xref: /linux/mm/rmap.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_sem	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28  * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29  * taken together; in truncation, i_sem is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock
36  *           zone->lru_lock (in mark_page_accessed)
37  *           swap_list_lock (in swap_free etc's swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             swap_device_lock (in swap_duplicate, swap_info_get)
40  *             mapping->private_lock (in __set_page_dirty_buffers)
41  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
42  *               sb_lock (within inode_lock in fs/fs-writeback.c)
43  *               mapping->tree_lock (widely used, in set_page_dirty,
44  *                         in arch-dependent flush_dcache_mmap_lock,
45  *                         within inode_lock in __sync_single_inode)
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 
57 #include <asm/tlbflush.h>
58 
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
60 
61 kmem_cache_t *anon_vma_cachep;
62 
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 {
65 #ifdef RMAP_DEBUG
66 	struct anon_vma *anon_vma = find_vma->anon_vma;
67 	struct vm_area_struct *vma;
68 	unsigned int mapcount = 0;
69 	int found = 0;
70 
71 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 		mapcount++;
73 		BUG_ON(mapcount > 100000);
74 		if (vma == find_vma)
75 			found = 1;
76 	}
77 	BUG_ON(!found);
78 #endif
79 }
80 
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
83 {
84 	struct anon_vma *anon_vma = vma->anon_vma;
85 
86 	might_sleep();
87 	if (unlikely(!anon_vma)) {
88 		struct mm_struct *mm = vma->vm_mm;
89 		struct anon_vma *allocated, *locked;
90 
91 		anon_vma = find_mergeable_anon_vma(vma);
92 		if (anon_vma) {
93 			allocated = NULL;
94 			locked = anon_vma;
95 			spin_lock(&locked->lock);
96 		} else {
97 			anon_vma = anon_vma_alloc();
98 			if (unlikely(!anon_vma))
99 				return -ENOMEM;
100 			allocated = anon_vma;
101 			locked = NULL;
102 		}
103 
104 		/* page_table_lock to protect against threads */
105 		spin_lock(&mm->page_table_lock);
106 		if (likely(!vma->anon_vma)) {
107 			vma->anon_vma = anon_vma;
108 			list_add(&vma->anon_vma_node, &anon_vma->head);
109 			allocated = NULL;
110 		}
111 		spin_unlock(&mm->page_table_lock);
112 
113 		if (locked)
114 			spin_unlock(&locked->lock);
115 		if (unlikely(allocated))
116 			anon_vma_free(allocated);
117 	}
118 	return 0;
119 }
120 
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 {
123 	BUG_ON(vma->anon_vma != next->anon_vma);
124 	list_del(&next->anon_vma_node);
125 }
126 
127 void __anon_vma_link(struct vm_area_struct *vma)
128 {
129 	struct anon_vma *anon_vma = vma->anon_vma;
130 
131 	if (anon_vma) {
132 		list_add(&vma->anon_vma_node, &anon_vma->head);
133 		validate_anon_vma(vma);
134 	}
135 }
136 
137 void anon_vma_link(struct vm_area_struct *vma)
138 {
139 	struct anon_vma *anon_vma = vma->anon_vma;
140 
141 	if (anon_vma) {
142 		spin_lock(&anon_vma->lock);
143 		list_add(&vma->anon_vma_node, &anon_vma->head);
144 		validate_anon_vma(vma);
145 		spin_unlock(&anon_vma->lock);
146 	}
147 }
148 
149 void anon_vma_unlink(struct vm_area_struct *vma)
150 {
151 	struct anon_vma *anon_vma = vma->anon_vma;
152 	int empty;
153 
154 	if (!anon_vma)
155 		return;
156 
157 	spin_lock(&anon_vma->lock);
158 	validate_anon_vma(vma);
159 	list_del(&vma->anon_vma_node);
160 
161 	/* We must garbage collect the anon_vma if it's empty */
162 	empty = list_empty(&anon_vma->head);
163 	spin_unlock(&anon_vma->lock);
164 
165 	if (empty)
166 		anon_vma_free(anon_vma);
167 }
168 
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
170 {
171 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 						SLAB_CTOR_CONSTRUCTOR) {
173 		struct anon_vma *anon_vma = data;
174 
175 		spin_lock_init(&anon_vma->lock);
176 		INIT_LIST_HEAD(&anon_vma->head);
177 	}
178 }
179 
180 void __init anon_vma_init(void)
181 {
182 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
184 }
185 
186 /*
187  * Getting a lock on a stable anon_vma from a page off the LRU is
188  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189  */
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 {
192 	struct anon_vma *anon_vma = NULL;
193 	unsigned long anon_mapping;
194 
195 	rcu_read_lock();
196 	anon_mapping = (unsigned long) page->mapping;
197 	if (!(anon_mapping & PAGE_MAPPING_ANON))
198 		goto out;
199 	if (!page_mapped(page))
200 		goto out;
201 
202 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 	spin_lock(&anon_vma->lock);
204 out:
205 	rcu_read_unlock();
206 	return anon_vma;
207 }
208 
209 /*
210  * At what user virtual address is page expected in vma?
211  */
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
214 {
215 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 	unsigned long address;
217 
218 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 		/* page should be within any vma from prio_tree_next */
221 		BUG_ON(!PageAnon(page));
222 		return -EFAULT;
223 	}
224 	return address;
225 }
226 
227 /*
228  * At what user virtual address is page expected in vma? checking that the
229  * page matches the vma: currently only used by unuse_process, on anon pages.
230  */
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 {
233 	if (PageAnon(page)) {
234 		if ((void *)vma->anon_vma !=
235 		    (void *)page->mapping - PAGE_MAPPING_ANON)
236 			return -EFAULT;
237 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 		if (vma->vm_file->f_mapping != page->mapping)
239 			return -EFAULT;
240 	} else
241 		return -EFAULT;
242 	return vma_address(page, vma);
243 }
244 
245 /*
246  * Check that @page is mapped at @address into @mm.
247  *
248  * On success returns with mapped pte and locked mm->page_table_lock.
249  */
250 static pte_t *page_check_address(struct page *page, struct mm_struct *mm,
251 					unsigned long address)
252 {
253 	pgd_t *pgd;
254 	pud_t *pud;
255 	pmd_t *pmd;
256 	pte_t *pte;
257 
258 	/*
259 	 * We need the page_table_lock to protect us from page faults,
260 	 * munmap, fork, etc...
261 	 */
262 	spin_lock(&mm->page_table_lock);
263 	pgd = pgd_offset(mm, address);
264 	if (likely(pgd_present(*pgd))) {
265 		pud = pud_offset(pgd, address);
266 		if (likely(pud_present(*pud))) {
267 			pmd = pmd_offset(pud, address);
268 			if (likely(pmd_present(*pmd))) {
269 				pte = pte_offset_map(pmd, address);
270 				if (likely(pte_present(*pte) &&
271 					   page_to_pfn(page) == pte_pfn(*pte)))
272 					return pte;
273 				pte_unmap(pte);
274 			}
275 		}
276 	}
277 	spin_unlock(&mm->page_table_lock);
278 	return ERR_PTR(-ENOENT);
279 }
280 
281 /*
282  * Subfunctions of page_referenced: page_referenced_one called
283  * repeatedly from either page_referenced_anon or page_referenced_file.
284  */
285 static int page_referenced_one(struct page *page,
286 	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
287 {
288 	struct mm_struct *mm = vma->vm_mm;
289 	unsigned long address;
290 	pte_t *pte;
291 	int referenced = 0;
292 
293 	if (!get_mm_counter(mm, rss))
294 		goto out;
295 	address = vma_address(page, vma);
296 	if (address == -EFAULT)
297 		goto out;
298 
299 	pte = page_check_address(page, mm, address);
300 	if (!IS_ERR(pte)) {
301 		if (ptep_clear_flush_young(vma, address, pte))
302 			referenced++;
303 
304 		if (mm != current->mm && !ignore_token && has_swap_token(mm))
305 			referenced++;
306 
307 		(*mapcount)--;
308 		pte_unmap(pte);
309 		spin_unlock(&mm->page_table_lock);
310 	}
311 out:
312 	return referenced;
313 }
314 
315 static int page_referenced_anon(struct page *page, int ignore_token)
316 {
317 	unsigned int mapcount;
318 	struct anon_vma *anon_vma;
319 	struct vm_area_struct *vma;
320 	int referenced = 0;
321 
322 	anon_vma = page_lock_anon_vma(page);
323 	if (!anon_vma)
324 		return referenced;
325 
326 	mapcount = page_mapcount(page);
327 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
328 		referenced += page_referenced_one(page, vma, &mapcount,
329 							ignore_token);
330 		if (!mapcount)
331 			break;
332 	}
333 	spin_unlock(&anon_vma->lock);
334 	return referenced;
335 }
336 
337 /**
338  * page_referenced_file - referenced check for object-based rmap
339  * @page: the page we're checking references on.
340  *
341  * For an object-based mapped page, find all the places it is mapped and
342  * check/clear the referenced flag.  This is done by following the page->mapping
343  * pointer, then walking the chain of vmas it holds.  It returns the number
344  * of references it found.
345  *
346  * This function is only called from page_referenced for object-based pages.
347  */
348 static int page_referenced_file(struct page *page, int ignore_token)
349 {
350 	unsigned int mapcount;
351 	struct address_space *mapping = page->mapping;
352 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 	struct vm_area_struct *vma;
354 	struct prio_tree_iter iter;
355 	int referenced = 0;
356 
357 	/*
358 	 * The caller's checks on page->mapping and !PageAnon have made
359 	 * sure that this is a file page: the check for page->mapping
360 	 * excludes the case just before it gets set on an anon page.
361 	 */
362 	BUG_ON(PageAnon(page));
363 
364 	/*
365 	 * The page lock not only makes sure that page->mapping cannot
366 	 * suddenly be NULLified by truncation, it makes sure that the
367 	 * structure at mapping cannot be freed and reused yet,
368 	 * so we can safely take mapping->i_mmap_lock.
369 	 */
370 	BUG_ON(!PageLocked(page));
371 
372 	spin_lock(&mapping->i_mmap_lock);
373 
374 	/*
375 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 	 * is more likely to be accurate if we note it after spinning.
377 	 */
378 	mapcount = page_mapcount(page);
379 
380 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
382 				  == (VM_LOCKED|VM_MAYSHARE)) {
383 			referenced++;
384 			break;
385 		}
386 		referenced += page_referenced_one(page, vma, &mapcount,
387 							ignore_token);
388 		if (!mapcount)
389 			break;
390 	}
391 
392 	spin_unlock(&mapping->i_mmap_lock);
393 	return referenced;
394 }
395 
396 /**
397  * page_referenced - test if the page was referenced
398  * @page: the page to test
399  * @is_locked: caller holds lock on the page
400  *
401  * Quick test_and_clear_referenced for all mappings to a page,
402  * returns the number of ptes which referenced the page.
403  */
404 int page_referenced(struct page *page, int is_locked, int ignore_token)
405 {
406 	int referenced = 0;
407 
408 	if (!swap_token_default_timeout)
409 		ignore_token = 1;
410 
411 	if (page_test_and_clear_young(page))
412 		referenced++;
413 
414 	if (TestClearPageReferenced(page))
415 		referenced++;
416 
417 	if (page_mapped(page) && page->mapping) {
418 		if (PageAnon(page))
419 			referenced += page_referenced_anon(page, ignore_token);
420 		else if (is_locked)
421 			referenced += page_referenced_file(page, ignore_token);
422 		else if (TestSetPageLocked(page))
423 			referenced++;
424 		else {
425 			if (page->mapping)
426 				referenced += page_referenced_file(page,
427 								ignore_token);
428 			unlock_page(page);
429 		}
430 	}
431 	return referenced;
432 }
433 
434 /**
435  * page_add_anon_rmap - add pte mapping to an anonymous page
436  * @page:	the page to add the mapping to
437  * @vma:	the vm area in which the mapping is added
438  * @address:	the user virtual address mapped
439  *
440  * The caller needs to hold the mm->page_table_lock.
441  */
442 void page_add_anon_rmap(struct page *page,
443 	struct vm_area_struct *vma, unsigned long address)
444 {
445 	struct anon_vma *anon_vma = vma->anon_vma;
446 	pgoff_t index;
447 
448 	BUG_ON(PageReserved(page));
449 	BUG_ON(!anon_vma);
450 
451 	inc_mm_counter(vma->vm_mm, anon_rss);
452 
453 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
454 	index = (address - vma->vm_start) >> PAGE_SHIFT;
455 	index += vma->vm_pgoff;
456 	index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
457 
458 	if (atomic_inc_and_test(&page->_mapcount)) {
459 		page->index = index;
460 		page->mapping = (struct address_space *) anon_vma;
461 		inc_page_state(nr_mapped);
462 	}
463 	/* else checking page index and mapping is racy */
464 }
465 
466 /**
467  * page_add_file_rmap - add pte mapping to a file page
468  * @page: the page to add the mapping to
469  *
470  * The caller needs to hold the mm->page_table_lock.
471  */
472 void page_add_file_rmap(struct page *page)
473 {
474 	BUG_ON(PageAnon(page));
475 	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
476 		return;
477 
478 	if (atomic_inc_and_test(&page->_mapcount))
479 		inc_page_state(nr_mapped);
480 }
481 
482 /**
483  * page_remove_rmap - take down pte mapping from a page
484  * @page: page to remove mapping from
485  *
486  * Caller needs to hold the mm->page_table_lock.
487  */
488 void page_remove_rmap(struct page *page)
489 {
490 	BUG_ON(PageReserved(page));
491 
492 	if (atomic_add_negative(-1, &page->_mapcount)) {
493 		BUG_ON(page_mapcount(page) < 0);
494 		/*
495 		 * It would be tidy to reset the PageAnon mapping here,
496 		 * but that might overwrite a racing page_add_anon_rmap
497 		 * which increments mapcount after us but sets mapping
498 		 * before us: so leave the reset to free_hot_cold_page,
499 		 * and remember that it's only reliable while mapped.
500 		 * Leaving it set also helps swapoff to reinstate ptes
501 		 * faster for those pages still in swapcache.
502 		 */
503 		if (page_test_and_clear_dirty(page))
504 			set_page_dirty(page);
505 		dec_page_state(nr_mapped);
506 	}
507 }
508 
509 /*
510  * Subfunctions of try_to_unmap: try_to_unmap_one called
511  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
512  */
513 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
514 {
515 	struct mm_struct *mm = vma->vm_mm;
516 	unsigned long address;
517 	pte_t *pte;
518 	pte_t pteval;
519 	int ret = SWAP_AGAIN;
520 
521 	if (!get_mm_counter(mm, rss))
522 		goto out;
523 	address = vma_address(page, vma);
524 	if (address == -EFAULT)
525 		goto out;
526 
527 	pte = page_check_address(page, mm, address);
528 	if (IS_ERR(pte))
529 		goto out;
530 
531 	/*
532 	 * If the page is mlock()d, we cannot swap it out.
533 	 * If it's recently referenced (perhaps page_referenced
534 	 * skipped over this mm) then we should reactivate it.
535 	 */
536 	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
537 			ptep_clear_flush_young(vma, address, pte)) {
538 		ret = SWAP_FAIL;
539 		goto out_unmap;
540 	}
541 
542 	/*
543 	 * Don't pull an anonymous page out from under get_user_pages.
544 	 * GUP carefully breaks COW and raises page count (while holding
545 	 * page_table_lock, as we have here) to make sure that the page
546 	 * cannot be freed.  If we unmap that page here, a user write
547 	 * access to the virtual address will bring back the page, but
548 	 * its raised count will (ironically) be taken to mean it's not
549 	 * an exclusive swap page, do_wp_page will replace it by a copy
550 	 * page, and the user never get to see the data GUP was holding
551 	 * the original page for.
552 	 *
553 	 * This test is also useful for when swapoff (unuse_process) has
554 	 * to drop page lock: its reference to the page stops existing
555 	 * ptes from being unmapped, so swapoff can make progress.
556 	 */
557 	if (PageSwapCache(page) &&
558 	    page_count(page) != page_mapcount(page) + 2) {
559 		ret = SWAP_FAIL;
560 		goto out_unmap;
561 	}
562 
563 	/* Nuke the page table entry. */
564 	flush_cache_page(vma, address, page_to_pfn(page));
565 	pteval = ptep_clear_flush(vma, address, pte);
566 
567 	/* Move the dirty bit to the physical page now the pte is gone. */
568 	if (pte_dirty(pteval))
569 		set_page_dirty(page);
570 
571 	if (PageAnon(page)) {
572 		swp_entry_t entry = { .val = page->private };
573 		/*
574 		 * Store the swap location in the pte.
575 		 * See handle_pte_fault() ...
576 		 */
577 		BUG_ON(!PageSwapCache(page));
578 		swap_duplicate(entry);
579 		if (list_empty(&mm->mmlist)) {
580 			spin_lock(&mmlist_lock);
581 			list_add(&mm->mmlist, &init_mm.mmlist);
582 			spin_unlock(&mmlist_lock);
583 		}
584 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
585 		BUG_ON(pte_file(*pte));
586 		dec_mm_counter(mm, anon_rss);
587 	}
588 
589 	dec_mm_counter(mm, rss);
590 	page_remove_rmap(page);
591 	page_cache_release(page);
592 
593 out_unmap:
594 	pte_unmap(pte);
595 	spin_unlock(&mm->page_table_lock);
596 out:
597 	return ret;
598 }
599 
600 /*
601  * objrmap doesn't work for nonlinear VMAs because the assumption that
602  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
603  * Consequently, given a particular page and its ->index, we cannot locate the
604  * ptes which are mapping that page without an exhaustive linear search.
605  *
606  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
607  * maps the file to which the target page belongs.  The ->vm_private_data field
608  * holds the current cursor into that scan.  Successive searches will circulate
609  * around the vma's virtual address space.
610  *
611  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
612  * more scanning pressure is placed against them as well.   Eventually pages
613  * will become fully unmapped and are eligible for eviction.
614  *
615  * For very sparsely populated VMAs this is a little inefficient - chances are
616  * there there won't be many ptes located within the scan cluster.  In this case
617  * maybe we could scan further - to the end of the pte page, perhaps.
618  */
619 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
620 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
621 
622 static void try_to_unmap_cluster(unsigned long cursor,
623 	unsigned int *mapcount, struct vm_area_struct *vma)
624 {
625 	struct mm_struct *mm = vma->vm_mm;
626 	pgd_t *pgd;
627 	pud_t *pud;
628 	pmd_t *pmd;
629 	pte_t *pte, *original_pte;
630 	pte_t pteval;
631 	struct page *page;
632 	unsigned long address;
633 	unsigned long end;
634 	unsigned long pfn;
635 
636 	/*
637 	 * We need the page_table_lock to protect us from page faults,
638 	 * munmap, fork, etc...
639 	 */
640 	spin_lock(&mm->page_table_lock);
641 
642 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
643 	end = address + CLUSTER_SIZE;
644 	if (address < vma->vm_start)
645 		address = vma->vm_start;
646 	if (end > vma->vm_end)
647 		end = vma->vm_end;
648 
649 	pgd = pgd_offset(mm, address);
650 	if (!pgd_present(*pgd))
651 		goto out_unlock;
652 
653 	pud = pud_offset(pgd, address);
654 	if (!pud_present(*pud))
655 		goto out_unlock;
656 
657 	pmd = pmd_offset(pud, address);
658 	if (!pmd_present(*pmd))
659 		goto out_unlock;
660 
661 	for (original_pte = pte = pte_offset_map(pmd, address);
662 			address < end; pte++, address += PAGE_SIZE) {
663 
664 		if (!pte_present(*pte))
665 			continue;
666 
667 		pfn = pte_pfn(*pte);
668 		if (!pfn_valid(pfn))
669 			continue;
670 
671 		page = pfn_to_page(pfn);
672 		BUG_ON(PageAnon(page));
673 		if (PageReserved(page))
674 			continue;
675 
676 		if (ptep_clear_flush_young(vma, address, pte))
677 			continue;
678 
679 		/* Nuke the page table entry. */
680 		flush_cache_page(vma, address, pfn);
681 		pteval = ptep_clear_flush(vma, address, pte);
682 
683 		/* If nonlinear, store the file page offset in the pte. */
684 		if (page->index != linear_page_index(vma, address))
685 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
686 
687 		/* Move the dirty bit to the physical page now the pte is gone. */
688 		if (pte_dirty(pteval))
689 			set_page_dirty(page);
690 
691 		page_remove_rmap(page);
692 		page_cache_release(page);
693 		dec_mm_counter(mm, rss);
694 		(*mapcount)--;
695 	}
696 
697 	pte_unmap(original_pte);
698 out_unlock:
699 	spin_unlock(&mm->page_table_lock);
700 }
701 
702 static int try_to_unmap_anon(struct page *page)
703 {
704 	struct anon_vma *anon_vma;
705 	struct vm_area_struct *vma;
706 	int ret = SWAP_AGAIN;
707 
708 	anon_vma = page_lock_anon_vma(page);
709 	if (!anon_vma)
710 		return ret;
711 
712 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
713 		ret = try_to_unmap_one(page, vma);
714 		if (ret == SWAP_FAIL || !page_mapped(page))
715 			break;
716 	}
717 	spin_unlock(&anon_vma->lock);
718 	return ret;
719 }
720 
721 /**
722  * try_to_unmap_file - unmap file page using the object-based rmap method
723  * @page: the page to unmap
724  *
725  * Find all the mappings of a page using the mapping pointer and the vma chains
726  * contained in the address_space struct it points to.
727  *
728  * This function is only called from try_to_unmap for object-based pages.
729  */
730 static int try_to_unmap_file(struct page *page)
731 {
732 	struct address_space *mapping = page->mapping;
733 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
734 	struct vm_area_struct *vma;
735 	struct prio_tree_iter iter;
736 	int ret = SWAP_AGAIN;
737 	unsigned long cursor;
738 	unsigned long max_nl_cursor = 0;
739 	unsigned long max_nl_size = 0;
740 	unsigned int mapcount;
741 
742 	spin_lock(&mapping->i_mmap_lock);
743 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
744 		ret = try_to_unmap_one(page, vma);
745 		if (ret == SWAP_FAIL || !page_mapped(page))
746 			goto out;
747 	}
748 
749 	if (list_empty(&mapping->i_mmap_nonlinear))
750 		goto out;
751 
752 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
753 						shared.vm_set.list) {
754 		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
755 			continue;
756 		cursor = (unsigned long) vma->vm_private_data;
757 		if (cursor > max_nl_cursor)
758 			max_nl_cursor = cursor;
759 		cursor = vma->vm_end - vma->vm_start;
760 		if (cursor > max_nl_size)
761 			max_nl_size = cursor;
762 	}
763 
764 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
765 		ret = SWAP_FAIL;
766 		goto out;
767 	}
768 
769 	/*
770 	 * We don't try to search for this page in the nonlinear vmas,
771 	 * and page_referenced wouldn't have found it anyway.  Instead
772 	 * just walk the nonlinear vmas trying to age and unmap some.
773 	 * The mapcount of the page we came in with is irrelevant,
774 	 * but even so use it as a guide to how hard we should try?
775 	 */
776 	mapcount = page_mapcount(page);
777 	if (!mapcount)
778 		goto out;
779 	cond_resched_lock(&mapping->i_mmap_lock);
780 
781 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
782 	if (max_nl_cursor == 0)
783 		max_nl_cursor = CLUSTER_SIZE;
784 
785 	do {
786 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
787 						shared.vm_set.list) {
788 			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
789 				continue;
790 			cursor = (unsigned long) vma->vm_private_data;
791 			while (get_mm_counter(vma->vm_mm, rss) &&
792 				cursor < max_nl_cursor &&
793 				cursor < vma->vm_end - vma->vm_start) {
794 				try_to_unmap_cluster(cursor, &mapcount, vma);
795 				cursor += CLUSTER_SIZE;
796 				vma->vm_private_data = (void *) cursor;
797 				if ((int)mapcount <= 0)
798 					goto out;
799 			}
800 			vma->vm_private_data = (void *) max_nl_cursor;
801 		}
802 		cond_resched_lock(&mapping->i_mmap_lock);
803 		max_nl_cursor += CLUSTER_SIZE;
804 	} while (max_nl_cursor <= max_nl_size);
805 
806 	/*
807 	 * Don't loop forever (perhaps all the remaining pages are
808 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
809 	 * vmas, now forgetting on which ones it had fallen behind.
810 	 */
811 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
812 						shared.vm_set.list) {
813 		if (!(vma->vm_flags & VM_RESERVED))
814 			vma->vm_private_data = NULL;
815 	}
816 out:
817 	spin_unlock(&mapping->i_mmap_lock);
818 	return ret;
819 }
820 
821 /**
822  * try_to_unmap - try to remove all page table mappings to a page
823  * @page: the page to get unmapped
824  *
825  * Tries to remove all the page table entries which are mapping this
826  * page, used in the pageout path.  Caller must hold the page lock.
827  * Return values are:
828  *
829  * SWAP_SUCCESS	- we succeeded in removing all mappings
830  * SWAP_AGAIN	- we missed a mapping, try again later
831  * SWAP_FAIL	- the page is unswappable
832  */
833 int try_to_unmap(struct page *page)
834 {
835 	int ret;
836 
837 	BUG_ON(PageReserved(page));
838 	BUG_ON(!PageLocked(page));
839 
840 	if (PageAnon(page))
841 		ret = try_to_unmap_anon(page);
842 	else
843 		ret = try_to_unmap_file(page);
844 
845 	if (!page_mapped(page))
846 		ret = SWAP_SUCCESS;
847 	return ret;
848 }
849 
850