309  */
2310 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2311 				unsigned long end, struct page **pages,
2312 				void *owner)
2313 {
2314 	long npages = (end - start) >> PAGE_SHIFT;
2315 	long i;
2316 
2317 	npages = get_user_pages_remote(mm, start, npages,
2318 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2319 				       pages, NULL, NULL);
2320 	if (npages < 0)
2321 		return npages;
2322 
2323 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2324 		struct folio *folio = page_folio(pages[i]);
2325 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2326 			folio_put(folio);
2327 			pages[i] = NULL;
2328 			continue;
2329 		}
2330 
2331 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2332 			folio_unlock(folio);
2333 			folio_put(folio);
2334 			pages[i] = NULL;
2335 		}
2336 	}
2337 
2338 	return npages;
2339 }
2340 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2341 #endif
2342 
2343 void __put_anon_vma(struct anon_vma *anon_vma)
2344 {
2345 	struct anon_vma *root = anon_vma->root;
2346 
2347 	anon_vma_free(anon_vma);
2348 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2349 		anon_vma_free(root);
2350 }
2351 
2352 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2353 					    struct rmap_walk_control *rwc)
2354 {
2355 	struct anon_vma *anon_vma;
2356 
2357 	if (rwc->anon_lock)
2358 		return rwc->anon_lock(folio, rwc);
2359 
2360 	/*
2361 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2362 	 * because that depends on page_mapped(); but not all its usages
2363 	 * are holding mmap_lock. Users without mmap_lock are required to
2364 	 * take a reference count to prevent the anon_vma disappearing
2365 	 */
2366 	anon_vma = folio_anon_vma(folio);
2367 	if (!anon_vma)
2368 		return NULL;
2369 
2370 	if (anon_vma_trylock_read(anon_vma))
2371 		goto out;
2372 
2373 	if (rwc->try_lock) {
2374 		anon_vma = NULL;
2375 		rwc->contended = true;
2376 		goto out;
2377 	}
2378 
2379 	anon_vma_lock_read(anon_vma);
2380 out:
2381 	return anon_vma;
2382 }
2383 
2384 /*
2385  * rmap_walk_anon - do something to anonymous page using the object-based
2386  * rmap method
2387  * @page: the page to be handled
2388  * @rwc: control variable according to each walk type
2389  *
2390  * Find all the mappings of a page using the mapping pointer and the vma chains
2391  * contained in the anon_vma struct it points to.
2392  */
2393 static void rmap_walk_anon(struct folio *folio,
2394 		struct rmap_walk_control *rwc, bool locked)
2395 {
2396 	struct anon_vma *anon_vma;
2397 	pgoff_t pgoff_start, pgoff_end;
2398 	struct anon_vma_chain *avc;
2399 
2400 	if (locked) {
2401 		anon_vma = folio_anon_vma(folio);
2402 		/* anon_vma disappear under us? */
2403 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2404 	} else {
2405 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2406 	}
2407 	if (!anon_vma)
2408 		return;
2409 
2410 	pgoff_start = folio_pgoff(folio);
2411 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2412 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2413 			pgoff_start, pgoff_end) {
2414 		struct vm_area_struct *vma = avc->vma;
2415 		unsigned long address = vma_address(&folio->page, vma);
2416 
2417 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2418 		cond_resched();
2419 
2420 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2421 			continue;
2422 
2423 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2424 			break;
2425 		if (rwc->done && rwc->done(folio))
2426 			break;
2427 	}
2428 
2429 	if (!locked)
2430 		anon_vma_unlock_read(anon_vma);
2431 }
2432 
2433 /*
2434  * rmap_walk_file - do something to file page using the object-based rmap method
2435  * @page: the page to be handled
2436  * @rwc: control variable according to each walk type
2437  *
2438  * Find all the mappings of a page using the mapping pointer and the vma chains
2439  * contained in the address_space struct it points to.
2440  */
2441 static void rmap_walk_file(struct folio *folio,
2442 		struct rmap_walk_control *rwc, bool locked)
2443 {
2444 	struct address_space *mapping = folio_mapping(folio);
2445 	pgoff_t pgoff_start, pgoff_end;
2446 	struct vm_area_struct *vma;
2447 
2448 	/*
2449 	 * The page lock not only makes sure that page->mapping cannot
2450 	 * suddenly be NULLified by truncation, it makes sure that the
2451 	 * structure at mapping cannot be freed and reused yet,
2452 	 * so we can safely take mapping->i_mmap_rwsem.
2453 	 */
2454 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2455 
2456 	if (!mapping)
2457 		return;
2458 
2459 	pgoff_start = folio_pgoff(folio);
2460 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2461 	if (!locked) {
2462 		if (i_mmap_trylock_read(mapping))
2463 			goto lookup;
2464 
2465 		if (rwc->try_lock) {
2466 			rwc->contended = true;
2467 			return;
2468 		}
2469 
2470 		i_mmap_lock_read(mapping);
2471 	}
2472 lookup:
2473 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2474 			pgoff_start, pgoff_end) {
2475 		unsigned long address = vma_address(&folio->page, vma);
2476 
2477 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2478 		cond_resched();
2479 
2480 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2481 			continue;
2482 
2483 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2484 			goto done;
2485 		if (rwc->done && rwc->done(folio))
2486 			goto done;
2487 	}
2488 
2489 done:
2490 	if (!locked)
2491 		i_mmap_unlock_read(mapping);
2492 }
2493 
2494 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2495 {
2496 	if (unlikely(folio_test_ksm(folio)))
2497 		rmap_walk_ksm(folio, rwc);
2498 	else if (folio_test_anon(folio))
2499 		rmap_walk_anon(folio, rwc, false);
2500 	else
2501 		rmap_walk_file(folio, rwc, false);
2502 }
2503 
2504 /* Like rmap_walk, but caller holds relevant rmap lock */
2505 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2506 {
2507 	/* no ksm support for now */
2508 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2509 	if (folio_test_anon(folio))
2510 		rmap_walk_anon(folio, rwc, true);
2511 	else
2512 		rmap_walk_file(folio, rwc, true);
2513 }
2514 
2515 #ifdef CONFIG_HUGETLB_PAGE
2516 /*
2517  * The following two functions are for anonymous (private mapped) hugepages.
2518  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2519  * and no lru code, because we handle hugepages differently from common pages.
2520  *
2521  * RMAP_COMPOUND is ignored.
2522  */
2523 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
2524 			    unsigned long address, rmap_t flags)
2525 {
2526 	struct anon_vma *anon_vma = vma->anon_vma;
2527 	int first;
2528 
2529 	BUG_ON(!PageLocked(page));
2530 	BUG_ON(!anon_vma);
2531 	/* address might be in next vma when migration races vma_adjust */
2532 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2533 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
2534 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
2535 	if (first)
2536 		__page_set_anon_rmap(page, vma, address,
2537 				     !!(flags & RMAP_EXCLUSIVE));
2538 }
2539 
2540 void hugepage_add_new_anon_rmap(struct page *page,
2541 			struct vm_area_struct *vma, unsigned long address)
2542 {
2543 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2544 	atomic_set(compound_mapcount_ptr(page), 0);
2545 	atomic_set(compound_pincount_ptr(page), 0);
2546 
2547 	__page_set_anon_rmap(page, vma, address, 1);
2548 }
2549 #endif /* CONFIG_HUGETLB_PAGE */
2550