xref: /linux/mm/rmap.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28  *           mapping->i_mmap_rwsem
29  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30  *             anon_vma->rwsem
31  *               mm->page_table_lock or pte_lock
32  *                 swap_lock (in swap_duplicate, swap_info_get)
33  *                   mmlist_lock (in mmput, drain_mmlist and others)
34  *                   mapping->private_lock (in block_dirty_folio)
35  *                     folio_lock_memcg move_lock (in block_dirty_folio)
36  *                       i_pages lock (widely used)
37  *                         lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                     i_pages lock (widely used, in set_page_dirty,
42  *                               in arch-dependent flush_dcache_mmap_lock,
43  *                               within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * * hugetlbfs PageHuge() pages take locks in this order:
50  *         mapping->i_mmap_rwsem
51  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52  *             page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 
77 #include <asm/tlbflush.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/tlb.h>
81 #include <trace/events/migrate.h>
82 
83 #include "internal.h"
84 
85 static struct kmem_cache *anon_vma_cachep;
86 static struct kmem_cache *anon_vma_chain_cachep;
87 
88 static inline struct anon_vma *anon_vma_alloc(void)
89 {
90 	struct anon_vma *anon_vma;
91 
92 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
93 	if (anon_vma) {
94 		atomic_set(&anon_vma->refcount, 1);
95 		anon_vma->degree = 1;	/* Reference for first vma */
96 		anon_vma->parent = anon_vma;
97 		/*
98 		 * Initialise the anon_vma root to point to itself. If called
99 		 * from fork, the root will be reset to the parents anon_vma.
100 		 */
101 		anon_vma->root = anon_vma;
102 	}
103 
104 	return anon_vma;
105 }
106 
107 static inline void anon_vma_free(struct anon_vma *anon_vma)
108 {
109 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
110 
111 	/*
112 	 * Synchronize against folio_lock_anon_vma_read() such that
113 	 * we can safely hold the lock without the anon_vma getting
114 	 * freed.
115 	 *
116 	 * Relies on the full mb implied by the atomic_dec_and_test() from
117 	 * put_anon_vma() against the acquire barrier implied by
118 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
119 	 *
120 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
121 	 *   down_read_trylock()		  atomic_dec_and_test()
122 	 *   LOCK				  MB
123 	 *   atomic_read()			  rwsem_is_locked()
124 	 *
125 	 * LOCK should suffice since the actual taking of the lock must
126 	 * happen _before_ what follows.
127 	 */
128 	might_sleep();
129 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
130 		anon_vma_lock_write(anon_vma);
131 		anon_vma_unlock_write(anon_vma);
132 	}
133 
134 	kmem_cache_free(anon_vma_cachep, anon_vma);
135 }
136 
137 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
138 {
139 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140 }
141 
142 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
143 {
144 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145 }
146 
147 static void anon_vma_chain_link(struct vm_area_struct *vma,
148 				struct anon_vma_chain *avc,
149 				struct anon_vma *anon_vma)
150 {
151 	avc->vma = vma;
152 	avc->anon_vma = anon_vma;
153 	list_add(&avc->same_vma, &vma->anon_vma_chain);
154 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
155 }
156 
157 /**
158  * __anon_vma_prepare - attach an anon_vma to a memory region
159  * @vma: the memory region in question
160  *
161  * This makes sure the memory mapping described by 'vma' has
162  * an 'anon_vma' attached to it, so that we can associate the
163  * anonymous pages mapped into it with that anon_vma.
164  *
165  * The common case will be that we already have one, which
166  * is handled inline by anon_vma_prepare(). But if
167  * not we either need to find an adjacent mapping that we
168  * can re-use the anon_vma from (very common when the only
169  * reason for splitting a vma has been mprotect()), or we
170  * allocate a new one.
171  *
172  * Anon-vma allocations are very subtle, because we may have
173  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
174  * and that may actually touch the rwsem even in the newly
175  * allocated vma (it depends on RCU to make sure that the
176  * anon_vma isn't actually destroyed).
177  *
178  * As a result, we need to do proper anon_vma locking even
179  * for the new allocation. At the same time, we do not want
180  * to do any locking for the common case of already having
181  * an anon_vma.
182  *
183  * This must be called with the mmap_lock held for reading.
184  */
185 int __anon_vma_prepare(struct vm_area_struct *vma)
186 {
187 	struct mm_struct *mm = vma->vm_mm;
188 	struct anon_vma *anon_vma, *allocated;
189 	struct anon_vma_chain *avc;
190 
191 	might_sleep();
192 
193 	avc = anon_vma_chain_alloc(GFP_KERNEL);
194 	if (!avc)
195 		goto out_enomem;
196 
197 	anon_vma = find_mergeable_anon_vma(vma);
198 	allocated = NULL;
199 	if (!anon_vma) {
200 		anon_vma = anon_vma_alloc();
201 		if (unlikely(!anon_vma))
202 			goto out_enomem_free_avc;
203 		allocated = anon_vma;
204 	}
205 
206 	anon_vma_lock_write(anon_vma);
207 	/* page_table_lock to protect against threads */
208 	spin_lock(&mm->page_table_lock);
209 	if (likely(!vma->anon_vma)) {
210 		vma->anon_vma = anon_vma;
211 		anon_vma_chain_link(vma, avc, anon_vma);
212 		/* vma reference or self-parent link for new root */
213 		anon_vma->degree++;
214 		allocated = NULL;
215 		avc = NULL;
216 	}
217 	spin_unlock(&mm->page_table_lock);
218 	anon_vma_unlock_write(anon_vma);
219 
220 	if (unlikely(allocated))
221 		put_anon_vma(allocated);
222 	if (unlikely(avc))
223 		anon_vma_chain_free(avc);
224 
225 	return 0;
226 
227  out_enomem_free_avc:
228 	anon_vma_chain_free(avc);
229  out_enomem:
230 	return -ENOMEM;
231 }
232 
233 /*
234  * This is a useful helper function for locking the anon_vma root as
235  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236  * have the same vma.
237  *
238  * Such anon_vma's should have the same root, so you'd expect to see
239  * just a single mutex_lock for the whole traversal.
240  */
241 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
242 {
243 	struct anon_vma *new_root = anon_vma->root;
244 	if (new_root != root) {
245 		if (WARN_ON_ONCE(root))
246 			up_write(&root->rwsem);
247 		root = new_root;
248 		down_write(&root->rwsem);
249 	}
250 	return root;
251 }
252 
253 static inline void unlock_anon_vma_root(struct anon_vma *root)
254 {
255 	if (root)
256 		up_write(&root->rwsem);
257 }
258 
259 /*
260  * Attach the anon_vmas from src to dst.
261  * Returns 0 on success, -ENOMEM on failure.
262  *
263  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
264  * anon_vma_fork(). The first three want an exact copy of src, while the last
265  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
268  *
269  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271  * This prevents degradation of anon_vma hierarchy to endless linear chain in
272  * case of constantly forking task. On the other hand, an anon_vma with more
273  * than one child isn't reused even if there was no alive vma, thus rmap
274  * walker has a good chance of avoiding scanning the whole hierarchy when it
275  * searches where page is mapped.
276  */
277 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
278 {
279 	struct anon_vma_chain *avc, *pavc;
280 	struct anon_vma *root = NULL;
281 
282 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
283 		struct anon_vma *anon_vma;
284 
285 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 		if (unlikely(!avc)) {
287 			unlock_anon_vma_root(root);
288 			root = NULL;
289 			avc = anon_vma_chain_alloc(GFP_KERNEL);
290 			if (!avc)
291 				goto enomem_failure;
292 		}
293 		anon_vma = pavc->anon_vma;
294 		root = lock_anon_vma_root(root, anon_vma);
295 		anon_vma_chain_link(dst, avc, anon_vma);
296 
297 		/*
298 		 * Reuse existing anon_vma if its degree lower than two,
299 		 * that means it has no vma and only one anon_vma child.
300 		 *
301 		 * Do not chose parent anon_vma, otherwise first child
302 		 * will always reuse it. Root anon_vma is never reused:
303 		 * it has self-parent reference and at least one child.
304 		 */
305 		if (!dst->anon_vma && src->anon_vma &&
306 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
307 			dst->anon_vma = anon_vma;
308 	}
309 	if (dst->anon_vma)
310 		dst->anon_vma->degree++;
311 	unlock_anon_vma_root(root);
312 	return 0;
313 
314  enomem_failure:
315 	/*
316 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 	 * decremented in unlink_anon_vmas().
318 	 * We can safely do this because callers of anon_vma_clone() don't care
319 	 * about dst->anon_vma if anon_vma_clone() failed.
320 	 */
321 	dst->anon_vma = NULL;
322 	unlink_anon_vmas(dst);
323 	return -ENOMEM;
324 }
325 
326 /*
327  * Attach vma to its own anon_vma, as well as to the anon_vmas that
328  * the corresponding VMA in the parent process is attached to.
329  * Returns 0 on success, non-zero on failure.
330  */
331 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
332 {
333 	struct anon_vma_chain *avc;
334 	struct anon_vma *anon_vma;
335 	int error;
336 
337 	/* Don't bother if the parent process has no anon_vma here. */
338 	if (!pvma->anon_vma)
339 		return 0;
340 
341 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 	vma->anon_vma = NULL;
343 
344 	/*
345 	 * First, attach the new VMA to the parent VMA's anon_vmas,
346 	 * so rmap can find non-COWed pages in child processes.
347 	 */
348 	error = anon_vma_clone(vma, pvma);
349 	if (error)
350 		return error;
351 
352 	/* An existing anon_vma has been reused, all done then. */
353 	if (vma->anon_vma)
354 		return 0;
355 
356 	/* Then add our own anon_vma. */
357 	anon_vma = anon_vma_alloc();
358 	if (!anon_vma)
359 		goto out_error;
360 	avc = anon_vma_chain_alloc(GFP_KERNEL);
361 	if (!avc)
362 		goto out_error_free_anon_vma;
363 
364 	/*
365 	 * The root anon_vma's rwsem is the lock actually used when we
366 	 * lock any of the anon_vmas in this anon_vma tree.
367 	 */
368 	anon_vma->root = pvma->anon_vma->root;
369 	anon_vma->parent = pvma->anon_vma;
370 	/*
371 	 * With refcounts, an anon_vma can stay around longer than the
372 	 * process it belongs to. The root anon_vma needs to be pinned until
373 	 * this anon_vma is freed, because the lock lives in the root.
374 	 */
375 	get_anon_vma(anon_vma->root);
376 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
377 	vma->anon_vma = anon_vma;
378 	anon_vma_lock_write(anon_vma);
379 	anon_vma_chain_link(vma, avc, anon_vma);
380 	anon_vma->parent->degree++;
381 	anon_vma_unlock_write(anon_vma);
382 
383 	return 0;
384 
385  out_error_free_anon_vma:
386 	put_anon_vma(anon_vma);
387  out_error:
388 	unlink_anon_vmas(vma);
389 	return -ENOMEM;
390 }
391 
392 void unlink_anon_vmas(struct vm_area_struct *vma)
393 {
394 	struct anon_vma_chain *avc, *next;
395 	struct anon_vma *root = NULL;
396 
397 	/*
398 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
399 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 	 */
401 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 		struct anon_vma *anon_vma = avc->anon_vma;
403 
404 		root = lock_anon_vma_root(root, anon_vma);
405 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406 
407 		/*
408 		 * Leave empty anon_vmas on the list - we'll need
409 		 * to free them outside the lock.
410 		 */
411 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 			anon_vma->parent->degree--;
413 			continue;
414 		}
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 	if (vma->anon_vma) {
420 		vma->anon_vma->degree--;
421 
422 		/*
423 		 * vma would still be needed after unlink, and anon_vma will be prepared
424 		 * when handle fault.
425 		 */
426 		vma->anon_vma = NULL;
427 	}
428 	unlock_anon_vma_root(root);
429 
430 	/*
431 	 * Iterate the list once more, it now only contains empty and unlinked
432 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 	 * needing to write-acquire the anon_vma->root->rwsem.
434 	 */
435 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 		struct anon_vma *anon_vma = avc->anon_vma;
437 
438 		VM_WARN_ON(anon_vma->degree);
439 		put_anon_vma(anon_vma);
440 
441 		list_del(&avc->same_vma);
442 		anon_vma_chain_free(avc);
443 	}
444 }
445 
446 static void anon_vma_ctor(void *data)
447 {
448 	struct anon_vma *anon_vma = data;
449 
450 	init_rwsem(&anon_vma->rwsem);
451 	atomic_set(&anon_vma->refcount, 0);
452 	anon_vma->rb_root = RB_ROOT_CACHED;
453 }
454 
455 void __init anon_vma_init(void)
456 {
457 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
458 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
459 			anon_vma_ctor);
460 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
461 			SLAB_PANIC|SLAB_ACCOUNT);
462 }
463 
464 /*
465  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
466  *
467  * Since there is no serialization what so ever against page_remove_rmap()
468  * the best this function can do is return a refcount increased anon_vma
469  * that might have been relevant to this page.
470  *
471  * The page might have been remapped to a different anon_vma or the anon_vma
472  * returned may already be freed (and even reused).
473  *
474  * In case it was remapped to a different anon_vma, the new anon_vma will be a
475  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
476  * ensure that any anon_vma obtained from the page will still be valid for as
477  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
478  *
479  * All users of this function must be very careful when walking the anon_vma
480  * chain and verify that the page in question is indeed mapped in it
481  * [ something equivalent to page_mapped_in_vma() ].
482  *
483  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
484  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
485  * if there is a mapcount, we can dereference the anon_vma after observing
486  * those.
487  */
488 struct anon_vma *page_get_anon_vma(struct page *page)
489 {
490 	struct anon_vma *anon_vma = NULL;
491 	unsigned long anon_mapping;
492 
493 	rcu_read_lock();
494 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
495 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
496 		goto out;
497 	if (!page_mapped(page))
498 		goto out;
499 
500 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
501 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
502 		anon_vma = NULL;
503 		goto out;
504 	}
505 
506 	/*
507 	 * If this page is still mapped, then its anon_vma cannot have been
508 	 * freed.  But if it has been unmapped, we have no security against the
509 	 * anon_vma structure being freed and reused (for another anon_vma:
510 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
511 	 * above cannot corrupt).
512 	 */
513 	if (!page_mapped(page)) {
514 		rcu_read_unlock();
515 		put_anon_vma(anon_vma);
516 		return NULL;
517 	}
518 out:
519 	rcu_read_unlock();
520 
521 	return anon_vma;
522 }
523 
524 /*
525  * Similar to page_get_anon_vma() except it locks the anon_vma.
526  *
527  * Its a little more complex as it tries to keep the fast path to a single
528  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
529  * reference like with page_get_anon_vma() and then block on the mutex.
530  */
531 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
532 {
533 	struct anon_vma *anon_vma = NULL;
534 	struct anon_vma *root_anon_vma;
535 	unsigned long anon_mapping;
536 
537 	rcu_read_lock();
538 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
539 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
540 		goto out;
541 	if (!folio_mapped(folio))
542 		goto out;
543 
544 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
545 	root_anon_vma = READ_ONCE(anon_vma->root);
546 	if (down_read_trylock(&root_anon_vma->rwsem)) {
547 		/*
548 		 * If the folio is still mapped, then this anon_vma is still
549 		 * its anon_vma, and holding the mutex ensures that it will
550 		 * not go away, see anon_vma_free().
551 		 */
552 		if (!folio_mapped(folio)) {
553 			up_read(&root_anon_vma->rwsem);
554 			anon_vma = NULL;
555 		}
556 		goto out;
557 	}
558 
559 	/* trylock failed, we got to sleep */
560 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
561 		anon_vma = NULL;
562 		goto out;
563 	}
564 
565 	if (!folio_mapped(folio)) {
566 		rcu_read_unlock();
567 		put_anon_vma(anon_vma);
568 		return NULL;
569 	}
570 
571 	/* we pinned the anon_vma, its safe to sleep */
572 	rcu_read_unlock();
573 	anon_vma_lock_read(anon_vma);
574 
575 	if (atomic_dec_and_test(&anon_vma->refcount)) {
576 		/*
577 		 * Oops, we held the last refcount, release the lock
578 		 * and bail -- can't simply use put_anon_vma() because
579 		 * we'll deadlock on the anon_vma_lock_write() recursion.
580 		 */
581 		anon_vma_unlock_read(anon_vma);
582 		__put_anon_vma(anon_vma);
583 		anon_vma = NULL;
584 	}
585 
586 	return anon_vma;
587 
588 out:
589 	rcu_read_unlock();
590 	return anon_vma;
591 }
592 
593 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
594 {
595 	anon_vma_unlock_read(anon_vma);
596 }
597 
598 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
599 /*
600  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
601  * important if a PTE was dirty when it was unmapped that it's flushed
602  * before any IO is initiated on the page to prevent lost writes. Similarly,
603  * it must be flushed before freeing to prevent data leakage.
604  */
605 void try_to_unmap_flush(void)
606 {
607 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
608 
609 	if (!tlb_ubc->flush_required)
610 		return;
611 
612 	arch_tlbbatch_flush(&tlb_ubc->arch);
613 	tlb_ubc->flush_required = false;
614 	tlb_ubc->writable = false;
615 }
616 
617 /* Flush iff there are potentially writable TLB entries that can race with IO */
618 void try_to_unmap_flush_dirty(void)
619 {
620 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
621 
622 	if (tlb_ubc->writable)
623 		try_to_unmap_flush();
624 }
625 
626 /*
627  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
628  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
629  */
630 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
631 #define TLB_FLUSH_BATCH_PENDING_MASK			\
632 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
633 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
634 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
635 
636 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
637 {
638 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
639 	int batch, nbatch;
640 
641 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
642 	tlb_ubc->flush_required = true;
643 
644 	/*
645 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
646 	 * before the PTE is cleared.
647 	 */
648 	barrier();
649 	batch = atomic_read(&mm->tlb_flush_batched);
650 retry:
651 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
652 		/*
653 		 * Prevent `pending' from catching up with `flushed' because of
654 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
655 		 * `pending' becomes large.
656 		 */
657 		nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
658 		if (nbatch != batch) {
659 			batch = nbatch;
660 			goto retry;
661 		}
662 	} else {
663 		atomic_inc(&mm->tlb_flush_batched);
664 	}
665 
666 	/*
667 	 * If the PTE was dirty then it's best to assume it's writable. The
668 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
669 	 * before the page is queued for IO.
670 	 */
671 	if (writable)
672 		tlb_ubc->writable = true;
673 }
674 
675 /*
676  * Returns true if the TLB flush should be deferred to the end of a batch of
677  * unmap operations to reduce IPIs.
678  */
679 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
680 {
681 	bool should_defer = false;
682 
683 	if (!(flags & TTU_BATCH_FLUSH))
684 		return false;
685 
686 	/* If remote CPUs need to be flushed then defer batch the flush */
687 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
688 		should_defer = true;
689 	put_cpu();
690 
691 	return should_defer;
692 }
693 
694 /*
695  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
696  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
697  * operation such as mprotect or munmap to race between reclaim unmapping
698  * the page and flushing the page. If this race occurs, it potentially allows
699  * access to data via a stale TLB entry. Tracking all mm's that have TLB
700  * batching in flight would be expensive during reclaim so instead track
701  * whether TLB batching occurred in the past and if so then do a flush here
702  * if required. This will cost one additional flush per reclaim cycle paid
703  * by the first operation at risk such as mprotect and mumap.
704  *
705  * This must be called under the PTL so that an access to tlb_flush_batched
706  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
707  * via the PTL.
708  */
709 void flush_tlb_batched_pending(struct mm_struct *mm)
710 {
711 	int batch = atomic_read(&mm->tlb_flush_batched);
712 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
713 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
714 
715 	if (pending != flushed) {
716 		flush_tlb_mm(mm);
717 		/*
718 		 * If the new TLB flushing is pending during flushing, leave
719 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
720 		 */
721 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
722 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
723 	}
724 }
725 #else
726 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
727 {
728 }
729 
730 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
731 {
732 	return false;
733 }
734 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
735 
736 /*
737  * At what user virtual address is page expected in vma?
738  * Caller should check the page is actually part of the vma.
739  */
740 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
741 {
742 	struct folio *folio = page_folio(page);
743 	if (folio_test_anon(folio)) {
744 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
745 		/*
746 		 * Note: swapoff's unuse_vma() is more efficient with this
747 		 * check, and needs it to match anon_vma when KSM is active.
748 		 */
749 		if (!vma->anon_vma || !page__anon_vma ||
750 		    vma->anon_vma->root != page__anon_vma->root)
751 			return -EFAULT;
752 	} else if (!vma->vm_file) {
753 		return -EFAULT;
754 	} else if (vma->vm_file->f_mapping != folio->mapping) {
755 		return -EFAULT;
756 	}
757 
758 	return vma_address(page, vma);
759 }
760 
761 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
762 {
763 	pgd_t *pgd;
764 	p4d_t *p4d;
765 	pud_t *pud;
766 	pmd_t *pmd = NULL;
767 	pmd_t pmde;
768 
769 	pgd = pgd_offset(mm, address);
770 	if (!pgd_present(*pgd))
771 		goto out;
772 
773 	p4d = p4d_offset(pgd, address);
774 	if (!p4d_present(*p4d))
775 		goto out;
776 
777 	pud = pud_offset(p4d, address);
778 	if (!pud_present(*pud))
779 		goto out;
780 
781 	pmd = pmd_offset(pud, address);
782 	/*
783 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
784 	 * without holding anon_vma lock for write.  So when looking for a
785 	 * genuine pmde (in which to find pte), test present and !THP together.
786 	 */
787 	pmde = *pmd;
788 	barrier();
789 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
790 		pmd = NULL;
791 out:
792 	return pmd;
793 }
794 
795 struct folio_referenced_arg {
796 	int mapcount;
797 	int referenced;
798 	unsigned long vm_flags;
799 	struct mem_cgroup *memcg;
800 };
801 /*
802  * arg: folio_referenced_arg will be passed
803  */
804 static bool folio_referenced_one(struct folio *folio,
805 		struct vm_area_struct *vma, unsigned long address, void *arg)
806 {
807 	struct folio_referenced_arg *pra = arg;
808 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 	int referenced = 0;
810 
811 	while (page_vma_mapped_walk(&pvmw)) {
812 		address = pvmw.address;
813 
814 		if ((vma->vm_flags & VM_LOCKED) &&
815 		    (!folio_test_large(folio) || !pvmw.pte)) {
816 			/* Restore the mlock which got missed */
817 			mlock_vma_folio(folio, vma, !pvmw.pte);
818 			page_vma_mapped_walk_done(&pvmw);
819 			pra->vm_flags |= VM_LOCKED;
820 			return false; /* To break the loop */
821 		}
822 
823 		if (pvmw.pte) {
824 			if (ptep_clear_flush_young_notify(vma, address,
825 						pvmw.pte)) {
826 				/*
827 				 * Don't treat a reference through
828 				 * a sequentially read mapping as such.
829 				 * If the folio has been used in another mapping,
830 				 * we will catch it; if this other mapping is
831 				 * already gone, the unmap path will have set
832 				 * the referenced flag or activated the folio.
833 				 */
834 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
835 					referenced++;
836 			}
837 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 			if (pmdp_clear_flush_young_notify(vma, address,
839 						pvmw.pmd))
840 				referenced++;
841 		} else {
842 			/* unexpected pmd-mapped folio? */
843 			WARN_ON_ONCE(1);
844 		}
845 
846 		pra->mapcount--;
847 	}
848 
849 	if (referenced)
850 		folio_clear_idle(folio);
851 	if (folio_test_clear_young(folio))
852 		referenced++;
853 
854 	if (referenced) {
855 		pra->referenced++;
856 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
857 	}
858 
859 	if (!pra->mapcount)
860 		return false; /* To break the loop */
861 
862 	return true;
863 }
864 
865 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
866 {
867 	struct folio_referenced_arg *pra = arg;
868 	struct mem_cgroup *memcg = pra->memcg;
869 
870 	if (!mm_match_cgroup(vma->vm_mm, memcg))
871 		return true;
872 
873 	return false;
874 }
875 
876 /**
877  * folio_referenced() - Test if the folio was referenced.
878  * @folio: The folio to test.
879  * @is_locked: Caller holds lock on the folio.
880  * @memcg: target memory cgroup
881  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
882  *
883  * Quick test_and_clear_referenced for all mappings of a folio,
884  *
885  * Return: The number of mappings which referenced the folio.
886  */
887 int folio_referenced(struct folio *folio, int is_locked,
888 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
889 {
890 	int we_locked = 0;
891 	struct folio_referenced_arg pra = {
892 		.mapcount = folio_mapcount(folio),
893 		.memcg = memcg,
894 	};
895 	struct rmap_walk_control rwc = {
896 		.rmap_one = folio_referenced_one,
897 		.arg = (void *)&pra,
898 		.anon_lock = folio_lock_anon_vma_read,
899 	};
900 
901 	*vm_flags = 0;
902 	if (!pra.mapcount)
903 		return 0;
904 
905 	if (!folio_raw_mapping(folio))
906 		return 0;
907 
908 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
909 		we_locked = folio_trylock(folio);
910 		if (!we_locked)
911 			return 1;
912 	}
913 
914 	/*
915 	 * If we are reclaiming on behalf of a cgroup, skip
916 	 * counting on behalf of references from different
917 	 * cgroups
918 	 */
919 	if (memcg) {
920 		rwc.invalid_vma = invalid_folio_referenced_vma;
921 	}
922 
923 	rmap_walk(folio, &rwc);
924 	*vm_flags = pra.vm_flags;
925 
926 	if (we_locked)
927 		folio_unlock(folio);
928 
929 	return pra.referenced;
930 }
931 
932 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
933 			    unsigned long address, void *arg)
934 {
935 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
936 	struct mmu_notifier_range range;
937 	int *cleaned = arg;
938 
939 	/*
940 	 * We have to assume the worse case ie pmd for invalidation. Note that
941 	 * the folio can not be freed from this function.
942 	 */
943 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
944 				0, vma, vma->vm_mm, address,
945 				vma_address_end(&pvmw));
946 	mmu_notifier_invalidate_range_start(&range);
947 
948 	while (page_vma_mapped_walk(&pvmw)) {
949 		int ret = 0;
950 
951 		address = pvmw.address;
952 		if (pvmw.pte) {
953 			pte_t entry;
954 			pte_t *pte = pvmw.pte;
955 
956 			if (!pte_dirty(*pte) && !pte_write(*pte))
957 				continue;
958 
959 			flush_cache_page(vma, address, pte_pfn(*pte));
960 			entry = ptep_clear_flush(vma, address, pte);
961 			entry = pte_wrprotect(entry);
962 			entry = pte_mkclean(entry);
963 			set_pte_at(vma->vm_mm, address, pte, entry);
964 			ret = 1;
965 		} else {
966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
967 			pmd_t *pmd = pvmw.pmd;
968 			pmd_t entry;
969 
970 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
971 				continue;
972 
973 			flush_cache_page(vma, address, folio_pfn(folio));
974 			entry = pmdp_invalidate(vma, address, pmd);
975 			entry = pmd_wrprotect(entry);
976 			entry = pmd_mkclean(entry);
977 			set_pmd_at(vma->vm_mm, address, pmd, entry);
978 			ret = 1;
979 #else
980 			/* unexpected pmd-mapped folio? */
981 			WARN_ON_ONCE(1);
982 #endif
983 		}
984 
985 		/*
986 		 * No need to call mmu_notifier_invalidate_range() as we are
987 		 * downgrading page table protection not changing it to point
988 		 * to a new page.
989 		 *
990 		 * See Documentation/vm/mmu_notifier.rst
991 		 */
992 		if (ret)
993 			(*cleaned)++;
994 	}
995 
996 	mmu_notifier_invalidate_range_end(&range);
997 
998 	return true;
999 }
1000 
1001 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1002 {
1003 	if (vma->vm_flags & VM_SHARED)
1004 		return false;
1005 
1006 	return true;
1007 }
1008 
1009 int folio_mkclean(struct folio *folio)
1010 {
1011 	int cleaned = 0;
1012 	struct address_space *mapping;
1013 	struct rmap_walk_control rwc = {
1014 		.arg = (void *)&cleaned,
1015 		.rmap_one = page_mkclean_one,
1016 		.invalid_vma = invalid_mkclean_vma,
1017 	};
1018 
1019 	BUG_ON(!folio_test_locked(folio));
1020 
1021 	if (!folio_mapped(folio))
1022 		return 0;
1023 
1024 	mapping = folio_mapping(folio);
1025 	if (!mapping)
1026 		return 0;
1027 
1028 	rmap_walk(folio, &rwc);
1029 
1030 	return cleaned;
1031 }
1032 EXPORT_SYMBOL_GPL(folio_mkclean);
1033 
1034 /**
1035  * page_move_anon_rmap - move a page to our anon_vma
1036  * @page:	the page to move to our anon_vma
1037  * @vma:	the vma the page belongs to
1038  *
1039  * When a page belongs exclusively to one process after a COW event,
1040  * that page can be moved into the anon_vma that belongs to just that
1041  * process, so the rmap code will not search the parent or sibling
1042  * processes.
1043  */
1044 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1045 {
1046 	struct anon_vma *anon_vma = vma->anon_vma;
1047 
1048 	page = compound_head(page);
1049 
1050 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1051 	VM_BUG_ON_VMA(!anon_vma, vma);
1052 
1053 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1054 	/*
1055 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1056 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1057 	 * folio_test_anon()) will not see one without the other.
1058 	 */
1059 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1060 }
1061 
1062 /**
1063  * __page_set_anon_rmap - set up new anonymous rmap
1064  * @page:	Page or Hugepage to add to rmap
1065  * @vma:	VM area to add page to.
1066  * @address:	User virtual address of the mapping
1067  * @exclusive:	the page is exclusively owned by the current process
1068  */
1069 static void __page_set_anon_rmap(struct page *page,
1070 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1071 {
1072 	struct anon_vma *anon_vma = vma->anon_vma;
1073 
1074 	BUG_ON(!anon_vma);
1075 
1076 	if (PageAnon(page))
1077 		return;
1078 
1079 	/*
1080 	 * If the page isn't exclusively mapped into this vma,
1081 	 * we must use the _oldest_ possible anon_vma for the
1082 	 * page mapping!
1083 	 */
1084 	if (!exclusive)
1085 		anon_vma = anon_vma->root;
1086 
1087 	/*
1088 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1089 	 * Make sure the compiler doesn't split the stores of anon_vma and
1090 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1091 	 * could mistake the mapping for a struct address_space and crash.
1092 	 */
1093 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1094 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1095 	page->index = linear_page_index(vma, address);
1096 }
1097 
1098 /**
1099  * __page_check_anon_rmap - sanity check anonymous rmap addition
1100  * @page:	the page to add the mapping to
1101  * @vma:	the vm area in which the mapping is added
1102  * @address:	the user virtual address mapped
1103  */
1104 static void __page_check_anon_rmap(struct page *page,
1105 	struct vm_area_struct *vma, unsigned long address)
1106 {
1107 	struct folio *folio = page_folio(page);
1108 	/*
1109 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1110 	 * be set up correctly at this point.
1111 	 *
1112 	 * We have exclusion against page_add_anon_rmap because the caller
1113 	 * always holds the page locked.
1114 	 *
1115 	 * We have exclusion against page_add_new_anon_rmap because those pages
1116 	 * are initially only visible via the pagetables, and the pte is locked
1117 	 * over the call to page_add_new_anon_rmap.
1118 	 */
1119 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1120 			folio);
1121 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1122 		       page);
1123 }
1124 
1125 /**
1126  * page_add_anon_rmap - add pte mapping to an anonymous page
1127  * @page:	the page to add the mapping to
1128  * @vma:	the vm area in which the mapping is added
1129  * @address:	the user virtual address mapped
1130  * @compound:	charge the page as compound or small page
1131  *
1132  * The caller needs to hold the pte lock, and the page must be locked in
1133  * the anon_vma case: to serialize mapping,index checking after setting,
1134  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1135  * (but PageKsm is never downgraded to PageAnon).
1136  */
1137 void page_add_anon_rmap(struct page *page,
1138 	struct vm_area_struct *vma, unsigned long address, bool compound)
1139 {
1140 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1141 }
1142 
1143 /*
1144  * Special version of the above for do_swap_page, which often runs
1145  * into pages that are exclusively owned by the current process.
1146  * Everybody else should continue to use page_add_anon_rmap above.
1147  */
1148 void do_page_add_anon_rmap(struct page *page,
1149 	struct vm_area_struct *vma, unsigned long address, int flags)
1150 {
1151 	bool compound = flags & RMAP_COMPOUND;
1152 	bool first;
1153 
1154 	if (unlikely(PageKsm(page)))
1155 		lock_page_memcg(page);
1156 	else
1157 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1158 
1159 	if (compound) {
1160 		atomic_t *mapcount;
1161 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1162 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1163 		mapcount = compound_mapcount_ptr(page);
1164 		first = atomic_inc_and_test(mapcount);
1165 	} else {
1166 		first = atomic_inc_and_test(&page->_mapcount);
1167 	}
1168 
1169 	if (first) {
1170 		int nr = compound ? thp_nr_pages(page) : 1;
1171 		/*
1172 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1173 		 * these counters are not modified in interrupt context, and
1174 		 * pte lock(a spinlock) is held, which implies preemption
1175 		 * disabled.
1176 		 */
1177 		if (compound)
1178 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1179 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1180 	}
1181 
1182 	if (unlikely(PageKsm(page)))
1183 		unlock_page_memcg(page);
1184 
1185 	/* address might be in next vma when migration races vma_adjust */
1186 	else if (first)
1187 		__page_set_anon_rmap(page, vma, address,
1188 				flags & RMAP_EXCLUSIVE);
1189 	else
1190 		__page_check_anon_rmap(page, vma, address);
1191 
1192 	mlock_vma_page(page, vma, compound);
1193 }
1194 
1195 /**
1196  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1197  * @page:	the page to add the mapping to
1198  * @vma:	the vm area in which the mapping is added
1199  * @address:	the user virtual address mapped
1200  * @compound:	charge the page as compound or small page
1201  *
1202  * Same as page_add_anon_rmap but must only be called on *new* pages.
1203  * This means the inc-and-test can be bypassed.
1204  * Page does not have to be locked.
1205  */
1206 void page_add_new_anon_rmap(struct page *page,
1207 	struct vm_area_struct *vma, unsigned long address, bool compound)
1208 {
1209 	int nr = compound ? thp_nr_pages(page) : 1;
1210 
1211 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1212 	__SetPageSwapBacked(page);
1213 	if (compound) {
1214 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 		/* increment count (starts at -1) */
1216 		atomic_set(compound_mapcount_ptr(page), 0);
1217 		atomic_set(compound_pincount_ptr(page), 0);
1218 
1219 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1220 	} else {
1221 		/* Anon THP always mapped first with PMD */
1222 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1223 		/* increment count (starts at -1) */
1224 		atomic_set(&page->_mapcount, 0);
1225 	}
1226 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1227 	__page_set_anon_rmap(page, vma, address, 1);
1228 }
1229 
1230 /**
1231  * page_add_file_rmap - add pte mapping to a file page
1232  * @page:	the page to add the mapping to
1233  * @vma:	the vm area in which the mapping is added
1234  * @compound:	charge the page as compound or small page
1235  *
1236  * The caller needs to hold the pte lock.
1237  */
1238 void page_add_file_rmap(struct page *page,
1239 	struct vm_area_struct *vma, bool compound)
1240 {
1241 	int i, nr = 0;
1242 
1243 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1244 	lock_page_memcg(page);
1245 	if (compound && PageTransHuge(page)) {
1246 		int nr_pages = thp_nr_pages(page);
1247 
1248 		for (i = 0; i < nr_pages; i++) {
1249 			if (atomic_inc_and_test(&page[i]._mapcount))
1250 				nr++;
1251 		}
1252 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1253 			goto out;
1254 
1255 		/*
1256 		 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1257 		 * but page lock is held by all page_add_file_rmap() compound
1258 		 * callers, and SetPageDoubleMap below warns if !PageLocked:
1259 		 * so here is a place that DoubleMap can be safely cleared.
1260 		 */
1261 		VM_WARN_ON_ONCE(!PageLocked(page));
1262 		if (nr == nr_pages && PageDoubleMap(page))
1263 			ClearPageDoubleMap(page);
1264 
1265 		if (PageSwapBacked(page))
1266 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1267 						nr_pages);
1268 		else
1269 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1270 						nr_pages);
1271 	} else {
1272 		if (PageTransCompound(page) && page_mapping(page)) {
1273 			VM_WARN_ON_ONCE(!PageLocked(page));
1274 			SetPageDoubleMap(compound_head(page));
1275 		}
1276 		if (atomic_inc_and_test(&page->_mapcount))
1277 			nr++;
1278 	}
1279 out:
1280 	if (nr)
1281 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1282 	unlock_page_memcg(page);
1283 
1284 	mlock_vma_page(page, vma, compound);
1285 }
1286 
1287 static void page_remove_file_rmap(struct page *page, bool compound)
1288 {
1289 	int i, nr = 0;
1290 
1291 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1292 
1293 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1294 	if (unlikely(PageHuge(page))) {
1295 		/* hugetlb pages are always mapped with pmds */
1296 		atomic_dec(compound_mapcount_ptr(page));
1297 		return;
1298 	}
1299 
1300 	/* page still mapped by someone else? */
1301 	if (compound && PageTransHuge(page)) {
1302 		int nr_pages = thp_nr_pages(page);
1303 
1304 		for (i = 0; i < nr_pages; i++) {
1305 			if (atomic_add_negative(-1, &page[i]._mapcount))
1306 				nr++;
1307 		}
1308 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1309 			goto out;
1310 		if (PageSwapBacked(page))
1311 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1312 						-nr_pages);
1313 		else
1314 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1315 						-nr_pages);
1316 	} else {
1317 		if (atomic_add_negative(-1, &page->_mapcount))
1318 			nr++;
1319 	}
1320 out:
1321 	if (nr)
1322 		__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1323 }
1324 
1325 static void page_remove_anon_compound_rmap(struct page *page)
1326 {
1327 	int i, nr;
1328 
1329 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1330 		return;
1331 
1332 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1333 	if (unlikely(PageHuge(page)))
1334 		return;
1335 
1336 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1337 		return;
1338 
1339 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1340 
1341 	if (TestClearPageDoubleMap(page)) {
1342 		/*
1343 		 * Subpages can be mapped with PTEs too. Check how many of
1344 		 * them are still mapped.
1345 		 */
1346 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1347 			if (atomic_add_negative(-1, &page[i]._mapcount))
1348 				nr++;
1349 		}
1350 
1351 		/*
1352 		 * Queue the page for deferred split if at least one small
1353 		 * page of the compound page is unmapped, but at least one
1354 		 * small page is still mapped.
1355 		 */
1356 		if (nr && nr < thp_nr_pages(page))
1357 			deferred_split_huge_page(page);
1358 	} else {
1359 		nr = thp_nr_pages(page);
1360 	}
1361 
1362 	if (nr)
1363 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1364 }
1365 
1366 /**
1367  * page_remove_rmap - take down pte mapping from a page
1368  * @page:	page to remove mapping from
1369  * @vma:	the vm area from which the mapping is removed
1370  * @compound:	uncharge the page as compound or small page
1371  *
1372  * The caller needs to hold the pte lock.
1373  */
1374 void page_remove_rmap(struct page *page,
1375 	struct vm_area_struct *vma, bool compound)
1376 {
1377 	lock_page_memcg(page);
1378 
1379 	if (!PageAnon(page)) {
1380 		page_remove_file_rmap(page, compound);
1381 		goto out;
1382 	}
1383 
1384 	if (compound) {
1385 		page_remove_anon_compound_rmap(page);
1386 		goto out;
1387 	}
1388 
1389 	/* page still mapped by someone else? */
1390 	if (!atomic_add_negative(-1, &page->_mapcount))
1391 		goto out;
1392 
1393 	/*
1394 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1395 	 * these counters are not modified in interrupt context, and
1396 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1397 	 */
1398 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1399 
1400 	if (PageTransCompound(page))
1401 		deferred_split_huge_page(compound_head(page));
1402 
1403 	/*
1404 	 * It would be tidy to reset the PageAnon mapping here,
1405 	 * but that might overwrite a racing page_add_anon_rmap
1406 	 * which increments mapcount after us but sets mapping
1407 	 * before us: so leave the reset to free_unref_page,
1408 	 * and remember that it's only reliable while mapped.
1409 	 * Leaving it set also helps swapoff to reinstate ptes
1410 	 * faster for those pages still in swapcache.
1411 	 */
1412 out:
1413 	unlock_page_memcg(page);
1414 
1415 	munlock_vma_page(page, vma, compound);
1416 }
1417 
1418 /*
1419  * @arg: enum ttu_flags will be passed to this argument
1420  */
1421 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1422 		     unsigned long address, void *arg)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1426 	pte_t pteval;
1427 	struct page *subpage;
1428 	bool ret = true;
1429 	struct mmu_notifier_range range;
1430 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1431 
1432 	/*
1433 	 * When racing against e.g. zap_pte_range() on another cpu,
1434 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1435 	 * try_to_unmap() may return before page_mapped() has become false,
1436 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1437 	 */
1438 	if (flags & TTU_SYNC)
1439 		pvmw.flags = PVMW_SYNC;
1440 
1441 	if (flags & TTU_SPLIT_HUGE_PMD)
1442 		split_huge_pmd_address(vma, address, false, folio);
1443 
1444 	/*
1445 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1446 	 * For hugetlb, it could be much worse if we need to do pud
1447 	 * invalidation in the case of pmd sharing.
1448 	 *
1449 	 * Note that the folio can not be freed in this function as call of
1450 	 * try_to_unmap() must hold a reference on the folio.
1451 	 */
1452 	range.end = vma_address_end(&pvmw);
1453 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1454 				address, range.end);
1455 	if (folio_test_hugetlb(folio)) {
1456 		/*
1457 		 * If sharing is possible, start and end will be adjusted
1458 		 * accordingly.
1459 		 */
1460 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1461 						     &range.end);
1462 	}
1463 	mmu_notifier_invalidate_range_start(&range);
1464 
1465 	while (page_vma_mapped_walk(&pvmw)) {
1466 		/* Unexpected PMD-mapped THP? */
1467 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1468 
1469 		/*
1470 		 * If the folio is in an mlock()d vma, we must not swap it out.
1471 		 */
1472 		if (!(flags & TTU_IGNORE_MLOCK) &&
1473 		    (vma->vm_flags & VM_LOCKED)) {
1474 			/* Restore the mlock which got missed */
1475 			mlock_vma_folio(folio, vma, false);
1476 			page_vma_mapped_walk_done(&pvmw);
1477 			ret = false;
1478 			break;
1479 		}
1480 
1481 		subpage = folio_page(folio,
1482 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
1483 		address = pvmw.address;
1484 
1485 		if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1486 			/*
1487 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1488 			 * held in write mode.  Caller needs to explicitly
1489 			 * do this outside rmap routines.
1490 			 */
1491 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1492 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1493 				/*
1494 				 * huge_pmd_unshare unmapped an entire PMD
1495 				 * page.  There is no way of knowing exactly
1496 				 * which PMDs may be cached for this mm, so
1497 				 * we must flush them all.  start/end were
1498 				 * already adjusted above to cover this range.
1499 				 */
1500 				flush_cache_range(vma, range.start, range.end);
1501 				flush_tlb_range(vma, range.start, range.end);
1502 				mmu_notifier_invalidate_range(mm, range.start,
1503 							      range.end);
1504 
1505 				/*
1506 				 * The ref count of the PMD page was dropped
1507 				 * which is part of the way map counting
1508 				 * is done for shared PMDs.  Return 'true'
1509 				 * here.  When there is no other sharing,
1510 				 * huge_pmd_unshare returns false and we will
1511 				 * unmap the actual page and drop map count
1512 				 * to zero.
1513 				 */
1514 				page_vma_mapped_walk_done(&pvmw);
1515 				break;
1516 			}
1517 		}
1518 
1519 		/* Nuke the page table entry. */
1520 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1521 		if (should_defer_flush(mm, flags)) {
1522 			/*
1523 			 * We clear the PTE but do not flush so potentially
1524 			 * a remote CPU could still be writing to the folio.
1525 			 * If the entry was previously clean then the
1526 			 * architecture must guarantee that a clear->dirty
1527 			 * transition on a cached TLB entry is written through
1528 			 * and traps if the PTE is unmapped.
1529 			 */
1530 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1531 
1532 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1533 		} else {
1534 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1535 		}
1536 
1537 		/* Set the dirty flag on the folio now the pte is gone. */
1538 		if (pte_dirty(pteval))
1539 			folio_mark_dirty(folio);
1540 
1541 		/* Update high watermark before we lower rss */
1542 		update_hiwater_rss(mm);
1543 
1544 		if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1545 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1546 			if (folio_test_hugetlb(folio)) {
1547 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1548 				set_huge_swap_pte_at(mm, address,
1549 						     pvmw.pte, pteval,
1550 						     vma_mmu_pagesize(vma));
1551 			} else {
1552 				dec_mm_counter(mm, mm_counter(&folio->page));
1553 				set_pte_at(mm, address, pvmw.pte, pteval);
1554 			}
1555 
1556 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1557 			/*
1558 			 * The guest indicated that the page content is of no
1559 			 * interest anymore. Simply discard the pte, vmscan
1560 			 * will take care of the rest.
1561 			 * A future reference will then fault in a new zero
1562 			 * page. When userfaultfd is active, we must not drop
1563 			 * this page though, as its main user (postcopy
1564 			 * migration) will not expect userfaults on already
1565 			 * copied pages.
1566 			 */
1567 			dec_mm_counter(mm, mm_counter(&folio->page));
1568 			/* We have to invalidate as we cleared the pte */
1569 			mmu_notifier_invalidate_range(mm, address,
1570 						      address + PAGE_SIZE);
1571 		} else if (folio_test_anon(folio)) {
1572 			swp_entry_t entry = { .val = page_private(subpage) };
1573 			pte_t swp_pte;
1574 			/*
1575 			 * Store the swap location in the pte.
1576 			 * See handle_pte_fault() ...
1577 			 */
1578 			if (unlikely(folio_test_swapbacked(folio) !=
1579 					folio_test_swapcache(folio))) {
1580 				WARN_ON_ONCE(1);
1581 				ret = false;
1582 				/* We have to invalidate as we cleared the pte */
1583 				mmu_notifier_invalidate_range(mm, address,
1584 							address + PAGE_SIZE);
1585 				page_vma_mapped_walk_done(&pvmw);
1586 				break;
1587 			}
1588 
1589 			/* MADV_FREE page check */
1590 			if (!folio_test_swapbacked(folio)) {
1591 				int ref_count, map_count;
1592 
1593 				/*
1594 				 * Synchronize with gup_pte_range():
1595 				 * - clear PTE; barrier; read refcount
1596 				 * - inc refcount; barrier; read PTE
1597 				 */
1598 				smp_mb();
1599 
1600 				ref_count = folio_ref_count(folio);
1601 				map_count = folio_mapcount(folio);
1602 
1603 				/*
1604 				 * Order reads for page refcount and dirty flag
1605 				 * (see comments in __remove_mapping()).
1606 				 */
1607 				smp_rmb();
1608 
1609 				/*
1610 				 * The only page refs must be one from isolation
1611 				 * plus the rmap(s) (dropped by discard:).
1612 				 */
1613 				if (ref_count == 1 + map_count &&
1614 				    !folio_test_dirty(folio)) {
1615 					/* Invalidate as we cleared the pte */
1616 					mmu_notifier_invalidate_range(mm,
1617 						address, address + PAGE_SIZE);
1618 					dec_mm_counter(mm, MM_ANONPAGES);
1619 					goto discard;
1620 				}
1621 
1622 				/*
1623 				 * If the folio was redirtied, it cannot be
1624 				 * discarded. Remap the page to page table.
1625 				 */
1626 				set_pte_at(mm, address, pvmw.pte, pteval);
1627 				folio_set_swapbacked(folio);
1628 				ret = false;
1629 				page_vma_mapped_walk_done(&pvmw);
1630 				break;
1631 			}
1632 
1633 			if (swap_duplicate(entry) < 0) {
1634 				set_pte_at(mm, address, pvmw.pte, pteval);
1635 				ret = false;
1636 				page_vma_mapped_walk_done(&pvmw);
1637 				break;
1638 			}
1639 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1640 				set_pte_at(mm, address, pvmw.pte, pteval);
1641 				ret = false;
1642 				page_vma_mapped_walk_done(&pvmw);
1643 				break;
1644 			}
1645 			if (list_empty(&mm->mmlist)) {
1646 				spin_lock(&mmlist_lock);
1647 				if (list_empty(&mm->mmlist))
1648 					list_add(&mm->mmlist, &init_mm.mmlist);
1649 				spin_unlock(&mmlist_lock);
1650 			}
1651 			dec_mm_counter(mm, MM_ANONPAGES);
1652 			inc_mm_counter(mm, MM_SWAPENTS);
1653 			swp_pte = swp_entry_to_pte(entry);
1654 			if (pte_soft_dirty(pteval))
1655 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1656 			if (pte_uffd_wp(pteval))
1657 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1658 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1659 			/* Invalidate as we cleared the pte */
1660 			mmu_notifier_invalidate_range(mm, address,
1661 						      address + PAGE_SIZE);
1662 		} else {
1663 			/*
1664 			 * This is a locked file-backed folio,
1665 			 * so it cannot be removed from the page
1666 			 * cache and replaced by a new folio before
1667 			 * mmu_notifier_invalidate_range_end, so no
1668 			 * concurrent thread might update its page table
1669 			 * to point at a new folio while a device is
1670 			 * still using this folio.
1671 			 *
1672 			 * See Documentation/vm/mmu_notifier.rst
1673 			 */
1674 			dec_mm_counter(mm, mm_counter_file(&folio->page));
1675 		}
1676 discard:
1677 		/*
1678 		 * No need to call mmu_notifier_invalidate_range() it has be
1679 		 * done above for all cases requiring it to happen under page
1680 		 * table lock before mmu_notifier_invalidate_range_end()
1681 		 *
1682 		 * See Documentation/vm/mmu_notifier.rst
1683 		 */
1684 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1685 		if (vma->vm_flags & VM_LOCKED)
1686 			mlock_page_drain_local();
1687 		folio_put(folio);
1688 	}
1689 
1690 	mmu_notifier_invalidate_range_end(&range);
1691 
1692 	return ret;
1693 }
1694 
1695 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1696 {
1697 	return vma_is_temporary_stack(vma);
1698 }
1699 
1700 static int page_not_mapped(struct folio *folio)
1701 {
1702 	return !folio_mapped(folio);
1703 }
1704 
1705 /**
1706  * try_to_unmap - Try to remove all page table mappings to a folio.
1707  * @folio: The folio to unmap.
1708  * @flags: action and flags
1709  *
1710  * Tries to remove all the page table entries which are mapping this
1711  * folio.  It is the caller's responsibility to check if the folio is
1712  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1713  *
1714  * Context: Caller must hold the folio lock.
1715  */
1716 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1717 {
1718 	struct rmap_walk_control rwc = {
1719 		.rmap_one = try_to_unmap_one,
1720 		.arg = (void *)flags,
1721 		.done = page_not_mapped,
1722 		.anon_lock = folio_lock_anon_vma_read,
1723 	};
1724 
1725 	if (flags & TTU_RMAP_LOCKED)
1726 		rmap_walk_locked(folio, &rwc);
1727 	else
1728 		rmap_walk(folio, &rwc);
1729 }
1730 
1731 /*
1732  * @arg: enum ttu_flags will be passed to this argument.
1733  *
1734  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1735  * containing migration entries.
1736  */
1737 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1738 		     unsigned long address, void *arg)
1739 {
1740 	struct mm_struct *mm = vma->vm_mm;
1741 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1742 	pte_t pteval;
1743 	struct page *subpage;
1744 	bool ret = true;
1745 	struct mmu_notifier_range range;
1746 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1747 
1748 	/*
1749 	 * When racing against e.g. zap_pte_range() on another cpu,
1750 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1751 	 * try_to_migrate() may return before page_mapped() has become false,
1752 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1753 	 */
1754 	if (flags & TTU_SYNC)
1755 		pvmw.flags = PVMW_SYNC;
1756 
1757 	/*
1758 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1759 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1760 	 */
1761 	if (flags & TTU_SPLIT_HUGE_PMD)
1762 		split_huge_pmd_address(vma, address, true, folio);
1763 
1764 	/*
1765 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1766 	 * For hugetlb, it could be much worse if we need to do pud
1767 	 * invalidation in the case of pmd sharing.
1768 	 *
1769 	 * Note that the page can not be free in this function as call of
1770 	 * try_to_unmap() must hold a reference on the page.
1771 	 */
1772 	range.end = vma_address_end(&pvmw);
1773 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1774 				address, range.end);
1775 	if (folio_test_hugetlb(folio)) {
1776 		/*
1777 		 * If sharing is possible, start and end will be adjusted
1778 		 * accordingly.
1779 		 */
1780 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1781 						     &range.end);
1782 	}
1783 	mmu_notifier_invalidate_range_start(&range);
1784 
1785 	while (page_vma_mapped_walk(&pvmw)) {
1786 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1787 		/* PMD-mapped THP migration entry */
1788 		if (!pvmw.pte) {
1789 			subpage = folio_page(folio,
1790 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1791 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1792 					!folio_test_pmd_mappable(folio), folio);
1793 
1794 			set_pmd_migration_entry(&pvmw, subpage);
1795 			continue;
1796 		}
1797 #endif
1798 
1799 		/* Unexpected PMD-mapped THP? */
1800 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1801 
1802 		subpage = folio_page(folio,
1803 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
1804 		address = pvmw.address;
1805 
1806 		if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1807 			/*
1808 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1809 			 * held in write mode.  Caller needs to explicitly
1810 			 * do this outside rmap routines.
1811 			 */
1812 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1813 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1814 				/*
1815 				 * huge_pmd_unshare unmapped an entire PMD
1816 				 * page.  There is no way of knowing exactly
1817 				 * which PMDs may be cached for this mm, so
1818 				 * we must flush them all.  start/end were
1819 				 * already adjusted above to cover this range.
1820 				 */
1821 				flush_cache_range(vma, range.start, range.end);
1822 				flush_tlb_range(vma, range.start, range.end);
1823 				mmu_notifier_invalidate_range(mm, range.start,
1824 							      range.end);
1825 
1826 				/*
1827 				 * The ref count of the PMD page was dropped
1828 				 * which is part of the way map counting
1829 				 * is done for shared PMDs.  Return 'true'
1830 				 * here.  When there is no other sharing,
1831 				 * huge_pmd_unshare returns false and we will
1832 				 * unmap the actual page and drop map count
1833 				 * to zero.
1834 				 */
1835 				page_vma_mapped_walk_done(&pvmw);
1836 				break;
1837 			}
1838 		}
1839 
1840 		/* Nuke the page table entry. */
1841 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1842 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
1843 
1844 		/* Set the dirty flag on the folio now the pte is gone. */
1845 		if (pte_dirty(pteval))
1846 			folio_mark_dirty(folio);
1847 
1848 		/* Update high watermark before we lower rss */
1849 		update_hiwater_rss(mm);
1850 
1851 		if (folio_is_zone_device(folio)) {
1852 			unsigned long pfn = folio_pfn(folio);
1853 			swp_entry_t entry;
1854 			pte_t swp_pte;
1855 
1856 			/*
1857 			 * Store the pfn of the page in a special migration
1858 			 * pte. do_swap_page() will wait until the migration
1859 			 * pte is removed and then restart fault handling.
1860 			 */
1861 			entry = pte_to_swp_entry(pteval);
1862 			if (is_writable_device_private_entry(entry))
1863 				entry = make_writable_migration_entry(pfn);
1864 			else
1865 				entry = make_readable_migration_entry(pfn);
1866 			swp_pte = swp_entry_to_pte(entry);
1867 
1868 			/*
1869 			 * pteval maps a zone device page and is therefore
1870 			 * a swap pte.
1871 			 */
1872 			if (pte_swp_soft_dirty(pteval))
1873 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1874 			if (pte_swp_uffd_wp(pteval))
1875 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1876 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1877 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1878 						compound_order(&folio->page));
1879 			/*
1880 			 * No need to invalidate here it will synchronize on
1881 			 * against the special swap migration pte.
1882 			 *
1883 			 * The assignment to subpage above was computed from a
1884 			 * swap PTE which results in an invalid pointer.
1885 			 * Since only PAGE_SIZE pages can currently be
1886 			 * migrated, just set it to page. This will need to be
1887 			 * changed when hugepage migrations to device private
1888 			 * memory are supported.
1889 			 */
1890 			subpage = &folio->page;
1891 		} else if (PageHWPoison(subpage)) {
1892 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1893 			if (folio_test_hugetlb(folio)) {
1894 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1895 				set_huge_swap_pte_at(mm, address,
1896 						     pvmw.pte, pteval,
1897 						     vma_mmu_pagesize(vma));
1898 			} else {
1899 				dec_mm_counter(mm, mm_counter(&folio->page));
1900 				set_pte_at(mm, address, pvmw.pte, pteval);
1901 			}
1902 
1903 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1904 			/*
1905 			 * The guest indicated that the page content is of no
1906 			 * interest anymore. Simply discard the pte, vmscan
1907 			 * will take care of the rest.
1908 			 * A future reference will then fault in a new zero
1909 			 * page. When userfaultfd is active, we must not drop
1910 			 * this page though, as its main user (postcopy
1911 			 * migration) will not expect userfaults on already
1912 			 * copied pages.
1913 			 */
1914 			dec_mm_counter(mm, mm_counter(&folio->page));
1915 			/* We have to invalidate as we cleared the pte */
1916 			mmu_notifier_invalidate_range(mm, address,
1917 						      address + PAGE_SIZE);
1918 		} else {
1919 			swp_entry_t entry;
1920 			pte_t swp_pte;
1921 
1922 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1923 				set_pte_at(mm, address, pvmw.pte, pteval);
1924 				ret = false;
1925 				page_vma_mapped_walk_done(&pvmw);
1926 				break;
1927 			}
1928 
1929 			/*
1930 			 * Store the pfn of the page in a special migration
1931 			 * pte. do_swap_page() will wait until the migration
1932 			 * pte is removed and then restart fault handling.
1933 			 */
1934 			if (pte_write(pteval))
1935 				entry = make_writable_migration_entry(
1936 							page_to_pfn(subpage));
1937 			else
1938 				entry = make_readable_migration_entry(
1939 							page_to_pfn(subpage));
1940 
1941 			swp_pte = swp_entry_to_pte(entry);
1942 			if (pte_soft_dirty(pteval))
1943 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1944 			if (pte_uffd_wp(pteval))
1945 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1946 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1947 			trace_set_migration_pte(address, pte_val(swp_pte),
1948 						compound_order(&folio->page));
1949 			/*
1950 			 * No need to invalidate here it will synchronize on
1951 			 * against the special swap migration pte.
1952 			 */
1953 		}
1954 
1955 		/*
1956 		 * No need to call mmu_notifier_invalidate_range() it has be
1957 		 * done above for all cases requiring it to happen under page
1958 		 * table lock before mmu_notifier_invalidate_range_end()
1959 		 *
1960 		 * See Documentation/vm/mmu_notifier.rst
1961 		 */
1962 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1963 		if (vma->vm_flags & VM_LOCKED)
1964 			mlock_page_drain_local();
1965 		folio_put(folio);
1966 	}
1967 
1968 	mmu_notifier_invalidate_range_end(&range);
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * try_to_migrate - try to replace all page table mappings with swap entries
1975  * @folio: the folio to replace page table entries for
1976  * @flags: action and flags
1977  *
1978  * Tries to remove all the page table entries which are mapping this folio and
1979  * replace them with special swap entries. Caller must hold the folio lock.
1980  */
1981 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
1982 {
1983 	struct rmap_walk_control rwc = {
1984 		.rmap_one = try_to_migrate_one,
1985 		.arg = (void *)flags,
1986 		.done = page_not_mapped,
1987 		.anon_lock = folio_lock_anon_vma_read,
1988 	};
1989 
1990 	/*
1991 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1992 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1993 	 */
1994 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1995 					TTU_SYNC)))
1996 		return;
1997 
1998 	if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
1999 		return;
2000 
2001 	/*
2002 	 * During exec, a temporary VMA is setup and later moved.
2003 	 * The VMA is moved under the anon_vma lock but not the
2004 	 * page tables leading to a race where migration cannot
2005 	 * find the migration ptes. Rather than increasing the
2006 	 * locking requirements of exec(), migration skips
2007 	 * temporary VMAs until after exec() completes.
2008 	 */
2009 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2010 		rwc.invalid_vma = invalid_migration_vma;
2011 
2012 	if (flags & TTU_RMAP_LOCKED)
2013 		rmap_walk_locked(folio, &rwc);
2014 	else
2015 		rmap_walk(folio, &rwc);
2016 }
2017 
2018 #ifdef CONFIG_DEVICE_PRIVATE
2019 struct make_exclusive_args {
2020 	struct mm_struct *mm;
2021 	unsigned long address;
2022 	void *owner;
2023 	bool valid;
2024 };
2025 
2026 static bool page_make_device_exclusive_one(struct folio *folio,
2027 		struct vm_area_struct *vma, unsigned long address, void *priv)
2028 {
2029 	struct mm_struct *mm = vma->vm_mm;
2030 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2031 	struct make_exclusive_args *args = priv;
2032 	pte_t pteval;
2033 	struct page *subpage;
2034 	bool ret = true;
2035 	struct mmu_notifier_range range;
2036 	swp_entry_t entry;
2037 	pte_t swp_pte;
2038 
2039 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2040 				      vma->vm_mm, address, min(vma->vm_end,
2041 				      address + folio_size(folio)),
2042 				      args->owner);
2043 	mmu_notifier_invalidate_range_start(&range);
2044 
2045 	while (page_vma_mapped_walk(&pvmw)) {
2046 		/* Unexpected PMD-mapped THP? */
2047 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2048 
2049 		if (!pte_present(*pvmw.pte)) {
2050 			ret = false;
2051 			page_vma_mapped_walk_done(&pvmw);
2052 			break;
2053 		}
2054 
2055 		subpage = folio_page(folio,
2056 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
2057 		address = pvmw.address;
2058 
2059 		/* Nuke the page table entry. */
2060 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2061 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2062 
2063 		/* Set the dirty flag on the folio now the pte is gone. */
2064 		if (pte_dirty(pteval))
2065 			folio_mark_dirty(folio);
2066 
2067 		/*
2068 		 * Check that our target page is still mapped at the expected
2069 		 * address.
2070 		 */
2071 		if (args->mm == mm && args->address == address &&
2072 		    pte_write(pteval))
2073 			args->valid = true;
2074 
2075 		/*
2076 		 * Store the pfn of the page in a special migration
2077 		 * pte. do_swap_page() will wait until the migration
2078 		 * pte is removed and then restart fault handling.
2079 		 */
2080 		if (pte_write(pteval))
2081 			entry = make_writable_device_exclusive_entry(
2082 							page_to_pfn(subpage));
2083 		else
2084 			entry = make_readable_device_exclusive_entry(
2085 							page_to_pfn(subpage));
2086 		swp_pte = swp_entry_to_pte(entry);
2087 		if (pte_soft_dirty(pteval))
2088 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2089 		if (pte_uffd_wp(pteval))
2090 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2091 
2092 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2093 
2094 		/*
2095 		 * There is a reference on the page for the swap entry which has
2096 		 * been removed, so shouldn't take another.
2097 		 */
2098 		page_remove_rmap(subpage, vma, false);
2099 	}
2100 
2101 	mmu_notifier_invalidate_range_end(&range);
2102 
2103 	return ret;
2104 }
2105 
2106 /**
2107  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2108  * @folio: The folio to replace page table entries for.
2109  * @mm: The mm_struct where the folio is expected to be mapped.
2110  * @address: Address where the folio is expected to be mapped.
2111  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2112  *
2113  * Tries to remove all the page table entries which are mapping this
2114  * folio and replace them with special device exclusive swap entries to
2115  * grant a device exclusive access to the folio.
2116  *
2117  * Context: Caller must hold the folio lock.
2118  * Return: false if the page is still mapped, or if it could not be unmapped
2119  * from the expected address. Otherwise returns true (success).
2120  */
2121 static bool folio_make_device_exclusive(struct folio *folio,
2122 		struct mm_struct *mm, unsigned long address, void *owner)
2123 {
2124 	struct make_exclusive_args args = {
2125 		.mm = mm,
2126 		.address = address,
2127 		.owner = owner,
2128 		.valid = false,
2129 	};
2130 	struct rmap_walk_control rwc = {
2131 		.rmap_one = page_make_device_exclusive_one,
2132 		.done = page_not_mapped,
2133 		.anon_lock = folio_lock_anon_vma_read,
2134 		.arg = &args,
2135 	};
2136 
2137 	/*
2138 	 * Restrict to anonymous folios for now to avoid potential writeback
2139 	 * issues.
2140 	 */
2141 	if (!folio_test_anon(folio))
2142 		return false;
2143 
2144 	rmap_walk(folio, &rwc);
2145 
2146 	return args.valid && !folio_mapcount(folio);
2147 }
2148 
2149 /**
2150  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2151  * @mm: mm_struct of assoicated target process
2152  * @start: start of the region to mark for exclusive device access
2153  * @end: end address of region
2154  * @pages: returns the pages which were successfully marked for exclusive access
2155  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2156  *
2157  * Returns: number of pages found in the range by GUP. A page is marked for
2158  * exclusive access only if the page pointer is non-NULL.
2159  *
2160  * This function finds ptes mapping page(s) to the given address range, locks
2161  * them and replaces mappings with special swap entries preventing userspace CPU
2162  * access. On fault these entries are replaced with the original mapping after
2163  * calling MMU notifiers.
2164  *
2165  * A driver using this to program access from a device must use a mmu notifier
2166  * critical section to hold a device specific lock during programming. Once
2167  * programming is complete it should drop the page lock and reference after
2168  * which point CPU access to the page will revoke the exclusive access.
2169  */
2170 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2171 				unsigned long end, struct page **pages,
2172 				void *owner)
2173 {
2174 	long npages = (end - start) >> PAGE_SHIFT;
2175 	long i;
2176 
2177 	npages = get_user_pages_remote(mm, start, npages,
2178 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2179 				       pages, NULL, NULL);
2180 	if (npages < 0)
2181 		return npages;
2182 
2183 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2184 		struct folio *folio = page_folio(pages[i]);
2185 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2186 			folio_put(folio);
2187 			pages[i] = NULL;
2188 			continue;
2189 		}
2190 
2191 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2192 			folio_unlock(folio);
2193 			folio_put(folio);
2194 			pages[i] = NULL;
2195 		}
2196 	}
2197 
2198 	return npages;
2199 }
2200 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2201 #endif
2202 
2203 void __put_anon_vma(struct anon_vma *anon_vma)
2204 {
2205 	struct anon_vma *root = anon_vma->root;
2206 
2207 	anon_vma_free(anon_vma);
2208 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2209 		anon_vma_free(root);
2210 }
2211 
2212 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2213 					const struct rmap_walk_control *rwc)
2214 {
2215 	struct anon_vma *anon_vma;
2216 
2217 	if (rwc->anon_lock)
2218 		return rwc->anon_lock(folio);
2219 
2220 	/*
2221 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2222 	 * because that depends on page_mapped(); but not all its usages
2223 	 * are holding mmap_lock. Users without mmap_lock are required to
2224 	 * take a reference count to prevent the anon_vma disappearing
2225 	 */
2226 	anon_vma = folio_anon_vma(folio);
2227 	if (!anon_vma)
2228 		return NULL;
2229 
2230 	anon_vma_lock_read(anon_vma);
2231 	return anon_vma;
2232 }
2233 
2234 /*
2235  * rmap_walk_anon - do something to anonymous page using the object-based
2236  * rmap method
2237  * @page: the page to be handled
2238  * @rwc: control variable according to each walk type
2239  *
2240  * Find all the mappings of a page using the mapping pointer and the vma chains
2241  * contained in the anon_vma struct it points to.
2242  */
2243 static void rmap_walk_anon(struct folio *folio,
2244 		const struct rmap_walk_control *rwc, bool locked)
2245 {
2246 	struct anon_vma *anon_vma;
2247 	pgoff_t pgoff_start, pgoff_end;
2248 	struct anon_vma_chain *avc;
2249 
2250 	if (locked) {
2251 		anon_vma = folio_anon_vma(folio);
2252 		/* anon_vma disappear under us? */
2253 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2254 	} else {
2255 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2256 	}
2257 	if (!anon_vma)
2258 		return;
2259 
2260 	pgoff_start = folio_pgoff(folio);
2261 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2262 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2263 			pgoff_start, pgoff_end) {
2264 		struct vm_area_struct *vma = avc->vma;
2265 		unsigned long address = vma_address(&folio->page, vma);
2266 
2267 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2268 		cond_resched();
2269 
2270 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2271 			continue;
2272 
2273 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2274 			break;
2275 		if (rwc->done && rwc->done(folio))
2276 			break;
2277 	}
2278 
2279 	if (!locked)
2280 		anon_vma_unlock_read(anon_vma);
2281 }
2282 
2283 /*
2284  * rmap_walk_file - do something to file page using the object-based rmap method
2285  * @page: the page to be handled
2286  * @rwc: control variable according to each walk type
2287  *
2288  * Find all the mappings of a page using the mapping pointer and the vma chains
2289  * contained in the address_space struct it points to.
2290  */
2291 static void rmap_walk_file(struct folio *folio,
2292 		const struct rmap_walk_control *rwc, bool locked)
2293 {
2294 	struct address_space *mapping = folio_mapping(folio);
2295 	pgoff_t pgoff_start, pgoff_end;
2296 	struct vm_area_struct *vma;
2297 
2298 	/*
2299 	 * The page lock not only makes sure that page->mapping cannot
2300 	 * suddenly be NULLified by truncation, it makes sure that the
2301 	 * structure at mapping cannot be freed and reused yet,
2302 	 * so we can safely take mapping->i_mmap_rwsem.
2303 	 */
2304 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2305 
2306 	if (!mapping)
2307 		return;
2308 
2309 	pgoff_start = folio_pgoff(folio);
2310 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2311 	if (!locked)
2312 		i_mmap_lock_read(mapping);
2313 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2314 			pgoff_start, pgoff_end) {
2315 		unsigned long address = vma_address(&folio->page, vma);
2316 
2317 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2318 		cond_resched();
2319 
2320 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2321 			continue;
2322 
2323 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2324 			goto done;
2325 		if (rwc->done && rwc->done(folio))
2326 			goto done;
2327 	}
2328 
2329 done:
2330 	if (!locked)
2331 		i_mmap_unlock_read(mapping);
2332 }
2333 
2334 void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
2335 {
2336 	if (unlikely(folio_test_ksm(folio)))
2337 		rmap_walk_ksm(folio, rwc);
2338 	else if (folio_test_anon(folio))
2339 		rmap_walk_anon(folio, rwc, false);
2340 	else
2341 		rmap_walk_file(folio, rwc, false);
2342 }
2343 
2344 /* Like rmap_walk, but caller holds relevant rmap lock */
2345 void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
2346 {
2347 	/* no ksm support for now */
2348 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2349 	if (folio_test_anon(folio))
2350 		rmap_walk_anon(folio, rwc, true);
2351 	else
2352 		rmap_walk_file(folio, rwc, true);
2353 }
2354 
2355 #ifdef CONFIG_HUGETLB_PAGE
2356 /*
2357  * The following two functions are for anonymous (private mapped) hugepages.
2358  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2359  * and no lru code, because we handle hugepages differently from common pages.
2360  */
2361 void hugepage_add_anon_rmap(struct page *page,
2362 			    struct vm_area_struct *vma, unsigned long address)
2363 {
2364 	struct anon_vma *anon_vma = vma->anon_vma;
2365 	int first;
2366 
2367 	BUG_ON(!PageLocked(page));
2368 	BUG_ON(!anon_vma);
2369 	/* address might be in next vma when migration races vma_adjust */
2370 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2371 	if (first)
2372 		__page_set_anon_rmap(page, vma, address, 0);
2373 }
2374 
2375 void hugepage_add_new_anon_rmap(struct page *page,
2376 			struct vm_area_struct *vma, unsigned long address)
2377 {
2378 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2379 	atomic_set(compound_mapcount_ptr(page), 0);
2380 	atomic_set(compound_pincount_ptr(page), 0);
2381 
2382 	__page_set_anon_rmap(page, vma, address, 1);
2383 }
2384 #endif /* CONFIG_HUGETLB_PAGE */
2385