xref: /linux/mm/rmap.c (revision 4127e13c9302f6892f73793f133ea4b4fffb2964)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 		unsigned long start, unsigned long end)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 		unsigned long start, unsigned long end)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /**
771  * page_address_in_vma - The virtual address of a page in this VMA.
772  * @folio: The folio containing the page.
773  * @page: The page within the folio.
774  * @vma: The VMA we need to know the address in.
775  *
776  * Calculates the user virtual address of this page in the specified VMA.
777  * It is the caller's responsibililty to check the page is actually
778  * within the VMA.  There may not currently be a PTE pointing at this
779  * page, but if a page fault occurs at this address, this is the page
780  * which will be accessed.
781  *
782  * Context: Caller should hold a reference to the folio.  Caller should
783  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784  * VMA from being altered.
785  *
786  * Return: The virtual address corresponding to this page in the VMA.
787  */
788 unsigned long page_address_in_vma(const struct folio *folio,
789 		const struct page *page, const struct vm_area_struct *vma)
790 {
791 	if (folio_test_anon(folio)) {
792 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
793 		/*
794 		 * Note: swapoff's unuse_vma() is more efficient with this
795 		 * check, and needs it to match anon_vma when KSM is active.
796 		 */
797 		if (!vma->anon_vma || !page__anon_vma ||
798 		    vma->anon_vma->root != page__anon_vma->root)
799 			return -EFAULT;
800 	} else if (!vma->vm_file) {
801 		return -EFAULT;
802 	} else if (vma->vm_file->f_mapping != folio->mapping) {
803 		return -EFAULT;
804 	}
805 
806 	/* KSM folios don't reach here because of the !page__anon_vma check */
807 	return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809 
810 /*
811  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
813  * represents.
814  */
815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 	pgd_t *pgd;
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd = NULL;
821 
822 	pgd = pgd_offset(mm, address);
823 	if (!pgd_present(*pgd))
824 		goto out;
825 
826 	p4d = p4d_offset(pgd, address);
827 	if (!p4d_present(*p4d))
828 		goto out;
829 
830 	pud = pud_offset(p4d, address);
831 	if (!pud_present(*pud))
832 		goto out;
833 
834 	pmd = pmd_offset(pud, address);
835 out:
836 	return pmd;
837 }
838 
839 struct folio_referenced_arg {
840 	int mapcount;
841 	int referenced;
842 	unsigned long vm_flags;
843 	struct mem_cgroup *memcg;
844 };
845 
846 /*
847  * arg: folio_referenced_arg will be passed
848  */
849 static bool folio_referenced_one(struct folio *folio,
850 		struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 	struct folio_referenced_arg *pra = arg;
853 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 	int referenced = 0;
855 	unsigned long start = address, ptes = 0;
856 
857 	while (page_vma_mapped_walk(&pvmw)) {
858 		address = pvmw.address;
859 
860 		if (vma->vm_flags & VM_LOCKED) {
861 			if (!folio_test_large(folio) || !pvmw.pte) {
862 				/* Restore the mlock which got missed */
863 				mlock_vma_folio(folio, vma);
864 				page_vma_mapped_walk_done(&pvmw);
865 				pra->vm_flags |= VM_LOCKED;
866 				return false; /* To break the loop */
867 			}
868 			/*
869 			 * For large folio fully mapped to VMA, will
870 			 * be handled after the pvmw loop.
871 			 *
872 			 * For large folio cross VMA boundaries, it's
873 			 * expected to be picked  by page reclaim. But
874 			 * should skip reference of pages which are in
875 			 * the range of VM_LOCKED vma. As page reclaim
876 			 * should just count the reference of pages out
877 			 * the range of VM_LOCKED vma.
878 			 */
879 			ptes++;
880 			pra->mapcount--;
881 			continue;
882 		}
883 
884 		/*
885 		 * Skip the non-shared swapbacked folio mapped solely by
886 		 * the exiting or OOM-reaped process. This avoids redundant
887 		 * swap-out followed by an immediate unmap.
888 		 */
889 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 		    check_stable_address_space(vma->vm_mm)) &&
891 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 		    !folio_likely_mapped_shared(folio)) {
893 			pra->referenced = -1;
894 			page_vma_mapped_walk_done(&pvmw);
895 			return false;
896 		}
897 
898 		if (lru_gen_enabled() && pvmw.pte) {
899 			if (lru_gen_look_around(&pvmw))
900 				referenced++;
901 		} else if (pvmw.pte) {
902 			if (ptep_clear_flush_young_notify(vma, address,
903 						pvmw.pte))
904 				referenced++;
905 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 			if (pmdp_clear_flush_young_notify(vma, address,
907 						pvmw.pmd))
908 				referenced++;
909 		} else {
910 			/* unexpected pmd-mapped folio? */
911 			WARN_ON_ONCE(1);
912 		}
913 
914 		pra->mapcount--;
915 	}
916 
917 	if ((vma->vm_flags & VM_LOCKED) &&
918 			folio_test_large(folio) &&
919 			folio_within_vma(folio, vma)) {
920 		unsigned long s_align, e_align;
921 
922 		s_align = ALIGN_DOWN(start, PMD_SIZE);
923 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924 
925 		/* folio doesn't cross page table boundary and fully mapped */
926 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 			/* Restore the mlock which got missed */
928 			mlock_vma_folio(folio, vma);
929 			pra->vm_flags |= VM_LOCKED;
930 			return false; /* To break the loop */
931 		}
932 	}
933 
934 	if (referenced)
935 		folio_clear_idle(folio);
936 	if (folio_test_clear_young(folio))
937 		referenced++;
938 
939 	if (referenced) {
940 		pra->referenced++;
941 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 	}
943 
944 	if (!pra->mapcount)
945 		return false; /* To break the loop */
946 
947 	return true;
948 }
949 
950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 	struct folio_referenced_arg *pra = arg;
953 	struct mem_cgroup *memcg = pra->memcg;
954 
955 	/*
956 	 * Ignore references from this mapping if it has no recency. If the
957 	 * folio has been used in another mapping, we will catch it; if this
958 	 * other mapping is already gone, the unmap path will have set the
959 	 * referenced flag or activated the folio in zap_pte_range().
960 	 */
961 	if (!vma_has_recency(vma))
962 		return true;
963 
964 	/*
965 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 	 * of references from different cgroups.
967 	 */
968 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * folio_referenced() - Test if the folio was referenced.
976  * @folio: The folio to test.
977  * @is_locked: Caller holds lock on the folio.
978  * @memcg: target memory cgroup
979  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980  *
981  * Quick test_and_clear_referenced for all mappings of a folio,
982  *
983  * Return: The number of mappings which referenced the folio. Return -1 if
984  * the function bailed out due to rmap lock contention.
985  */
986 int folio_referenced(struct folio *folio, int is_locked,
987 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 	bool we_locked = false;
990 	struct folio_referenced_arg pra = {
991 		.mapcount = folio_mapcount(folio),
992 		.memcg = memcg,
993 	};
994 	struct rmap_walk_control rwc = {
995 		.rmap_one = folio_referenced_one,
996 		.arg = (void *)&pra,
997 		.anon_lock = folio_lock_anon_vma_read,
998 		.try_lock = true,
999 		.invalid_vma = invalid_folio_referenced_vma,
1000 	};
1001 
1002 	*vm_flags = 0;
1003 	if (!pra.mapcount)
1004 		return 0;
1005 
1006 	if (!folio_raw_mapping(folio))
1007 		return 0;
1008 
1009 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 		we_locked = folio_trylock(folio);
1011 		if (!we_locked)
1012 			return 1;
1013 	}
1014 
1015 	rmap_walk(folio, &rwc);
1016 	*vm_flags = pra.vm_flags;
1017 
1018 	if (we_locked)
1019 		folio_unlock(folio);
1020 
1021 	return rwc.contended ? -1 : pra.referenced;
1022 }
1023 
1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 	int cleaned = 0;
1027 	struct vm_area_struct *vma = pvmw->vma;
1028 	struct mmu_notifier_range range;
1029 	unsigned long address = pvmw->address;
1030 
1031 	/*
1032 	 * We have to assume the worse case ie pmd for invalidation. Note that
1033 	 * the folio can not be freed from this function.
1034 	 */
1035 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 				vma->vm_mm, address, vma_address_end(pvmw));
1037 	mmu_notifier_invalidate_range_start(&range);
1038 
1039 	while (page_vma_mapped_walk(pvmw)) {
1040 		int ret = 0;
1041 
1042 		address = pvmw->address;
1043 		if (pvmw->pte) {
1044 			pte_t *pte = pvmw->pte;
1045 			pte_t entry = ptep_get(pte);
1046 
1047 			/*
1048 			 * PFN swap PTEs, such as device-exclusive ones, that
1049 			 * actually map pages are clean and not writable from a
1050 			 * CPU perspective. The MMU notifier takes care of any
1051 			 * device aspects.
1052 			 */
1053 			if (!pte_present(entry))
1054 				continue;
1055 			if (!pte_dirty(entry) && !pte_write(entry))
1056 				continue;
1057 
1058 			flush_cache_page(vma, address, pte_pfn(entry));
1059 			entry = ptep_clear_flush(vma, address, pte);
1060 			entry = pte_wrprotect(entry);
1061 			entry = pte_mkclean(entry);
1062 			set_pte_at(vma->vm_mm, address, pte, entry);
1063 			ret = 1;
1064 		} else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 			pmd_t *pmd = pvmw->pmd;
1067 			pmd_t entry;
1068 
1069 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 				continue;
1071 
1072 			flush_cache_range(vma, address,
1073 					  address + HPAGE_PMD_SIZE);
1074 			entry = pmdp_invalidate(vma, address, pmd);
1075 			entry = pmd_wrprotect(entry);
1076 			entry = pmd_mkclean(entry);
1077 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 			ret = 1;
1079 #else
1080 			/* unexpected pmd-mapped folio? */
1081 			WARN_ON_ONCE(1);
1082 #endif
1083 		}
1084 
1085 		if (ret)
1086 			cleaned++;
1087 	}
1088 
1089 	mmu_notifier_invalidate_range_end(&range);
1090 
1091 	return cleaned;
1092 }
1093 
1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 			     unsigned long address, void *arg)
1096 {
1097 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 	int *cleaned = arg;
1099 
1100 	*cleaned += page_vma_mkclean_one(&pvmw);
1101 
1102 	return true;
1103 }
1104 
1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 	if (vma->vm_flags & VM_SHARED)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
1113 int folio_mkclean(struct folio *folio)
1114 {
1115 	int cleaned = 0;
1116 	struct address_space *mapping;
1117 	struct rmap_walk_control rwc = {
1118 		.arg = (void *)&cleaned,
1119 		.rmap_one = page_mkclean_one,
1120 		.invalid_vma = invalid_mkclean_vma,
1121 	};
1122 
1123 	BUG_ON(!folio_test_locked(folio));
1124 
1125 	if (!folio_mapped(folio))
1126 		return 0;
1127 
1128 	mapping = folio_mapping(folio);
1129 	if (!mapping)
1130 		return 0;
1131 
1132 	rmap_walk(folio, &rwc);
1133 
1134 	return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137 
1138 struct wrprotect_file_state {
1139 	int cleaned;
1140 	pgoff_t pgoff;
1141 	unsigned long pfn;
1142 	unsigned long nr_pages;
1143 };
1144 
1145 static bool mapping_wrprotect_range_one(struct folio *folio,
1146 		struct vm_area_struct *vma, unsigned long address, void *arg)
1147 {
1148 	struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg;
1149 	struct page_vma_mapped_walk pvmw = {
1150 		.pfn		= state->pfn,
1151 		.nr_pages	= state->nr_pages,
1152 		.pgoff		= state->pgoff,
1153 		.vma		= vma,
1154 		.address	= address,
1155 		.flags		= PVMW_SYNC,
1156 	};
1157 
1158 	state->cleaned += page_vma_mkclean_one(&pvmw);
1159 
1160 	return true;
1161 }
1162 
1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
1164 			     pgoff_t pgoff_start, unsigned long nr_pages,
1165 			     struct rmap_walk_control *rwc, bool locked);
1166 
1167 /**
1168  * mapping_wrprotect_range() - Write-protect all mappings in a specified range.
1169  *
1170  * @mapping:	The mapping whose reverse mapping should be traversed.
1171  * @pgoff:	The page offset at which @pfn is mapped within @mapping.
1172  * @pfn:	The PFN of the page mapped in @mapping at @pgoff.
1173  * @nr_pages:	The number of physically contiguous base pages spanned.
1174  *
1175  * Traverses the reverse mapping, finding all VMAs which contain a shared
1176  * mapping of the pages in the specified range in @mapping, and write-protects
1177  * them (that is, updates the page tables to mark the mappings read-only such
1178  * that a write protection fault arises when the mappings are written to).
1179  *
1180  * The @pfn value need not refer to a folio, but rather can reference a kernel
1181  * allocation which is mapped into userland. We therefore do not require that
1182  * the page maps to a folio with a valid mapping or index field, rather the
1183  * caller specifies these in @mapping and @pgoff.
1184  *
1185  * Return: the number of write-protected PTEs, or an error.
1186  */
1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff,
1188 		unsigned long pfn, unsigned long nr_pages)
1189 {
1190 	struct wrprotect_file_state state = {
1191 		.cleaned = 0,
1192 		.pgoff = pgoff,
1193 		.pfn = pfn,
1194 		.nr_pages = nr_pages,
1195 	};
1196 	struct rmap_walk_control rwc = {
1197 		.arg = (void *)&state,
1198 		.rmap_one = mapping_wrprotect_range_one,
1199 		.invalid_vma = invalid_mkclean_vma,
1200 	};
1201 
1202 	if (!mapping)
1203 		return 0;
1204 
1205 	__rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc,
1206 			 /* locked = */false);
1207 
1208 	return state.cleaned;
1209 }
1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range);
1211 
1212 /**
1213  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1214  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1215  *                     within the @vma of shared mappings. And since clean PTEs
1216  *                     should also be readonly, write protects them too.
1217  * @pfn: start pfn.
1218  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1219  * @pgoff: page offset that the @pfn mapped with.
1220  * @vma: vma that @pfn mapped within.
1221  *
1222  * Returns the number of cleaned PTEs (including PMDs).
1223  */
1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1225 		      struct vm_area_struct *vma)
1226 {
1227 	struct page_vma_mapped_walk pvmw = {
1228 		.pfn		= pfn,
1229 		.nr_pages	= nr_pages,
1230 		.pgoff		= pgoff,
1231 		.vma		= vma,
1232 		.flags		= PVMW_SYNC,
1233 	};
1234 
1235 	if (invalid_mkclean_vma(vma, NULL))
1236 		return 0;
1237 
1238 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1239 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1240 
1241 	return page_vma_mkclean_one(&pvmw);
1242 }
1243 
1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1245 		struct page *page, int nr_pages, enum rmap_level level,
1246 		int *nr_pmdmapped)
1247 {
1248 	atomic_t *mapped = &folio->_nr_pages_mapped;
1249 	const int orig_nr_pages = nr_pages;
1250 	int first = 0, nr = 0;
1251 
1252 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1253 
1254 	switch (level) {
1255 	case RMAP_LEVEL_PTE:
1256 		if (!folio_test_large(folio)) {
1257 			nr = atomic_inc_and_test(&folio->_mapcount);
1258 			break;
1259 		}
1260 
1261 		do {
1262 			first += atomic_inc_and_test(&page->_mapcount);
1263 		} while (page++, --nr_pages > 0);
1264 
1265 		if (first &&
1266 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1267 			nr = first;
1268 
1269 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1270 		break;
1271 	case RMAP_LEVEL_PMD:
1272 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1273 		if (first) {
1274 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1275 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1276 				*nr_pmdmapped = folio_nr_pages(folio);
1277 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1278 				/* Raced ahead of a remove and another add? */
1279 				if (unlikely(nr < 0))
1280 					nr = 0;
1281 			} else {
1282 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1283 				nr = 0;
1284 			}
1285 		}
1286 		atomic_inc(&folio->_large_mapcount);
1287 		break;
1288 	}
1289 	return nr;
1290 }
1291 
1292 /**
1293  * folio_move_anon_rmap - move a folio to our anon_vma
1294  * @folio:	The folio to move to our anon_vma
1295  * @vma:	The vma the folio belongs to
1296  *
1297  * When a folio belongs exclusively to one process after a COW event,
1298  * that folio can be moved into the anon_vma that belongs to just that
1299  * process, so the rmap code will not search the parent or sibling processes.
1300  */
1301 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1302 {
1303 	void *anon_vma = vma->anon_vma;
1304 
1305 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1306 	VM_BUG_ON_VMA(!anon_vma, vma);
1307 
1308 	anon_vma += PAGE_MAPPING_ANON;
1309 	/*
1310 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1311 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1312 	 * folio_test_anon()) will not see one without the other.
1313 	 */
1314 	WRITE_ONCE(folio->mapping, anon_vma);
1315 }
1316 
1317 /**
1318  * __folio_set_anon - set up a new anonymous rmap for a folio
1319  * @folio:	The folio to set up the new anonymous rmap for.
1320  * @vma:	VM area to add the folio to.
1321  * @address:	User virtual address of the mapping
1322  * @exclusive:	Whether the folio is exclusive to the process.
1323  */
1324 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1325 			     unsigned long address, bool exclusive)
1326 {
1327 	struct anon_vma *anon_vma = vma->anon_vma;
1328 
1329 	BUG_ON(!anon_vma);
1330 
1331 	/*
1332 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1333 	 * possible anon_vma for the folio mapping!
1334 	 */
1335 	if (!exclusive)
1336 		anon_vma = anon_vma->root;
1337 
1338 	/*
1339 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1340 	 * Make sure the compiler doesn't split the stores of anon_vma and
1341 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1342 	 * could mistake the mapping for a struct address_space and crash.
1343 	 */
1344 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1345 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1346 	folio->index = linear_page_index(vma, address);
1347 }
1348 
1349 /**
1350  * __page_check_anon_rmap - sanity check anonymous rmap addition
1351  * @folio:	The folio containing @page.
1352  * @page:	the page to check the mapping of
1353  * @vma:	the vm area in which the mapping is added
1354  * @address:	the user virtual address mapped
1355  */
1356 static void __page_check_anon_rmap(const struct folio *folio,
1357 		const struct page *page, struct vm_area_struct *vma,
1358 		unsigned long address)
1359 {
1360 	/*
1361 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1362 	 * be set up correctly at this point.
1363 	 *
1364 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1365 	 * always holds the page locked.
1366 	 *
1367 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1368 	 * are initially only visible via the pagetables, and the pte is locked
1369 	 * over the call to folio_add_new_anon_rmap.
1370 	 */
1371 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1372 			folio);
1373 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1374 		       page);
1375 }
1376 
1377 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1378 {
1379 	int idx;
1380 
1381 	if (nr) {
1382 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1383 		__lruvec_stat_mod_folio(folio, idx, nr);
1384 	}
1385 	if (nr_pmdmapped) {
1386 		if (folio_test_anon(folio)) {
1387 			idx = NR_ANON_THPS;
1388 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1389 		} else {
1390 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1391 			idx = folio_test_swapbacked(folio) ?
1392 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1393 			__mod_node_page_state(folio_pgdat(folio), idx,
1394 					      nr_pmdmapped);
1395 		}
1396 	}
1397 }
1398 
1399 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1400 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1401 		unsigned long address, rmap_t flags, enum rmap_level level)
1402 {
1403 	int i, nr, nr_pmdmapped = 0;
1404 
1405 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1406 
1407 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1408 
1409 	if (likely(!folio_test_ksm(folio)))
1410 		__page_check_anon_rmap(folio, page, vma, address);
1411 
1412 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1413 
1414 	if (flags & RMAP_EXCLUSIVE) {
1415 		switch (level) {
1416 		case RMAP_LEVEL_PTE:
1417 			for (i = 0; i < nr_pages; i++)
1418 				SetPageAnonExclusive(page + i);
1419 			break;
1420 		case RMAP_LEVEL_PMD:
1421 			SetPageAnonExclusive(page);
1422 			break;
1423 		}
1424 	}
1425 	for (i = 0; i < nr_pages; i++) {
1426 		struct page *cur_page = page + i;
1427 
1428 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1429 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1430 				  (folio_test_large(folio) &&
1431 				   folio_entire_mapcount(folio) > 1)) &&
1432 				 PageAnonExclusive(cur_page), folio);
1433 	}
1434 
1435 	/*
1436 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1437 	 * not easy to check whether the large folio is fully mapped to VMA
1438 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1439 	 * large folio.
1440 	 */
1441 	if (!folio_test_large(folio))
1442 		mlock_vma_folio(folio, vma);
1443 }
1444 
1445 /**
1446  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1447  * @folio:	The folio to add the mappings to
1448  * @page:	The first page to add
1449  * @nr_pages:	The number of pages which will be mapped
1450  * @vma:	The vm area in which the mappings are added
1451  * @address:	The user virtual address of the first page to map
1452  * @flags:	The rmap flags
1453  *
1454  * The page range of folio is defined by [first_page, first_page + nr_pages)
1455  *
1456  * The caller needs to hold the page table lock, and the page must be locked in
1457  * the anon_vma case: to serialize mapping,index checking after setting,
1458  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1459  * (but KSM folios are never downgraded).
1460  */
1461 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1462 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1463 		rmap_t flags)
1464 {
1465 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1466 			      RMAP_LEVEL_PTE);
1467 }
1468 
1469 /**
1470  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1471  * @folio:	The folio to add the mapping to
1472  * @page:	The first page to add
1473  * @vma:	The vm area in which the mapping is added
1474  * @address:	The user virtual address of the first page to map
1475  * @flags:	The rmap flags
1476  *
1477  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1478  *
1479  * The caller needs to hold the page table lock, and the page must be locked in
1480  * the anon_vma case: to serialize mapping,index checking after setting.
1481  */
1482 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1483 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1484 {
1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1487 			      RMAP_LEVEL_PMD);
1488 #else
1489 	WARN_ON_ONCE(true);
1490 #endif
1491 }
1492 
1493 /**
1494  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1495  * @folio:	The folio to add the mapping to.
1496  * @vma:	the vm area in which the mapping is added
1497  * @address:	the user virtual address mapped
1498  * @flags:	The rmap flags
1499  *
1500  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1501  * This means the inc-and-test can be bypassed.
1502  * The folio doesn't necessarily need to be locked while it's exclusive
1503  * unless two threads map it concurrently. However, the folio must be
1504  * locked if it's shared.
1505  *
1506  * If the folio is pmd-mappable, it is accounted as a THP.
1507  */
1508 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1509 		unsigned long address, rmap_t flags)
1510 {
1511 	const int nr = folio_nr_pages(folio);
1512 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1513 	int nr_pmdmapped = 0;
1514 
1515 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1516 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1517 	VM_BUG_ON_VMA(address < vma->vm_start ||
1518 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1519 
1520 	/*
1521 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1522 	 * under memory pressure.
1523 	 */
1524 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1525 		__folio_set_swapbacked(folio);
1526 	__folio_set_anon(folio, vma, address, exclusive);
1527 
1528 	if (likely(!folio_test_large(folio))) {
1529 		/* increment count (starts at -1) */
1530 		atomic_set(&folio->_mapcount, 0);
1531 		if (exclusive)
1532 			SetPageAnonExclusive(&folio->page);
1533 	} else if (!folio_test_pmd_mappable(folio)) {
1534 		int i;
1535 
1536 		for (i = 0; i < nr; i++) {
1537 			struct page *page = folio_page(folio, i);
1538 
1539 			/* increment count (starts at -1) */
1540 			atomic_set(&page->_mapcount, 0);
1541 			if (exclusive)
1542 				SetPageAnonExclusive(page);
1543 		}
1544 
1545 		/* increment count (starts at -1) */
1546 		atomic_set(&folio->_large_mapcount, nr - 1);
1547 		atomic_set(&folio->_nr_pages_mapped, nr);
1548 	} else {
1549 		/* increment count (starts at -1) */
1550 		atomic_set(&folio->_entire_mapcount, 0);
1551 		/* increment count (starts at -1) */
1552 		atomic_set(&folio->_large_mapcount, 0);
1553 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1554 		if (exclusive)
1555 			SetPageAnonExclusive(&folio->page);
1556 		nr_pmdmapped = nr;
1557 	}
1558 
1559 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1560 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1561 }
1562 
1563 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1564 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1565 		enum rmap_level level)
1566 {
1567 	int nr, nr_pmdmapped = 0;
1568 
1569 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1570 
1571 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1572 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1573 
1574 	/* See comments in folio_add_anon_rmap_*() */
1575 	if (!folio_test_large(folio))
1576 		mlock_vma_folio(folio, vma);
1577 }
1578 
1579 /**
1580  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1581  * @folio:	The folio to add the mappings to
1582  * @page:	The first page to add
1583  * @nr_pages:	The number of pages that will be mapped using PTEs
1584  * @vma:	The vm area in which the mappings are added
1585  *
1586  * The page range of the folio is defined by [page, page + nr_pages)
1587  *
1588  * The caller needs to hold the page table lock.
1589  */
1590 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1591 		int nr_pages, struct vm_area_struct *vma)
1592 {
1593 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1594 }
1595 
1596 /**
1597  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1598  * @folio:	The folio to add the mapping to
1599  * @page:	The first page to add
1600  * @vma:	The vm area in which the mapping is added
1601  *
1602  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1603  *
1604  * The caller needs to hold the page table lock.
1605  */
1606 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1607 		struct vm_area_struct *vma)
1608 {
1609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1610 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1611 #else
1612 	WARN_ON_ONCE(true);
1613 #endif
1614 }
1615 
1616 static __always_inline void __folio_remove_rmap(struct folio *folio,
1617 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1618 		enum rmap_level level)
1619 {
1620 	atomic_t *mapped = &folio->_nr_pages_mapped;
1621 	int last = 0, nr = 0, nr_pmdmapped = 0;
1622 	bool partially_mapped = false;
1623 
1624 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1625 
1626 	switch (level) {
1627 	case RMAP_LEVEL_PTE:
1628 		if (!folio_test_large(folio)) {
1629 			nr = atomic_add_negative(-1, &folio->_mapcount);
1630 			break;
1631 		}
1632 
1633 		atomic_sub(nr_pages, &folio->_large_mapcount);
1634 		do {
1635 			last += atomic_add_negative(-1, &page->_mapcount);
1636 		} while (page++, --nr_pages > 0);
1637 
1638 		if (last &&
1639 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1640 			nr = last;
1641 
1642 		partially_mapped = nr && atomic_read(mapped);
1643 		break;
1644 	case RMAP_LEVEL_PMD:
1645 		atomic_dec(&folio->_large_mapcount);
1646 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1647 		if (last) {
1648 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1649 			if (likely(nr < ENTIRELY_MAPPED)) {
1650 				nr_pmdmapped = folio_nr_pages(folio);
1651 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1652 				/* Raced ahead of another remove and an add? */
1653 				if (unlikely(nr < 0))
1654 					nr = 0;
1655 			} else {
1656 				/* An add of ENTIRELY_MAPPED raced ahead */
1657 				nr = 0;
1658 			}
1659 		}
1660 
1661 		partially_mapped = nr && nr < nr_pmdmapped;
1662 		break;
1663 	}
1664 
1665 	/*
1666 	 * Queue anon large folio for deferred split if at least one page of
1667 	 * the folio is unmapped and at least one page is still mapped.
1668 	 *
1669 	 * Check partially_mapped first to ensure it is a large folio.
1670 	 */
1671 	if (partially_mapped && folio_test_anon(folio) &&
1672 	    !folio_test_partially_mapped(folio))
1673 		deferred_split_folio(folio, true);
1674 
1675 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1676 
1677 	/*
1678 	 * It would be tidy to reset folio_test_anon mapping when fully
1679 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1680 	 * which increments mapcount after us but sets mapping before us:
1681 	 * so leave the reset to free_pages_prepare, and remember that
1682 	 * it's only reliable while mapped.
1683 	 */
1684 
1685 	munlock_vma_folio(folio, vma);
1686 }
1687 
1688 /**
1689  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1690  * @folio:	The folio to remove the mappings from
1691  * @page:	The first page to remove
1692  * @nr_pages:	The number of pages that will be removed from the mapping
1693  * @vma:	The vm area from which the mappings are removed
1694  *
1695  * The page range of the folio is defined by [page, page + nr_pages)
1696  *
1697  * The caller needs to hold the page table lock.
1698  */
1699 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1700 		int nr_pages, struct vm_area_struct *vma)
1701 {
1702 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1703 }
1704 
1705 /**
1706  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1707  * @folio:	The folio to remove the mapping from
1708  * @page:	The first page to remove
1709  * @vma:	The vm area from which the mapping is removed
1710  *
1711  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1712  *
1713  * The caller needs to hold the page table lock.
1714  */
1715 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1716 		struct vm_area_struct *vma)
1717 {
1718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1719 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1720 #else
1721 	WARN_ON_ONCE(true);
1722 #endif
1723 }
1724 
1725 /* We support batch unmapping of PTEs for lazyfree large folios */
1726 static inline bool can_batch_unmap_folio_ptes(unsigned long addr,
1727 			struct folio *folio, pte_t *ptep)
1728 {
1729 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1730 	int max_nr = folio_nr_pages(folio);
1731 	pte_t pte = ptep_get(ptep);
1732 
1733 	if (!folio_test_anon(folio) || folio_test_swapbacked(folio))
1734 		return false;
1735 	if (pte_unused(pte))
1736 		return false;
1737 	if (pte_pfn(pte) != folio_pfn(folio))
1738 		return false;
1739 
1740 	return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
1741 			       NULL, NULL) == max_nr;
1742 }
1743 
1744 /*
1745  * @arg: enum ttu_flags will be passed to this argument
1746  */
1747 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1748 		     unsigned long address, void *arg)
1749 {
1750 	struct mm_struct *mm = vma->vm_mm;
1751 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1752 	bool anon_exclusive, ret = true;
1753 	pte_t pteval;
1754 	struct page *subpage;
1755 	struct mmu_notifier_range range;
1756 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1757 	unsigned long nr_pages = 1, end_addr;
1758 	unsigned long pfn;
1759 	unsigned long hsz = 0;
1760 
1761 	/*
1762 	 * When racing against e.g. zap_pte_range() on another cpu,
1763 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1764 	 * try_to_unmap() may return before page_mapped() has become false,
1765 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1766 	 */
1767 	if (flags & TTU_SYNC)
1768 		pvmw.flags = PVMW_SYNC;
1769 
1770 	/*
1771 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1772 	 * For hugetlb, it could be much worse if we need to do pud
1773 	 * invalidation in the case of pmd sharing.
1774 	 *
1775 	 * Note that the folio can not be freed in this function as call of
1776 	 * try_to_unmap() must hold a reference on the folio.
1777 	 */
1778 	range.end = vma_address_end(&pvmw);
1779 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1780 				address, range.end);
1781 	if (folio_test_hugetlb(folio)) {
1782 		/*
1783 		 * If sharing is possible, start and end will be adjusted
1784 		 * accordingly.
1785 		 */
1786 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1787 						     &range.end);
1788 
1789 		/* We need the huge page size for set_huge_pte_at() */
1790 		hsz = huge_page_size(hstate_vma(vma));
1791 	}
1792 	mmu_notifier_invalidate_range_start(&range);
1793 
1794 	while (page_vma_mapped_walk(&pvmw)) {
1795 		/*
1796 		 * If the folio is in an mlock()d vma, we must not swap it out.
1797 		 */
1798 		if (!(flags & TTU_IGNORE_MLOCK) &&
1799 		    (vma->vm_flags & VM_LOCKED)) {
1800 			/* Restore the mlock which got missed */
1801 			if (!folio_test_large(folio))
1802 				mlock_vma_folio(folio, vma);
1803 			goto walk_abort;
1804 		}
1805 
1806 		if (!pvmw.pte) {
1807 			if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1808 				if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio))
1809 					goto walk_done;
1810 				/*
1811 				 * unmap_huge_pmd_locked has either already marked
1812 				 * the folio as swap-backed or decided to retain it
1813 				 * due to GUP or speculative references.
1814 				 */
1815 				goto walk_abort;
1816 			}
1817 
1818 			if (flags & TTU_SPLIT_HUGE_PMD) {
1819 				/*
1820 				 * We temporarily have to drop the PTL and
1821 				 * restart so we can process the PTE-mapped THP.
1822 				 */
1823 				split_huge_pmd_locked(vma, pvmw.address,
1824 						      pvmw.pmd, false, folio);
1825 				flags &= ~TTU_SPLIT_HUGE_PMD;
1826 				page_vma_mapped_walk_restart(&pvmw);
1827 				continue;
1828 			}
1829 		}
1830 
1831 		/* Unexpected PMD-mapped THP? */
1832 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1833 
1834 		/*
1835 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
1836 		 * actually map pages.
1837 		 */
1838 		pteval = ptep_get(pvmw.pte);
1839 		if (likely(pte_present(pteval))) {
1840 			pfn = pte_pfn(pteval);
1841 		} else {
1842 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1843 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1844 		}
1845 
1846 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1847 		address = pvmw.address;
1848 		anon_exclusive = folio_test_anon(folio) &&
1849 				 PageAnonExclusive(subpage);
1850 
1851 		if (folio_test_hugetlb(folio)) {
1852 			bool anon = folio_test_anon(folio);
1853 
1854 			/*
1855 			 * The try_to_unmap() is only passed a hugetlb page
1856 			 * in the case where the hugetlb page is poisoned.
1857 			 */
1858 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1859 			/*
1860 			 * huge_pmd_unshare may unmap an entire PMD page.
1861 			 * There is no way of knowing exactly which PMDs may
1862 			 * be cached for this mm, so we must flush them all.
1863 			 * start/end were already adjusted above to cover this
1864 			 * range.
1865 			 */
1866 			flush_cache_range(vma, range.start, range.end);
1867 
1868 			/*
1869 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1870 			 * held in write mode.  Caller needs to explicitly
1871 			 * do this outside rmap routines.
1872 			 *
1873 			 * We also must hold hugetlb vma_lock in write mode.
1874 			 * Lock order dictates acquiring vma_lock BEFORE
1875 			 * i_mmap_rwsem.  We can only try lock here and fail
1876 			 * if unsuccessful.
1877 			 */
1878 			if (!anon) {
1879 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1880 				if (!hugetlb_vma_trylock_write(vma))
1881 					goto walk_abort;
1882 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1883 					hugetlb_vma_unlock_write(vma);
1884 					flush_tlb_range(vma,
1885 						range.start, range.end);
1886 					/*
1887 					 * The ref count of the PMD page was
1888 					 * dropped which is part of the way map
1889 					 * counting is done for shared PMDs.
1890 					 * Return 'true' here.  When there is
1891 					 * no other sharing, huge_pmd_unshare
1892 					 * returns false and we will unmap the
1893 					 * actual page and drop map count
1894 					 * to zero.
1895 					 */
1896 					goto walk_done;
1897 				}
1898 				hugetlb_vma_unlock_write(vma);
1899 			}
1900 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1901 			if (pte_dirty(pteval))
1902 				folio_mark_dirty(folio);
1903 		} else if (likely(pte_present(pteval))) {
1904 			if (folio_test_large(folio) && !(flags & TTU_HWPOISON) &&
1905 			    can_batch_unmap_folio_ptes(address, folio, pvmw.pte))
1906 				nr_pages = folio_nr_pages(folio);
1907 			end_addr = address + nr_pages * PAGE_SIZE;
1908 			flush_cache_range(vma, address, end_addr);
1909 
1910 			/* Nuke the page table entry. */
1911 			pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0);
1912 			/*
1913 			 * We clear the PTE but do not flush so potentially
1914 			 * a remote CPU could still be writing to the folio.
1915 			 * If the entry was previously clean then the
1916 			 * architecture must guarantee that a clear->dirty
1917 			 * transition on a cached TLB entry is written through
1918 			 * and traps if the PTE is unmapped.
1919 			 */
1920 			if (should_defer_flush(mm, flags))
1921 				set_tlb_ubc_flush_pending(mm, pteval, address, end_addr);
1922 			else
1923 				flush_tlb_range(vma, address, end_addr);
1924 			if (pte_dirty(pteval))
1925 				folio_mark_dirty(folio);
1926 		} else {
1927 			pte_clear(mm, address, pvmw.pte);
1928 		}
1929 
1930 		/*
1931 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1932 		 * we may want to replace a none pte with a marker pte if
1933 		 * it's file-backed, so we don't lose the tracking info.
1934 		 */
1935 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1936 
1937 		/* Update high watermark before we lower rss */
1938 		update_hiwater_rss(mm);
1939 
1940 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1941 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1942 			if (folio_test_hugetlb(folio)) {
1943 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1944 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1945 						hsz);
1946 			} else {
1947 				dec_mm_counter(mm, mm_counter(folio));
1948 				set_pte_at(mm, address, pvmw.pte, pteval);
1949 			}
1950 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
1951 			   !userfaultfd_armed(vma)) {
1952 			/*
1953 			 * The guest indicated that the page content is of no
1954 			 * interest anymore. Simply discard the pte, vmscan
1955 			 * will take care of the rest.
1956 			 * A future reference will then fault in a new zero
1957 			 * page. When userfaultfd is active, we must not drop
1958 			 * this page though, as its main user (postcopy
1959 			 * migration) will not expect userfaults on already
1960 			 * copied pages.
1961 			 */
1962 			dec_mm_counter(mm, mm_counter(folio));
1963 		} else if (folio_test_anon(folio)) {
1964 			swp_entry_t entry = page_swap_entry(subpage);
1965 			pte_t swp_pte;
1966 			/*
1967 			 * Store the swap location in the pte.
1968 			 * See handle_pte_fault() ...
1969 			 */
1970 			if (unlikely(folio_test_swapbacked(folio) !=
1971 					folio_test_swapcache(folio))) {
1972 				WARN_ON_ONCE(1);
1973 				goto walk_abort;
1974 			}
1975 
1976 			/* MADV_FREE page check */
1977 			if (!folio_test_swapbacked(folio)) {
1978 				int ref_count, map_count;
1979 
1980 				/*
1981 				 * Synchronize with gup_pte_range():
1982 				 * - clear PTE; barrier; read refcount
1983 				 * - inc refcount; barrier; read PTE
1984 				 */
1985 				smp_mb();
1986 
1987 				ref_count = folio_ref_count(folio);
1988 				map_count = folio_mapcount(folio);
1989 
1990 				/*
1991 				 * Order reads for page refcount and dirty flag
1992 				 * (see comments in __remove_mapping()).
1993 				 */
1994 				smp_rmb();
1995 
1996 				if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
1997 					/*
1998 					 * redirtied either using the page table or a previously
1999 					 * obtained GUP reference.
2000 					 */
2001 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2002 					folio_set_swapbacked(folio);
2003 					goto walk_abort;
2004 				} else if (ref_count != 1 + map_count) {
2005 					/*
2006 					 * Additional reference. Could be a GUP reference or any
2007 					 * speculative reference. GUP users must mark the folio
2008 					 * dirty if there was a modification. This folio cannot be
2009 					 * reclaimed right now either way, so act just like nothing
2010 					 * happened.
2011 					 * We'll come back here later and detect if the folio was
2012 					 * dirtied when the additional reference is gone.
2013 					 */
2014 					set_ptes(mm, address, pvmw.pte, pteval, nr_pages);
2015 					goto walk_abort;
2016 				}
2017 				add_mm_counter(mm, MM_ANONPAGES, -nr_pages);
2018 				goto discard;
2019 			}
2020 
2021 			if (swap_duplicate(entry) < 0) {
2022 				set_pte_at(mm, address, pvmw.pte, pteval);
2023 				goto walk_abort;
2024 			}
2025 
2026 			/*
2027 			 * arch_unmap_one() is expected to be a NOP on
2028 			 * architectures where we could have PFN swap PTEs,
2029 			 * so we'll not check/care.
2030 			 */
2031 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2032 				swap_free(entry);
2033 				set_pte_at(mm, address, pvmw.pte, pteval);
2034 				goto walk_abort;
2035 			}
2036 
2037 			/* See folio_try_share_anon_rmap(): clear PTE first. */
2038 			if (anon_exclusive &&
2039 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
2040 				swap_free(entry);
2041 				set_pte_at(mm, address, pvmw.pte, pteval);
2042 				goto walk_abort;
2043 			}
2044 			if (list_empty(&mm->mmlist)) {
2045 				spin_lock(&mmlist_lock);
2046 				if (list_empty(&mm->mmlist))
2047 					list_add(&mm->mmlist, &init_mm.mmlist);
2048 				spin_unlock(&mmlist_lock);
2049 			}
2050 			dec_mm_counter(mm, MM_ANONPAGES);
2051 			inc_mm_counter(mm, MM_SWAPENTS);
2052 			swp_pte = swp_entry_to_pte(entry);
2053 			if (anon_exclusive)
2054 				swp_pte = pte_swp_mkexclusive(swp_pte);
2055 			if (likely(pte_present(pteval))) {
2056 				if (pte_soft_dirty(pteval))
2057 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2058 				if (pte_uffd_wp(pteval))
2059 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2060 			} else {
2061 				if (pte_swp_soft_dirty(pteval))
2062 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2063 				if (pte_swp_uffd_wp(pteval))
2064 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2065 			}
2066 			set_pte_at(mm, address, pvmw.pte, swp_pte);
2067 		} else {
2068 			/*
2069 			 * This is a locked file-backed folio,
2070 			 * so it cannot be removed from the page
2071 			 * cache and replaced by a new folio before
2072 			 * mmu_notifier_invalidate_range_end, so no
2073 			 * concurrent thread might update its page table
2074 			 * to point at a new folio while a device is
2075 			 * still using this folio.
2076 			 *
2077 			 * See Documentation/mm/mmu_notifier.rst
2078 			 */
2079 			dec_mm_counter(mm, mm_counter_file(folio));
2080 		}
2081 discard:
2082 		if (unlikely(folio_test_hugetlb(folio))) {
2083 			hugetlb_remove_rmap(folio);
2084 		} else {
2085 			folio_remove_rmap_ptes(folio, subpage, nr_pages, vma);
2086 			folio_ref_sub(folio, nr_pages - 1);
2087 		}
2088 		if (vma->vm_flags & VM_LOCKED)
2089 			mlock_drain_local();
2090 		folio_put(folio);
2091 		/* We have already batched the entire folio */
2092 		if (nr_pages > 1)
2093 			goto walk_done;
2094 		continue;
2095 walk_abort:
2096 		ret = false;
2097 walk_done:
2098 		page_vma_mapped_walk_done(&pvmw);
2099 		break;
2100 	}
2101 
2102 	mmu_notifier_invalidate_range_end(&range);
2103 
2104 	return ret;
2105 }
2106 
2107 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2108 {
2109 	return vma_is_temporary_stack(vma);
2110 }
2111 
2112 static int folio_not_mapped(struct folio *folio)
2113 {
2114 	return !folio_mapped(folio);
2115 }
2116 
2117 /**
2118  * try_to_unmap - Try to remove all page table mappings to a folio.
2119  * @folio: The folio to unmap.
2120  * @flags: action and flags
2121  *
2122  * Tries to remove all the page table entries which are mapping this
2123  * folio.  It is the caller's responsibility to check if the folio is
2124  * still mapped if needed (use TTU_SYNC to prevent accounting races).
2125  *
2126  * Context: Caller must hold the folio lock.
2127  */
2128 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2129 {
2130 	struct rmap_walk_control rwc = {
2131 		.rmap_one = try_to_unmap_one,
2132 		.arg = (void *)flags,
2133 		.done = folio_not_mapped,
2134 		.anon_lock = folio_lock_anon_vma_read,
2135 	};
2136 
2137 	if (flags & TTU_RMAP_LOCKED)
2138 		rmap_walk_locked(folio, &rwc);
2139 	else
2140 		rmap_walk(folio, &rwc);
2141 }
2142 
2143 /*
2144  * @arg: enum ttu_flags will be passed to this argument.
2145  *
2146  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2147  * containing migration entries.
2148  */
2149 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2150 		     unsigned long address, void *arg)
2151 {
2152 	struct mm_struct *mm = vma->vm_mm;
2153 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2154 	bool anon_exclusive, writable, ret = true;
2155 	pte_t pteval;
2156 	struct page *subpage;
2157 	struct mmu_notifier_range range;
2158 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2159 	unsigned long pfn;
2160 	unsigned long hsz = 0;
2161 
2162 	/*
2163 	 * When racing against e.g. zap_pte_range() on another cpu,
2164 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2165 	 * try_to_migrate() may return before page_mapped() has become false,
2166 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2167 	 */
2168 	if (flags & TTU_SYNC)
2169 		pvmw.flags = PVMW_SYNC;
2170 
2171 	/*
2172 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2173 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2174 	 */
2175 	if (flags & TTU_SPLIT_HUGE_PMD)
2176 		split_huge_pmd_address(vma, address, true, folio);
2177 
2178 	/*
2179 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2180 	 * For hugetlb, it could be much worse if we need to do pud
2181 	 * invalidation in the case of pmd sharing.
2182 	 *
2183 	 * Note that the page can not be free in this function as call of
2184 	 * try_to_unmap() must hold a reference on the page.
2185 	 */
2186 	range.end = vma_address_end(&pvmw);
2187 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2188 				address, range.end);
2189 	if (folio_test_hugetlb(folio)) {
2190 		/*
2191 		 * If sharing is possible, start and end will be adjusted
2192 		 * accordingly.
2193 		 */
2194 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2195 						     &range.end);
2196 
2197 		/* We need the huge page size for set_huge_pte_at() */
2198 		hsz = huge_page_size(hstate_vma(vma));
2199 	}
2200 	mmu_notifier_invalidate_range_start(&range);
2201 
2202 	while (page_vma_mapped_walk(&pvmw)) {
2203 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2204 		/* PMD-mapped THP migration entry */
2205 		if (!pvmw.pte) {
2206 			subpage = folio_page(folio,
2207 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2208 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2209 					!folio_test_pmd_mappable(folio), folio);
2210 
2211 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2212 				ret = false;
2213 				page_vma_mapped_walk_done(&pvmw);
2214 				break;
2215 			}
2216 			continue;
2217 		}
2218 #endif
2219 
2220 		/* Unexpected PMD-mapped THP? */
2221 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2222 
2223 		/*
2224 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
2225 		 * actually map pages.
2226 		 */
2227 		pteval = ptep_get(pvmw.pte);
2228 		if (likely(pte_present(pteval))) {
2229 			pfn = pte_pfn(pteval);
2230 		} else {
2231 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2232 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2233 		}
2234 
2235 		subpage = folio_page(folio, pfn - folio_pfn(folio));
2236 		address = pvmw.address;
2237 		anon_exclusive = folio_test_anon(folio) &&
2238 				 PageAnonExclusive(subpage);
2239 
2240 		if (folio_test_hugetlb(folio)) {
2241 			bool anon = folio_test_anon(folio);
2242 
2243 			/*
2244 			 * huge_pmd_unshare may unmap an entire PMD page.
2245 			 * There is no way of knowing exactly which PMDs may
2246 			 * be cached for this mm, so we must flush them all.
2247 			 * start/end were already adjusted above to cover this
2248 			 * range.
2249 			 */
2250 			flush_cache_range(vma, range.start, range.end);
2251 
2252 			/*
2253 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2254 			 * held in write mode.  Caller needs to explicitly
2255 			 * do this outside rmap routines.
2256 			 *
2257 			 * We also must hold hugetlb vma_lock in write mode.
2258 			 * Lock order dictates acquiring vma_lock BEFORE
2259 			 * i_mmap_rwsem.  We can only try lock here and
2260 			 * fail if unsuccessful.
2261 			 */
2262 			if (!anon) {
2263 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2264 				if (!hugetlb_vma_trylock_write(vma)) {
2265 					page_vma_mapped_walk_done(&pvmw);
2266 					ret = false;
2267 					break;
2268 				}
2269 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2270 					hugetlb_vma_unlock_write(vma);
2271 					flush_tlb_range(vma,
2272 						range.start, range.end);
2273 
2274 					/*
2275 					 * The ref count of the PMD page was
2276 					 * dropped which is part of the way map
2277 					 * counting is done for shared PMDs.
2278 					 * Return 'true' here.  When there is
2279 					 * no other sharing, huge_pmd_unshare
2280 					 * returns false and we will unmap the
2281 					 * actual page and drop map count
2282 					 * to zero.
2283 					 */
2284 					page_vma_mapped_walk_done(&pvmw);
2285 					break;
2286 				}
2287 				hugetlb_vma_unlock_write(vma);
2288 			}
2289 			/* Nuke the hugetlb page table entry */
2290 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2291 			if (pte_dirty(pteval))
2292 				folio_mark_dirty(folio);
2293 			writable = pte_write(pteval);
2294 		} else if (likely(pte_present(pteval))) {
2295 			flush_cache_page(vma, address, pfn);
2296 			/* Nuke the page table entry. */
2297 			if (should_defer_flush(mm, flags)) {
2298 				/*
2299 				 * We clear the PTE but do not flush so potentially
2300 				 * a remote CPU could still be writing to the folio.
2301 				 * If the entry was previously clean then the
2302 				 * architecture must guarantee that a clear->dirty
2303 				 * transition on a cached TLB entry is written through
2304 				 * and traps if the PTE is unmapped.
2305 				 */
2306 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2307 
2308 				set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE);
2309 			} else {
2310 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2311 			}
2312 			if (pte_dirty(pteval))
2313 				folio_mark_dirty(folio);
2314 			writable = pte_write(pteval);
2315 		} else {
2316 			pte_clear(mm, address, pvmw.pte);
2317 			writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2318 		}
2319 
2320 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2321 				!anon_exclusive, folio);
2322 
2323 		/* Update high watermark before we lower rss */
2324 		update_hiwater_rss(mm);
2325 
2326 		if (PageHWPoison(subpage)) {
2327 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2328 
2329 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2330 			if (folio_test_hugetlb(folio)) {
2331 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2332 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2333 						hsz);
2334 			} else {
2335 				dec_mm_counter(mm, mm_counter(folio));
2336 				set_pte_at(mm, address, pvmw.pte, pteval);
2337 			}
2338 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2339 			   !userfaultfd_armed(vma)) {
2340 			/*
2341 			 * The guest indicated that the page content is of no
2342 			 * interest anymore. Simply discard the pte, vmscan
2343 			 * will take care of the rest.
2344 			 * A future reference will then fault in a new zero
2345 			 * page. When userfaultfd is active, we must not drop
2346 			 * this page though, as its main user (postcopy
2347 			 * migration) will not expect userfaults on already
2348 			 * copied pages.
2349 			 */
2350 			dec_mm_counter(mm, mm_counter(folio));
2351 		} else {
2352 			swp_entry_t entry;
2353 			pte_t swp_pte;
2354 
2355 			/*
2356 			 * arch_unmap_one() is expected to be a NOP on
2357 			 * architectures where we could have PFN swap PTEs,
2358 			 * so we'll not check/care.
2359 			 */
2360 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2361 				if (folio_test_hugetlb(folio))
2362 					set_huge_pte_at(mm, address, pvmw.pte,
2363 							pteval, hsz);
2364 				else
2365 					set_pte_at(mm, address, pvmw.pte, pteval);
2366 				ret = false;
2367 				page_vma_mapped_walk_done(&pvmw);
2368 				break;
2369 			}
2370 
2371 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2372 			if (folio_test_hugetlb(folio)) {
2373 				if (anon_exclusive &&
2374 				    hugetlb_try_share_anon_rmap(folio)) {
2375 					set_huge_pte_at(mm, address, pvmw.pte,
2376 							pteval, hsz);
2377 					ret = false;
2378 					page_vma_mapped_walk_done(&pvmw);
2379 					break;
2380 				}
2381 			} else if (anon_exclusive &&
2382 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2383 				set_pte_at(mm, address, pvmw.pte, pteval);
2384 				ret = false;
2385 				page_vma_mapped_walk_done(&pvmw);
2386 				break;
2387 			}
2388 
2389 			/*
2390 			 * Store the pfn of the page in a special migration
2391 			 * pte. do_swap_page() will wait until the migration
2392 			 * pte is removed and then restart fault handling.
2393 			 */
2394 			if (writable)
2395 				entry = make_writable_migration_entry(
2396 							page_to_pfn(subpage));
2397 			else if (anon_exclusive)
2398 				entry = make_readable_exclusive_migration_entry(
2399 							page_to_pfn(subpage));
2400 			else
2401 				entry = make_readable_migration_entry(
2402 							page_to_pfn(subpage));
2403 			if (likely(pte_present(pteval))) {
2404 				if (pte_young(pteval))
2405 					entry = make_migration_entry_young(entry);
2406 				if (pte_dirty(pteval))
2407 					entry = make_migration_entry_dirty(entry);
2408 				swp_pte = swp_entry_to_pte(entry);
2409 				if (pte_soft_dirty(pteval))
2410 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2411 				if (pte_uffd_wp(pteval))
2412 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2413 			} else {
2414 				swp_pte = swp_entry_to_pte(entry);
2415 				if (pte_swp_soft_dirty(pteval))
2416 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2417 				if (pte_swp_uffd_wp(pteval))
2418 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2419 			}
2420 			if (folio_test_hugetlb(folio))
2421 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2422 						hsz);
2423 			else
2424 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2425 			trace_set_migration_pte(address, pte_val(swp_pte),
2426 						folio_order(folio));
2427 			/*
2428 			 * No need to invalidate here it will synchronize on
2429 			 * against the special swap migration pte.
2430 			 */
2431 		}
2432 
2433 		if (unlikely(folio_test_hugetlb(folio)))
2434 			hugetlb_remove_rmap(folio);
2435 		else
2436 			folio_remove_rmap_pte(folio, subpage, vma);
2437 		if (vma->vm_flags & VM_LOCKED)
2438 			mlock_drain_local();
2439 		folio_put(folio);
2440 	}
2441 
2442 	mmu_notifier_invalidate_range_end(&range);
2443 
2444 	return ret;
2445 }
2446 
2447 /**
2448  * try_to_migrate - try to replace all page table mappings with swap entries
2449  * @folio: the folio to replace page table entries for
2450  * @flags: action and flags
2451  *
2452  * Tries to remove all the page table entries which are mapping this folio and
2453  * replace them with special swap entries. Caller must hold the folio lock.
2454  */
2455 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2456 {
2457 	struct rmap_walk_control rwc = {
2458 		.rmap_one = try_to_migrate_one,
2459 		.arg = (void *)flags,
2460 		.done = folio_not_mapped,
2461 		.anon_lock = folio_lock_anon_vma_read,
2462 	};
2463 
2464 	/*
2465 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2466 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2467 	 */
2468 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2469 					TTU_SYNC | TTU_BATCH_FLUSH)))
2470 		return;
2471 
2472 	if (folio_is_zone_device(folio) &&
2473 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2474 		return;
2475 
2476 	/*
2477 	 * During exec, a temporary VMA is setup and later moved.
2478 	 * The VMA is moved under the anon_vma lock but not the
2479 	 * page tables leading to a race where migration cannot
2480 	 * find the migration ptes. Rather than increasing the
2481 	 * locking requirements of exec(), migration skips
2482 	 * temporary VMAs until after exec() completes.
2483 	 */
2484 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2485 		rwc.invalid_vma = invalid_migration_vma;
2486 
2487 	if (flags & TTU_RMAP_LOCKED)
2488 		rmap_walk_locked(folio, &rwc);
2489 	else
2490 		rmap_walk(folio, &rwc);
2491 }
2492 
2493 #ifdef CONFIG_DEVICE_PRIVATE
2494 /**
2495  * make_device_exclusive() - Mark a page for exclusive use by a device
2496  * @mm: mm_struct of associated target process
2497  * @addr: the virtual address to mark for exclusive device access
2498  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2499  * @foliop: folio pointer will be stored here on success.
2500  *
2501  * This function looks up the page mapped at the given address, grabs a
2502  * folio reference, locks the folio and replaces the PTE with special
2503  * device-exclusive PFN swap entry, preventing access through the process
2504  * page tables. The function will return with the folio locked and referenced.
2505  *
2506  * On fault, the device-exclusive entries are replaced with the original PTE
2507  * under folio lock, after calling MMU notifiers.
2508  *
2509  * Only anonymous non-hugetlb folios are supported and the VMA must have
2510  * write permissions such that we can fault in the anonymous page writable
2511  * in order to mark it exclusive. The caller must hold the mmap_lock in read
2512  * mode.
2513  *
2514  * A driver using this to program access from a device must use a mmu notifier
2515  * critical section to hold a device specific lock during programming. Once
2516  * programming is complete it should drop the folio lock and reference after
2517  * which point CPU access to the page will revoke the exclusive access.
2518  *
2519  * Notes:
2520  *   #. This function always operates on individual PTEs mapping individual
2521  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2522  *      the conversion happens on a single PTE corresponding to @addr.
2523  *   #. While concurrent access through the process page tables is prevented,
2524  *      concurrent access through other page references (e.g., earlier GUP
2525  *      invocation) is not handled and not supported.
2526  *   #. device-exclusive entries are considered "clean" and "old" by core-mm.
2527  *      Device drivers must update the folio state when informed by MMU
2528  *      notifiers.
2529  *
2530  * Returns: pointer to mapped page on success, otherwise a negative error.
2531  */
2532 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2533 		void *owner, struct folio **foliop)
2534 {
2535 	struct mmu_notifier_range range;
2536 	struct folio *folio, *fw_folio;
2537 	struct vm_area_struct *vma;
2538 	struct folio_walk fw;
2539 	struct page *page;
2540 	swp_entry_t entry;
2541 	pte_t swp_pte;
2542 	int ret;
2543 
2544 	mmap_assert_locked(mm);
2545 	addr = PAGE_ALIGN_DOWN(addr);
2546 
2547 	/*
2548 	 * Fault in the page writable and try to lock it; note that if the
2549 	 * address would already be marked for exclusive use by a device,
2550 	 * the GUP call would undo that first by triggering a fault.
2551 	 *
2552 	 * If any other device would already map this page exclusively, the
2553 	 * fault will trigger a conversion to an ordinary
2554 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2555 	 */
2556 retry:
2557 	page = get_user_page_vma_remote(mm, addr,
2558 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2559 					&vma);
2560 	if (IS_ERR(page))
2561 		return page;
2562 	folio = page_folio(page);
2563 
2564 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2565 		folio_put(folio);
2566 		return ERR_PTR(-EOPNOTSUPP);
2567 	}
2568 
2569 	ret = folio_lock_killable(folio);
2570 	if (ret) {
2571 		folio_put(folio);
2572 		return ERR_PTR(ret);
2573 	}
2574 
2575 	/*
2576 	 * Inform secondary MMUs that we are going to convert this PTE to
2577 	 * device-exclusive, such that they unmap it now. Note that the
2578 	 * caller must filter this event out to prevent livelocks.
2579 	 */
2580 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2581 				      mm, addr, addr + PAGE_SIZE, owner);
2582 	mmu_notifier_invalidate_range_start(&range);
2583 
2584 	/*
2585 	 * Let's do a second walk and make sure we still find the same page
2586 	 * mapped writable. Note that any page of an anonymous folio can
2587 	 * only be mapped writable using exactly one PTE ("exclusive"), so
2588 	 * there cannot be other mappings.
2589 	 */
2590 	fw_folio = folio_walk_start(&fw, vma, addr, 0);
2591 	if (fw_folio != folio || fw.page != page ||
2592 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2593 		if (fw_folio)
2594 			folio_walk_end(&fw, vma);
2595 		mmu_notifier_invalidate_range_end(&range);
2596 		folio_unlock(folio);
2597 		folio_put(folio);
2598 		goto retry;
2599 	}
2600 
2601 	/* Nuke the page table entry so we get the uptodate dirty bit. */
2602 	flush_cache_page(vma, addr, page_to_pfn(page));
2603 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2604 
2605 	/* Set the dirty flag on the folio now the PTE is gone. */
2606 	if (pte_dirty(fw.pte))
2607 		folio_mark_dirty(folio);
2608 
2609 	/*
2610 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2611 	 * do_swap_page() will trigger the conversion back while holding the
2612 	 * folio lock.
2613 	 */
2614 	entry = make_device_exclusive_entry(page_to_pfn(page));
2615 	swp_pte = swp_entry_to_pte(entry);
2616 	if (pte_soft_dirty(fw.pte))
2617 		swp_pte = pte_swp_mksoft_dirty(swp_pte);
2618 	/* The pte is writable, uffd-wp does not apply. */
2619 	set_pte_at(mm, addr, fw.ptep, swp_pte);
2620 
2621 	folio_walk_end(&fw, vma);
2622 	mmu_notifier_invalidate_range_end(&range);
2623 	*foliop = folio;
2624 	return page;
2625 }
2626 EXPORT_SYMBOL_GPL(make_device_exclusive);
2627 #endif
2628 
2629 void __put_anon_vma(struct anon_vma *anon_vma)
2630 {
2631 	struct anon_vma *root = anon_vma->root;
2632 
2633 	anon_vma_free(anon_vma);
2634 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2635 		anon_vma_free(root);
2636 }
2637 
2638 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2639 					    struct rmap_walk_control *rwc)
2640 {
2641 	struct anon_vma *anon_vma;
2642 
2643 	if (rwc->anon_lock)
2644 		return rwc->anon_lock(folio, rwc);
2645 
2646 	/*
2647 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2648 	 * because that depends on page_mapped(); but not all its usages
2649 	 * are holding mmap_lock. Users without mmap_lock are required to
2650 	 * take a reference count to prevent the anon_vma disappearing
2651 	 */
2652 	anon_vma = folio_anon_vma(folio);
2653 	if (!anon_vma)
2654 		return NULL;
2655 
2656 	if (anon_vma_trylock_read(anon_vma))
2657 		goto out;
2658 
2659 	if (rwc->try_lock) {
2660 		anon_vma = NULL;
2661 		rwc->contended = true;
2662 		goto out;
2663 	}
2664 
2665 	anon_vma_lock_read(anon_vma);
2666 out:
2667 	return anon_vma;
2668 }
2669 
2670 /*
2671  * rmap_walk_anon - do something to anonymous page using the object-based
2672  * rmap method
2673  * @folio: the folio to be handled
2674  * @rwc: control variable according to each walk type
2675  * @locked: caller holds relevant rmap lock
2676  *
2677  * Find all the mappings of a folio using the mapping pointer and the vma
2678  * chains contained in the anon_vma struct it points to.
2679  */
2680 static void rmap_walk_anon(struct folio *folio,
2681 		struct rmap_walk_control *rwc, bool locked)
2682 {
2683 	struct anon_vma *anon_vma;
2684 	pgoff_t pgoff_start, pgoff_end;
2685 	struct anon_vma_chain *avc;
2686 
2687 	if (locked) {
2688 		anon_vma = folio_anon_vma(folio);
2689 		/* anon_vma disappear under us? */
2690 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2691 	} else {
2692 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2693 	}
2694 	if (!anon_vma)
2695 		return;
2696 
2697 	pgoff_start = folio_pgoff(folio);
2698 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2699 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2700 			pgoff_start, pgoff_end) {
2701 		struct vm_area_struct *vma = avc->vma;
2702 		unsigned long address = vma_address(vma, pgoff_start,
2703 				folio_nr_pages(folio));
2704 
2705 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2706 		cond_resched();
2707 
2708 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2709 			continue;
2710 
2711 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2712 			break;
2713 		if (rwc->done && rwc->done(folio))
2714 			break;
2715 	}
2716 
2717 	if (!locked)
2718 		anon_vma_unlock_read(anon_vma);
2719 }
2720 
2721 /**
2722  * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping
2723  * of a page mapped within a specified page cache object at a specified offset.
2724  *
2725  * @folio: 		Either the folio whose mappings to traverse, or if NULL,
2726  * 			the callbacks specified in @rwc will be configured such
2727  * 			as to be able to look up mappings correctly.
2728  * @mapping: 		The page cache object whose mapping VMAs we intend to
2729  * 			traverse. If @folio is non-NULL, this should be equal to
2730  *			folio_mapping(folio).
2731  * @pgoff_start:	The offset within @mapping of the page which we are
2732  * 			looking up. If @folio is non-NULL, this should be equal
2733  * 			to folio_pgoff(folio).
2734  * @nr_pages:		The number of pages mapped by the mapping. If @folio is
2735  *			non-NULL, this should be equal to folio_nr_pages(folio).
2736  * @rwc:		The reverse mapping walk control object describing how
2737  *			the traversal should proceed.
2738  * @locked:		Is the @mapping already locked? If not, we acquire the
2739  *			lock.
2740  */
2741 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping,
2742 			     pgoff_t pgoff_start, unsigned long nr_pages,
2743 			     struct rmap_walk_control *rwc, bool locked)
2744 {
2745 	pgoff_t pgoff_end = pgoff_start + nr_pages - 1;
2746 	struct vm_area_struct *vma;
2747 
2748 	VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio);
2749 	VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio);
2750 	VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio);
2751 
2752 	if (!locked) {
2753 		if (i_mmap_trylock_read(mapping))
2754 			goto lookup;
2755 
2756 		if (rwc->try_lock) {
2757 			rwc->contended = true;
2758 			return;
2759 		}
2760 
2761 		i_mmap_lock_read(mapping);
2762 	}
2763 lookup:
2764 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2765 			pgoff_start, pgoff_end) {
2766 		unsigned long address = vma_address(vma, pgoff_start, nr_pages);
2767 
2768 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2769 		cond_resched();
2770 
2771 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2772 			continue;
2773 
2774 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2775 			goto done;
2776 		if (rwc->done && rwc->done(folio))
2777 			goto done;
2778 	}
2779 done:
2780 	if (!locked)
2781 		i_mmap_unlock_read(mapping);
2782 }
2783 
2784 /*
2785  * rmap_walk_file - do something to file page using the object-based rmap method
2786  * @folio: the folio to be handled
2787  * @rwc: control variable according to each walk type
2788  * @locked: caller holds relevant rmap lock
2789  *
2790  * Find all the mappings of a folio using the mapping pointer and the vma chains
2791  * contained in the address_space struct it points to.
2792  */
2793 static void rmap_walk_file(struct folio *folio,
2794 		struct rmap_walk_control *rwc, bool locked)
2795 {
2796 	/*
2797 	 * The folio lock not only makes sure that folio->mapping cannot
2798 	 * suddenly be NULLified by truncation, it makes sure that the structure
2799 	 * at mapping cannot be freed and reused yet, so we can safely take
2800 	 * mapping->i_mmap_rwsem.
2801 	 */
2802 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2803 
2804 	if (!folio->mapping)
2805 		return;
2806 
2807 	__rmap_walk_file(folio, folio->mapping, folio->index,
2808 			 folio_nr_pages(folio), rwc, locked);
2809 }
2810 
2811 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2812 {
2813 	if (unlikely(folio_test_ksm(folio)))
2814 		rmap_walk_ksm(folio, rwc);
2815 	else if (folio_test_anon(folio))
2816 		rmap_walk_anon(folio, rwc, false);
2817 	else
2818 		rmap_walk_file(folio, rwc, false);
2819 }
2820 
2821 /* Like rmap_walk, but caller holds relevant rmap lock */
2822 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2823 {
2824 	/* no ksm support for now */
2825 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2826 	if (folio_test_anon(folio))
2827 		rmap_walk_anon(folio, rwc, true);
2828 	else
2829 		rmap_walk_file(folio, rwc, true);
2830 }
2831 
2832 #ifdef CONFIG_HUGETLB_PAGE
2833 /*
2834  * The following two functions are for anonymous (private mapped) hugepages.
2835  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2836  * and no lru code, because we handle hugepages differently from common pages.
2837  */
2838 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2839 		unsigned long address, rmap_t flags)
2840 {
2841 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2842 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2843 
2844 	atomic_inc(&folio->_entire_mapcount);
2845 	atomic_inc(&folio->_large_mapcount);
2846 	if (flags & RMAP_EXCLUSIVE)
2847 		SetPageAnonExclusive(&folio->page);
2848 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2849 			 PageAnonExclusive(&folio->page), folio);
2850 }
2851 
2852 void hugetlb_add_new_anon_rmap(struct folio *folio,
2853 		struct vm_area_struct *vma, unsigned long address)
2854 {
2855 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2856 
2857 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2858 	/* increment count (starts at -1) */
2859 	atomic_set(&folio->_entire_mapcount, 0);
2860 	atomic_set(&folio->_large_mapcount, 0);
2861 	folio_clear_hugetlb_restore_reserve(folio);
2862 	__folio_set_anon(folio, vma, address, true);
2863 	SetPageAnonExclusive(&folio->page);
2864 }
2865 #endif /* CONFIG_HUGETLB_PAGE */
2866