1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long start, unsigned long end) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, start, end); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 arch_flush_tlb_batched_pending(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long start, unsigned long end) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /** 771 * page_address_in_vma - The virtual address of a page in this VMA. 772 * @folio: The folio containing the page. 773 * @page: The page within the folio. 774 * @vma: The VMA we need to know the address in. 775 * 776 * Calculates the user virtual address of this page in the specified VMA. 777 * It is the caller's responsibililty to check the page is actually 778 * within the VMA. There may not currently be a PTE pointing at this 779 * page, but if a page fault occurs at this address, this is the page 780 * which will be accessed. 781 * 782 * Context: Caller should hold a reference to the folio. Caller should 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 784 * VMA from being altered. 785 * 786 * Return: The virtual address corresponding to this page in the VMA. 787 */ 788 unsigned long page_address_in_vma(const struct folio *folio, 789 const struct page *page, const struct vm_area_struct *vma) 790 { 791 if (folio_test_anon(folio)) { 792 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 793 /* 794 * Note: swapoff's unuse_vma() is more efficient with this 795 * check, and needs it to match anon_vma when KSM is active. 796 */ 797 if (!vma->anon_vma || !page__anon_vma || 798 vma->anon_vma->root != page__anon_vma->root) 799 return -EFAULT; 800 } else if (!vma->vm_file) { 801 return -EFAULT; 802 } else if (vma->vm_file->f_mapping != folio->mapping) { 803 return -EFAULT; 804 } 805 806 /* KSM folios don't reach here because of the !page__anon_vma check */ 807 return vma_address(vma, page_pgoff(folio, page), 1); 808 } 809 810 /* 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 813 * represents. 814 */ 815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 816 { 817 pgd_t *pgd; 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd = NULL; 821 822 pgd = pgd_offset(mm, address); 823 if (!pgd_present(*pgd)) 824 goto out; 825 826 p4d = p4d_offset(pgd, address); 827 if (!p4d_present(*p4d)) 828 goto out; 829 830 pud = pud_offset(p4d, address); 831 if (!pud_present(*pud)) 832 goto out; 833 834 pmd = pmd_offset(pud, address); 835 out: 836 return pmd; 837 } 838 839 struct folio_referenced_arg { 840 int mapcount; 841 int referenced; 842 unsigned long vm_flags; 843 struct mem_cgroup *memcg; 844 }; 845 846 /* 847 * arg: folio_referenced_arg will be passed 848 */ 849 static bool folio_referenced_one(struct folio *folio, 850 struct vm_area_struct *vma, unsigned long address, void *arg) 851 { 852 struct folio_referenced_arg *pra = arg; 853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 854 int referenced = 0; 855 unsigned long start = address, ptes = 0; 856 857 while (page_vma_mapped_walk(&pvmw)) { 858 address = pvmw.address; 859 860 if (vma->vm_flags & VM_LOCKED) { 861 if (!folio_test_large(folio) || !pvmw.pte) { 862 /* Restore the mlock which got missed */ 863 mlock_vma_folio(folio, vma); 864 page_vma_mapped_walk_done(&pvmw); 865 pra->vm_flags |= VM_LOCKED; 866 return false; /* To break the loop */ 867 } 868 /* 869 * For large folio fully mapped to VMA, will 870 * be handled after the pvmw loop. 871 * 872 * For large folio cross VMA boundaries, it's 873 * expected to be picked by page reclaim. But 874 * should skip reference of pages which are in 875 * the range of VM_LOCKED vma. As page reclaim 876 * should just count the reference of pages out 877 * the range of VM_LOCKED vma. 878 */ 879 ptes++; 880 pra->mapcount--; 881 continue; 882 } 883 884 /* 885 * Skip the non-shared swapbacked folio mapped solely by 886 * the exiting or OOM-reaped process. This avoids redundant 887 * swap-out followed by an immediate unmap. 888 */ 889 if ((!atomic_read(&vma->vm_mm->mm_users) || 890 check_stable_address_space(vma->vm_mm)) && 891 folio_test_anon(folio) && folio_test_swapbacked(folio) && 892 !folio_likely_mapped_shared(folio)) { 893 pra->referenced = -1; 894 page_vma_mapped_walk_done(&pvmw); 895 return false; 896 } 897 898 if (lru_gen_enabled() && pvmw.pte) { 899 if (lru_gen_look_around(&pvmw)) 900 referenced++; 901 } else if (pvmw.pte) { 902 if (ptep_clear_flush_young_notify(vma, address, 903 pvmw.pte)) 904 referenced++; 905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 906 if (pmdp_clear_flush_young_notify(vma, address, 907 pvmw.pmd)) 908 referenced++; 909 } else { 910 /* unexpected pmd-mapped folio? */ 911 WARN_ON_ONCE(1); 912 } 913 914 pra->mapcount--; 915 } 916 917 if ((vma->vm_flags & VM_LOCKED) && 918 folio_test_large(folio) && 919 folio_within_vma(folio, vma)) { 920 unsigned long s_align, e_align; 921 922 s_align = ALIGN_DOWN(start, PMD_SIZE); 923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 924 925 /* folio doesn't cross page table boundary and fully mapped */ 926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 927 /* Restore the mlock which got missed */ 928 mlock_vma_folio(folio, vma); 929 pra->vm_flags |= VM_LOCKED; 930 return false; /* To break the loop */ 931 } 932 } 933 934 if (referenced) 935 folio_clear_idle(folio); 936 if (folio_test_clear_young(folio)) 937 referenced++; 938 939 if (referenced) { 940 pra->referenced++; 941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 942 } 943 944 if (!pra->mapcount) 945 return false; /* To break the loop */ 946 947 return true; 948 } 949 950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 951 { 952 struct folio_referenced_arg *pra = arg; 953 struct mem_cgroup *memcg = pra->memcg; 954 955 /* 956 * Ignore references from this mapping if it has no recency. If the 957 * folio has been used in another mapping, we will catch it; if this 958 * other mapping is already gone, the unmap path will have set the 959 * referenced flag or activated the folio in zap_pte_range(). 960 */ 961 if (!vma_has_recency(vma)) 962 return true; 963 964 /* 965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 966 * of references from different cgroups. 967 */ 968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 969 return true; 970 971 return false; 972 } 973 974 /** 975 * folio_referenced() - Test if the folio was referenced. 976 * @folio: The folio to test. 977 * @is_locked: Caller holds lock on the folio. 978 * @memcg: target memory cgroup 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 980 * 981 * Quick test_and_clear_referenced for all mappings of a folio, 982 * 983 * Return: The number of mappings which referenced the folio. Return -1 if 984 * the function bailed out due to rmap lock contention. 985 */ 986 int folio_referenced(struct folio *folio, int is_locked, 987 struct mem_cgroup *memcg, unsigned long *vm_flags) 988 { 989 bool we_locked = false; 990 struct folio_referenced_arg pra = { 991 .mapcount = folio_mapcount(folio), 992 .memcg = memcg, 993 }; 994 struct rmap_walk_control rwc = { 995 .rmap_one = folio_referenced_one, 996 .arg = (void *)&pra, 997 .anon_lock = folio_lock_anon_vma_read, 998 .try_lock = true, 999 .invalid_vma = invalid_folio_referenced_vma, 1000 }; 1001 1002 *vm_flags = 0; 1003 if (!pra.mapcount) 1004 return 0; 1005 1006 if (!folio_raw_mapping(folio)) 1007 return 0; 1008 1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1010 we_locked = folio_trylock(folio); 1011 if (!we_locked) 1012 return 1; 1013 } 1014 1015 rmap_walk(folio, &rwc); 1016 *vm_flags = pra.vm_flags; 1017 1018 if (we_locked) 1019 folio_unlock(folio); 1020 1021 return rwc.contended ? -1 : pra.referenced; 1022 } 1023 1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1025 { 1026 int cleaned = 0; 1027 struct vm_area_struct *vma = pvmw->vma; 1028 struct mmu_notifier_range range; 1029 unsigned long address = pvmw->address; 1030 1031 /* 1032 * We have to assume the worse case ie pmd for invalidation. Note that 1033 * the folio can not be freed from this function. 1034 */ 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1036 vma->vm_mm, address, vma_address_end(pvmw)); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 while (page_vma_mapped_walk(pvmw)) { 1040 int ret = 0; 1041 1042 address = pvmw->address; 1043 if (pvmw->pte) { 1044 pte_t *pte = pvmw->pte; 1045 pte_t entry = ptep_get(pte); 1046 1047 /* 1048 * PFN swap PTEs, such as device-exclusive ones, that 1049 * actually map pages are clean and not writable from a 1050 * CPU perspective. The MMU notifier takes care of any 1051 * device aspects. 1052 */ 1053 if (!pte_present(entry)) 1054 continue; 1055 if (!pte_dirty(entry) && !pte_write(entry)) 1056 continue; 1057 1058 flush_cache_page(vma, address, pte_pfn(entry)); 1059 entry = ptep_clear_flush(vma, address, pte); 1060 entry = pte_wrprotect(entry); 1061 entry = pte_mkclean(entry); 1062 set_pte_at(vma->vm_mm, address, pte, entry); 1063 ret = 1; 1064 } else { 1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1066 pmd_t *pmd = pvmw->pmd; 1067 pmd_t entry; 1068 1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1070 continue; 1071 1072 flush_cache_range(vma, address, 1073 address + HPAGE_PMD_SIZE); 1074 entry = pmdp_invalidate(vma, address, pmd); 1075 entry = pmd_wrprotect(entry); 1076 entry = pmd_mkclean(entry); 1077 set_pmd_at(vma->vm_mm, address, pmd, entry); 1078 ret = 1; 1079 #else 1080 /* unexpected pmd-mapped folio? */ 1081 WARN_ON_ONCE(1); 1082 #endif 1083 } 1084 1085 if (ret) 1086 cleaned++; 1087 } 1088 1089 mmu_notifier_invalidate_range_end(&range); 1090 1091 return cleaned; 1092 } 1093 1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1095 unsigned long address, void *arg) 1096 { 1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1098 int *cleaned = arg; 1099 1100 *cleaned += page_vma_mkclean_one(&pvmw); 1101 1102 return true; 1103 } 1104 1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1106 { 1107 if (vma->vm_flags & VM_SHARED) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 int folio_mkclean(struct folio *folio) 1114 { 1115 int cleaned = 0; 1116 struct address_space *mapping; 1117 struct rmap_walk_control rwc = { 1118 .arg = (void *)&cleaned, 1119 .rmap_one = page_mkclean_one, 1120 .invalid_vma = invalid_mkclean_vma, 1121 }; 1122 1123 BUG_ON(!folio_test_locked(folio)); 1124 1125 if (!folio_mapped(folio)) 1126 return 0; 1127 1128 mapping = folio_mapping(folio); 1129 if (!mapping) 1130 return 0; 1131 1132 rmap_walk(folio, &rwc); 1133 1134 return cleaned; 1135 } 1136 EXPORT_SYMBOL_GPL(folio_mkclean); 1137 1138 struct wrprotect_file_state { 1139 int cleaned; 1140 pgoff_t pgoff; 1141 unsigned long pfn; 1142 unsigned long nr_pages; 1143 }; 1144 1145 static bool mapping_wrprotect_range_one(struct folio *folio, 1146 struct vm_area_struct *vma, unsigned long address, void *arg) 1147 { 1148 struct wrprotect_file_state *state = (struct wrprotect_file_state *)arg; 1149 struct page_vma_mapped_walk pvmw = { 1150 .pfn = state->pfn, 1151 .nr_pages = state->nr_pages, 1152 .pgoff = state->pgoff, 1153 .vma = vma, 1154 .address = address, 1155 .flags = PVMW_SYNC, 1156 }; 1157 1158 state->cleaned += page_vma_mkclean_one(&pvmw); 1159 1160 return true; 1161 } 1162 1163 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 1164 pgoff_t pgoff_start, unsigned long nr_pages, 1165 struct rmap_walk_control *rwc, bool locked); 1166 1167 /** 1168 * mapping_wrprotect_range() - Write-protect all mappings in a specified range. 1169 * 1170 * @mapping: The mapping whose reverse mapping should be traversed. 1171 * @pgoff: The page offset at which @pfn is mapped within @mapping. 1172 * @pfn: The PFN of the page mapped in @mapping at @pgoff. 1173 * @nr_pages: The number of physically contiguous base pages spanned. 1174 * 1175 * Traverses the reverse mapping, finding all VMAs which contain a shared 1176 * mapping of the pages in the specified range in @mapping, and write-protects 1177 * them (that is, updates the page tables to mark the mappings read-only such 1178 * that a write protection fault arises when the mappings are written to). 1179 * 1180 * The @pfn value need not refer to a folio, but rather can reference a kernel 1181 * allocation which is mapped into userland. We therefore do not require that 1182 * the page maps to a folio with a valid mapping or index field, rather the 1183 * caller specifies these in @mapping and @pgoff. 1184 * 1185 * Return: the number of write-protected PTEs, or an error. 1186 */ 1187 int mapping_wrprotect_range(struct address_space *mapping, pgoff_t pgoff, 1188 unsigned long pfn, unsigned long nr_pages) 1189 { 1190 struct wrprotect_file_state state = { 1191 .cleaned = 0, 1192 .pgoff = pgoff, 1193 .pfn = pfn, 1194 .nr_pages = nr_pages, 1195 }; 1196 struct rmap_walk_control rwc = { 1197 .arg = (void *)&state, 1198 .rmap_one = mapping_wrprotect_range_one, 1199 .invalid_vma = invalid_mkclean_vma, 1200 }; 1201 1202 if (!mapping) 1203 return 0; 1204 1205 __rmap_walk_file(/* folio = */NULL, mapping, pgoff, nr_pages, &rwc, 1206 /* locked = */false); 1207 1208 return state.cleaned; 1209 } 1210 EXPORT_SYMBOL_GPL(mapping_wrprotect_range); 1211 1212 /** 1213 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1214 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1215 * within the @vma of shared mappings. And since clean PTEs 1216 * should also be readonly, write protects them too. 1217 * @pfn: start pfn. 1218 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1219 * @pgoff: page offset that the @pfn mapped with. 1220 * @vma: vma that @pfn mapped within. 1221 * 1222 * Returns the number of cleaned PTEs (including PMDs). 1223 */ 1224 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1225 struct vm_area_struct *vma) 1226 { 1227 struct page_vma_mapped_walk pvmw = { 1228 .pfn = pfn, 1229 .nr_pages = nr_pages, 1230 .pgoff = pgoff, 1231 .vma = vma, 1232 .flags = PVMW_SYNC, 1233 }; 1234 1235 if (invalid_mkclean_vma(vma, NULL)) 1236 return 0; 1237 1238 pvmw.address = vma_address(vma, pgoff, nr_pages); 1239 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1240 1241 return page_vma_mkclean_one(&pvmw); 1242 } 1243 1244 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1245 struct page *page, int nr_pages, enum rmap_level level, 1246 int *nr_pmdmapped) 1247 { 1248 atomic_t *mapped = &folio->_nr_pages_mapped; 1249 const int orig_nr_pages = nr_pages; 1250 int first = 0, nr = 0; 1251 1252 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1253 1254 switch (level) { 1255 case RMAP_LEVEL_PTE: 1256 if (!folio_test_large(folio)) { 1257 nr = atomic_inc_and_test(&folio->_mapcount); 1258 break; 1259 } 1260 1261 do { 1262 first += atomic_inc_and_test(&page->_mapcount); 1263 } while (page++, --nr_pages > 0); 1264 1265 if (first && 1266 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1267 nr = first; 1268 1269 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1270 break; 1271 case RMAP_LEVEL_PMD: 1272 first = atomic_inc_and_test(&folio->_entire_mapcount); 1273 if (first) { 1274 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1275 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1276 *nr_pmdmapped = folio_nr_pages(folio); 1277 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1278 /* Raced ahead of a remove and another add? */ 1279 if (unlikely(nr < 0)) 1280 nr = 0; 1281 } else { 1282 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1283 nr = 0; 1284 } 1285 } 1286 atomic_inc(&folio->_large_mapcount); 1287 break; 1288 } 1289 return nr; 1290 } 1291 1292 /** 1293 * folio_move_anon_rmap - move a folio to our anon_vma 1294 * @folio: The folio to move to our anon_vma 1295 * @vma: The vma the folio belongs to 1296 * 1297 * When a folio belongs exclusively to one process after a COW event, 1298 * that folio can be moved into the anon_vma that belongs to just that 1299 * process, so the rmap code will not search the parent or sibling processes. 1300 */ 1301 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1302 { 1303 void *anon_vma = vma->anon_vma; 1304 1305 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1306 VM_BUG_ON_VMA(!anon_vma, vma); 1307 1308 anon_vma += PAGE_MAPPING_ANON; 1309 /* 1310 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1311 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1312 * folio_test_anon()) will not see one without the other. 1313 */ 1314 WRITE_ONCE(folio->mapping, anon_vma); 1315 } 1316 1317 /** 1318 * __folio_set_anon - set up a new anonymous rmap for a folio 1319 * @folio: The folio to set up the new anonymous rmap for. 1320 * @vma: VM area to add the folio to. 1321 * @address: User virtual address of the mapping 1322 * @exclusive: Whether the folio is exclusive to the process. 1323 */ 1324 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1325 unsigned long address, bool exclusive) 1326 { 1327 struct anon_vma *anon_vma = vma->anon_vma; 1328 1329 BUG_ON(!anon_vma); 1330 1331 /* 1332 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1333 * possible anon_vma for the folio mapping! 1334 */ 1335 if (!exclusive) 1336 anon_vma = anon_vma->root; 1337 1338 /* 1339 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1340 * Make sure the compiler doesn't split the stores of anon_vma and 1341 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1342 * could mistake the mapping for a struct address_space and crash. 1343 */ 1344 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1345 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1346 folio->index = linear_page_index(vma, address); 1347 } 1348 1349 /** 1350 * __page_check_anon_rmap - sanity check anonymous rmap addition 1351 * @folio: The folio containing @page. 1352 * @page: the page to check the mapping of 1353 * @vma: the vm area in which the mapping is added 1354 * @address: the user virtual address mapped 1355 */ 1356 static void __page_check_anon_rmap(const struct folio *folio, 1357 const struct page *page, struct vm_area_struct *vma, 1358 unsigned long address) 1359 { 1360 /* 1361 * The page's anon-rmap details (mapping and index) are guaranteed to 1362 * be set up correctly at this point. 1363 * 1364 * We have exclusion against folio_add_anon_rmap_*() because the caller 1365 * always holds the page locked. 1366 * 1367 * We have exclusion against folio_add_new_anon_rmap because those pages 1368 * are initially only visible via the pagetables, and the pte is locked 1369 * over the call to folio_add_new_anon_rmap. 1370 */ 1371 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1372 folio); 1373 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1374 page); 1375 } 1376 1377 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1378 { 1379 int idx; 1380 1381 if (nr) { 1382 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1383 __lruvec_stat_mod_folio(folio, idx, nr); 1384 } 1385 if (nr_pmdmapped) { 1386 if (folio_test_anon(folio)) { 1387 idx = NR_ANON_THPS; 1388 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1389 } else { 1390 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1391 idx = folio_test_swapbacked(folio) ? 1392 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1393 __mod_node_page_state(folio_pgdat(folio), idx, 1394 nr_pmdmapped); 1395 } 1396 } 1397 } 1398 1399 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1400 struct page *page, int nr_pages, struct vm_area_struct *vma, 1401 unsigned long address, rmap_t flags, enum rmap_level level) 1402 { 1403 int i, nr, nr_pmdmapped = 0; 1404 1405 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1406 1407 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1408 1409 if (likely(!folio_test_ksm(folio))) 1410 __page_check_anon_rmap(folio, page, vma, address); 1411 1412 __folio_mod_stat(folio, nr, nr_pmdmapped); 1413 1414 if (flags & RMAP_EXCLUSIVE) { 1415 switch (level) { 1416 case RMAP_LEVEL_PTE: 1417 for (i = 0; i < nr_pages; i++) 1418 SetPageAnonExclusive(page + i); 1419 break; 1420 case RMAP_LEVEL_PMD: 1421 SetPageAnonExclusive(page); 1422 break; 1423 } 1424 } 1425 for (i = 0; i < nr_pages; i++) { 1426 struct page *cur_page = page + i; 1427 1428 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1429 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1430 (folio_test_large(folio) && 1431 folio_entire_mapcount(folio) > 1)) && 1432 PageAnonExclusive(cur_page), folio); 1433 } 1434 1435 /* 1436 * For large folio, only mlock it if it's fully mapped to VMA. It's 1437 * not easy to check whether the large folio is fully mapped to VMA 1438 * here. Only mlock normal 4K folio and leave page reclaim to handle 1439 * large folio. 1440 */ 1441 if (!folio_test_large(folio)) 1442 mlock_vma_folio(folio, vma); 1443 } 1444 1445 /** 1446 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1447 * @folio: The folio to add the mappings to 1448 * @page: The first page to add 1449 * @nr_pages: The number of pages which will be mapped 1450 * @vma: The vm area in which the mappings are added 1451 * @address: The user virtual address of the first page to map 1452 * @flags: The rmap flags 1453 * 1454 * The page range of folio is defined by [first_page, first_page + nr_pages) 1455 * 1456 * The caller needs to hold the page table lock, and the page must be locked in 1457 * the anon_vma case: to serialize mapping,index checking after setting, 1458 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1459 * (but KSM folios are never downgraded). 1460 */ 1461 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1462 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1463 rmap_t flags) 1464 { 1465 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1466 RMAP_LEVEL_PTE); 1467 } 1468 1469 /** 1470 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1471 * @folio: The folio to add the mapping to 1472 * @page: The first page to add 1473 * @vma: The vm area in which the mapping is added 1474 * @address: The user virtual address of the first page to map 1475 * @flags: The rmap flags 1476 * 1477 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1478 * 1479 * The caller needs to hold the page table lock, and the page must be locked in 1480 * the anon_vma case: to serialize mapping,index checking after setting. 1481 */ 1482 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1483 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1484 { 1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1486 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1487 RMAP_LEVEL_PMD); 1488 #else 1489 WARN_ON_ONCE(true); 1490 #endif 1491 } 1492 1493 /** 1494 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1495 * @folio: The folio to add the mapping to. 1496 * @vma: the vm area in which the mapping is added 1497 * @address: the user virtual address mapped 1498 * @flags: The rmap flags 1499 * 1500 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1501 * This means the inc-and-test can be bypassed. 1502 * The folio doesn't necessarily need to be locked while it's exclusive 1503 * unless two threads map it concurrently. However, the folio must be 1504 * locked if it's shared. 1505 * 1506 * If the folio is pmd-mappable, it is accounted as a THP. 1507 */ 1508 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1509 unsigned long address, rmap_t flags) 1510 { 1511 const int nr = folio_nr_pages(folio); 1512 const bool exclusive = flags & RMAP_EXCLUSIVE; 1513 int nr_pmdmapped = 0; 1514 1515 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1516 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1517 VM_BUG_ON_VMA(address < vma->vm_start || 1518 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1519 1520 /* 1521 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1522 * under memory pressure. 1523 */ 1524 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1525 __folio_set_swapbacked(folio); 1526 __folio_set_anon(folio, vma, address, exclusive); 1527 1528 if (likely(!folio_test_large(folio))) { 1529 /* increment count (starts at -1) */ 1530 atomic_set(&folio->_mapcount, 0); 1531 if (exclusive) 1532 SetPageAnonExclusive(&folio->page); 1533 } else if (!folio_test_pmd_mappable(folio)) { 1534 int i; 1535 1536 for (i = 0; i < nr; i++) { 1537 struct page *page = folio_page(folio, i); 1538 1539 /* increment count (starts at -1) */ 1540 atomic_set(&page->_mapcount, 0); 1541 if (exclusive) 1542 SetPageAnonExclusive(page); 1543 } 1544 1545 /* increment count (starts at -1) */ 1546 atomic_set(&folio->_large_mapcount, nr - 1); 1547 atomic_set(&folio->_nr_pages_mapped, nr); 1548 } else { 1549 /* increment count (starts at -1) */ 1550 atomic_set(&folio->_entire_mapcount, 0); 1551 /* increment count (starts at -1) */ 1552 atomic_set(&folio->_large_mapcount, 0); 1553 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1554 if (exclusive) 1555 SetPageAnonExclusive(&folio->page); 1556 nr_pmdmapped = nr; 1557 } 1558 1559 __folio_mod_stat(folio, nr, nr_pmdmapped); 1560 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1561 } 1562 1563 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1564 struct page *page, int nr_pages, struct vm_area_struct *vma, 1565 enum rmap_level level) 1566 { 1567 int nr, nr_pmdmapped = 0; 1568 1569 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1570 1571 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1572 __folio_mod_stat(folio, nr, nr_pmdmapped); 1573 1574 /* See comments in folio_add_anon_rmap_*() */ 1575 if (!folio_test_large(folio)) 1576 mlock_vma_folio(folio, vma); 1577 } 1578 1579 /** 1580 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1581 * @folio: The folio to add the mappings to 1582 * @page: The first page to add 1583 * @nr_pages: The number of pages that will be mapped using PTEs 1584 * @vma: The vm area in which the mappings are added 1585 * 1586 * The page range of the folio is defined by [page, page + nr_pages) 1587 * 1588 * The caller needs to hold the page table lock. 1589 */ 1590 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1591 int nr_pages, struct vm_area_struct *vma) 1592 { 1593 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1594 } 1595 1596 /** 1597 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1598 * @folio: The folio to add the mapping to 1599 * @page: The first page to add 1600 * @vma: The vm area in which the mapping is added 1601 * 1602 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1603 * 1604 * The caller needs to hold the page table lock. 1605 */ 1606 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1607 struct vm_area_struct *vma) 1608 { 1609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1610 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1611 #else 1612 WARN_ON_ONCE(true); 1613 #endif 1614 } 1615 1616 static __always_inline void __folio_remove_rmap(struct folio *folio, 1617 struct page *page, int nr_pages, struct vm_area_struct *vma, 1618 enum rmap_level level) 1619 { 1620 atomic_t *mapped = &folio->_nr_pages_mapped; 1621 int last = 0, nr = 0, nr_pmdmapped = 0; 1622 bool partially_mapped = false; 1623 1624 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1625 1626 switch (level) { 1627 case RMAP_LEVEL_PTE: 1628 if (!folio_test_large(folio)) { 1629 nr = atomic_add_negative(-1, &folio->_mapcount); 1630 break; 1631 } 1632 1633 atomic_sub(nr_pages, &folio->_large_mapcount); 1634 do { 1635 last += atomic_add_negative(-1, &page->_mapcount); 1636 } while (page++, --nr_pages > 0); 1637 1638 if (last && 1639 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1640 nr = last; 1641 1642 partially_mapped = nr && atomic_read(mapped); 1643 break; 1644 case RMAP_LEVEL_PMD: 1645 atomic_dec(&folio->_large_mapcount); 1646 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1647 if (last) { 1648 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1649 if (likely(nr < ENTIRELY_MAPPED)) { 1650 nr_pmdmapped = folio_nr_pages(folio); 1651 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1652 /* Raced ahead of another remove and an add? */ 1653 if (unlikely(nr < 0)) 1654 nr = 0; 1655 } else { 1656 /* An add of ENTIRELY_MAPPED raced ahead */ 1657 nr = 0; 1658 } 1659 } 1660 1661 partially_mapped = nr && nr < nr_pmdmapped; 1662 break; 1663 } 1664 1665 /* 1666 * Queue anon large folio for deferred split if at least one page of 1667 * the folio is unmapped and at least one page is still mapped. 1668 * 1669 * Check partially_mapped first to ensure it is a large folio. 1670 */ 1671 if (partially_mapped && folio_test_anon(folio) && 1672 !folio_test_partially_mapped(folio)) 1673 deferred_split_folio(folio, true); 1674 1675 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1676 1677 /* 1678 * It would be tidy to reset folio_test_anon mapping when fully 1679 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1680 * which increments mapcount after us but sets mapping before us: 1681 * so leave the reset to free_pages_prepare, and remember that 1682 * it's only reliable while mapped. 1683 */ 1684 1685 munlock_vma_folio(folio, vma); 1686 } 1687 1688 /** 1689 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1690 * @folio: The folio to remove the mappings from 1691 * @page: The first page to remove 1692 * @nr_pages: The number of pages that will be removed from the mapping 1693 * @vma: The vm area from which the mappings are removed 1694 * 1695 * The page range of the folio is defined by [page, page + nr_pages) 1696 * 1697 * The caller needs to hold the page table lock. 1698 */ 1699 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1700 int nr_pages, struct vm_area_struct *vma) 1701 { 1702 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1703 } 1704 1705 /** 1706 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1707 * @folio: The folio to remove the mapping from 1708 * @page: The first page to remove 1709 * @vma: The vm area from which the mapping is removed 1710 * 1711 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1712 * 1713 * The caller needs to hold the page table lock. 1714 */ 1715 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1716 struct vm_area_struct *vma) 1717 { 1718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1719 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1720 #else 1721 WARN_ON_ONCE(true); 1722 #endif 1723 } 1724 1725 /* We support batch unmapping of PTEs for lazyfree large folios */ 1726 static inline bool can_batch_unmap_folio_ptes(unsigned long addr, 1727 struct folio *folio, pte_t *ptep) 1728 { 1729 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1730 int max_nr = folio_nr_pages(folio); 1731 pte_t pte = ptep_get(ptep); 1732 1733 if (!folio_test_anon(folio) || folio_test_swapbacked(folio)) 1734 return false; 1735 if (pte_unused(pte)) 1736 return false; 1737 if (pte_pfn(pte) != folio_pfn(folio)) 1738 return false; 1739 1740 return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL, 1741 NULL, NULL) == max_nr; 1742 } 1743 1744 /* 1745 * @arg: enum ttu_flags will be passed to this argument 1746 */ 1747 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1748 unsigned long address, void *arg) 1749 { 1750 struct mm_struct *mm = vma->vm_mm; 1751 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1752 bool anon_exclusive, ret = true; 1753 pte_t pteval; 1754 struct page *subpage; 1755 struct mmu_notifier_range range; 1756 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1757 unsigned long nr_pages = 1, end_addr; 1758 unsigned long pfn; 1759 unsigned long hsz = 0; 1760 1761 /* 1762 * When racing against e.g. zap_pte_range() on another cpu, 1763 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1764 * try_to_unmap() may return before page_mapped() has become false, 1765 * if page table locking is skipped: use TTU_SYNC to wait for that. 1766 */ 1767 if (flags & TTU_SYNC) 1768 pvmw.flags = PVMW_SYNC; 1769 1770 /* 1771 * For THP, we have to assume the worse case ie pmd for invalidation. 1772 * For hugetlb, it could be much worse if we need to do pud 1773 * invalidation in the case of pmd sharing. 1774 * 1775 * Note that the folio can not be freed in this function as call of 1776 * try_to_unmap() must hold a reference on the folio. 1777 */ 1778 range.end = vma_address_end(&pvmw); 1779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1780 address, range.end); 1781 if (folio_test_hugetlb(folio)) { 1782 /* 1783 * If sharing is possible, start and end will be adjusted 1784 * accordingly. 1785 */ 1786 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1787 &range.end); 1788 1789 /* We need the huge page size for set_huge_pte_at() */ 1790 hsz = huge_page_size(hstate_vma(vma)); 1791 } 1792 mmu_notifier_invalidate_range_start(&range); 1793 1794 while (page_vma_mapped_walk(&pvmw)) { 1795 /* 1796 * If the folio is in an mlock()d vma, we must not swap it out. 1797 */ 1798 if (!(flags & TTU_IGNORE_MLOCK) && 1799 (vma->vm_flags & VM_LOCKED)) { 1800 /* Restore the mlock which got missed */ 1801 if (!folio_test_large(folio)) 1802 mlock_vma_folio(folio, vma); 1803 goto walk_abort; 1804 } 1805 1806 if (!pvmw.pte) { 1807 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1808 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, folio)) 1809 goto walk_done; 1810 /* 1811 * unmap_huge_pmd_locked has either already marked 1812 * the folio as swap-backed or decided to retain it 1813 * due to GUP or speculative references. 1814 */ 1815 goto walk_abort; 1816 } 1817 1818 if (flags & TTU_SPLIT_HUGE_PMD) { 1819 /* 1820 * We temporarily have to drop the PTL and 1821 * restart so we can process the PTE-mapped THP. 1822 */ 1823 split_huge_pmd_locked(vma, pvmw.address, 1824 pvmw.pmd, false, folio); 1825 flags &= ~TTU_SPLIT_HUGE_PMD; 1826 page_vma_mapped_walk_restart(&pvmw); 1827 continue; 1828 } 1829 } 1830 1831 /* Unexpected PMD-mapped THP? */ 1832 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1833 1834 /* 1835 * Handle PFN swap PTEs, such as device-exclusive ones, that 1836 * actually map pages. 1837 */ 1838 pteval = ptep_get(pvmw.pte); 1839 if (likely(pte_present(pteval))) { 1840 pfn = pte_pfn(pteval); 1841 } else { 1842 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1843 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1844 } 1845 1846 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1847 address = pvmw.address; 1848 anon_exclusive = folio_test_anon(folio) && 1849 PageAnonExclusive(subpage); 1850 1851 if (folio_test_hugetlb(folio)) { 1852 bool anon = folio_test_anon(folio); 1853 1854 /* 1855 * The try_to_unmap() is only passed a hugetlb page 1856 * in the case where the hugetlb page is poisoned. 1857 */ 1858 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1859 /* 1860 * huge_pmd_unshare may unmap an entire PMD page. 1861 * There is no way of knowing exactly which PMDs may 1862 * be cached for this mm, so we must flush them all. 1863 * start/end were already adjusted above to cover this 1864 * range. 1865 */ 1866 flush_cache_range(vma, range.start, range.end); 1867 1868 /* 1869 * To call huge_pmd_unshare, i_mmap_rwsem must be 1870 * held in write mode. Caller needs to explicitly 1871 * do this outside rmap routines. 1872 * 1873 * We also must hold hugetlb vma_lock in write mode. 1874 * Lock order dictates acquiring vma_lock BEFORE 1875 * i_mmap_rwsem. We can only try lock here and fail 1876 * if unsuccessful. 1877 */ 1878 if (!anon) { 1879 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1880 if (!hugetlb_vma_trylock_write(vma)) 1881 goto walk_abort; 1882 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1883 hugetlb_vma_unlock_write(vma); 1884 flush_tlb_range(vma, 1885 range.start, range.end); 1886 /* 1887 * The ref count of the PMD page was 1888 * dropped which is part of the way map 1889 * counting is done for shared PMDs. 1890 * Return 'true' here. When there is 1891 * no other sharing, huge_pmd_unshare 1892 * returns false and we will unmap the 1893 * actual page and drop map count 1894 * to zero. 1895 */ 1896 goto walk_done; 1897 } 1898 hugetlb_vma_unlock_write(vma); 1899 } 1900 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1901 if (pte_dirty(pteval)) 1902 folio_mark_dirty(folio); 1903 } else if (likely(pte_present(pteval))) { 1904 if (folio_test_large(folio) && !(flags & TTU_HWPOISON) && 1905 can_batch_unmap_folio_ptes(address, folio, pvmw.pte)) 1906 nr_pages = folio_nr_pages(folio); 1907 end_addr = address + nr_pages * PAGE_SIZE; 1908 flush_cache_range(vma, address, end_addr); 1909 1910 /* Nuke the page table entry. */ 1911 pteval = get_and_clear_full_ptes(mm, address, pvmw.pte, nr_pages, 0); 1912 /* 1913 * We clear the PTE but do not flush so potentially 1914 * a remote CPU could still be writing to the folio. 1915 * If the entry was previously clean then the 1916 * architecture must guarantee that a clear->dirty 1917 * transition on a cached TLB entry is written through 1918 * and traps if the PTE is unmapped. 1919 */ 1920 if (should_defer_flush(mm, flags)) 1921 set_tlb_ubc_flush_pending(mm, pteval, address, end_addr); 1922 else 1923 flush_tlb_range(vma, address, end_addr); 1924 if (pte_dirty(pteval)) 1925 folio_mark_dirty(folio); 1926 } else { 1927 pte_clear(mm, address, pvmw.pte); 1928 } 1929 1930 /* 1931 * Now the pte is cleared. If this pte was uffd-wp armed, 1932 * we may want to replace a none pte with a marker pte if 1933 * it's file-backed, so we don't lose the tracking info. 1934 */ 1935 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1936 1937 /* Update high watermark before we lower rss */ 1938 update_hiwater_rss(mm); 1939 1940 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1941 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1942 if (folio_test_hugetlb(folio)) { 1943 hugetlb_count_sub(folio_nr_pages(folio), mm); 1944 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1945 hsz); 1946 } else { 1947 dec_mm_counter(mm, mm_counter(folio)); 1948 set_pte_at(mm, address, pvmw.pte, pteval); 1949 } 1950 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 1951 !userfaultfd_armed(vma)) { 1952 /* 1953 * The guest indicated that the page content is of no 1954 * interest anymore. Simply discard the pte, vmscan 1955 * will take care of the rest. 1956 * A future reference will then fault in a new zero 1957 * page. When userfaultfd is active, we must not drop 1958 * this page though, as its main user (postcopy 1959 * migration) will not expect userfaults on already 1960 * copied pages. 1961 */ 1962 dec_mm_counter(mm, mm_counter(folio)); 1963 } else if (folio_test_anon(folio)) { 1964 swp_entry_t entry = page_swap_entry(subpage); 1965 pte_t swp_pte; 1966 /* 1967 * Store the swap location in the pte. 1968 * See handle_pte_fault() ... 1969 */ 1970 if (unlikely(folio_test_swapbacked(folio) != 1971 folio_test_swapcache(folio))) { 1972 WARN_ON_ONCE(1); 1973 goto walk_abort; 1974 } 1975 1976 /* MADV_FREE page check */ 1977 if (!folio_test_swapbacked(folio)) { 1978 int ref_count, map_count; 1979 1980 /* 1981 * Synchronize with gup_pte_range(): 1982 * - clear PTE; barrier; read refcount 1983 * - inc refcount; barrier; read PTE 1984 */ 1985 smp_mb(); 1986 1987 ref_count = folio_ref_count(folio); 1988 map_count = folio_mapcount(folio); 1989 1990 /* 1991 * Order reads for page refcount and dirty flag 1992 * (see comments in __remove_mapping()). 1993 */ 1994 smp_rmb(); 1995 1996 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 1997 /* 1998 * redirtied either using the page table or a previously 1999 * obtained GUP reference. 2000 */ 2001 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2002 folio_set_swapbacked(folio); 2003 goto walk_abort; 2004 } else if (ref_count != 1 + map_count) { 2005 /* 2006 * Additional reference. Could be a GUP reference or any 2007 * speculative reference. GUP users must mark the folio 2008 * dirty if there was a modification. This folio cannot be 2009 * reclaimed right now either way, so act just like nothing 2010 * happened. 2011 * We'll come back here later and detect if the folio was 2012 * dirtied when the additional reference is gone. 2013 */ 2014 set_ptes(mm, address, pvmw.pte, pteval, nr_pages); 2015 goto walk_abort; 2016 } 2017 add_mm_counter(mm, MM_ANONPAGES, -nr_pages); 2018 goto discard; 2019 } 2020 2021 if (swap_duplicate(entry) < 0) { 2022 set_pte_at(mm, address, pvmw.pte, pteval); 2023 goto walk_abort; 2024 } 2025 2026 /* 2027 * arch_unmap_one() is expected to be a NOP on 2028 * architectures where we could have PFN swap PTEs, 2029 * so we'll not check/care. 2030 */ 2031 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2032 swap_free(entry); 2033 set_pte_at(mm, address, pvmw.pte, pteval); 2034 goto walk_abort; 2035 } 2036 2037 /* See folio_try_share_anon_rmap(): clear PTE first. */ 2038 if (anon_exclusive && 2039 folio_try_share_anon_rmap_pte(folio, subpage)) { 2040 swap_free(entry); 2041 set_pte_at(mm, address, pvmw.pte, pteval); 2042 goto walk_abort; 2043 } 2044 if (list_empty(&mm->mmlist)) { 2045 spin_lock(&mmlist_lock); 2046 if (list_empty(&mm->mmlist)) 2047 list_add(&mm->mmlist, &init_mm.mmlist); 2048 spin_unlock(&mmlist_lock); 2049 } 2050 dec_mm_counter(mm, MM_ANONPAGES); 2051 inc_mm_counter(mm, MM_SWAPENTS); 2052 swp_pte = swp_entry_to_pte(entry); 2053 if (anon_exclusive) 2054 swp_pte = pte_swp_mkexclusive(swp_pte); 2055 if (likely(pte_present(pteval))) { 2056 if (pte_soft_dirty(pteval)) 2057 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2058 if (pte_uffd_wp(pteval)) 2059 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2060 } else { 2061 if (pte_swp_soft_dirty(pteval)) 2062 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2063 if (pte_swp_uffd_wp(pteval)) 2064 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2065 } 2066 set_pte_at(mm, address, pvmw.pte, swp_pte); 2067 } else { 2068 /* 2069 * This is a locked file-backed folio, 2070 * so it cannot be removed from the page 2071 * cache and replaced by a new folio before 2072 * mmu_notifier_invalidate_range_end, so no 2073 * concurrent thread might update its page table 2074 * to point at a new folio while a device is 2075 * still using this folio. 2076 * 2077 * See Documentation/mm/mmu_notifier.rst 2078 */ 2079 dec_mm_counter(mm, mm_counter_file(folio)); 2080 } 2081 discard: 2082 if (unlikely(folio_test_hugetlb(folio))) { 2083 hugetlb_remove_rmap(folio); 2084 } else { 2085 folio_remove_rmap_ptes(folio, subpage, nr_pages, vma); 2086 folio_ref_sub(folio, nr_pages - 1); 2087 } 2088 if (vma->vm_flags & VM_LOCKED) 2089 mlock_drain_local(); 2090 folio_put(folio); 2091 /* We have already batched the entire folio */ 2092 if (nr_pages > 1) 2093 goto walk_done; 2094 continue; 2095 walk_abort: 2096 ret = false; 2097 walk_done: 2098 page_vma_mapped_walk_done(&pvmw); 2099 break; 2100 } 2101 2102 mmu_notifier_invalidate_range_end(&range); 2103 2104 return ret; 2105 } 2106 2107 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2108 { 2109 return vma_is_temporary_stack(vma); 2110 } 2111 2112 static int folio_not_mapped(struct folio *folio) 2113 { 2114 return !folio_mapped(folio); 2115 } 2116 2117 /** 2118 * try_to_unmap - Try to remove all page table mappings to a folio. 2119 * @folio: The folio to unmap. 2120 * @flags: action and flags 2121 * 2122 * Tries to remove all the page table entries which are mapping this 2123 * folio. It is the caller's responsibility to check if the folio is 2124 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2125 * 2126 * Context: Caller must hold the folio lock. 2127 */ 2128 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2129 { 2130 struct rmap_walk_control rwc = { 2131 .rmap_one = try_to_unmap_one, 2132 .arg = (void *)flags, 2133 .done = folio_not_mapped, 2134 .anon_lock = folio_lock_anon_vma_read, 2135 }; 2136 2137 if (flags & TTU_RMAP_LOCKED) 2138 rmap_walk_locked(folio, &rwc); 2139 else 2140 rmap_walk(folio, &rwc); 2141 } 2142 2143 /* 2144 * @arg: enum ttu_flags will be passed to this argument. 2145 * 2146 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2147 * containing migration entries. 2148 */ 2149 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2150 unsigned long address, void *arg) 2151 { 2152 struct mm_struct *mm = vma->vm_mm; 2153 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2154 bool anon_exclusive, writable, ret = true; 2155 pte_t pteval; 2156 struct page *subpage; 2157 struct mmu_notifier_range range; 2158 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2159 unsigned long pfn; 2160 unsigned long hsz = 0; 2161 2162 /* 2163 * When racing against e.g. zap_pte_range() on another cpu, 2164 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2165 * try_to_migrate() may return before page_mapped() has become false, 2166 * if page table locking is skipped: use TTU_SYNC to wait for that. 2167 */ 2168 if (flags & TTU_SYNC) 2169 pvmw.flags = PVMW_SYNC; 2170 2171 /* 2172 * unmap_page() in mm/huge_memory.c is the only user of migration with 2173 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2174 */ 2175 if (flags & TTU_SPLIT_HUGE_PMD) 2176 split_huge_pmd_address(vma, address, true, folio); 2177 2178 /* 2179 * For THP, we have to assume the worse case ie pmd for invalidation. 2180 * For hugetlb, it could be much worse if we need to do pud 2181 * invalidation in the case of pmd sharing. 2182 * 2183 * Note that the page can not be free in this function as call of 2184 * try_to_unmap() must hold a reference on the page. 2185 */ 2186 range.end = vma_address_end(&pvmw); 2187 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2188 address, range.end); 2189 if (folio_test_hugetlb(folio)) { 2190 /* 2191 * If sharing is possible, start and end will be adjusted 2192 * accordingly. 2193 */ 2194 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2195 &range.end); 2196 2197 /* We need the huge page size for set_huge_pte_at() */ 2198 hsz = huge_page_size(hstate_vma(vma)); 2199 } 2200 mmu_notifier_invalidate_range_start(&range); 2201 2202 while (page_vma_mapped_walk(&pvmw)) { 2203 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2204 /* PMD-mapped THP migration entry */ 2205 if (!pvmw.pte) { 2206 subpage = folio_page(folio, 2207 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2208 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2209 !folio_test_pmd_mappable(folio), folio); 2210 2211 if (set_pmd_migration_entry(&pvmw, subpage)) { 2212 ret = false; 2213 page_vma_mapped_walk_done(&pvmw); 2214 break; 2215 } 2216 continue; 2217 } 2218 #endif 2219 2220 /* Unexpected PMD-mapped THP? */ 2221 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2222 2223 /* 2224 * Handle PFN swap PTEs, such as device-exclusive ones, that 2225 * actually map pages. 2226 */ 2227 pteval = ptep_get(pvmw.pte); 2228 if (likely(pte_present(pteval))) { 2229 pfn = pte_pfn(pteval); 2230 } else { 2231 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2232 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2233 } 2234 2235 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2236 address = pvmw.address; 2237 anon_exclusive = folio_test_anon(folio) && 2238 PageAnonExclusive(subpage); 2239 2240 if (folio_test_hugetlb(folio)) { 2241 bool anon = folio_test_anon(folio); 2242 2243 /* 2244 * huge_pmd_unshare may unmap an entire PMD page. 2245 * There is no way of knowing exactly which PMDs may 2246 * be cached for this mm, so we must flush them all. 2247 * start/end were already adjusted above to cover this 2248 * range. 2249 */ 2250 flush_cache_range(vma, range.start, range.end); 2251 2252 /* 2253 * To call huge_pmd_unshare, i_mmap_rwsem must be 2254 * held in write mode. Caller needs to explicitly 2255 * do this outside rmap routines. 2256 * 2257 * We also must hold hugetlb vma_lock in write mode. 2258 * Lock order dictates acquiring vma_lock BEFORE 2259 * i_mmap_rwsem. We can only try lock here and 2260 * fail if unsuccessful. 2261 */ 2262 if (!anon) { 2263 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2264 if (!hugetlb_vma_trylock_write(vma)) { 2265 page_vma_mapped_walk_done(&pvmw); 2266 ret = false; 2267 break; 2268 } 2269 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2270 hugetlb_vma_unlock_write(vma); 2271 flush_tlb_range(vma, 2272 range.start, range.end); 2273 2274 /* 2275 * The ref count of the PMD page was 2276 * dropped which is part of the way map 2277 * counting is done for shared PMDs. 2278 * Return 'true' here. When there is 2279 * no other sharing, huge_pmd_unshare 2280 * returns false and we will unmap the 2281 * actual page and drop map count 2282 * to zero. 2283 */ 2284 page_vma_mapped_walk_done(&pvmw); 2285 break; 2286 } 2287 hugetlb_vma_unlock_write(vma); 2288 } 2289 /* Nuke the hugetlb page table entry */ 2290 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2291 if (pte_dirty(pteval)) 2292 folio_mark_dirty(folio); 2293 writable = pte_write(pteval); 2294 } else if (likely(pte_present(pteval))) { 2295 flush_cache_page(vma, address, pfn); 2296 /* Nuke the page table entry. */ 2297 if (should_defer_flush(mm, flags)) { 2298 /* 2299 * We clear the PTE but do not flush so potentially 2300 * a remote CPU could still be writing to the folio. 2301 * If the entry was previously clean then the 2302 * architecture must guarantee that a clear->dirty 2303 * transition on a cached TLB entry is written through 2304 * and traps if the PTE is unmapped. 2305 */ 2306 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2307 2308 set_tlb_ubc_flush_pending(mm, pteval, address, address + PAGE_SIZE); 2309 } else { 2310 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2311 } 2312 if (pte_dirty(pteval)) 2313 folio_mark_dirty(folio); 2314 writable = pte_write(pteval); 2315 } else { 2316 pte_clear(mm, address, pvmw.pte); 2317 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2318 } 2319 2320 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2321 !anon_exclusive, folio); 2322 2323 /* Update high watermark before we lower rss */ 2324 update_hiwater_rss(mm); 2325 2326 if (PageHWPoison(subpage)) { 2327 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2328 2329 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2330 if (folio_test_hugetlb(folio)) { 2331 hugetlb_count_sub(folio_nr_pages(folio), mm); 2332 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2333 hsz); 2334 } else { 2335 dec_mm_counter(mm, mm_counter(folio)); 2336 set_pte_at(mm, address, pvmw.pte, pteval); 2337 } 2338 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2339 !userfaultfd_armed(vma)) { 2340 /* 2341 * The guest indicated that the page content is of no 2342 * interest anymore. Simply discard the pte, vmscan 2343 * will take care of the rest. 2344 * A future reference will then fault in a new zero 2345 * page. When userfaultfd is active, we must not drop 2346 * this page though, as its main user (postcopy 2347 * migration) will not expect userfaults on already 2348 * copied pages. 2349 */ 2350 dec_mm_counter(mm, mm_counter(folio)); 2351 } else { 2352 swp_entry_t entry; 2353 pte_t swp_pte; 2354 2355 /* 2356 * arch_unmap_one() is expected to be a NOP on 2357 * architectures where we could have PFN swap PTEs, 2358 * so we'll not check/care. 2359 */ 2360 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2361 if (folio_test_hugetlb(folio)) 2362 set_huge_pte_at(mm, address, pvmw.pte, 2363 pteval, hsz); 2364 else 2365 set_pte_at(mm, address, pvmw.pte, pteval); 2366 ret = false; 2367 page_vma_mapped_walk_done(&pvmw); 2368 break; 2369 } 2370 2371 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2372 if (folio_test_hugetlb(folio)) { 2373 if (anon_exclusive && 2374 hugetlb_try_share_anon_rmap(folio)) { 2375 set_huge_pte_at(mm, address, pvmw.pte, 2376 pteval, hsz); 2377 ret = false; 2378 page_vma_mapped_walk_done(&pvmw); 2379 break; 2380 } 2381 } else if (anon_exclusive && 2382 folio_try_share_anon_rmap_pte(folio, subpage)) { 2383 set_pte_at(mm, address, pvmw.pte, pteval); 2384 ret = false; 2385 page_vma_mapped_walk_done(&pvmw); 2386 break; 2387 } 2388 2389 /* 2390 * Store the pfn of the page in a special migration 2391 * pte. do_swap_page() will wait until the migration 2392 * pte is removed and then restart fault handling. 2393 */ 2394 if (writable) 2395 entry = make_writable_migration_entry( 2396 page_to_pfn(subpage)); 2397 else if (anon_exclusive) 2398 entry = make_readable_exclusive_migration_entry( 2399 page_to_pfn(subpage)); 2400 else 2401 entry = make_readable_migration_entry( 2402 page_to_pfn(subpage)); 2403 if (likely(pte_present(pteval))) { 2404 if (pte_young(pteval)) 2405 entry = make_migration_entry_young(entry); 2406 if (pte_dirty(pteval)) 2407 entry = make_migration_entry_dirty(entry); 2408 swp_pte = swp_entry_to_pte(entry); 2409 if (pte_soft_dirty(pteval)) 2410 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2411 if (pte_uffd_wp(pteval)) 2412 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2413 } else { 2414 swp_pte = swp_entry_to_pte(entry); 2415 if (pte_swp_soft_dirty(pteval)) 2416 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2417 if (pte_swp_uffd_wp(pteval)) 2418 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2419 } 2420 if (folio_test_hugetlb(folio)) 2421 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2422 hsz); 2423 else 2424 set_pte_at(mm, address, pvmw.pte, swp_pte); 2425 trace_set_migration_pte(address, pte_val(swp_pte), 2426 folio_order(folio)); 2427 /* 2428 * No need to invalidate here it will synchronize on 2429 * against the special swap migration pte. 2430 */ 2431 } 2432 2433 if (unlikely(folio_test_hugetlb(folio))) 2434 hugetlb_remove_rmap(folio); 2435 else 2436 folio_remove_rmap_pte(folio, subpage, vma); 2437 if (vma->vm_flags & VM_LOCKED) 2438 mlock_drain_local(); 2439 folio_put(folio); 2440 } 2441 2442 mmu_notifier_invalidate_range_end(&range); 2443 2444 return ret; 2445 } 2446 2447 /** 2448 * try_to_migrate - try to replace all page table mappings with swap entries 2449 * @folio: the folio to replace page table entries for 2450 * @flags: action and flags 2451 * 2452 * Tries to remove all the page table entries which are mapping this folio and 2453 * replace them with special swap entries. Caller must hold the folio lock. 2454 */ 2455 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2456 { 2457 struct rmap_walk_control rwc = { 2458 .rmap_one = try_to_migrate_one, 2459 .arg = (void *)flags, 2460 .done = folio_not_mapped, 2461 .anon_lock = folio_lock_anon_vma_read, 2462 }; 2463 2464 /* 2465 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2466 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2467 */ 2468 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2469 TTU_SYNC | TTU_BATCH_FLUSH))) 2470 return; 2471 2472 if (folio_is_zone_device(folio) && 2473 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2474 return; 2475 2476 /* 2477 * During exec, a temporary VMA is setup and later moved. 2478 * The VMA is moved under the anon_vma lock but not the 2479 * page tables leading to a race where migration cannot 2480 * find the migration ptes. Rather than increasing the 2481 * locking requirements of exec(), migration skips 2482 * temporary VMAs until after exec() completes. 2483 */ 2484 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2485 rwc.invalid_vma = invalid_migration_vma; 2486 2487 if (flags & TTU_RMAP_LOCKED) 2488 rmap_walk_locked(folio, &rwc); 2489 else 2490 rmap_walk(folio, &rwc); 2491 } 2492 2493 #ifdef CONFIG_DEVICE_PRIVATE 2494 /** 2495 * make_device_exclusive() - Mark a page for exclusive use by a device 2496 * @mm: mm_struct of associated target process 2497 * @addr: the virtual address to mark for exclusive device access 2498 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2499 * @foliop: folio pointer will be stored here on success. 2500 * 2501 * This function looks up the page mapped at the given address, grabs a 2502 * folio reference, locks the folio and replaces the PTE with special 2503 * device-exclusive PFN swap entry, preventing access through the process 2504 * page tables. The function will return with the folio locked and referenced. 2505 * 2506 * On fault, the device-exclusive entries are replaced with the original PTE 2507 * under folio lock, after calling MMU notifiers. 2508 * 2509 * Only anonymous non-hugetlb folios are supported and the VMA must have 2510 * write permissions such that we can fault in the anonymous page writable 2511 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2512 * mode. 2513 * 2514 * A driver using this to program access from a device must use a mmu notifier 2515 * critical section to hold a device specific lock during programming. Once 2516 * programming is complete it should drop the folio lock and reference after 2517 * which point CPU access to the page will revoke the exclusive access. 2518 * 2519 * Notes: 2520 * #. This function always operates on individual PTEs mapping individual 2521 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2522 * the conversion happens on a single PTE corresponding to @addr. 2523 * #. While concurrent access through the process page tables is prevented, 2524 * concurrent access through other page references (e.g., earlier GUP 2525 * invocation) is not handled and not supported. 2526 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2527 * Device drivers must update the folio state when informed by MMU 2528 * notifiers. 2529 * 2530 * Returns: pointer to mapped page on success, otherwise a negative error. 2531 */ 2532 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2533 void *owner, struct folio **foliop) 2534 { 2535 struct mmu_notifier_range range; 2536 struct folio *folio, *fw_folio; 2537 struct vm_area_struct *vma; 2538 struct folio_walk fw; 2539 struct page *page; 2540 swp_entry_t entry; 2541 pte_t swp_pte; 2542 int ret; 2543 2544 mmap_assert_locked(mm); 2545 addr = PAGE_ALIGN_DOWN(addr); 2546 2547 /* 2548 * Fault in the page writable and try to lock it; note that if the 2549 * address would already be marked for exclusive use by a device, 2550 * the GUP call would undo that first by triggering a fault. 2551 * 2552 * If any other device would already map this page exclusively, the 2553 * fault will trigger a conversion to an ordinary 2554 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2555 */ 2556 retry: 2557 page = get_user_page_vma_remote(mm, addr, 2558 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2559 &vma); 2560 if (IS_ERR(page)) 2561 return page; 2562 folio = page_folio(page); 2563 2564 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2565 folio_put(folio); 2566 return ERR_PTR(-EOPNOTSUPP); 2567 } 2568 2569 ret = folio_lock_killable(folio); 2570 if (ret) { 2571 folio_put(folio); 2572 return ERR_PTR(ret); 2573 } 2574 2575 /* 2576 * Inform secondary MMUs that we are going to convert this PTE to 2577 * device-exclusive, such that they unmap it now. Note that the 2578 * caller must filter this event out to prevent livelocks. 2579 */ 2580 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2581 mm, addr, addr + PAGE_SIZE, owner); 2582 mmu_notifier_invalidate_range_start(&range); 2583 2584 /* 2585 * Let's do a second walk and make sure we still find the same page 2586 * mapped writable. Note that any page of an anonymous folio can 2587 * only be mapped writable using exactly one PTE ("exclusive"), so 2588 * there cannot be other mappings. 2589 */ 2590 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2591 if (fw_folio != folio || fw.page != page || 2592 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2593 if (fw_folio) 2594 folio_walk_end(&fw, vma); 2595 mmu_notifier_invalidate_range_end(&range); 2596 folio_unlock(folio); 2597 folio_put(folio); 2598 goto retry; 2599 } 2600 2601 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2602 flush_cache_page(vma, addr, page_to_pfn(page)); 2603 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2604 2605 /* Set the dirty flag on the folio now the PTE is gone. */ 2606 if (pte_dirty(fw.pte)) 2607 folio_mark_dirty(folio); 2608 2609 /* 2610 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2611 * do_swap_page() will trigger the conversion back while holding the 2612 * folio lock. 2613 */ 2614 entry = make_device_exclusive_entry(page_to_pfn(page)); 2615 swp_pte = swp_entry_to_pte(entry); 2616 if (pte_soft_dirty(fw.pte)) 2617 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2618 /* The pte is writable, uffd-wp does not apply. */ 2619 set_pte_at(mm, addr, fw.ptep, swp_pte); 2620 2621 folio_walk_end(&fw, vma); 2622 mmu_notifier_invalidate_range_end(&range); 2623 *foliop = folio; 2624 return page; 2625 } 2626 EXPORT_SYMBOL_GPL(make_device_exclusive); 2627 #endif 2628 2629 void __put_anon_vma(struct anon_vma *anon_vma) 2630 { 2631 struct anon_vma *root = anon_vma->root; 2632 2633 anon_vma_free(anon_vma); 2634 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2635 anon_vma_free(root); 2636 } 2637 2638 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2639 struct rmap_walk_control *rwc) 2640 { 2641 struct anon_vma *anon_vma; 2642 2643 if (rwc->anon_lock) 2644 return rwc->anon_lock(folio, rwc); 2645 2646 /* 2647 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2648 * because that depends on page_mapped(); but not all its usages 2649 * are holding mmap_lock. Users without mmap_lock are required to 2650 * take a reference count to prevent the anon_vma disappearing 2651 */ 2652 anon_vma = folio_anon_vma(folio); 2653 if (!anon_vma) 2654 return NULL; 2655 2656 if (anon_vma_trylock_read(anon_vma)) 2657 goto out; 2658 2659 if (rwc->try_lock) { 2660 anon_vma = NULL; 2661 rwc->contended = true; 2662 goto out; 2663 } 2664 2665 anon_vma_lock_read(anon_vma); 2666 out: 2667 return anon_vma; 2668 } 2669 2670 /* 2671 * rmap_walk_anon - do something to anonymous page using the object-based 2672 * rmap method 2673 * @folio: the folio to be handled 2674 * @rwc: control variable according to each walk type 2675 * @locked: caller holds relevant rmap lock 2676 * 2677 * Find all the mappings of a folio using the mapping pointer and the vma 2678 * chains contained in the anon_vma struct it points to. 2679 */ 2680 static void rmap_walk_anon(struct folio *folio, 2681 struct rmap_walk_control *rwc, bool locked) 2682 { 2683 struct anon_vma *anon_vma; 2684 pgoff_t pgoff_start, pgoff_end; 2685 struct anon_vma_chain *avc; 2686 2687 if (locked) { 2688 anon_vma = folio_anon_vma(folio); 2689 /* anon_vma disappear under us? */ 2690 VM_BUG_ON_FOLIO(!anon_vma, folio); 2691 } else { 2692 anon_vma = rmap_walk_anon_lock(folio, rwc); 2693 } 2694 if (!anon_vma) 2695 return; 2696 2697 pgoff_start = folio_pgoff(folio); 2698 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2699 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2700 pgoff_start, pgoff_end) { 2701 struct vm_area_struct *vma = avc->vma; 2702 unsigned long address = vma_address(vma, pgoff_start, 2703 folio_nr_pages(folio)); 2704 2705 VM_BUG_ON_VMA(address == -EFAULT, vma); 2706 cond_resched(); 2707 2708 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2709 continue; 2710 2711 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2712 break; 2713 if (rwc->done && rwc->done(folio)) 2714 break; 2715 } 2716 2717 if (!locked) 2718 anon_vma_unlock_read(anon_vma); 2719 } 2720 2721 /** 2722 * __rmap_walk_file() - Traverse the reverse mapping for a file-backed mapping 2723 * of a page mapped within a specified page cache object at a specified offset. 2724 * 2725 * @folio: Either the folio whose mappings to traverse, or if NULL, 2726 * the callbacks specified in @rwc will be configured such 2727 * as to be able to look up mappings correctly. 2728 * @mapping: The page cache object whose mapping VMAs we intend to 2729 * traverse. If @folio is non-NULL, this should be equal to 2730 * folio_mapping(folio). 2731 * @pgoff_start: The offset within @mapping of the page which we are 2732 * looking up. If @folio is non-NULL, this should be equal 2733 * to folio_pgoff(folio). 2734 * @nr_pages: The number of pages mapped by the mapping. If @folio is 2735 * non-NULL, this should be equal to folio_nr_pages(folio). 2736 * @rwc: The reverse mapping walk control object describing how 2737 * the traversal should proceed. 2738 * @locked: Is the @mapping already locked? If not, we acquire the 2739 * lock. 2740 */ 2741 static void __rmap_walk_file(struct folio *folio, struct address_space *mapping, 2742 pgoff_t pgoff_start, unsigned long nr_pages, 2743 struct rmap_walk_control *rwc, bool locked) 2744 { 2745 pgoff_t pgoff_end = pgoff_start + nr_pages - 1; 2746 struct vm_area_struct *vma; 2747 2748 VM_WARN_ON_FOLIO(folio && mapping != folio_mapping(folio), folio); 2749 VM_WARN_ON_FOLIO(folio && pgoff_start != folio_pgoff(folio), folio); 2750 VM_WARN_ON_FOLIO(folio && nr_pages != folio_nr_pages(folio), folio); 2751 2752 if (!locked) { 2753 if (i_mmap_trylock_read(mapping)) 2754 goto lookup; 2755 2756 if (rwc->try_lock) { 2757 rwc->contended = true; 2758 return; 2759 } 2760 2761 i_mmap_lock_read(mapping); 2762 } 2763 lookup: 2764 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2765 pgoff_start, pgoff_end) { 2766 unsigned long address = vma_address(vma, pgoff_start, nr_pages); 2767 2768 VM_BUG_ON_VMA(address == -EFAULT, vma); 2769 cond_resched(); 2770 2771 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2772 continue; 2773 2774 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2775 goto done; 2776 if (rwc->done && rwc->done(folio)) 2777 goto done; 2778 } 2779 done: 2780 if (!locked) 2781 i_mmap_unlock_read(mapping); 2782 } 2783 2784 /* 2785 * rmap_walk_file - do something to file page using the object-based rmap method 2786 * @folio: the folio to be handled 2787 * @rwc: control variable according to each walk type 2788 * @locked: caller holds relevant rmap lock 2789 * 2790 * Find all the mappings of a folio using the mapping pointer and the vma chains 2791 * contained in the address_space struct it points to. 2792 */ 2793 static void rmap_walk_file(struct folio *folio, 2794 struct rmap_walk_control *rwc, bool locked) 2795 { 2796 /* 2797 * The folio lock not only makes sure that folio->mapping cannot 2798 * suddenly be NULLified by truncation, it makes sure that the structure 2799 * at mapping cannot be freed and reused yet, so we can safely take 2800 * mapping->i_mmap_rwsem. 2801 */ 2802 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2803 2804 if (!folio->mapping) 2805 return; 2806 2807 __rmap_walk_file(folio, folio->mapping, folio->index, 2808 folio_nr_pages(folio), rwc, locked); 2809 } 2810 2811 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2812 { 2813 if (unlikely(folio_test_ksm(folio))) 2814 rmap_walk_ksm(folio, rwc); 2815 else if (folio_test_anon(folio)) 2816 rmap_walk_anon(folio, rwc, false); 2817 else 2818 rmap_walk_file(folio, rwc, false); 2819 } 2820 2821 /* Like rmap_walk, but caller holds relevant rmap lock */ 2822 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2823 { 2824 /* no ksm support for now */ 2825 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2826 if (folio_test_anon(folio)) 2827 rmap_walk_anon(folio, rwc, true); 2828 else 2829 rmap_walk_file(folio, rwc, true); 2830 } 2831 2832 #ifdef CONFIG_HUGETLB_PAGE 2833 /* 2834 * The following two functions are for anonymous (private mapped) hugepages. 2835 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2836 * and no lru code, because we handle hugepages differently from common pages. 2837 */ 2838 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2839 unsigned long address, rmap_t flags) 2840 { 2841 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2842 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2843 2844 atomic_inc(&folio->_entire_mapcount); 2845 atomic_inc(&folio->_large_mapcount); 2846 if (flags & RMAP_EXCLUSIVE) 2847 SetPageAnonExclusive(&folio->page); 2848 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2849 PageAnonExclusive(&folio->page), folio); 2850 } 2851 2852 void hugetlb_add_new_anon_rmap(struct folio *folio, 2853 struct vm_area_struct *vma, unsigned long address) 2854 { 2855 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2856 2857 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2858 /* increment count (starts at -1) */ 2859 atomic_set(&folio->_entire_mapcount, 0); 2860 atomic_set(&folio->_large_mapcount, 0); 2861 folio_clear_hugetlb_restore_reserve(folio); 2862 __folio_set_anon(folio, vma, address, true); 2863 SetPageAnonExclusive(&folio->page); 2864 } 2865 #endif /* CONFIG_HUGETLB_PAGE */ 2866