1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * anon_vma->rwsem 29 * mm->page_table_lock or pte_lock 30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 35 * mapping->tree_lock (widely used) 36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 38 * sb_lock (within inode_lock in fs/fs-writeback.c) 39 * mapping->tree_lock (widely used, in set_page_dirty, 40 * in arch-dependent flush_dcache_mmap_lock, 41 * within bdi.wb->list_lock in __sync_single_inode) 42 * 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 44 * ->tasklist_lock 45 * pte map lock 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/pagemap.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/slab.h> 55 #include <linux/init.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/rcupdate.h> 59 #include <linux/export.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/backing-dev.h> 65 #include <linux/page_idle.h> 66 67 #include <asm/tlbflush.h> 68 69 #include <trace/events/tlb.h> 70 71 #include "internal.h" 72 73 static struct kmem_cache *anon_vma_cachep; 74 static struct kmem_cache *anon_vma_chain_cachep; 75 76 static inline struct anon_vma *anon_vma_alloc(void) 77 { 78 struct anon_vma *anon_vma; 79 80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 81 if (anon_vma) { 82 atomic_set(&anon_vma->refcount, 1); 83 anon_vma->degree = 1; /* Reference for first vma */ 84 anon_vma->parent = anon_vma; 85 /* 86 * Initialise the anon_vma root to point to itself. If called 87 * from fork, the root will be reset to the parents anon_vma. 88 */ 89 anon_vma->root = anon_vma; 90 } 91 92 return anon_vma; 93 } 94 95 static inline void anon_vma_free(struct anon_vma *anon_vma) 96 { 97 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 98 99 /* 100 * Synchronize against page_lock_anon_vma_read() such that 101 * we can safely hold the lock without the anon_vma getting 102 * freed. 103 * 104 * Relies on the full mb implied by the atomic_dec_and_test() from 105 * put_anon_vma() against the acquire barrier implied by 106 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 107 * 108 * page_lock_anon_vma_read() VS put_anon_vma() 109 * down_read_trylock() atomic_dec_and_test() 110 * LOCK MB 111 * atomic_read() rwsem_is_locked() 112 * 113 * LOCK should suffice since the actual taking of the lock must 114 * happen _before_ what follows. 115 */ 116 might_sleep(); 117 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 118 anon_vma_lock_write(anon_vma); 119 anon_vma_unlock_write(anon_vma); 120 } 121 122 kmem_cache_free(anon_vma_cachep, anon_vma); 123 } 124 125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 126 { 127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 128 } 129 130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 131 { 132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 133 } 134 135 static void anon_vma_chain_link(struct vm_area_struct *vma, 136 struct anon_vma_chain *avc, 137 struct anon_vma *anon_vma) 138 { 139 avc->vma = vma; 140 avc->anon_vma = anon_vma; 141 list_add(&avc->same_vma, &vma->anon_vma_chain); 142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 143 } 144 145 /** 146 * __anon_vma_prepare - attach an anon_vma to a memory region 147 * @vma: the memory region in question 148 * 149 * This makes sure the memory mapping described by 'vma' has 150 * an 'anon_vma' attached to it, so that we can associate the 151 * anonymous pages mapped into it with that anon_vma. 152 * 153 * The common case will be that we already have one, which 154 * is handled inline by anon_vma_prepare(). But if 155 * not we either need to find an adjacent mapping that we 156 * can re-use the anon_vma from (very common when the only 157 * reason for splitting a vma has been mprotect()), or we 158 * allocate a new one. 159 * 160 * Anon-vma allocations are very subtle, because we may have 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 162 * and that may actually touch the spinlock even in the newly 163 * allocated vma (it depends on RCU to make sure that the 164 * anon_vma isn't actually destroyed). 165 * 166 * As a result, we need to do proper anon_vma locking even 167 * for the new allocation. At the same time, we do not want 168 * to do any locking for the common case of already having 169 * an anon_vma. 170 * 171 * This must be called with the mmap_sem held for reading. 172 */ 173 int __anon_vma_prepare(struct vm_area_struct *vma) 174 { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *anon_vma, *allocated; 177 struct anon_vma_chain *avc; 178 179 might_sleep(); 180 181 avc = anon_vma_chain_alloc(GFP_KERNEL); 182 if (!avc) 183 goto out_enomem; 184 185 anon_vma = find_mergeable_anon_vma(vma); 186 allocated = NULL; 187 if (!anon_vma) { 188 anon_vma = anon_vma_alloc(); 189 if (unlikely(!anon_vma)) 190 goto out_enomem_free_avc; 191 allocated = anon_vma; 192 } 193 194 anon_vma_lock_write(anon_vma); 195 /* page_table_lock to protect against threads */ 196 spin_lock(&mm->page_table_lock); 197 if (likely(!vma->anon_vma)) { 198 vma->anon_vma = anon_vma; 199 anon_vma_chain_link(vma, avc, anon_vma); 200 /* vma reference or self-parent link for new root */ 201 anon_vma->degree++; 202 allocated = NULL; 203 avc = NULL; 204 } 205 spin_unlock(&mm->page_table_lock); 206 anon_vma_unlock_write(anon_vma); 207 208 if (unlikely(allocated)) 209 put_anon_vma(allocated); 210 if (unlikely(avc)) 211 anon_vma_chain_free(avc); 212 213 return 0; 214 215 out_enomem_free_avc: 216 anon_vma_chain_free(avc); 217 out_enomem: 218 return -ENOMEM; 219 } 220 221 /* 222 * This is a useful helper function for locking the anon_vma root as 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 224 * have the same vma. 225 * 226 * Such anon_vma's should have the same root, so you'd expect to see 227 * just a single mutex_lock for the whole traversal. 228 */ 229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 230 { 231 struct anon_vma *new_root = anon_vma->root; 232 if (new_root != root) { 233 if (WARN_ON_ONCE(root)) 234 up_write(&root->rwsem); 235 root = new_root; 236 down_write(&root->rwsem); 237 } 238 return root; 239 } 240 241 static inline void unlock_anon_vma_root(struct anon_vma *root) 242 { 243 if (root) 244 up_write(&root->rwsem); 245 } 246 247 /* 248 * Attach the anon_vmas from src to dst. 249 * Returns 0 on success, -ENOMEM on failure. 250 * 251 * If dst->anon_vma is NULL this function tries to find and reuse existing 252 * anon_vma which has no vmas and only one child anon_vma. This prevents 253 * degradation of anon_vma hierarchy to endless linear chain in case of 254 * constantly forking task. On the other hand, an anon_vma with more than one 255 * child isn't reused even if there was no alive vma, thus rmap walker has a 256 * good chance of avoiding scanning the whole hierarchy when it searches where 257 * page is mapped. 258 */ 259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 260 { 261 struct anon_vma_chain *avc, *pavc; 262 struct anon_vma *root = NULL; 263 264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 265 struct anon_vma *anon_vma; 266 267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 268 if (unlikely(!avc)) { 269 unlock_anon_vma_root(root); 270 root = NULL; 271 avc = anon_vma_chain_alloc(GFP_KERNEL); 272 if (!avc) 273 goto enomem_failure; 274 } 275 anon_vma = pavc->anon_vma; 276 root = lock_anon_vma_root(root, anon_vma); 277 anon_vma_chain_link(dst, avc, anon_vma); 278 279 /* 280 * Reuse existing anon_vma if its degree lower than two, 281 * that means it has no vma and only one anon_vma child. 282 * 283 * Do not chose parent anon_vma, otherwise first child 284 * will always reuse it. Root anon_vma is never reused: 285 * it has self-parent reference and at least one child. 286 */ 287 if (!dst->anon_vma && anon_vma != src->anon_vma && 288 anon_vma->degree < 2) 289 dst->anon_vma = anon_vma; 290 } 291 if (dst->anon_vma) 292 dst->anon_vma->degree++; 293 unlock_anon_vma_root(root); 294 return 0; 295 296 enomem_failure: 297 /* 298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 299 * decremented in unlink_anon_vmas(). 300 * We can safely do this because callers of anon_vma_clone() don't care 301 * about dst->anon_vma if anon_vma_clone() failed. 302 */ 303 dst->anon_vma = NULL; 304 unlink_anon_vmas(dst); 305 return -ENOMEM; 306 } 307 308 /* 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that 310 * the corresponding VMA in the parent process is attached to. 311 * Returns 0 on success, non-zero on failure. 312 */ 313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 314 { 315 struct anon_vma_chain *avc; 316 struct anon_vma *anon_vma; 317 int error; 318 319 /* Don't bother if the parent process has no anon_vma here. */ 320 if (!pvma->anon_vma) 321 return 0; 322 323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 324 vma->anon_vma = NULL; 325 326 /* 327 * First, attach the new VMA to the parent VMA's anon_vmas, 328 * so rmap can find non-COWed pages in child processes. 329 */ 330 error = anon_vma_clone(vma, pvma); 331 if (error) 332 return error; 333 334 /* An existing anon_vma has been reused, all done then. */ 335 if (vma->anon_vma) 336 return 0; 337 338 /* Then add our own anon_vma. */ 339 anon_vma = anon_vma_alloc(); 340 if (!anon_vma) 341 goto out_error; 342 avc = anon_vma_chain_alloc(GFP_KERNEL); 343 if (!avc) 344 goto out_error_free_anon_vma; 345 346 /* 347 * The root anon_vma's spinlock is the lock actually used when we 348 * lock any of the anon_vmas in this anon_vma tree. 349 */ 350 anon_vma->root = pvma->anon_vma->root; 351 anon_vma->parent = pvma->anon_vma; 352 /* 353 * With refcounts, an anon_vma can stay around longer than the 354 * process it belongs to. The root anon_vma needs to be pinned until 355 * this anon_vma is freed, because the lock lives in the root. 356 */ 357 get_anon_vma(anon_vma->root); 358 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 359 vma->anon_vma = anon_vma; 360 anon_vma_lock_write(anon_vma); 361 anon_vma_chain_link(vma, avc, anon_vma); 362 anon_vma->parent->degree++; 363 anon_vma_unlock_write(anon_vma); 364 365 return 0; 366 367 out_error_free_anon_vma: 368 put_anon_vma(anon_vma); 369 out_error: 370 unlink_anon_vmas(vma); 371 return -ENOMEM; 372 } 373 374 void unlink_anon_vmas(struct vm_area_struct *vma) 375 { 376 struct anon_vma_chain *avc, *next; 377 struct anon_vma *root = NULL; 378 379 /* 380 * Unlink each anon_vma chained to the VMA. This list is ordered 381 * from newest to oldest, ensuring the root anon_vma gets freed last. 382 */ 383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 384 struct anon_vma *anon_vma = avc->anon_vma; 385 386 root = lock_anon_vma_root(root, anon_vma); 387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 388 389 /* 390 * Leave empty anon_vmas on the list - we'll need 391 * to free them outside the lock. 392 */ 393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 394 anon_vma->parent->degree--; 395 continue; 396 } 397 398 list_del(&avc->same_vma); 399 anon_vma_chain_free(avc); 400 } 401 if (vma->anon_vma) 402 vma->anon_vma->degree--; 403 unlock_anon_vma_root(root); 404 405 /* 406 * Iterate the list once more, it now only contains empty and unlinked 407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 408 * needing to write-acquire the anon_vma->root->rwsem. 409 */ 410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 411 struct anon_vma *anon_vma = avc->anon_vma; 412 413 VM_WARN_ON(anon_vma->degree); 414 put_anon_vma(anon_vma); 415 416 list_del(&avc->same_vma); 417 anon_vma_chain_free(avc); 418 } 419 } 420 421 static void anon_vma_ctor(void *data) 422 { 423 struct anon_vma *anon_vma = data; 424 425 init_rwsem(&anon_vma->rwsem); 426 atomic_set(&anon_vma->refcount, 0); 427 anon_vma->rb_root = RB_ROOT; 428 } 429 430 void __init anon_vma_init(void) 431 { 432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 434 anon_vma_ctor); 435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 436 SLAB_PANIC|SLAB_ACCOUNT); 437 } 438 439 /* 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 441 * 442 * Since there is no serialization what so ever against page_remove_rmap() 443 * the best this function can do is return a locked anon_vma that might 444 * have been relevant to this page. 445 * 446 * The page might have been remapped to a different anon_vma or the anon_vma 447 * returned may already be freed (and even reused). 448 * 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 451 * ensure that any anon_vma obtained from the page will still be valid for as 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 453 * 454 * All users of this function must be very careful when walking the anon_vma 455 * chain and verify that the page in question is indeed mapped in it 456 * [ something equivalent to page_mapped_in_vma() ]. 457 * 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 459 * that the anon_vma pointer from page->mapping is valid if there is a 460 * mapcount, we can dereference the anon_vma after observing those. 461 */ 462 struct anon_vma *page_get_anon_vma(struct page *page) 463 { 464 struct anon_vma *anon_vma = NULL; 465 unsigned long anon_mapping; 466 467 rcu_read_lock(); 468 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 470 goto out; 471 if (!page_mapped(page)) 472 goto out; 473 474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 475 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 476 anon_vma = NULL; 477 goto out; 478 } 479 480 /* 481 * If this page is still mapped, then its anon_vma cannot have been 482 * freed. But if it has been unmapped, we have no security against the 483 * anon_vma structure being freed and reused (for another anon_vma: 484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 485 * above cannot corrupt). 486 */ 487 if (!page_mapped(page)) { 488 rcu_read_unlock(); 489 put_anon_vma(anon_vma); 490 return NULL; 491 } 492 out: 493 rcu_read_unlock(); 494 495 return anon_vma; 496 } 497 498 /* 499 * Similar to page_get_anon_vma() except it locks the anon_vma. 500 * 501 * Its a little more complex as it tries to keep the fast path to a single 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 503 * reference like with page_get_anon_vma() and then block on the mutex. 504 */ 505 struct anon_vma *page_lock_anon_vma_read(struct page *page) 506 { 507 struct anon_vma *anon_vma = NULL; 508 struct anon_vma *root_anon_vma; 509 unsigned long anon_mapping; 510 511 rcu_read_lock(); 512 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 514 goto out; 515 if (!page_mapped(page)) 516 goto out; 517 518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 519 root_anon_vma = READ_ONCE(anon_vma->root); 520 if (down_read_trylock(&root_anon_vma->rwsem)) { 521 /* 522 * If the page is still mapped, then this anon_vma is still 523 * its anon_vma, and holding the mutex ensures that it will 524 * not go away, see anon_vma_free(). 525 */ 526 if (!page_mapped(page)) { 527 up_read(&root_anon_vma->rwsem); 528 anon_vma = NULL; 529 } 530 goto out; 531 } 532 533 /* trylock failed, we got to sleep */ 534 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 535 anon_vma = NULL; 536 goto out; 537 } 538 539 if (!page_mapped(page)) { 540 rcu_read_unlock(); 541 put_anon_vma(anon_vma); 542 return NULL; 543 } 544 545 /* we pinned the anon_vma, its safe to sleep */ 546 rcu_read_unlock(); 547 anon_vma_lock_read(anon_vma); 548 549 if (atomic_dec_and_test(&anon_vma->refcount)) { 550 /* 551 * Oops, we held the last refcount, release the lock 552 * and bail -- can't simply use put_anon_vma() because 553 * we'll deadlock on the anon_vma_lock_write() recursion. 554 */ 555 anon_vma_unlock_read(anon_vma); 556 __put_anon_vma(anon_vma); 557 anon_vma = NULL; 558 } 559 560 return anon_vma; 561 562 out: 563 rcu_read_unlock(); 564 return anon_vma; 565 } 566 567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 568 { 569 anon_vma_unlock_read(anon_vma); 570 } 571 572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 573 /* 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 575 * important if a PTE was dirty when it was unmapped that it's flushed 576 * before any IO is initiated on the page to prevent lost writes. Similarly, 577 * it must be flushed before freeing to prevent data leakage. 578 */ 579 void try_to_unmap_flush(void) 580 { 581 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 582 583 if (!tlb_ubc->flush_required) 584 return; 585 586 arch_tlbbatch_flush(&tlb_ubc->arch); 587 tlb_ubc->flush_required = false; 588 tlb_ubc->writable = false; 589 } 590 591 /* Flush iff there are potentially writable TLB entries that can race with IO */ 592 void try_to_unmap_flush_dirty(void) 593 { 594 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 595 596 if (tlb_ubc->writable) 597 try_to_unmap_flush(); 598 } 599 600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 601 { 602 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 603 604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 605 tlb_ubc->flush_required = true; 606 607 /* 608 * Ensure compiler does not re-order the setting of tlb_flush_batched 609 * before the PTE is cleared. 610 */ 611 barrier(); 612 mm->tlb_flush_batched = true; 613 614 /* 615 * If the PTE was dirty then it's best to assume it's writable. The 616 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 617 * before the page is queued for IO. 618 */ 619 if (writable) 620 tlb_ubc->writable = true; 621 } 622 623 /* 624 * Returns true if the TLB flush should be deferred to the end of a batch of 625 * unmap operations to reduce IPIs. 626 */ 627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 628 { 629 bool should_defer = false; 630 631 if (!(flags & TTU_BATCH_FLUSH)) 632 return false; 633 634 /* If remote CPUs need to be flushed then defer batch the flush */ 635 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 636 should_defer = true; 637 put_cpu(); 638 639 return should_defer; 640 } 641 642 /* 643 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 644 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 645 * operation such as mprotect or munmap to race between reclaim unmapping 646 * the page and flushing the page. If this race occurs, it potentially allows 647 * access to data via a stale TLB entry. Tracking all mm's that have TLB 648 * batching in flight would be expensive during reclaim so instead track 649 * whether TLB batching occurred in the past and if so then do a flush here 650 * if required. This will cost one additional flush per reclaim cycle paid 651 * by the first operation at risk such as mprotect and mumap. 652 * 653 * This must be called under the PTL so that an access to tlb_flush_batched 654 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 655 * via the PTL. 656 */ 657 void flush_tlb_batched_pending(struct mm_struct *mm) 658 { 659 if (mm->tlb_flush_batched) { 660 flush_tlb_mm(mm); 661 662 /* 663 * Do not allow the compiler to re-order the clearing of 664 * tlb_flush_batched before the tlb is flushed. 665 */ 666 barrier(); 667 mm->tlb_flush_batched = false; 668 } 669 } 670 #else 671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 672 { 673 } 674 675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 676 { 677 return false; 678 } 679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 680 681 /* 682 * At what user virtual address is page expected in vma? 683 * Caller should check the page is actually part of the vma. 684 */ 685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 686 { 687 unsigned long address; 688 if (PageAnon(page)) { 689 struct anon_vma *page__anon_vma = page_anon_vma(page); 690 /* 691 * Note: swapoff's unuse_vma() is more efficient with this 692 * check, and needs it to match anon_vma when KSM is active. 693 */ 694 if (!vma->anon_vma || !page__anon_vma || 695 vma->anon_vma->root != page__anon_vma->root) 696 return -EFAULT; 697 } else if (page->mapping) { 698 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 699 return -EFAULT; 700 } else 701 return -EFAULT; 702 address = __vma_address(page, vma); 703 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 704 return -EFAULT; 705 return address; 706 } 707 708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 709 { 710 pgd_t *pgd; 711 p4d_t *p4d; 712 pud_t *pud; 713 pmd_t *pmd = NULL; 714 pmd_t pmde; 715 716 pgd = pgd_offset(mm, address); 717 if (!pgd_present(*pgd)) 718 goto out; 719 720 p4d = p4d_offset(pgd, address); 721 if (!p4d_present(*p4d)) 722 goto out; 723 724 pud = pud_offset(p4d, address); 725 if (!pud_present(*pud)) 726 goto out; 727 728 pmd = pmd_offset(pud, address); 729 /* 730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 731 * without holding anon_vma lock for write. So when looking for a 732 * genuine pmde (in which to find pte), test present and !THP together. 733 */ 734 pmde = *pmd; 735 barrier(); 736 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 737 pmd = NULL; 738 out: 739 return pmd; 740 } 741 742 struct page_referenced_arg { 743 int mapcount; 744 int referenced; 745 unsigned long vm_flags; 746 struct mem_cgroup *memcg; 747 }; 748 /* 749 * arg: page_referenced_arg will be passed 750 */ 751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 752 unsigned long address, void *arg) 753 { 754 struct page_referenced_arg *pra = arg; 755 struct page_vma_mapped_walk pvmw = { 756 .page = page, 757 .vma = vma, 758 .address = address, 759 }; 760 int referenced = 0; 761 762 while (page_vma_mapped_walk(&pvmw)) { 763 address = pvmw.address; 764 765 if (vma->vm_flags & VM_LOCKED) { 766 page_vma_mapped_walk_done(&pvmw); 767 pra->vm_flags |= VM_LOCKED; 768 return false; /* To break the loop */ 769 } 770 771 if (pvmw.pte) { 772 if (ptep_clear_flush_young_notify(vma, address, 773 pvmw.pte)) { 774 /* 775 * Don't treat a reference through 776 * a sequentially read mapping as such. 777 * If the page has been used in another mapping, 778 * we will catch it; if this other mapping is 779 * already gone, the unmap path will have set 780 * PG_referenced or activated the page. 781 */ 782 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 783 referenced++; 784 } 785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 786 if (pmdp_clear_flush_young_notify(vma, address, 787 pvmw.pmd)) 788 referenced++; 789 } else { 790 /* unexpected pmd-mapped page? */ 791 WARN_ON_ONCE(1); 792 } 793 794 pra->mapcount--; 795 } 796 797 if (referenced) 798 clear_page_idle(page); 799 if (test_and_clear_page_young(page)) 800 referenced++; 801 802 if (referenced) { 803 pra->referenced++; 804 pra->vm_flags |= vma->vm_flags; 805 } 806 807 if (!pra->mapcount) 808 return false; /* To break the loop */ 809 810 return true; 811 } 812 813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 814 { 815 struct page_referenced_arg *pra = arg; 816 struct mem_cgroup *memcg = pra->memcg; 817 818 if (!mm_match_cgroup(vma->vm_mm, memcg)) 819 return true; 820 821 return false; 822 } 823 824 /** 825 * page_referenced - test if the page was referenced 826 * @page: the page to test 827 * @is_locked: caller holds lock on the page 828 * @memcg: target memory cgroup 829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 830 * 831 * Quick test_and_clear_referenced for all mappings to a page, 832 * returns the number of ptes which referenced the page. 833 */ 834 int page_referenced(struct page *page, 835 int is_locked, 836 struct mem_cgroup *memcg, 837 unsigned long *vm_flags) 838 { 839 int we_locked = 0; 840 struct page_referenced_arg pra = { 841 .mapcount = total_mapcount(page), 842 .memcg = memcg, 843 }; 844 struct rmap_walk_control rwc = { 845 .rmap_one = page_referenced_one, 846 .arg = (void *)&pra, 847 .anon_lock = page_lock_anon_vma_read, 848 }; 849 850 *vm_flags = 0; 851 if (!page_mapped(page)) 852 return 0; 853 854 if (!page_rmapping(page)) 855 return 0; 856 857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 858 we_locked = trylock_page(page); 859 if (!we_locked) 860 return 1; 861 } 862 863 /* 864 * If we are reclaiming on behalf of a cgroup, skip 865 * counting on behalf of references from different 866 * cgroups 867 */ 868 if (memcg) { 869 rwc.invalid_vma = invalid_page_referenced_vma; 870 } 871 872 rmap_walk(page, &rwc); 873 *vm_flags = pra.vm_flags; 874 875 if (we_locked) 876 unlock_page(page); 877 878 return pra.referenced; 879 } 880 881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 882 unsigned long address, void *arg) 883 { 884 struct page_vma_mapped_walk pvmw = { 885 .page = page, 886 .vma = vma, 887 .address = address, 888 .flags = PVMW_SYNC, 889 }; 890 unsigned long start = address, end; 891 int *cleaned = arg; 892 893 /* 894 * We have to assume the worse case ie pmd for invalidation. Note that 895 * the page can not be free from this function. 896 */ 897 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); 898 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); 899 900 while (page_vma_mapped_walk(&pvmw)) { 901 unsigned long cstart, cend; 902 int ret = 0; 903 904 cstart = address = pvmw.address; 905 if (pvmw.pte) { 906 pte_t entry; 907 pte_t *pte = pvmw.pte; 908 909 if (!pte_dirty(*pte) && !pte_write(*pte)) 910 continue; 911 912 flush_cache_page(vma, address, pte_pfn(*pte)); 913 entry = ptep_clear_flush(vma, address, pte); 914 entry = pte_wrprotect(entry); 915 entry = pte_mkclean(entry); 916 set_pte_at(vma->vm_mm, address, pte, entry); 917 cend = cstart + PAGE_SIZE; 918 ret = 1; 919 } else { 920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 921 pmd_t *pmd = pvmw.pmd; 922 pmd_t entry; 923 924 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 925 continue; 926 927 flush_cache_page(vma, address, page_to_pfn(page)); 928 entry = pmdp_huge_clear_flush(vma, address, pmd); 929 entry = pmd_wrprotect(entry); 930 entry = pmd_mkclean(entry); 931 set_pmd_at(vma->vm_mm, address, pmd, entry); 932 cstart &= PMD_MASK; 933 cend = cstart + PMD_SIZE; 934 ret = 1; 935 #else 936 /* unexpected pmd-mapped page? */ 937 WARN_ON_ONCE(1); 938 #endif 939 } 940 941 if (ret) { 942 mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend); 943 (*cleaned)++; 944 } 945 } 946 947 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 948 949 return true; 950 } 951 952 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 953 { 954 if (vma->vm_flags & VM_SHARED) 955 return false; 956 957 return true; 958 } 959 960 int page_mkclean(struct page *page) 961 { 962 int cleaned = 0; 963 struct address_space *mapping; 964 struct rmap_walk_control rwc = { 965 .arg = (void *)&cleaned, 966 .rmap_one = page_mkclean_one, 967 .invalid_vma = invalid_mkclean_vma, 968 }; 969 970 BUG_ON(!PageLocked(page)); 971 972 if (!page_mapped(page)) 973 return 0; 974 975 mapping = page_mapping(page); 976 if (!mapping) 977 return 0; 978 979 rmap_walk(page, &rwc); 980 981 return cleaned; 982 } 983 EXPORT_SYMBOL_GPL(page_mkclean); 984 985 /** 986 * page_move_anon_rmap - move a page to our anon_vma 987 * @page: the page to move to our anon_vma 988 * @vma: the vma the page belongs to 989 * 990 * When a page belongs exclusively to one process after a COW event, 991 * that page can be moved into the anon_vma that belongs to just that 992 * process, so the rmap code will not search the parent or sibling 993 * processes. 994 */ 995 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 996 { 997 struct anon_vma *anon_vma = vma->anon_vma; 998 999 page = compound_head(page); 1000 1001 VM_BUG_ON_PAGE(!PageLocked(page), page); 1002 VM_BUG_ON_VMA(!anon_vma, vma); 1003 1004 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1005 /* 1006 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1007 * simultaneously, so a concurrent reader (eg page_referenced()'s 1008 * PageAnon()) will not see one without the other. 1009 */ 1010 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1011 } 1012 1013 /** 1014 * __page_set_anon_rmap - set up new anonymous rmap 1015 * @page: Page to add to rmap 1016 * @vma: VM area to add page to. 1017 * @address: User virtual address of the mapping 1018 * @exclusive: the page is exclusively owned by the current process 1019 */ 1020 static void __page_set_anon_rmap(struct page *page, 1021 struct vm_area_struct *vma, unsigned long address, int exclusive) 1022 { 1023 struct anon_vma *anon_vma = vma->anon_vma; 1024 1025 BUG_ON(!anon_vma); 1026 1027 if (PageAnon(page)) 1028 return; 1029 1030 /* 1031 * If the page isn't exclusively mapped into this vma, 1032 * we must use the _oldest_ possible anon_vma for the 1033 * page mapping! 1034 */ 1035 if (!exclusive) 1036 anon_vma = anon_vma->root; 1037 1038 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1039 page->mapping = (struct address_space *) anon_vma; 1040 page->index = linear_page_index(vma, address); 1041 } 1042 1043 /** 1044 * __page_check_anon_rmap - sanity check anonymous rmap addition 1045 * @page: the page to add the mapping to 1046 * @vma: the vm area in which the mapping is added 1047 * @address: the user virtual address mapped 1048 */ 1049 static void __page_check_anon_rmap(struct page *page, 1050 struct vm_area_struct *vma, unsigned long address) 1051 { 1052 #ifdef CONFIG_DEBUG_VM 1053 /* 1054 * The page's anon-rmap details (mapping and index) are guaranteed to 1055 * be set up correctly at this point. 1056 * 1057 * We have exclusion against page_add_anon_rmap because the caller 1058 * always holds the page locked, except if called from page_dup_rmap, 1059 * in which case the page is already known to be setup. 1060 * 1061 * We have exclusion against page_add_new_anon_rmap because those pages 1062 * are initially only visible via the pagetables, and the pte is locked 1063 * over the call to page_add_new_anon_rmap. 1064 */ 1065 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1066 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); 1067 #endif 1068 } 1069 1070 /** 1071 * page_add_anon_rmap - add pte mapping to an anonymous page 1072 * @page: the page to add the mapping to 1073 * @vma: the vm area in which the mapping is added 1074 * @address: the user virtual address mapped 1075 * @compound: charge the page as compound or small page 1076 * 1077 * The caller needs to hold the pte lock, and the page must be locked in 1078 * the anon_vma case: to serialize mapping,index checking after setting, 1079 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1080 * (but PageKsm is never downgraded to PageAnon). 1081 */ 1082 void page_add_anon_rmap(struct page *page, 1083 struct vm_area_struct *vma, unsigned long address, bool compound) 1084 { 1085 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1086 } 1087 1088 /* 1089 * Special version of the above for do_swap_page, which often runs 1090 * into pages that are exclusively owned by the current process. 1091 * Everybody else should continue to use page_add_anon_rmap above. 1092 */ 1093 void do_page_add_anon_rmap(struct page *page, 1094 struct vm_area_struct *vma, unsigned long address, int flags) 1095 { 1096 bool compound = flags & RMAP_COMPOUND; 1097 bool first; 1098 1099 if (compound) { 1100 atomic_t *mapcount; 1101 VM_BUG_ON_PAGE(!PageLocked(page), page); 1102 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1103 mapcount = compound_mapcount_ptr(page); 1104 first = atomic_inc_and_test(mapcount); 1105 } else { 1106 first = atomic_inc_and_test(&page->_mapcount); 1107 } 1108 1109 if (first) { 1110 int nr = compound ? hpage_nr_pages(page) : 1; 1111 /* 1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1113 * these counters are not modified in interrupt context, and 1114 * pte lock(a spinlock) is held, which implies preemption 1115 * disabled. 1116 */ 1117 if (compound) 1118 __inc_node_page_state(page, NR_ANON_THPS); 1119 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1120 } 1121 if (unlikely(PageKsm(page))) 1122 return; 1123 1124 VM_BUG_ON_PAGE(!PageLocked(page), page); 1125 1126 /* address might be in next vma when migration races vma_adjust */ 1127 if (first) 1128 __page_set_anon_rmap(page, vma, address, 1129 flags & RMAP_EXCLUSIVE); 1130 else 1131 __page_check_anon_rmap(page, vma, address); 1132 } 1133 1134 /** 1135 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1136 * @page: the page to add the mapping to 1137 * @vma: the vm area in which the mapping is added 1138 * @address: the user virtual address mapped 1139 * @compound: charge the page as compound or small page 1140 * 1141 * Same as page_add_anon_rmap but must only be called on *new* pages. 1142 * This means the inc-and-test can be bypassed. 1143 * Page does not have to be locked. 1144 */ 1145 void page_add_new_anon_rmap(struct page *page, 1146 struct vm_area_struct *vma, unsigned long address, bool compound) 1147 { 1148 int nr = compound ? hpage_nr_pages(page) : 1; 1149 1150 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1151 __SetPageSwapBacked(page); 1152 if (compound) { 1153 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1154 /* increment count (starts at -1) */ 1155 atomic_set(compound_mapcount_ptr(page), 0); 1156 __inc_node_page_state(page, NR_ANON_THPS); 1157 } else { 1158 /* Anon THP always mapped first with PMD */ 1159 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1160 /* increment count (starts at -1) */ 1161 atomic_set(&page->_mapcount, 0); 1162 } 1163 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1164 __page_set_anon_rmap(page, vma, address, 1); 1165 } 1166 1167 /** 1168 * page_add_file_rmap - add pte mapping to a file page 1169 * @page: the page to add the mapping to 1170 * 1171 * The caller needs to hold the pte lock. 1172 */ 1173 void page_add_file_rmap(struct page *page, bool compound) 1174 { 1175 int i, nr = 1; 1176 1177 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1178 lock_page_memcg(page); 1179 if (compound && PageTransHuge(page)) { 1180 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1181 if (atomic_inc_and_test(&page[i]._mapcount)) 1182 nr++; 1183 } 1184 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1185 goto out; 1186 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1187 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1188 } else { 1189 if (PageTransCompound(page) && page_mapping(page)) { 1190 VM_WARN_ON_ONCE(!PageLocked(page)); 1191 1192 SetPageDoubleMap(compound_head(page)); 1193 if (PageMlocked(page)) 1194 clear_page_mlock(compound_head(page)); 1195 } 1196 if (!atomic_inc_and_test(&page->_mapcount)) 1197 goto out; 1198 } 1199 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1200 out: 1201 unlock_page_memcg(page); 1202 } 1203 1204 static void page_remove_file_rmap(struct page *page, bool compound) 1205 { 1206 int i, nr = 1; 1207 1208 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1209 lock_page_memcg(page); 1210 1211 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1212 if (unlikely(PageHuge(page))) { 1213 /* hugetlb pages are always mapped with pmds */ 1214 atomic_dec(compound_mapcount_ptr(page)); 1215 goto out; 1216 } 1217 1218 /* page still mapped by someone else? */ 1219 if (compound && PageTransHuge(page)) { 1220 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1221 if (atomic_add_negative(-1, &page[i]._mapcount)) 1222 nr++; 1223 } 1224 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1225 goto out; 1226 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1227 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1228 } else { 1229 if (!atomic_add_negative(-1, &page->_mapcount)) 1230 goto out; 1231 } 1232 1233 /* 1234 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1235 * these counters are not modified in interrupt context, and 1236 * pte lock(a spinlock) is held, which implies preemption disabled. 1237 */ 1238 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1239 1240 if (unlikely(PageMlocked(page))) 1241 clear_page_mlock(page); 1242 out: 1243 unlock_page_memcg(page); 1244 } 1245 1246 static void page_remove_anon_compound_rmap(struct page *page) 1247 { 1248 int i, nr; 1249 1250 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1251 return; 1252 1253 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1254 if (unlikely(PageHuge(page))) 1255 return; 1256 1257 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1258 return; 1259 1260 __dec_node_page_state(page, NR_ANON_THPS); 1261 1262 if (TestClearPageDoubleMap(page)) { 1263 /* 1264 * Subpages can be mapped with PTEs too. Check how many of 1265 * themi are still mapped. 1266 */ 1267 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1268 if (atomic_add_negative(-1, &page[i]._mapcount)) 1269 nr++; 1270 } 1271 } else { 1272 nr = HPAGE_PMD_NR; 1273 } 1274 1275 if (unlikely(PageMlocked(page))) 1276 clear_page_mlock(page); 1277 1278 if (nr) { 1279 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1280 deferred_split_huge_page(page); 1281 } 1282 } 1283 1284 /** 1285 * page_remove_rmap - take down pte mapping from a page 1286 * @page: page to remove mapping from 1287 * @compound: uncharge the page as compound or small page 1288 * 1289 * The caller needs to hold the pte lock. 1290 */ 1291 void page_remove_rmap(struct page *page, bool compound) 1292 { 1293 if (!PageAnon(page)) 1294 return page_remove_file_rmap(page, compound); 1295 1296 if (compound) 1297 return page_remove_anon_compound_rmap(page); 1298 1299 /* page still mapped by someone else? */ 1300 if (!atomic_add_negative(-1, &page->_mapcount)) 1301 return; 1302 1303 /* 1304 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1305 * these counters are not modified in interrupt context, and 1306 * pte lock(a spinlock) is held, which implies preemption disabled. 1307 */ 1308 __dec_node_page_state(page, NR_ANON_MAPPED); 1309 1310 if (unlikely(PageMlocked(page))) 1311 clear_page_mlock(page); 1312 1313 if (PageTransCompound(page)) 1314 deferred_split_huge_page(compound_head(page)); 1315 1316 /* 1317 * It would be tidy to reset the PageAnon mapping here, 1318 * but that might overwrite a racing page_add_anon_rmap 1319 * which increments mapcount after us but sets mapping 1320 * before us: so leave the reset to free_hot_cold_page, 1321 * and remember that it's only reliable while mapped. 1322 * Leaving it set also helps swapoff to reinstate ptes 1323 * faster for those pages still in swapcache. 1324 */ 1325 } 1326 1327 /* 1328 * @arg: enum ttu_flags will be passed to this argument 1329 */ 1330 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1331 unsigned long address, void *arg) 1332 { 1333 struct mm_struct *mm = vma->vm_mm; 1334 struct page_vma_mapped_walk pvmw = { 1335 .page = page, 1336 .vma = vma, 1337 .address = address, 1338 }; 1339 pte_t pteval; 1340 struct page *subpage; 1341 bool ret = true; 1342 unsigned long start = address, end; 1343 enum ttu_flags flags = (enum ttu_flags)arg; 1344 1345 /* munlock has nothing to gain from examining un-locked vmas */ 1346 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1347 return true; 1348 1349 if (flags & TTU_SPLIT_HUGE_PMD) { 1350 split_huge_pmd_address(vma, address, 1351 flags & TTU_MIGRATION, page); 1352 } 1353 1354 /* 1355 * We have to assume the worse case ie pmd for invalidation. Note that 1356 * the page can not be free in this function as call of try_to_unmap() 1357 * must hold a reference on the page. 1358 */ 1359 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); 1360 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); 1361 1362 while (page_vma_mapped_walk(&pvmw)) { 1363 /* 1364 * If the page is mlock()d, we cannot swap it out. 1365 * If it's recently referenced (perhaps page_referenced 1366 * skipped over this mm) then we should reactivate it. 1367 */ 1368 if (!(flags & TTU_IGNORE_MLOCK)) { 1369 if (vma->vm_flags & VM_LOCKED) { 1370 /* PTE-mapped THP are never mlocked */ 1371 if (!PageTransCompound(page)) { 1372 /* 1373 * Holding pte lock, we do *not* need 1374 * mmap_sem here 1375 */ 1376 mlock_vma_page(page); 1377 } 1378 ret = false; 1379 page_vma_mapped_walk_done(&pvmw); 1380 break; 1381 } 1382 if (flags & TTU_MUNLOCK) 1383 continue; 1384 } 1385 1386 /* Unexpected PMD-mapped THP? */ 1387 VM_BUG_ON_PAGE(!pvmw.pte, page); 1388 1389 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1390 address = pvmw.address; 1391 1392 1393 if (!(flags & TTU_IGNORE_ACCESS)) { 1394 if (ptep_clear_flush_young_notify(vma, address, 1395 pvmw.pte)) { 1396 ret = false; 1397 page_vma_mapped_walk_done(&pvmw); 1398 break; 1399 } 1400 } 1401 1402 /* Nuke the page table entry. */ 1403 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1404 if (should_defer_flush(mm, flags)) { 1405 /* 1406 * We clear the PTE but do not flush so potentially 1407 * a remote CPU could still be writing to the page. 1408 * If the entry was previously clean then the 1409 * architecture must guarantee that a clear->dirty 1410 * transition on a cached TLB entry is written through 1411 * and traps if the PTE is unmapped. 1412 */ 1413 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1414 1415 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1416 } else { 1417 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1418 } 1419 1420 /* Move the dirty bit to the page. Now the pte is gone. */ 1421 if (pte_dirty(pteval)) 1422 set_page_dirty(page); 1423 1424 /* Update high watermark before we lower rss */ 1425 update_hiwater_rss(mm); 1426 1427 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1428 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1429 if (PageHuge(page)) { 1430 int nr = 1 << compound_order(page); 1431 hugetlb_count_sub(nr, mm); 1432 set_huge_swap_pte_at(mm, address, 1433 pvmw.pte, pteval, 1434 vma_mmu_pagesize(vma)); 1435 } else { 1436 dec_mm_counter(mm, mm_counter(page)); 1437 set_pte_at(mm, address, pvmw.pte, pteval); 1438 } 1439 1440 } else if (pte_unused(pteval)) { 1441 /* 1442 * The guest indicated that the page content is of no 1443 * interest anymore. Simply discard the pte, vmscan 1444 * will take care of the rest. 1445 */ 1446 dec_mm_counter(mm, mm_counter(page)); 1447 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1448 (flags & TTU_MIGRATION)) { 1449 swp_entry_t entry; 1450 pte_t swp_pte; 1451 /* 1452 * Store the pfn of the page in a special migration 1453 * pte. do_swap_page() will wait until the migration 1454 * pte is removed and then restart fault handling. 1455 */ 1456 entry = make_migration_entry(subpage, 1457 pte_write(pteval)); 1458 swp_pte = swp_entry_to_pte(entry); 1459 if (pte_soft_dirty(pteval)) 1460 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1461 set_pte_at(mm, address, pvmw.pte, swp_pte); 1462 } else if (PageAnon(page)) { 1463 swp_entry_t entry = { .val = page_private(subpage) }; 1464 pte_t swp_pte; 1465 /* 1466 * Store the swap location in the pte. 1467 * See handle_pte_fault() ... 1468 */ 1469 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1470 WARN_ON_ONCE(1); 1471 ret = false; 1472 /* We have to invalidate as we cleared the pte */ 1473 page_vma_mapped_walk_done(&pvmw); 1474 break; 1475 } 1476 1477 /* MADV_FREE page check */ 1478 if (!PageSwapBacked(page)) { 1479 if (!PageDirty(page)) { 1480 dec_mm_counter(mm, MM_ANONPAGES); 1481 goto discard; 1482 } 1483 1484 /* 1485 * If the page was redirtied, it cannot be 1486 * discarded. Remap the page to page table. 1487 */ 1488 set_pte_at(mm, address, pvmw.pte, pteval); 1489 SetPageSwapBacked(page); 1490 ret = false; 1491 page_vma_mapped_walk_done(&pvmw); 1492 break; 1493 } 1494 1495 if (swap_duplicate(entry) < 0) { 1496 set_pte_at(mm, address, pvmw.pte, pteval); 1497 ret = false; 1498 page_vma_mapped_walk_done(&pvmw); 1499 break; 1500 } 1501 if (list_empty(&mm->mmlist)) { 1502 spin_lock(&mmlist_lock); 1503 if (list_empty(&mm->mmlist)) 1504 list_add(&mm->mmlist, &init_mm.mmlist); 1505 spin_unlock(&mmlist_lock); 1506 } 1507 dec_mm_counter(mm, MM_ANONPAGES); 1508 inc_mm_counter(mm, MM_SWAPENTS); 1509 swp_pte = swp_entry_to_pte(entry); 1510 if (pte_soft_dirty(pteval)) 1511 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1512 set_pte_at(mm, address, pvmw.pte, swp_pte); 1513 } else 1514 dec_mm_counter(mm, mm_counter_file(page)); 1515 discard: 1516 page_remove_rmap(subpage, PageHuge(page)); 1517 put_page(page); 1518 mmu_notifier_invalidate_range(mm, address, 1519 address + PAGE_SIZE); 1520 } 1521 1522 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); 1523 1524 return ret; 1525 } 1526 1527 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1528 { 1529 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1530 1531 if (!maybe_stack) 1532 return false; 1533 1534 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1535 VM_STACK_INCOMPLETE_SETUP) 1536 return true; 1537 1538 return false; 1539 } 1540 1541 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1542 { 1543 return is_vma_temporary_stack(vma); 1544 } 1545 1546 static int page_mapcount_is_zero(struct page *page) 1547 { 1548 return !total_mapcount(page); 1549 } 1550 1551 /** 1552 * try_to_unmap - try to remove all page table mappings to a page 1553 * @page: the page to get unmapped 1554 * @flags: action and flags 1555 * 1556 * Tries to remove all the page table entries which are mapping this 1557 * page, used in the pageout path. Caller must hold the page lock. 1558 * 1559 * If unmap is successful, return true. Otherwise, false. 1560 */ 1561 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1562 { 1563 struct rmap_walk_control rwc = { 1564 .rmap_one = try_to_unmap_one, 1565 .arg = (void *)flags, 1566 .done = page_mapcount_is_zero, 1567 .anon_lock = page_lock_anon_vma_read, 1568 }; 1569 1570 /* 1571 * During exec, a temporary VMA is setup and later moved. 1572 * The VMA is moved under the anon_vma lock but not the 1573 * page tables leading to a race where migration cannot 1574 * find the migration ptes. Rather than increasing the 1575 * locking requirements of exec(), migration skips 1576 * temporary VMAs until after exec() completes. 1577 */ 1578 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1579 rwc.invalid_vma = invalid_migration_vma; 1580 1581 if (flags & TTU_RMAP_LOCKED) 1582 rmap_walk_locked(page, &rwc); 1583 else 1584 rmap_walk(page, &rwc); 1585 1586 return !page_mapcount(page) ? true : false; 1587 } 1588 1589 static int page_not_mapped(struct page *page) 1590 { 1591 return !page_mapped(page); 1592 }; 1593 1594 /** 1595 * try_to_munlock - try to munlock a page 1596 * @page: the page to be munlocked 1597 * 1598 * Called from munlock code. Checks all of the VMAs mapping the page 1599 * to make sure nobody else has this page mlocked. The page will be 1600 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1601 */ 1602 1603 void try_to_munlock(struct page *page) 1604 { 1605 struct rmap_walk_control rwc = { 1606 .rmap_one = try_to_unmap_one, 1607 .arg = (void *)TTU_MUNLOCK, 1608 .done = page_not_mapped, 1609 .anon_lock = page_lock_anon_vma_read, 1610 1611 }; 1612 1613 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1614 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1615 1616 rmap_walk(page, &rwc); 1617 } 1618 1619 void __put_anon_vma(struct anon_vma *anon_vma) 1620 { 1621 struct anon_vma *root = anon_vma->root; 1622 1623 anon_vma_free(anon_vma); 1624 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1625 anon_vma_free(root); 1626 } 1627 1628 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1629 struct rmap_walk_control *rwc) 1630 { 1631 struct anon_vma *anon_vma; 1632 1633 if (rwc->anon_lock) 1634 return rwc->anon_lock(page); 1635 1636 /* 1637 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1638 * because that depends on page_mapped(); but not all its usages 1639 * are holding mmap_sem. Users without mmap_sem are required to 1640 * take a reference count to prevent the anon_vma disappearing 1641 */ 1642 anon_vma = page_anon_vma(page); 1643 if (!anon_vma) 1644 return NULL; 1645 1646 anon_vma_lock_read(anon_vma); 1647 return anon_vma; 1648 } 1649 1650 /* 1651 * rmap_walk_anon - do something to anonymous page using the object-based 1652 * rmap method 1653 * @page: the page to be handled 1654 * @rwc: control variable according to each walk type 1655 * 1656 * Find all the mappings of a page using the mapping pointer and the vma chains 1657 * contained in the anon_vma struct it points to. 1658 * 1659 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1660 * where the page was found will be held for write. So, we won't recheck 1661 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1662 * LOCKED. 1663 */ 1664 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1665 bool locked) 1666 { 1667 struct anon_vma *anon_vma; 1668 pgoff_t pgoff_start, pgoff_end; 1669 struct anon_vma_chain *avc; 1670 1671 if (locked) { 1672 anon_vma = page_anon_vma(page); 1673 /* anon_vma disappear under us? */ 1674 VM_BUG_ON_PAGE(!anon_vma, page); 1675 } else { 1676 anon_vma = rmap_walk_anon_lock(page, rwc); 1677 } 1678 if (!anon_vma) 1679 return; 1680 1681 pgoff_start = page_to_pgoff(page); 1682 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1683 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1684 pgoff_start, pgoff_end) { 1685 struct vm_area_struct *vma = avc->vma; 1686 unsigned long address = vma_address(page, vma); 1687 1688 cond_resched(); 1689 1690 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1691 continue; 1692 1693 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1694 break; 1695 if (rwc->done && rwc->done(page)) 1696 break; 1697 } 1698 1699 if (!locked) 1700 anon_vma_unlock_read(anon_vma); 1701 } 1702 1703 /* 1704 * rmap_walk_file - do something to file page using the object-based rmap method 1705 * @page: the page to be handled 1706 * @rwc: control variable according to each walk type 1707 * 1708 * Find all the mappings of a page using the mapping pointer and the vma chains 1709 * contained in the address_space struct it points to. 1710 * 1711 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1712 * where the page was found will be held for write. So, we won't recheck 1713 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1714 * LOCKED. 1715 */ 1716 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1717 bool locked) 1718 { 1719 struct address_space *mapping = page_mapping(page); 1720 pgoff_t pgoff_start, pgoff_end; 1721 struct vm_area_struct *vma; 1722 1723 /* 1724 * The page lock not only makes sure that page->mapping cannot 1725 * suddenly be NULLified by truncation, it makes sure that the 1726 * structure at mapping cannot be freed and reused yet, 1727 * so we can safely take mapping->i_mmap_rwsem. 1728 */ 1729 VM_BUG_ON_PAGE(!PageLocked(page), page); 1730 1731 if (!mapping) 1732 return; 1733 1734 pgoff_start = page_to_pgoff(page); 1735 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1736 if (!locked) 1737 i_mmap_lock_read(mapping); 1738 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1739 pgoff_start, pgoff_end) { 1740 unsigned long address = vma_address(page, vma); 1741 1742 cond_resched(); 1743 1744 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1745 continue; 1746 1747 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1748 goto done; 1749 if (rwc->done && rwc->done(page)) 1750 goto done; 1751 } 1752 1753 done: 1754 if (!locked) 1755 i_mmap_unlock_read(mapping); 1756 } 1757 1758 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1759 { 1760 if (unlikely(PageKsm(page))) 1761 rmap_walk_ksm(page, rwc); 1762 else if (PageAnon(page)) 1763 rmap_walk_anon(page, rwc, false); 1764 else 1765 rmap_walk_file(page, rwc, false); 1766 } 1767 1768 /* Like rmap_walk, but caller holds relevant rmap lock */ 1769 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1770 { 1771 /* no ksm support for now */ 1772 VM_BUG_ON_PAGE(PageKsm(page), page); 1773 if (PageAnon(page)) 1774 rmap_walk_anon(page, rwc, true); 1775 else 1776 rmap_walk_file(page, rwc, true); 1777 } 1778 1779 #ifdef CONFIG_HUGETLB_PAGE 1780 /* 1781 * The following three functions are for anonymous (private mapped) hugepages. 1782 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1783 * and no lru code, because we handle hugepages differently from common pages. 1784 */ 1785 static void __hugepage_set_anon_rmap(struct page *page, 1786 struct vm_area_struct *vma, unsigned long address, int exclusive) 1787 { 1788 struct anon_vma *anon_vma = vma->anon_vma; 1789 1790 BUG_ON(!anon_vma); 1791 1792 if (PageAnon(page)) 1793 return; 1794 if (!exclusive) 1795 anon_vma = anon_vma->root; 1796 1797 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1798 page->mapping = (struct address_space *) anon_vma; 1799 page->index = linear_page_index(vma, address); 1800 } 1801 1802 void hugepage_add_anon_rmap(struct page *page, 1803 struct vm_area_struct *vma, unsigned long address) 1804 { 1805 struct anon_vma *anon_vma = vma->anon_vma; 1806 int first; 1807 1808 BUG_ON(!PageLocked(page)); 1809 BUG_ON(!anon_vma); 1810 /* address might be in next vma when migration races vma_adjust */ 1811 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1812 if (first) 1813 __hugepage_set_anon_rmap(page, vma, address, 0); 1814 } 1815 1816 void hugepage_add_new_anon_rmap(struct page *page, 1817 struct vm_area_struct *vma, unsigned long address) 1818 { 1819 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1820 atomic_set(compound_mapcount_ptr(page), 0); 1821 __hugepage_set_anon_rmap(page, vma, address, 1); 1822 } 1823 #endif /* CONFIG_HUGETLB_PAGE */ 1824