xref: /linux/mm/rmap.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 
67 #include <asm/tlbflush.h>
68 
69 #include <trace/events/tlb.h>
70 
71 #include "internal.h"
72 
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75 
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 	struct anon_vma *anon_vma;
79 
80 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 	if (anon_vma) {
82 		atomic_set(&anon_vma->refcount, 1);
83 		anon_vma->degree = 1;	/* Reference for first vma */
84 		anon_vma->parent = anon_vma;
85 		/*
86 		 * Initialise the anon_vma root to point to itself. If called
87 		 * from fork, the root will be reset to the parents anon_vma.
88 		 */
89 		anon_vma->root = anon_vma;
90 	}
91 
92 	return anon_vma;
93 }
94 
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
98 
99 	/*
100 	 * Synchronize against page_lock_anon_vma_read() such that
101 	 * we can safely hold the lock without the anon_vma getting
102 	 * freed.
103 	 *
104 	 * Relies on the full mb implied by the atomic_dec_and_test() from
105 	 * put_anon_vma() against the acquire barrier implied by
106 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 	 *
108 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
109 	 *   down_read_trylock()		  atomic_dec_and_test()
110 	 *   LOCK				  MB
111 	 *   atomic_read()			  rwsem_is_locked()
112 	 *
113 	 * LOCK should suffice since the actual taking of the lock must
114 	 * happen _before_ what follows.
115 	 */
116 	might_sleep();
117 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 		anon_vma_lock_write(anon_vma);
119 		anon_vma_unlock_write(anon_vma);
120 	}
121 
122 	kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124 
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129 
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134 
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 				struct anon_vma_chain *avc,
137 				struct anon_vma *anon_vma)
138 {
139 	avc->vma = vma;
140 	avc->anon_vma = anon_vma;
141 	list_add(&avc->same_vma, &vma->anon_vma_chain);
142 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144 
145 /**
146  * __anon_vma_prepare - attach an anon_vma to a memory region
147  * @vma: the memory region in question
148  *
149  * This makes sure the memory mapping described by 'vma' has
150  * an 'anon_vma' attached to it, so that we can associate the
151  * anonymous pages mapped into it with that anon_vma.
152  *
153  * The common case will be that we already have one, which
154  * is handled inline by anon_vma_prepare(). But if
155  * not we either need to find an adjacent mapping that we
156  * can re-use the anon_vma from (very common when the only
157  * reason for splitting a vma has been mprotect()), or we
158  * allocate a new one.
159  *
160  * Anon-vma allocations are very subtle, because we may have
161  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162  * and that may actually touch the spinlock even in the newly
163  * allocated vma (it depends on RCU to make sure that the
164  * anon_vma isn't actually destroyed).
165  *
166  * As a result, we need to do proper anon_vma locking even
167  * for the new allocation. At the same time, we do not want
168  * to do any locking for the common case of already having
169  * an anon_vma.
170  *
171  * This must be called with the mmap_sem held for reading.
172  */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 	struct mm_struct *mm = vma->vm_mm;
176 	struct anon_vma *anon_vma, *allocated;
177 	struct anon_vma_chain *avc;
178 
179 	might_sleep();
180 
181 	avc = anon_vma_chain_alloc(GFP_KERNEL);
182 	if (!avc)
183 		goto out_enomem;
184 
185 	anon_vma = find_mergeable_anon_vma(vma);
186 	allocated = NULL;
187 	if (!anon_vma) {
188 		anon_vma = anon_vma_alloc();
189 		if (unlikely(!anon_vma))
190 			goto out_enomem_free_avc;
191 		allocated = anon_vma;
192 	}
193 
194 	anon_vma_lock_write(anon_vma);
195 	/* page_table_lock to protect against threads */
196 	spin_lock(&mm->page_table_lock);
197 	if (likely(!vma->anon_vma)) {
198 		vma->anon_vma = anon_vma;
199 		anon_vma_chain_link(vma, avc, anon_vma);
200 		/* vma reference or self-parent link for new root */
201 		anon_vma->degree++;
202 		allocated = NULL;
203 		avc = NULL;
204 	}
205 	spin_unlock(&mm->page_table_lock);
206 	anon_vma_unlock_write(anon_vma);
207 
208 	if (unlikely(allocated))
209 		put_anon_vma(allocated);
210 	if (unlikely(avc))
211 		anon_vma_chain_free(avc);
212 
213 	return 0;
214 
215  out_enomem_free_avc:
216 	anon_vma_chain_free(avc);
217  out_enomem:
218 	return -ENOMEM;
219 }
220 
221 /*
222  * This is a useful helper function for locking the anon_vma root as
223  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224  * have the same vma.
225  *
226  * Such anon_vma's should have the same root, so you'd expect to see
227  * just a single mutex_lock for the whole traversal.
228  */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 	struct anon_vma *new_root = anon_vma->root;
232 	if (new_root != root) {
233 		if (WARN_ON_ONCE(root))
234 			up_write(&root->rwsem);
235 		root = new_root;
236 		down_write(&root->rwsem);
237 	}
238 	return root;
239 }
240 
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 	if (root)
244 		up_write(&root->rwsem);
245 }
246 
247 /*
248  * Attach the anon_vmas from src to dst.
249  * Returns 0 on success, -ENOMEM on failure.
250  *
251  * If dst->anon_vma is NULL this function tries to find and reuse existing
252  * anon_vma which has no vmas and only one child anon_vma. This prevents
253  * degradation of anon_vma hierarchy to endless linear chain in case of
254  * constantly forking task. On the other hand, an anon_vma with more than one
255  * child isn't reused even if there was no alive vma, thus rmap walker has a
256  * good chance of avoiding scanning the whole hierarchy when it searches where
257  * page is mapped.
258  */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 	struct anon_vma_chain *avc, *pavc;
262 	struct anon_vma *root = NULL;
263 
264 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 		struct anon_vma *anon_vma;
266 
267 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 		if (unlikely(!avc)) {
269 			unlock_anon_vma_root(root);
270 			root = NULL;
271 			avc = anon_vma_chain_alloc(GFP_KERNEL);
272 			if (!avc)
273 				goto enomem_failure;
274 		}
275 		anon_vma = pavc->anon_vma;
276 		root = lock_anon_vma_root(root, anon_vma);
277 		anon_vma_chain_link(dst, avc, anon_vma);
278 
279 		/*
280 		 * Reuse existing anon_vma if its degree lower than two,
281 		 * that means it has no vma and only one anon_vma child.
282 		 *
283 		 * Do not chose parent anon_vma, otherwise first child
284 		 * will always reuse it. Root anon_vma is never reused:
285 		 * it has self-parent reference and at least one child.
286 		 */
287 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 				anon_vma->degree < 2)
289 			dst->anon_vma = anon_vma;
290 	}
291 	if (dst->anon_vma)
292 		dst->anon_vma->degree++;
293 	unlock_anon_vma_root(root);
294 	return 0;
295 
296  enomem_failure:
297 	/*
298 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 	 * decremented in unlink_anon_vmas().
300 	 * We can safely do this because callers of anon_vma_clone() don't care
301 	 * about dst->anon_vma if anon_vma_clone() failed.
302 	 */
303 	dst->anon_vma = NULL;
304 	unlink_anon_vmas(dst);
305 	return -ENOMEM;
306 }
307 
308 /*
309  * Attach vma to its own anon_vma, as well as to the anon_vmas that
310  * the corresponding VMA in the parent process is attached to.
311  * Returns 0 on success, non-zero on failure.
312  */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 	struct anon_vma_chain *avc;
316 	struct anon_vma *anon_vma;
317 	int error;
318 
319 	/* Don't bother if the parent process has no anon_vma here. */
320 	if (!pvma->anon_vma)
321 		return 0;
322 
323 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 	vma->anon_vma = NULL;
325 
326 	/*
327 	 * First, attach the new VMA to the parent VMA's anon_vmas,
328 	 * so rmap can find non-COWed pages in child processes.
329 	 */
330 	error = anon_vma_clone(vma, pvma);
331 	if (error)
332 		return error;
333 
334 	/* An existing anon_vma has been reused, all done then. */
335 	if (vma->anon_vma)
336 		return 0;
337 
338 	/* Then add our own anon_vma. */
339 	anon_vma = anon_vma_alloc();
340 	if (!anon_vma)
341 		goto out_error;
342 	avc = anon_vma_chain_alloc(GFP_KERNEL);
343 	if (!avc)
344 		goto out_error_free_anon_vma;
345 
346 	/*
347 	 * The root anon_vma's spinlock is the lock actually used when we
348 	 * lock any of the anon_vmas in this anon_vma tree.
349 	 */
350 	anon_vma->root = pvma->anon_vma->root;
351 	anon_vma->parent = pvma->anon_vma;
352 	/*
353 	 * With refcounts, an anon_vma can stay around longer than the
354 	 * process it belongs to. The root anon_vma needs to be pinned until
355 	 * this anon_vma is freed, because the lock lives in the root.
356 	 */
357 	get_anon_vma(anon_vma->root);
358 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
359 	vma->anon_vma = anon_vma;
360 	anon_vma_lock_write(anon_vma);
361 	anon_vma_chain_link(vma, avc, anon_vma);
362 	anon_vma->parent->degree++;
363 	anon_vma_unlock_write(anon_vma);
364 
365 	return 0;
366 
367  out_error_free_anon_vma:
368 	put_anon_vma(anon_vma);
369  out_error:
370 	unlink_anon_vmas(vma);
371 	return -ENOMEM;
372 }
373 
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 	struct anon_vma_chain *avc, *next;
377 	struct anon_vma *root = NULL;
378 
379 	/*
380 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
381 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 	 */
383 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 		struct anon_vma *anon_vma = avc->anon_vma;
385 
386 		root = lock_anon_vma_root(root, anon_vma);
387 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388 
389 		/*
390 		 * Leave empty anon_vmas on the list - we'll need
391 		 * to free them outside the lock.
392 		 */
393 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 			anon_vma->parent->degree--;
395 			continue;
396 		}
397 
398 		list_del(&avc->same_vma);
399 		anon_vma_chain_free(avc);
400 	}
401 	if (vma->anon_vma)
402 		vma->anon_vma->degree--;
403 	unlock_anon_vma_root(root);
404 
405 	/*
406 	 * Iterate the list once more, it now only contains empty and unlinked
407 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 	 * needing to write-acquire the anon_vma->root->rwsem.
409 	 */
410 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 		struct anon_vma *anon_vma = avc->anon_vma;
412 
413 		VM_WARN_ON(anon_vma->degree);
414 		put_anon_vma(anon_vma);
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 }
420 
421 static void anon_vma_ctor(void *data)
422 {
423 	struct anon_vma *anon_vma = data;
424 
425 	init_rwsem(&anon_vma->rwsem);
426 	atomic_set(&anon_vma->refcount, 0);
427 	anon_vma->rb_root = RB_ROOT;
428 }
429 
430 void __init anon_vma_init(void)
431 {
432 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 			anon_vma_ctor);
435 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 			SLAB_PANIC|SLAB_ACCOUNT);
437 }
438 
439 /*
440  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441  *
442  * Since there is no serialization what so ever against page_remove_rmap()
443  * the best this function can do is return a locked anon_vma that might
444  * have been relevant to this page.
445  *
446  * The page might have been remapped to a different anon_vma or the anon_vma
447  * returned may already be freed (and even reused).
448  *
449  * In case it was remapped to a different anon_vma, the new anon_vma will be a
450  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451  * ensure that any anon_vma obtained from the page will still be valid for as
452  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453  *
454  * All users of this function must be very careful when walking the anon_vma
455  * chain and verify that the page in question is indeed mapped in it
456  * [ something equivalent to page_mapped_in_vma() ].
457  *
458  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459  * that the anon_vma pointer from page->mapping is valid if there is a
460  * mapcount, we can dereference the anon_vma after observing those.
461  */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 	struct anon_vma *anon_vma = NULL;
465 	unsigned long anon_mapping;
466 
467 	rcu_read_lock();
468 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 		goto out;
471 	if (!page_mapped(page))
472 		goto out;
473 
474 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 		anon_vma = NULL;
477 		goto out;
478 	}
479 
480 	/*
481 	 * If this page is still mapped, then its anon_vma cannot have been
482 	 * freed.  But if it has been unmapped, we have no security against the
483 	 * anon_vma structure being freed and reused (for another anon_vma:
484 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 	 * above cannot corrupt).
486 	 */
487 	if (!page_mapped(page)) {
488 		rcu_read_unlock();
489 		put_anon_vma(anon_vma);
490 		return NULL;
491 	}
492 out:
493 	rcu_read_unlock();
494 
495 	return anon_vma;
496 }
497 
498 /*
499  * Similar to page_get_anon_vma() except it locks the anon_vma.
500  *
501  * Its a little more complex as it tries to keep the fast path to a single
502  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503  * reference like with page_get_anon_vma() and then block on the mutex.
504  */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 	struct anon_vma *anon_vma = NULL;
508 	struct anon_vma *root_anon_vma;
509 	unsigned long anon_mapping;
510 
511 	rcu_read_lock();
512 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 		goto out;
515 	if (!page_mapped(page))
516 		goto out;
517 
518 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 	root_anon_vma = READ_ONCE(anon_vma->root);
520 	if (down_read_trylock(&root_anon_vma->rwsem)) {
521 		/*
522 		 * If the page is still mapped, then this anon_vma is still
523 		 * its anon_vma, and holding the mutex ensures that it will
524 		 * not go away, see anon_vma_free().
525 		 */
526 		if (!page_mapped(page)) {
527 			up_read(&root_anon_vma->rwsem);
528 			anon_vma = NULL;
529 		}
530 		goto out;
531 	}
532 
533 	/* trylock failed, we got to sleep */
534 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 		anon_vma = NULL;
536 		goto out;
537 	}
538 
539 	if (!page_mapped(page)) {
540 		rcu_read_unlock();
541 		put_anon_vma(anon_vma);
542 		return NULL;
543 	}
544 
545 	/* we pinned the anon_vma, its safe to sleep */
546 	rcu_read_unlock();
547 	anon_vma_lock_read(anon_vma);
548 
549 	if (atomic_dec_and_test(&anon_vma->refcount)) {
550 		/*
551 		 * Oops, we held the last refcount, release the lock
552 		 * and bail -- can't simply use put_anon_vma() because
553 		 * we'll deadlock on the anon_vma_lock_write() recursion.
554 		 */
555 		anon_vma_unlock_read(anon_vma);
556 		__put_anon_vma(anon_vma);
557 		anon_vma = NULL;
558 	}
559 
560 	return anon_vma;
561 
562 out:
563 	rcu_read_unlock();
564 	return anon_vma;
565 }
566 
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 	anon_vma_unlock_read(anon_vma);
570 }
571 
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575  * important if a PTE was dirty when it was unmapped that it's flushed
576  * before any IO is initiated on the page to prevent lost writes. Similarly,
577  * it must be flushed before freeing to prevent data leakage.
578  */
579 void try_to_unmap_flush(void)
580 {
581 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 
583 	if (!tlb_ubc->flush_required)
584 		return;
585 
586 	arch_tlbbatch_flush(&tlb_ubc->arch);
587 	tlb_ubc->flush_required = false;
588 	tlb_ubc->writable = false;
589 }
590 
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595 
596 	if (tlb_ubc->writable)
597 		try_to_unmap_flush();
598 }
599 
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603 
604 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 	tlb_ubc->flush_required = true;
606 
607 	/*
608 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
609 	 * before the PTE is cleared.
610 	 */
611 	barrier();
612 	mm->tlb_flush_batched = true;
613 
614 	/*
615 	 * If the PTE was dirty then it's best to assume it's writable. The
616 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
617 	 * before the page is queued for IO.
618 	 */
619 	if (writable)
620 		tlb_ubc->writable = true;
621 }
622 
623 /*
624  * Returns true if the TLB flush should be deferred to the end of a batch of
625  * unmap operations to reduce IPIs.
626  */
627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
628 {
629 	bool should_defer = false;
630 
631 	if (!(flags & TTU_BATCH_FLUSH))
632 		return false;
633 
634 	/* If remote CPUs need to be flushed then defer batch the flush */
635 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
636 		should_defer = true;
637 	put_cpu();
638 
639 	return should_defer;
640 }
641 
642 /*
643  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
644  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
645  * operation such as mprotect or munmap to race between reclaim unmapping
646  * the page and flushing the page. If this race occurs, it potentially allows
647  * access to data via a stale TLB entry. Tracking all mm's that have TLB
648  * batching in flight would be expensive during reclaim so instead track
649  * whether TLB batching occurred in the past and if so then do a flush here
650  * if required. This will cost one additional flush per reclaim cycle paid
651  * by the first operation at risk such as mprotect and mumap.
652  *
653  * This must be called under the PTL so that an access to tlb_flush_batched
654  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
655  * via the PTL.
656  */
657 void flush_tlb_batched_pending(struct mm_struct *mm)
658 {
659 	if (mm->tlb_flush_batched) {
660 		flush_tlb_mm(mm);
661 
662 		/*
663 		 * Do not allow the compiler to re-order the clearing of
664 		 * tlb_flush_batched before the tlb is flushed.
665 		 */
666 		barrier();
667 		mm->tlb_flush_batched = false;
668 	}
669 }
670 #else
671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
672 {
673 }
674 
675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
676 {
677 	return false;
678 }
679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
680 
681 /*
682  * At what user virtual address is page expected in vma?
683  * Caller should check the page is actually part of the vma.
684  */
685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
686 {
687 	unsigned long address;
688 	if (PageAnon(page)) {
689 		struct anon_vma *page__anon_vma = page_anon_vma(page);
690 		/*
691 		 * Note: swapoff's unuse_vma() is more efficient with this
692 		 * check, and needs it to match anon_vma when KSM is active.
693 		 */
694 		if (!vma->anon_vma || !page__anon_vma ||
695 		    vma->anon_vma->root != page__anon_vma->root)
696 			return -EFAULT;
697 	} else if (page->mapping) {
698 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
699 			return -EFAULT;
700 	} else
701 		return -EFAULT;
702 	address = __vma_address(page, vma);
703 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 		return -EFAULT;
705 	return address;
706 }
707 
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 	pgd_t *pgd;
711 	p4d_t *p4d;
712 	pud_t *pud;
713 	pmd_t *pmd = NULL;
714 	pmd_t pmde;
715 
716 	pgd = pgd_offset(mm, address);
717 	if (!pgd_present(*pgd))
718 		goto out;
719 
720 	p4d = p4d_offset(pgd, address);
721 	if (!p4d_present(*p4d))
722 		goto out;
723 
724 	pud = pud_offset(p4d, address);
725 	if (!pud_present(*pud))
726 		goto out;
727 
728 	pmd = pmd_offset(pud, address);
729 	/*
730 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 	 * without holding anon_vma lock for write.  So when looking for a
732 	 * genuine pmde (in which to find pte), test present and !THP together.
733 	 */
734 	pmde = *pmd;
735 	barrier();
736 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 		pmd = NULL;
738 out:
739 	return pmd;
740 }
741 
742 struct page_referenced_arg {
743 	int mapcount;
744 	int referenced;
745 	unsigned long vm_flags;
746 	struct mem_cgroup *memcg;
747 };
748 /*
749  * arg: page_referenced_arg will be passed
750  */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 			unsigned long address, void *arg)
753 {
754 	struct page_referenced_arg *pra = arg;
755 	struct page_vma_mapped_walk pvmw = {
756 		.page = page,
757 		.vma = vma,
758 		.address = address,
759 	};
760 	int referenced = 0;
761 
762 	while (page_vma_mapped_walk(&pvmw)) {
763 		address = pvmw.address;
764 
765 		if (vma->vm_flags & VM_LOCKED) {
766 			page_vma_mapped_walk_done(&pvmw);
767 			pra->vm_flags |= VM_LOCKED;
768 			return false; /* To break the loop */
769 		}
770 
771 		if (pvmw.pte) {
772 			if (ptep_clear_flush_young_notify(vma, address,
773 						pvmw.pte)) {
774 				/*
775 				 * Don't treat a reference through
776 				 * a sequentially read mapping as such.
777 				 * If the page has been used in another mapping,
778 				 * we will catch it; if this other mapping is
779 				 * already gone, the unmap path will have set
780 				 * PG_referenced or activated the page.
781 				 */
782 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 					referenced++;
784 			}
785 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 			if (pmdp_clear_flush_young_notify(vma, address,
787 						pvmw.pmd))
788 				referenced++;
789 		} else {
790 			/* unexpected pmd-mapped page? */
791 			WARN_ON_ONCE(1);
792 		}
793 
794 		pra->mapcount--;
795 	}
796 
797 	if (referenced)
798 		clear_page_idle(page);
799 	if (test_and_clear_page_young(page))
800 		referenced++;
801 
802 	if (referenced) {
803 		pra->referenced++;
804 		pra->vm_flags |= vma->vm_flags;
805 	}
806 
807 	if (!pra->mapcount)
808 		return false; /* To break the loop */
809 
810 	return true;
811 }
812 
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 	struct page_referenced_arg *pra = arg;
816 	struct mem_cgroup *memcg = pra->memcg;
817 
818 	if (!mm_match_cgroup(vma->vm_mm, memcg))
819 		return true;
820 
821 	return false;
822 }
823 
824 /**
825  * page_referenced - test if the page was referenced
826  * @page: the page to test
827  * @is_locked: caller holds lock on the page
828  * @memcg: target memory cgroup
829  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830  *
831  * Quick test_and_clear_referenced for all mappings to a page,
832  * returns the number of ptes which referenced the page.
833  */
834 int page_referenced(struct page *page,
835 		    int is_locked,
836 		    struct mem_cgroup *memcg,
837 		    unsigned long *vm_flags)
838 {
839 	int we_locked = 0;
840 	struct page_referenced_arg pra = {
841 		.mapcount = total_mapcount(page),
842 		.memcg = memcg,
843 	};
844 	struct rmap_walk_control rwc = {
845 		.rmap_one = page_referenced_one,
846 		.arg = (void *)&pra,
847 		.anon_lock = page_lock_anon_vma_read,
848 	};
849 
850 	*vm_flags = 0;
851 	if (!page_mapped(page))
852 		return 0;
853 
854 	if (!page_rmapping(page))
855 		return 0;
856 
857 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 		we_locked = trylock_page(page);
859 		if (!we_locked)
860 			return 1;
861 	}
862 
863 	/*
864 	 * If we are reclaiming on behalf of a cgroup, skip
865 	 * counting on behalf of references from different
866 	 * cgroups
867 	 */
868 	if (memcg) {
869 		rwc.invalid_vma = invalid_page_referenced_vma;
870 	}
871 
872 	rmap_walk(page, &rwc);
873 	*vm_flags = pra.vm_flags;
874 
875 	if (we_locked)
876 		unlock_page(page);
877 
878 	return pra.referenced;
879 }
880 
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 			    unsigned long address, void *arg)
883 {
884 	struct page_vma_mapped_walk pvmw = {
885 		.page = page,
886 		.vma = vma,
887 		.address = address,
888 		.flags = PVMW_SYNC,
889 	};
890 	unsigned long start = address, end;
891 	int *cleaned = arg;
892 
893 	/*
894 	 * We have to assume the worse case ie pmd for invalidation. Note that
895 	 * the page can not be free from this function.
896 	 */
897 	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
898 	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
899 
900 	while (page_vma_mapped_walk(&pvmw)) {
901 		unsigned long cstart, cend;
902 		int ret = 0;
903 
904 		cstart = address = pvmw.address;
905 		if (pvmw.pte) {
906 			pte_t entry;
907 			pte_t *pte = pvmw.pte;
908 
909 			if (!pte_dirty(*pte) && !pte_write(*pte))
910 				continue;
911 
912 			flush_cache_page(vma, address, pte_pfn(*pte));
913 			entry = ptep_clear_flush(vma, address, pte);
914 			entry = pte_wrprotect(entry);
915 			entry = pte_mkclean(entry);
916 			set_pte_at(vma->vm_mm, address, pte, entry);
917 			cend = cstart + PAGE_SIZE;
918 			ret = 1;
919 		} else {
920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 			pmd_t *pmd = pvmw.pmd;
922 			pmd_t entry;
923 
924 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
925 				continue;
926 
927 			flush_cache_page(vma, address, page_to_pfn(page));
928 			entry = pmdp_huge_clear_flush(vma, address, pmd);
929 			entry = pmd_wrprotect(entry);
930 			entry = pmd_mkclean(entry);
931 			set_pmd_at(vma->vm_mm, address, pmd, entry);
932 			cstart &= PMD_MASK;
933 			cend = cstart + PMD_SIZE;
934 			ret = 1;
935 #else
936 			/* unexpected pmd-mapped page? */
937 			WARN_ON_ONCE(1);
938 #endif
939 		}
940 
941 		if (ret) {
942 			mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend);
943 			(*cleaned)++;
944 		}
945 	}
946 
947 	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
948 
949 	return true;
950 }
951 
952 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
953 {
954 	if (vma->vm_flags & VM_SHARED)
955 		return false;
956 
957 	return true;
958 }
959 
960 int page_mkclean(struct page *page)
961 {
962 	int cleaned = 0;
963 	struct address_space *mapping;
964 	struct rmap_walk_control rwc = {
965 		.arg = (void *)&cleaned,
966 		.rmap_one = page_mkclean_one,
967 		.invalid_vma = invalid_mkclean_vma,
968 	};
969 
970 	BUG_ON(!PageLocked(page));
971 
972 	if (!page_mapped(page))
973 		return 0;
974 
975 	mapping = page_mapping(page);
976 	if (!mapping)
977 		return 0;
978 
979 	rmap_walk(page, &rwc);
980 
981 	return cleaned;
982 }
983 EXPORT_SYMBOL_GPL(page_mkclean);
984 
985 /**
986  * page_move_anon_rmap - move a page to our anon_vma
987  * @page:	the page to move to our anon_vma
988  * @vma:	the vma the page belongs to
989  *
990  * When a page belongs exclusively to one process after a COW event,
991  * that page can be moved into the anon_vma that belongs to just that
992  * process, so the rmap code will not search the parent or sibling
993  * processes.
994  */
995 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
996 {
997 	struct anon_vma *anon_vma = vma->anon_vma;
998 
999 	page = compound_head(page);
1000 
1001 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1002 	VM_BUG_ON_VMA(!anon_vma, vma);
1003 
1004 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1005 	/*
1006 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1007 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1008 	 * PageAnon()) will not see one without the other.
1009 	 */
1010 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1011 }
1012 
1013 /**
1014  * __page_set_anon_rmap - set up new anonymous rmap
1015  * @page:	Page to add to rmap
1016  * @vma:	VM area to add page to.
1017  * @address:	User virtual address of the mapping
1018  * @exclusive:	the page is exclusively owned by the current process
1019  */
1020 static void __page_set_anon_rmap(struct page *page,
1021 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1022 {
1023 	struct anon_vma *anon_vma = vma->anon_vma;
1024 
1025 	BUG_ON(!anon_vma);
1026 
1027 	if (PageAnon(page))
1028 		return;
1029 
1030 	/*
1031 	 * If the page isn't exclusively mapped into this vma,
1032 	 * we must use the _oldest_ possible anon_vma for the
1033 	 * page mapping!
1034 	 */
1035 	if (!exclusive)
1036 		anon_vma = anon_vma->root;
1037 
1038 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1039 	page->mapping = (struct address_space *) anon_vma;
1040 	page->index = linear_page_index(vma, address);
1041 }
1042 
1043 /**
1044  * __page_check_anon_rmap - sanity check anonymous rmap addition
1045  * @page:	the page to add the mapping to
1046  * @vma:	the vm area in which the mapping is added
1047  * @address:	the user virtual address mapped
1048  */
1049 static void __page_check_anon_rmap(struct page *page,
1050 	struct vm_area_struct *vma, unsigned long address)
1051 {
1052 #ifdef CONFIG_DEBUG_VM
1053 	/*
1054 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1055 	 * be set up correctly at this point.
1056 	 *
1057 	 * We have exclusion against page_add_anon_rmap because the caller
1058 	 * always holds the page locked, except if called from page_dup_rmap,
1059 	 * in which case the page is already known to be setup.
1060 	 *
1061 	 * We have exclusion against page_add_new_anon_rmap because those pages
1062 	 * are initially only visible via the pagetables, and the pte is locked
1063 	 * over the call to page_add_new_anon_rmap.
1064 	 */
1065 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1066 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1067 #endif
1068 }
1069 
1070 /**
1071  * page_add_anon_rmap - add pte mapping to an anonymous page
1072  * @page:	the page to add the mapping to
1073  * @vma:	the vm area in which the mapping is added
1074  * @address:	the user virtual address mapped
1075  * @compound:	charge the page as compound or small page
1076  *
1077  * The caller needs to hold the pte lock, and the page must be locked in
1078  * the anon_vma case: to serialize mapping,index checking after setting,
1079  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1080  * (but PageKsm is never downgraded to PageAnon).
1081  */
1082 void page_add_anon_rmap(struct page *page,
1083 	struct vm_area_struct *vma, unsigned long address, bool compound)
1084 {
1085 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1086 }
1087 
1088 /*
1089  * Special version of the above for do_swap_page, which often runs
1090  * into pages that are exclusively owned by the current process.
1091  * Everybody else should continue to use page_add_anon_rmap above.
1092  */
1093 void do_page_add_anon_rmap(struct page *page,
1094 	struct vm_area_struct *vma, unsigned long address, int flags)
1095 {
1096 	bool compound = flags & RMAP_COMPOUND;
1097 	bool first;
1098 
1099 	if (compound) {
1100 		atomic_t *mapcount;
1101 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1102 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1103 		mapcount = compound_mapcount_ptr(page);
1104 		first = atomic_inc_and_test(mapcount);
1105 	} else {
1106 		first = atomic_inc_and_test(&page->_mapcount);
1107 	}
1108 
1109 	if (first) {
1110 		int nr = compound ? hpage_nr_pages(page) : 1;
1111 		/*
1112 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 		 * these counters are not modified in interrupt context, and
1114 		 * pte lock(a spinlock) is held, which implies preemption
1115 		 * disabled.
1116 		 */
1117 		if (compound)
1118 			__inc_node_page_state(page, NR_ANON_THPS);
1119 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1120 	}
1121 	if (unlikely(PageKsm(page)))
1122 		return;
1123 
1124 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1125 
1126 	/* address might be in next vma when migration races vma_adjust */
1127 	if (first)
1128 		__page_set_anon_rmap(page, vma, address,
1129 				flags & RMAP_EXCLUSIVE);
1130 	else
1131 		__page_check_anon_rmap(page, vma, address);
1132 }
1133 
1134 /**
1135  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1136  * @page:	the page to add the mapping to
1137  * @vma:	the vm area in which the mapping is added
1138  * @address:	the user virtual address mapped
1139  * @compound:	charge the page as compound or small page
1140  *
1141  * Same as page_add_anon_rmap but must only be called on *new* pages.
1142  * This means the inc-and-test can be bypassed.
1143  * Page does not have to be locked.
1144  */
1145 void page_add_new_anon_rmap(struct page *page,
1146 	struct vm_area_struct *vma, unsigned long address, bool compound)
1147 {
1148 	int nr = compound ? hpage_nr_pages(page) : 1;
1149 
1150 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1151 	__SetPageSwapBacked(page);
1152 	if (compound) {
1153 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1154 		/* increment count (starts at -1) */
1155 		atomic_set(compound_mapcount_ptr(page), 0);
1156 		__inc_node_page_state(page, NR_ANON_THPS);
1157 	} else {
1158 		/* Anon THP always mapped first with PMD */
1159 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1160 		/* increment count (starts at -1) */
1161 		atomic_set(&page->_mapcount, 0);
1162 	}
1163 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1164 	__page_set_anon_rmap(page, vma, address, 1);
1165 }
1166 
1167 /**
1168  * page_add_file_rmap - add pte mapping to a file page
1169  * @page: the page to add the mapping to
1170  *
1171  * The caller needs to hold the pte lock.
1172  */
1173 void page_add_file_rmap(struct page *page, bool compound)
1174 {
1175 	int i, nr = 1;
1176 
1177 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1178 	lock_page_memcg(page);
1179 	if (compound && PageTransHuge(page)) {
1180 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1181 			if (atomic_inc_and_test(&page[i]._mapcount))
1182 				nr++;
1183 		}
1184 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1185 			goto out;
1186 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1187 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1188 	} else {
1189 		if (PageTransCompound(page) && page_mapping(page)) {
1190 			VM_WARN_ON_ONCE(!PageLocked(page));
1191 
1192 			SetPageDoubleMap(compound_head(page));
1193 			if (PageMlocked(page))
1194 				clear_page_mlock(compound_head(page));
1195 		}
1196 		if (!atomic_inc_and_test(&page->_mapcount))
1197 			goto out;
1198 	}
1199 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1200 out:
1201 	unlock_page_memcg(page);
1202 }
1203 
1204 static void page_remove_file_rmap(struct page *page, bool compound)
1205 {
1206 	int i, nr = 1;
1207 
1208 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1209 	lock_page_memcg(page);
1210 
1211 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1212 	if (unlikely(PageHuge(page))) {
1213 		/* hugetlb pages are always mapped with pmds */
1214 		atomic_dec(compound_mapcount_ptr(page));
1215 		goto out;
1216 	}
1217 
1218 	/* page still mapped by someone else? */
1219 	if (compound && PageTransHuge(page)) {
1220 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1221 			if (atomic_add_negative(-1, &page[i]._mapcount))
1222 				nr++;
1223 		}
1224 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1225 			goto out;
1226 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1227 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1228 	} else {
1229 		if (!atomic_add_negative(-1, &page->_mapcount))
1230 			goto out;
1231 	}
1232 
1233 	/*
1234 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1235 	 * these counters are not modified in interrupt context, and
1236 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1237 	 */
1238 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1239 
1240 	if (unlikely(PageMlocked(page)))
1241 		clear_page_mlock(page);
1242 out:
1243 	unlock_page_memcg(page);
1244 }
1245 
1246 static void page_remove_anon_compound_rmap(struct page *page)
1247 {
1248 	int i, nr;
1249 
1250 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1251 		return;
1252 
1253 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1254 	if (unlikely(PageHuge(page)))
1255 		return;
1256 
1257 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1258 		return;
1259 
1260 	__dec_node_page_state(page, NR_ANON_THPS);
1261 
1262 	if (TestClearPageDoubleMap(page)) {
1263 		/*
1264 		 * Subpages can be mapped with PTEs too. Check how many of
1265 		 * themi are still mapped.
1266 		 */
1267 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1268 			if (atomic_add_negative(-1, &page[i]._mapcount))
1269 				nr++;
1270 		}
1271 	} else {
1272 		nr = HPAGE_PMD_NR;
1273 	}
1274 
1275 	if (unlikely(PageMlocked(page)))
1276 		clear_page_mlock(page);
1277 
1278 	if (nr) {
1279 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1280 		deferred_split_huge_page(page);
1281 	}
1282 }
1283 
1284 /**
1285  * page_remove_rmap - take down pte mapping from a page
1286  * @page:	page to remove mapping from
1287  * @compound:	uncharge the page as compound or small page
1288  *
1289  * The caller needs to hold the pte lock.
1290  */
1291 void page_remove_rmap(struct page *page, bool compound)
1292 {
1293 	if (!PageAnon(page))
1294 		return page_remove_file_rmap(page, compound);
1295 
1296 	if (compound)
1297 		return page_remove_anon_compound_rmap(page);
1298 
1299 	/* page still mapped by someone else? */
1300 	if (!atomic_add_negative(-1, &page->_mapcount))
1301 		return;
1302 
1303 	/*
1304 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1305 	 * these counters are not modified in interrupt context, and
1306 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1307 	 */
1308 	__dec_node_page_state(page, NR_ANON_MAPPED);
1309 
1310 	if (unlikely(PageMlocked(page)))
1311 		clear_page_mlock(page);
1312 
1313 	if (PageTransCompound(page))
1314 		deferred_split_huge_page(compound_head(page));
1315 
1316 	/*
1317 	 * It would be tidy to reset the PageAnon mapping here,
1318 	 * but that might overwrite a racing page_add_anon_rmap
1319 	 * which increments mapcount after us but sets mapping
1320 	 * before us: so leave the reset to free_hot_cold_page,
1321 	 * and remember that it's only reliable while mapped.
1322 	 * Leaving it set also helps swapoff to reinstate ptes
1323 	 * faster for those pages still in swapcache.
1324 	 */
1325 }
1326 
1327 /*
1328  * @arg: enum ttu_flags will be passed to this argument
1329  */
1330 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1331 		     unsigned long address, void *arg)
1332 {
1333 	struct mm_struct *mm = vma->vm_mm;
1334 	struct page_vma_mapped_walk pvmw = {
1335 		.page = page,
1336 		.vma = vma,
1337 		.address = address,
1338 	};
1339 	pte_t pteval;
1340 	struct page *subpage;
1341 	bool ret = true;
1342 	unsigned long start = address, end;
1343 	enum ttu_flags flags = (enum ttu_flags)arg;
1344 
1345 	/* munlock has nothing to gain from examining un-locked vmas */
1346 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1347 		return true;
1348 
1349 	if (flags & TTU_SPLIT_HUGE_PMD) {
1350 		split_huge_pmd_address(vma, address,
1351 				flags & TTU_MIGRATION, page);
1352 	}
1353 
1354 	/*
1355 	 * We have to assume the worse case ie pmd for invalidation. Note that
1356 	 * the page can not be free in this function as call of try_to_unmap()
1357 	 * must hold a reference on the page.
1358 	 */
1359 	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1360 	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1361 
1362 	while (page_vma_mapped_walk(&pvmw)) {
1363 		/*
1364 		 * If the page is mlock()d, we cannot swap it out.
1365 		 * If it's recently referenced (perhaps page_referenced
1366 		 * skipped over this mm) then we should reactivate it.
1367 		 */
1368 		if (!(flags & TTU_IGNORE_MLOCK)) {
1369 			if (vma->vm_flags & VM_LOCKED) {
1370 				/* PTE-mapped THP are never mlocked */
1371 				if (!PageTransCompound(page)) {
1372 					/*
1373 					 * Holding pte lock, we do *not* need
1374 					 * mmap_sem here
1375 					 */
1376 					mlock_vma_page(page);
1377 				}
1378 				ret = false;
1379 				page_vma_mapped_walk_done(&pvmw);
1380 				break;
1381 			}
1382 			if (flags & TTU_MUNLOCK)
1383 				continue;
1384 		}
1385 
1386 		/* Unexpected PMD-mapped THP? */
1387 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1388 
1389 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1390 		address = pvmw.address;
1391 
1392 
1393 		if (!(flags & TTU_IGNORE_ACCESS)) {
1394 			if (ptep_clear_flush_young_notify(vma, address,
1395 						pvmw.pte)) {
1396 				ret = false;
1397 				page_vma_mapped_walk_done(&pvmw);
1398 				break;
1399 			}
1400 		}
1401 
1402 		/* Nuke the page table entry. */
1403 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1404 		if (should_defer_flush(mm, flags)) {
1405 			/*
1406 			 * We clear the PTE but do not flush so potentially
1407 			 * a remote CPU could still be writing to the page.
1408 			 * If the entry was previously clean then the
1409 			 * architecture must guarantee that a clear->dirty
1410 			 * transition on a cached TLB entry is written through
1411 			 * and traps if the PTE is unmapped.
1412 			 */
1413 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1414 
1415 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1416 		} else {
1417 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1418 		}
1419 
1420 		/* Move the dirty bit to the page. Now the pte is gone. */
1421 		if (pte_dirty(pteval))
1422 			set_page_dirty(page);
1423 
1424 		/* Update high watermark before we lower rss */
1425 		update_hiwater_rss(mm);
1426 
1427 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1428 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1429 			if (PageHuge(page)) {
1430 				int nr = 1 << compound_order(page);
1431 				hugetlb_count_sub(nr, mm);
1432 				set_huge_swap_pte_at(mm, address,
1433 						     pvmw.pte, pteval,
1434 						     vma_mmu_pagesize(vma));
1435 			} else {
1436 				dec_mm_counter(mm, mm_counter(page));
1437 				set_pte_at(mm, address, pvmw.pte, pteval);
1438 			}
1439 
1440 		} else if (pte_unused(pteval)) {
1441 			/*
1442 			 * The guest indicated that the page content is of no
1443 			 * interest anymore. Simply discard the pte, vmscan
1444 			 * will take care of the rest.
1445 			 */
1446 			dec_mm_counter(mm, mm_counter(page));
1447 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1448 				(flags & TTU_MIGRATION)) {
1449 			swp_entry_t entry;
1450 			pte_t swp_pte;
1451 			/*
1452 			 * Store the pfn of the page in a special migration
1453 			 * pte. do_swap_page() will wait until the migration
1454 			 * pte is removed and then restart fault handling.
1455 			 */
1456 			entry = make_migration_entry(subpage,
1457 					pte_write(pteval));
1458 			swp_pte = swp_entry_to_pte(entry);
1459 			if (pte_soft_dirty(pteval))
1460 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1461 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1462 		} else if (PageAnon(page)) {
1463 			swp_entry_t entry = { .val = page_private(subpage) };
1464 			pte_t swp_pte;
1465 			/*
1466 			 * Store the swap location in the pte.
1467 			 * See handle_pte_fault() ...
1468 			 */
1469 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1470 				WARN_ON_ONCE(1);
1471 				ret = false;
1472 				/* We have to invalidate as we cleared the pte */
1473 				page_vma_mapped_walk_done(&pvmw);
1474 				break;
1475 			}
1476 
1477 			/* MADV_FREE page check */
1478 			if (!PageSwapBacked(page)) {
1479 				if (!PageDirty(page)) {
1480 					dec_mm_counter(mm, MM_ANONPAGES);
1481 					goto discard;
1482 				}
1483 
1484 				/*
1485 				 * If the page was redirtied, it cannot be
1486 				 * discarded. Remap the page to page table.
1487 				 */
1488 				set_pte_at(mm, address, pvmw.pte, pteval);
1489 				SetPageSwapBacked(page);
1490 				ret = false;
1491 				page_vma_mapped_walk_done(&pvmw);
1492 				break;
1493 			}
1494 
1495 			if (swap_duplicate(entry) < 0) {
1496 				set_pte_at(mm, address, pvmw.pte, pteval);
1497 				ret = false;
1498 				page_vma_mapped_walk_done(&pvmw);
1499 				break;
1500 			}
1501 			if (list_empty(&mm->mmlist)) {
1502 				spin_lock(&mmlist_lock);
1503 				if (list_empty(&mm->mmlist))
1504 					list_add(&mm->mmlist, &init_mm.mmlist);
1505 				spin_unlock(&mmlist_lock);
1506 			}
1507 			dec_mm_counter(mm, MM_ANONPAGES);
1508 			inc_mm_counter(mm, MM_SWAPENTS);
1509 			swp_pte = swp_entry_to_pte(entry);
1510 			if (pte_soft_dirty(pteval))
1511 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1512 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1513 		} else
1514 			dec_mm_counter(mm, mm_counter_file(page));
1515 discard:
1516 		page_remove_rmap(subpage, PageHuge(page));
1517 		put_page(page);
1518 		mmu_notifier_invalidate_range(mm, address,
1519 					      address + PAGE_SIZE);
1520 	}
1521 
1522 	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1523 
1524 	return ret;
1525 }
1526 
1527 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1528 {
1529 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1530 
1531 	if (!maybe_stack)
1532 		return false;
1533 
1534 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1535 						VM_STACK_INCOMPLETE_SETUP)
1536 		return true;
1537 
1538 	return false;
1539 }
1540 
1541 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1542 {
1543 	return is_vma_temporary_stack(vma);
1544 }
1545 
1546 static int page_mapcount_is_zero(struct page *page)
1547 {
1548 	return !total_mapcount(page);
1549 }
1550 
1551 /**
1552  * try_to_unmap - try to remove all page table mappings to a page
1553  * @page: the page to get unmapped
1554  * @flags: action and flags
1555  *
1556  * Tries to remove all the page table entries which are mapping this
1557  * page, used in the pageout path.  Caller must hold the page lock.
1558  *
1559  * If unmap is successful, return true. Otherwise, false.
1560  */
1561 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1562 {
1563 	struct rmap_walk_control rwc = {
1564 		.rmap_one = try_to_unmap_one,
1565 		.arg = (void *)flags,
1566 		.done = page_mapcount_is_zero,
1567 		.anon_lock = page_lock_anon_vma_read,
1568 	};
1569 
1570 	/*
1571 	 * During exec, a temporary VMA is setup and later moved.
1572 	 * The VMA is moved under the anon_vma lock but not the
1573 	 * page tables leading to a race where migration cannot
1574 	 * find the migration ptes. Rather than increasing the
1575 	 * locking requirements of exec(), migration skips
1576 	 * temporary VMAs until after exec() completes.
1577 	 */
1578 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1579 		rwc.invalid_vma = invalid_migration_vma;
1580 
1581 	if (flags & TTU_RMAP_LOCKED)
1582 		rmap_walk_locked(page, &rwc);
1583 	else
1584 		rmap_walk(page, &rwc);
1585 
1586 	return !page_mapcount(page) ? true : false;
1587 }
1588 
1589 static int page_not_mapped(struct page *page)
1590 {
1591 	return !page_mapped(page);
1592 };
1593 
1594 /**
1595  * try_to_munlock - try to munlock a page
1596  * @page: the page to be munlocked
1597  *
1598  * Called from munlock code.  Checks all of the VMAs mapping the page
1599  * to make sure nobody else has this page mlocked. The page will be
1600  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1601  */
1602 
1603 void try_to_munlock(struct page *page)
1604 {
1605 	struct rmap_walk_control rwc = {
1606 		.rmap_one = try_to_unmap_one,
1607 		.arg = (void *)TTU_MUNLOCK,
1608 		.done = page_not_mapped,
1609 		.anon_lock = page_lock_anon_vma_read,
1610 
1611 	};
1612 
1613 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1614 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1615 
1616 	rmap_walk(page, &rwc);
1617 }
1618 
1619 void __put_anon_vma(struct anon_vma *anon_vma)
1620 {
1621 	struct anon_vma *root = anon_vma->root;
1622 
1623 	anon_vma_free(anon_vma);
1624 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1625 		anon_vma_free(root);
1626 }
1627 
1628 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1629 					struct rmap_walk_control *rwc)
1630 {
1631 	struct anon_vma *anon_vma;
1632 
1633 	if (rwc->anon_lock)
1634 		return rwc->anon_lock(page);
1635 
1636 	/*
1637 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1638 	 * because that depends on page_mapped(); but not all its usages
1639 	 * are holding mmap_sem. Users without mmap_sem are required to
1640 	 * take a reference count to prevent the anon_vma disappearing
1641 	 */
1642 	anon_vma = page_anon_vma(page);
1643 	if (!anon_vma)
1644 		return NULL;
1645 
1646 	anon_vma_lock_read(anon_vma);
1647 	return anon_vma;
1648 }
1649 
1650 /*
1651  * rmap_walk_anon - do something to anonymous page using the object-based
1652  * rmap method
1653  * @page: the page to be handled
1654  * @rwc: control variable according to each walk type
1655  *
1656  * Find all the mappings of a page using the mapping pointer and the vma chains
1657  * contained in the anon_vma struct it points to.
1658  *
1659  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1660  * where the page was found will be held for write.  So, we won't recheck
1661  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1662  * LOCKED.
1663  */
1664 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1665 		bool locked)
1666 {
1667 	struct anon_vma *anon_vma;
1668 	pgoff_t pgoff_start, pgoff_end;
1669 	struct anon_vma_chain *avc;
1670 
1671 	if (locked) {
1672 		anon_vma = page_anon_vma(page);
1673 		/* anon_vma disappear under us? */
1674 		VM_BUG_ON_PAGE(!anon_vma, page);
1675 	} else {
1676 		anon_vma = rmap_walk_anon_lock(page, rwc);
1677 	}
1678 	if (!anon_vma)
1679 		return;
1680 
1681 	pgoff_start = page_to_pgoff(page);
1682 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1683 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1684 			pgoff_start, pgoff_end) {
1685 		struct vm_area_struct *vma = avc->vma;
1686 		unsigned long address = vma_address(page, vma);
1687 
1688 		cond_resched();
1689 
1690 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1691 			continue;
1692 
1693 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1694 			break;
1695 		if (rwc->done && rwc->done(page))
1696 			break;
1697 	}
1698 
1699 	if (!locked)
1700 		anon_vma_unlock_read(anon_vma);
1701 }
1702 
1703 /*
1704  * rmap_walk_file - do something to file page using the object-based rmap method
1705  * @page: the page to be handled
1706  * @rwc: control variable according to each walk type
1707  *
1708  * Find all the mappings of a page using the mapping pointer and the vma chains
1709  * contained in the address_space struct it points to.
1710  *
1711  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1712  * where the page was found will be held for write.  So, we won't recheck
1713  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1714  * LOCKED.
1715  */
1716 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1717 		bool locked)
1718 {
1719 	struct address_space *mapping = page_mapping(page);
1720 	pgoff_t pgoff_start, pgoff_end;
1721 	struct vm_area_struct *vma;
1722 
1723 	/*
1724 	 * The page lock not only makes sure that page->mapping cannot
1725 	 * suddenly be NULLified by truncation, it makes sure that the
1726 	 * structure at mapping cannot be freed and reused yet,
1727 	 * so we can safely take mapping->i_mmap_rwsem.
1728 	 */
1729 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1730 
1731 	if (!mapping)
1732 		return;
1733 
1734 	pgoff_start = page_to_pgoff(page);
1735 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1736 	if (!locked)
1737 		i_mmap_lock_read(mapping);
1738 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1739 			pgoff_start, pgoff_end) {
1740 		unsigned long address = vma_address(page, vma);
1741 
1742 		cond_resched();
1743 
1744 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1745 			continue;
1746 
1747 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1748 			goto done;
1749 		if (rwc->done && rwc->done(page))
1750 			goto done;
1751 	}
1752 
1753 done:
1754 	if (!locked)
1755 		i_mmap_unlock_read(mapping);
1756 }
1757 
1758 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1759 {
1760 	if (unlikely(PageKsm(page)))
1761 		rmap_walk_ksm(page, rwc);
1762 	else if (PageAnon(page))
1763 		rmap_walk_anon(page, rwc, false);
1764 	else
1765 		rmap_walk_file(page, rwc, false);
1766 }
1767 
1768 /* Like rmap_walk, but caller holds relevant rmap lock */
1769 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1770 {
1771 	/* no ksm support for now */
1772 	VM_BUG_ON_PAGE(PageKsm(page), page);
1773 	if (PageAnon(page))
1774 		rmap_walk_anon(page, rwc, true);
1775 	else
1776 		rmap_walk_file(page, rwc, true);
1777 }
1778 
1779 #ifdef CONFIG_HUGETLB_PAGE
1780 /*
1781  * The following three functions are for anonymous (private mapped) hugepages.
1782  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1783  * and no lru code, because we handle hugepages differently from common pages.
1784  */
1785 static void __hugepage_set_anon_rmap(struct page *page,
1786 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1787 {
1788 	struct anon_vma *anon_vma = vma->anon_vma;
1789 
1790 	BUG_ON(!anon_vma);
1791 
1792 	if (PageAnon(page))
1793 		return;
1794 	if (!exclusive)
1795 		anon_vma = anon_vma->root;
1796 
1797 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1798 	page->mapping = (struct address_space *) anon_vma;
1799 	page->index = linear_page_index(vma, address);
1800 }
1801 
1802 void hugepage_add_anon_rmap(struct page *page,
1803 			    struct vm_area_struct *vma, unsigned long address)
1804 {
1805 	struct anon_vma *anon_vma = vma->anon_vma;
1806 	int first;
1807 
1808 	BUG_ON(!PageLocked(page));
1809 	BUG_ON(!anon_vma);
1810 	/* address might be in next vma when migration races vma_adjust */
1811 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1812 	if (first)
1813 		__hugepage_set_anon_rmap(page, vma, address, 0);
1814 }
1815 
1816 void hugepage_add_new_anon_rmap(struct page *page,
1817 			struct vm_area_struct *vma, unsigned long address)
1818 {
1819 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1820 	atomic_set(compound_mapcount_ptr(page), 0);
1821 	__hugepage_set_anon_rmap(page, vma, address, 1);
1822 }
1823 #endif /* CONFIG_HUGETLB_PAGE */
1824