xref: /linux/mm/rmap.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	struct anon_vma *anon_vma;
70 
71 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 	if (anon_vma) {
73 		atomic_set(&anon_vma->refcount, 1);
74 		/*
75 		 * Initialise the anon_vma root to point to itself. If called
76 		 * from fork, the root will be reset to the parents anon_vma.
77 		 */
78 		anon_vma->root = anon_vma;
79 	}
80 
81 	return anon_vma;
82 }
83 
84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87 
88 	/*
89 	 * Synchronize against page_lock_anon_vma() such that
90 	 * we can safely hold the lock without the anon_vma getting
91 	 * freed.
92 	 *
93 	 * Relies on the full mb implied by the atomic_dec_and_test() from
94 	 * put_anon_vma() against the acquire barrier implied by
95 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 	 *
97 	 * page_lock_anon_vma()		VS	put_anon_vma()
98 	 *   mutex_trylock()			  atomic_dec_and_test()
99 	 *   LOCK				  MB
100 	 *   atomic_read()			  mutex_is_locked()
101 	 *
102 	 * LOCK should suffice since the actual taking of the lock must
103 	 * happen _before_ what follows.
104 	 */
105 	if (mutex_is_locked(&anon_vma->root->mutex)) {
106 		anon_vma_lock(anon_vma);
107 		anon_vma_unlock(anon_vma);
108 	}
109 
110 	kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112 
113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117 
118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122 
123 static void anon_vma_chain_link(struct vm_area_struct *vma,
124 				struct anon_vma_chain *avc,
125 				struct anon_vma *anon_vma)
126 {
127 	avc->vma = vma;
128 	avc->anon_vma = anon_vma;
129 	list_add(&avc->same_vma, &vma->anon_vma_chain);
130 
131 	/*
132 	 * It's critical to add new vmas to the tail of the anon_vma,
133 	 * see comment in huge_memory.c:__split_huge_page().
134 	 */
135 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
136 }
137 
138 /**
139  * anon_vma_prepare - attach an anon_vma to a memory region
140  * @vma: the memory region in question
141  *
142  * This makes sure the memory mapping described by 'vma' has
143  * an 'anon_vma' attached to it, so that we can associate the
144  * anonymous pages mapped into it with that anon_vma.
145  *
146  * The common case will be that we already have one, but if
147  * not we either need to find an adjacent mapping that we
148  * can re-use the anon_vma from (very common when the only
149  * reason for splitting a vma has been mprotect()), or we
150  * allocate a new one.
151  *
152  * Anon-vma allocations are very subtle, because we may have
153  * optimistically looked up an anon_vma in page_lock_anon_vma()
154  * and that may actually touch the spinlock even in the newly
155  * allocated vma (it depends on RCU to make sure that the
156  * anon_vma isn't actually destroyed).
157  *
158  * As a result, we need to do proper anon_vma locking even
159  * for the new allocation. At the same time, we do not want
160  * to do any locking for the common case of already having
161  * an anon_vma.
162  *
163  * This must be called with the mmap_sem held for reading.
164  */
165 int anon_vma_prepare(struct vm_area_struct *vma)
166 {
167 	struct anon_vma *anon_vma = vma->anon_vma;
168 	struct anon_vma_chain *avc;
169 
170 	might_sleep();
171 	if (unlikely(!anon_vma)) {
172 		struct mm_struct *mm = vma->vm_mm;
173 		struct anon_vma *allocated;
174 
175 		avc = anon_vma_chain_alloc(GFP_KERNEL);
176 		if (!avc)
177 			goto out_enomem;
178 
179 		anon_vma = find_mergeable_anon_vma(vma);
180 		allocated = NULL;
181 		if (!anon_vma) {
182 			anon_vma = anon_vma_alloc();
183 			if (unlikely(!anon_vma))
184 				goto out_enomem_free_avc;
185 			allocated = anon_vma;
186 		}
187 
188 		anon_vma_lock(anon_vma);
189 		/* page_table_lock to protect against threads */
190 		spin_lock(&mm->page_table_lock);
191 		if (likely(!vma->anon_vma)) {
192 			vma->anon_vma = anon_vma;
193 			anon_vma_chain_link(vma, avc, anon_vma);
194 			allocated = NULL;
195 			avc = NULL;
196 		}
197 		spin_unlock(&mm->page_table_lock);
198 		anon_vma_unlock(anon_vma);
199 
200 		if (unlikely(allocated))
201 			put_anon_vma(allocated);
202 		if (unlikely(avc))
203 			anon_vma_chain_free(avc);
204 	}
205 	return 0;
206 
207  out_enomem_free_avc:
208 	anon_vma_chain_free(avc);
209  out_enomem:
210 	return -ENOMEM;
211 }
212 
213 /*
214  * This is a useful helper function for locking the anon_vma root as
215  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
216  * have the same vma.
217  *
218  * Such anon_vma's should have the same root, so you'd expect to see
219  * just a single mutex_lock for the whole traversal.
220  */
221 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
222 {
223 	struct anon_vma *new_root = anon_vma->root;
224 	if (new_root != root) {
225 		if (WARN_ON_ONCE(root))
226 			mutex_unlock(&root->mutex);
227 		root = new_root;
228 		mutex_lock(&root->mutex);
229 	}
230 	return root;
231 }
232 
233 static inline void unlock_anon_vma_root(struct anon_vma *root)
234 {
235 	if (root)
236 		mutex_unlock(&root->mutex);
237 }
238 
239 /*
240  * Attach the anon_vmas from src to dst.
241  * Returns 0 on success, -ENOMEM on failure.
242  */
243 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
244 {
245 	struct anon_vma_chain *avc, *pavc;
246 	struct anon_vma *root = NULL;
247 
248 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
249 		struct anon_vma *anon_vma;
250 
251 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
252 		if (unlikely(!avc)) {
253 			unlock_anon_vma_root(root);
254 			root = NULL;
255 			avc = anon_vma_chain_alloc(GFP_KERNEL);
256 			if (!avc)
257 				goto enomem_failure;
258 		}
259 		anon_vma = pavc->anon_vma;
260 		root = lock_anon_vma_root(root, anon_vma);
261 		anon_vma_chain_link(dst, avc, anon_vma);
262 	}
263 	unlock_anon_vma_root(root);
264 	return 0;
265 
266  enomem_failure:
267 	unlink_anon_vmas(dst);
268 	return -ENOMEM;
269 }
270 
271 /*
272  * Some rmap walk that needs to find all ptes/hugepmds without false
273  * negatives (like migrate and split_huge_page) running concurrent
274  * with operations that copy or move pagetables (like mremap() and
275  * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
276  * list to be in a certain order: the dst_vma must be placed after the
277  * src_vma in the list. This is always guaranteed by fork() but
278  * mremap() needs to call this function to enforce it in case the
279  * dst_vma isn't newly allocated and chained with the anon_vma_clone()
280  * function but just an extension of a pre-existing vma through
281  * vma_merge.
282  *
283  * NOTE: the same_anon_vma list can still be changed by other
284  * processes while mremap runs because mremap doesn't hold the
285  * anon_vma mutex to prevent modifications to the list while it
286  * runs. All we need to enforce is that the relative order of this
287  * process vmas isn't changing (we don't care about other vmas
288  * order). Each vma corresponds to an anon_vma_chain structure so
289  * there's no risk that other processes calling anon_vma_moveto_tail()
290  * and changing the same_anon_vma list under mremap() will screw with
291  * the relative order of this process vmas in the list, because we
292  * they can't alter the order of any vma that belongs to this
293  * process. And there can't be another anon_vma_moveto_tail() running
294  * concurrently with mremap() coming from this process because we hold
295  * the mmap_sem for the whole mremap(). fork() ordering dependency
296  * also shouldn't be affected because fork() only cares that the
297  * parent vmas are placed in the list before the child vmas and
298  * anon_vma_moveto_tail() won't reorder vmas from either the fork()
299  * parent or child.
300  */
301 void anon_vma_moveto_tail(struct vm_area_struct *dst)
302 {
303 	struct anon_vma_chain *pavc;
304 	struct anon_vma *root = NULL;
305 
306 	list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
307 		struct anon_vma *anon_vma = pavc->anon_vma;
308 		VM_BUG_ON(pavc->vma != dst);
309 		root = lock_anon_vma_root(root, anon_vma);
310 		list_del(&pavc->same_anon_vma);
311 		list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
312 	}
313 	unlock_anon_vma_root(root);
314 }
315 
316 /*
317  * Attach vma to its own anon_vma, as well as to the anon_vmas that
318  * the corresponding VMA in the parent process is attached to.
319  * Returns 0 on success, non-zero on failure.
320  */
321 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
322 {
323 	struct anon_vma_chain *avc;
324 	struct anon_vma *anon_vma;
325 
326 	/* Don't bother if the parent process has no anon_vma here. */
327 	if (!pvma->anon_vma)
328 		return 0;
329 
330 	/*
331 	 * First, attach the new VMA to the parent VMA's anon_vmas,
332 	 * so rmap can find non-COWed pages in child processes.
333 	 */
334 	if (anon_vma_clone(vma, pvma))
335 		return -ENOMEM;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	/*
351 	 * With refcounts, an anon_vma can stay around longer than the
352 	 * process it belongs to. The root anon_vma needs to be pinned until
353 	 * this anon_vma is freed, because the lock lives in the root.
354 	 */
355 	get_anon_vma(anon_vma->root);
356 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
357 	vma->anon_vma = anon_vma;
358 	anon_vma_lock(anon_vma);
359 	anon_vma_chain_link(vma, avc, anon_vma);
360 	anon_vma_unlock(anon_vma);
361 
362 	return 0;
363 
364  out_error_free_anon_vma:
365 	put_anon_vma(anon_vma);
366  out_error:
367 	unlink_anon_vmas(vma);
368 	return -ENOMEM;
369 }
370 
371 void unlink_anon_vmas(struct vm_area_struct *vma)
372 {
373 	struct anon_vma_chain *avc, *next;
374 	struct anon_vma *root = NULL;
375 
376 	/*
377 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
378 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 	 */
380 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
381 		struct anon_vma *anon_vma = avc->anon_vma;
382 
383 		root = lock_anon_vma_root(root, anon_vma);
384 		list_del(&avc->same_anon_vma);
385 
386 		/*
387 		 * Leave empty anon_vmas on the list - we'll need
388 		 * to free them outside the lock.
389 		 */
390 		if (list_empty(&anon_vma->head))
391 			continue;
392 
393 		list_del(&avc->same_vma);
394 		anon_vma_chain_free(avc);
395 	}
396 	unlock_anon_vma_root(root);
397 
398 	/*
399 	 * Iterate the list once more, it now only contains empty and unlinked
400 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 	 * needing to acquire the anon_vma->root->mutex.
402 	 */
403 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 		struct anon_vma *anon_vma = avc->anon_vma;
405 
406 		put_anon_vma(anon_vma);
407 
408 		list_del(&avc->same_vma);
409 		anon_vma_chain_free(avc);
410 	}
411 }
412 
413 static void anon_vma_ctor(void *data)
414 {
415 	struct anon_vma *anon_vma = data;
416 
417 	mutex_init(&anon_vma->mutex);
418 	atomic_set(&anon_vma->refcount, 0);
419 	INIT_LIST_HEAD(&anon_vma->head);
420 }
421 
422 void __init anon_vma_init(void)
423 {
424 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
425 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
426 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
427 }
428 
429 /*
430  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
431  *
432  * Since there is no serialization what so ever against page_remove_rmap()
433  * the best this function can do is return a locked anon_vma that might
434  * have been relevant to this page.
435  *
436  * The page might have been remapped to a different anon_vma or the anon_vma
437  * returned may already be freed (and even reused).
438  *
439  * In case it was remapped to a different anon_vma, the new anon_vma will be a
440  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
441  * ensure that any anon_vma obtained from the page will still be valid for as
442  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
443  *
444  * All users of this function must be very careful when walking the anon_vma
445  * chain and verify that the page in question is indeed mapped in it
446  * [ something equivalent to page_mapped_in_vma() ].
447  *
448  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
449  * that the anon_vma pointer from page->mapping is valid if there is a
450  * mapcount, we can dereference the anon_vma after observing those.
451  */
452 struct anon_vma *page_get_anon_vma(struct page *page)
453 {
454 	struct anon_vma *anon_vma = NULL;
455 	unsigned long anon_mapping;
456 
457 	rcu_read_lock();
458 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
459 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
460 		goto out;
461 	if (!page_mapped(page))
462 		goto out;
463 
464 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
465 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
466 		anon_vma = NULL;
467 		goto out;
468 	}
469 
470 	/*
471 	 * If this page is still mapped, then its anon_vma cannot have been
472 	 * freed.  But if it has been unmapped, we have no security against the
473 	 * anon_vma structure being freed and reused (for another anon_vma:
474 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
475 	 * above cannot corrupt).
476 	 */
477 	if (!page_mapped(page)) {
478 		put_anon_vma(anon_vma);
479 		anon_vma = NULL;
480 	}
481 out:
482 	rcu_read_unlock();
483 
484 	return anon_vma;
485 }
486 
487 /*
488  * Similar to page_get_anon_vma() except it locks the anon_vma.
489  *
490  * Its a little more complex as it tries to keep the fast path to a single
491  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
492  * reference like with page_get_anon_vma() and then block on the mutex.
493  */
494 struct anon_vma *page_lock_anon_vma(struct page *page)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	struct anon_vma *root_anon_vma;
498 	unsigned long anon_mapping;
499 
500 	rcu_read_lock();
501 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
502 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 		goto out;
504 	if (!page_mapped(page))
505 		goto out;
506 
507 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
508 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
509 	if (mutex_trylock(&root_anon_vma->mutex)) {
510 		/*
511 		 * If the page is still mapped, then this anon_vma is still
512 		 * its anon_vma, and holding the mutex ensures that it will
513 		 * not go away, see anon_vma_free().
514 		 */
515 		if (!page_mapped(page)) {
516 			mutex_unlock(&root_anon_vma->mutex);
517 			anon_vma = NULL;
518 		}
519 		goto out;
520 	}
521 
522 	/* trylock failed, we got to sleep */
523 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
524 		anon_vma = NULL;
525 		goto out;
526 	}
527 
528 	if (!page_mapped(page)) {
529 		put_anon_vma(anon_vma);
530 		anon_vma = NULL;
531 		goto out;
532 	}
533 
534 	/* we pinned the anon_vma, its safe to sleep */
535 	rcu_read_unlock();
536 	anon_vma_lock(anon_vma);
537 
538 	if (atomic_dec_and_test(&anon_vma->refcount)) {
539 		/*
540 		 * Oops, we held the last refcount, release the lock
541 		 * and bail -- can't simply use put_anon_vma() because
542 		 * we'll deadlock on the anon_vma_lock() recursion.
543 		 */
544 		anon_vma_unlock(anon_vma);
545 		__put_anon_vma(anon_vma);
546 		anon_vma = NULL;
547 	}
548 
549 	return anon_vma;
550 
551 out:
552 	rcu_read_unlock();
553 	return anon_vma;
554 }
555 
556 void page_unlock_anon_vma(struct anon_vma *anon_vma)
557 {
558 	anon_vma_unlock(anon_vma);
559 }
560 
561 /*
562  * At what user virtual address is page expected in @vma?
563  * Returns virtual address or -EFAULT if page's index/offset is not
564  * within the range mapped the @vma.
565  */
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
570 	unsigned long address;
571 
572 	if (unlikely(is_vm_hugetlb_page(vma)))
573 		pgoff = page->index << huge_page_order(page_hstate(page));
574 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
576 		/* page should be within @vma mapping range */
577 		return -EFAULT;
578 	}
579 	return address;
580 }
581 
582 /*
583  * At what user virtual address is page expected in vma?
584  * Caller should check the page is actually part of the vma.
585  */
586 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
587 {
588 	if (PageAnon(page)) {
589 		struct anon_vma *page__anon_vma = page_anon_vma(page);
590 		/*
591 		 * Note: swapoff's unuse_vma() is more efficient with this
592 		 * check, and needs it to match anon_vma when KSM is active.
593 		 */
594 		if (!vma->anon_vma || !page__anon_vma ||
595 		    vma->anon_vma->root != page__anon_vma->root)
596 			return -EFAULT;
597 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
598 		if (!vma->vm_file ||
599 		    vma->vm_file->f_mapping != page->mapping)
600 			return -EFAULT;
601 	} else
602 		return -EFAULT;
603 	return vma_address(page, vma);
604 }
605 
606 /*
607  * Check that @page is mapped at @address into @mm.
608  *
609  * If @sync is false, page_check_address may perform a racy check to avoid
610  * the page table lock when the pte is not present (helpful when reclaiming
611  * highly shared pages).
612  *
613  * On success returns with pte mapped and locked.
614  */
615 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
616 			  unsigned long address, spinlock_t **ptlp, int sync)
617 {
618 	pgd_t *pgd;
619 	pud_t *pud;
620 	pmd_t *pmd;
621 	pte_t *pte;
622 	spinlock_t *ptl;
623 
624 	if (unlikely(PageHuge(page))) {
625 		pte = huge_pte_offset(mm, address);
626 		ptl = &mm->page_table_lock;
627 		goto check;
628 	}
629 
630 	pgd = pgd_offset(mm, address);
631 	if (!pgd_present(*pgd))
632 		return NULL;
633 
634 	pud = pud_offset(pgd, address);
635 	if (!pud_present(*pud))
636 		return NULL;
637 
638 	pmd = pmd_offset(pud, address);
639 	if (!pmd_present(*pmd))
640 		return NULL;
641 	if (pmd_trans_huge(*pmd))
642 		return NULL;
643 
644 	pte = pte_offset_map(pmd, address);
645 	/* Make a quick check before getting the lock */
646 	if (!sync && !pte_present(*pte)) {
647 		pte_unmap(pte);
648 		return NULL;
649 	}
650 
651 	ptl = pte_lockptr(mm, pmd);
652 check:
653 	spin_lock(ptl);
654 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
655 		*ptlp = ptl;
656 		return pte;
657 	}
658 	pte_unmap_unlock(pte, ptl);
659 	return NULL;
660 }
661 
662 /**
663  * page_mapped_in_vma - check whether a page is really mapped in a VMA
664  * @page: the page to test
665  * @vma: the VMA to test
666  *
667  * Returns 1 if the page is mapped into the page tables of the VMA, 0
668  * if the page is not mapped into the page tables of this VMA.  Only
669  * valid for normal file or anonymous VMAs.
670  */
671 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
672 {
673 	unsigned long address;
674 	pte_t *pte;
675 	spinlock_t *ptl;
676 
677 	address = vma_address(page, vma);
678 	if (address == -EFAULT)		/* out of vma range */
679 		return 0;
680 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
681 	if (!pte)			/* the page is not in this mm */
682 		return 0;
683 	pte_unmap_unlock(pte, ptl);
684 
685 	return 1;
686 }
687 
688 /*
689  * Subfunctions of page_referenced: page_referenced_one called
690  * repeatedly from either page_referenced_anon or page_referenced_file.
691  */
692 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
693 			unsigned long address, unsigned int *mapcount,
694 			unsigned long *vm_flags)
695 {
696 	struct mm_struct *mm = vma->vm_mm;
697 	int referenced = 0;
698 
699 	if (unlikely(PageTransHuge(page))) {
700 		pmd_t *pmd;
701 
702 		spin_lock(&mm->page_table_lock);
703 		/*
704 		 * rmap might return false positives; we must filter
705 		 * these out using page_check_address_pmd().
706 		 */
707 		pmd = page_check_address_pmd(page, mm, address,
708 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
709 		if (!pmd) {
710 			spin_unlock(&mm->page_table_lock);
711 			goto out;
712 		}
713 
714 		if (vma->vm_flags & VM_LOCKED) {
715 			spin_unlock(&mm->page_table_lock);
716 			*mapcount = 0;	/* break early from loop */
717 			*vm_flags |= VM_LOCKED;
718 			goto out;
719 		}
720 
721 		/* go ahead even if the pmd is pmd_trans_splitting() */
722 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
723 			referenced++;
724 		spin_unlock(&mm->page_table_lock);
725 	} else {
726 		pte_t *pte;
727 		spinlock_t *ptl;
728 
729 		/*
730 		 * rmap might return false positives; we must filter
731 		 * these out using page_check_address().
732 		 */
733 		pte = page_check_address(page, mm, address, &ptl, 0);
734 		if (!pte)
735 			goto out;
736 
737 		if (vma->vm_flags & VM_LOCKED) {
738 			pte_unmap_unlock(pte, ptl);
739 			*mapcount = 0;	/* break early from loop */
740 			*vm_flags |= VM_LOCKED;
741 			goto out;
742 		}
743 
744 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
745 			/*
746 			 * Don't treat a reference through a sequentially read
747 			 * mapping as such.  If the page has been used in
748 			 * another mapping, we will catch it; if this other
749 			 * mapping is already gone, the unmap path will have
750 			 * set PG_referenced or activated the page.
751 			 */
752 			if (likely(!VM_SequentialReadHint(vma)))
753 				referenced++;
754 		}
755 		pte_unmap_unlock(pte, ptl);
756 	}
757 
758 	(*mapcount)--;
759 
760 	if (referenced)
761 		*vm_flags |= vma->vm_flags;
762 out:
763 	return referenced;
764 }
765 
766 static int page_referenced_anon(struct page *page,
767 				struct mem_cgroup *memcg,
768 				unsigned long *vm_flags)
769 {
770 	unsigned int mapcount;
771 	struct anon_vma *anon_vma;
772 	struct anon_vma_chain *avc;
773 	int referenced = 0;
774 
775 	anon_vma = page_lock_anon_vma(page);
776 	if (!anon_vma)
777 		return referenced;
778 
779 	mapcount = page_mapcount(page);
780 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
781 		struct vm_area_struct *vma = avc->vma;
782 		unsigned long address = vma_address(page, vma);
783 		if (address == -EFAULT)
784 			continue;
785 		/*
786 		 * If we are reclaiming on behalf of a cgroup, skip
787 		 * counting on behalf of references from different
788 		 * cgroups
789 		 */
790 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
791 			continue;
792 		referenced += page_referenced_one(page, vma, address,
793 						  &mapcount, vm_flags);
794 		if (!mapcount)
795 			break;
796 	}
797 
798 	page_unlock_anon_vma(anon_vma);
799 	return referenced;
800 }
801 
802 /**
803  * page_referenced_file - referenced check for object-based rmap
804  * @page: the page we're checking references on.
805  * @memcg: target memory control group
806  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
807  *
808  * For an object-based mapped page, find all the places it is mapped and
809  * check/clear the referenced flag.  This is done by following the page->mapping
810  * pointer, then walking the chain of vmas it holds.  It returns the number
811  * of references it found.
812  *
813  * This function is only called from page_referenced for object-based pages.
814  */
815 static int page_referenced_file(struct page *page,
816 				struct mem_cgroup *memcg,
817 				unsigned long *vm_flags)
818 {
819 	unsigned int mapcount;
820 	struct address_space *mapping = page->mapping;
821 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
822 	struct vm_area_struct *vma;
823 	struct prio_tree_iter iter;
824 	int referenced = 0;
825 
826 	/*
827 	 * The caller's checks on page->mapping and !PageAnon have made
828 	 * sure that this is a file page: the check for page->mapping
829 	 * excludes the case just before it gets set on an anon page.
830 	 */
831 	BUG_ON(PageAnon(page));
832 
833 	/*
834 	 * The page lock not only makes sure that page->mapping cannot
835 	 * suddenly be NULLified by truncation, it makes sure that the
836 	 * structure at mapping cannot be freed and reused yet,
837 	 * so we can safely take mapping->i_mmap_mutex.
838 	 */
839 	BUG_ON(!PageLocked(page));
840 
841 	mutex_lock(&mapping->i_mmap_mutex);
842 
843 	/*
844 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
845 	 * is more likely to be accurate if we note it after spinning.
846 	 */
847 	mapcount = page_mapcount(page);
848 
849 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
850 		unsigned long address = vma_address(page, vma);
851 		if (address == -EFAULT)
852 			continue;
853 		/*
854 		 * If we are reclaiming on behalf of a cgroup, skip
855 		 * counting on behalf of references from different
856 		 * cgroups
857 		 */
858 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
859 			continue;
860 		referenced += page_referenced_one(page, vma, address,
861 						  &mapcount, vm_flags);
862 		if (!mapcount)
863 			break;
864 	}
865 
866 	mutex_unlock(&mapping->i_mmap_mutex);
867 	return referenced;
868 }
869 
870 /**
871  * page_referenced - test if the page was referenced
872  * @page: the page to test
873  * @is_locked: caller holds lock on the page
874  * @memcg: target memory cgroup
875  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
876  *
877  * Quick test_and_clear_referenced for all mappings to a page,
878  * returns the number of ptes which referenced the page.
879  */
880 int page_referenced(struct page *page,
881 		    int is_locked,
882 		    struct mem_cgroup *memcg,
883 		    unsigned long *vm_flags)
884 {
885 	int referenced = 0;
886 	int we_locked = 0;
887 
888 	*vm_flags = 0;
889 	if (page_mapped(page) && page_rmapping(page)) {
890 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
891 			we_locked = trylock_page(page);
892 			if (!we_locked) {
893 				referenced++;
894 				goto out;
895 			}
896 		}
897 		if (unlikely(PageKsm(page)))
898 			referenced += page_referenced_ksm(page, memcg,
899 								vm_flags);
900 		else if (PageAnon(page))
901 			referenced += page_referenced_anon(page, memcg,
902 								vm_flags);
903 		else if (page->mapping)
904 			referenced += page_referenced_file(page, memcg,
905 								vm_flags);
906 		if (we_locked)
907 			unlock_page(page);
908 
909 		if (page_test_and_clear_young(page_to_pfn(page)))
910 			referenced++;
911 	}
912 out:
913 	return referenced;
914 }
915 
916 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
917 			    unsigned long address)
918 {
919 	struct mm_struct *mm = vma->vm_mm;
920 	pte_t *pte;
921 	spinlock_t *ptl;
922 	int ret = 0;
923 
924 	pte = page_check_address(page, mm, address, &ptl, 1);
925 	if (!pte)
926 		goto out;
927 
928 	if (pte_dirty(*pte) || pte_write(*pte)) {
929 		pte_t entry;
930 
931 		flush_cache_page(vma, address, pte_pfn(*pte));
932 		entry = ptep_clear_flush_notify(vma, address, pte);
933 		entry = pte_wrprotect(entry);
934 		entry = pte_mkclean(entry);
935 		set_pte_at(mm, address, pte, entry);
936 		ret = 1;
937 	}
938 
939 	pte_unmap_unlock(pte, ptl);
940 out:
941 	return ret;
942 }
943 
944 static int page_mkclean_file(struct address_space *mapping, struct page *page)
945 {
946 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
947 	struct vm_area_struct *vma;
948 	struct prio_tree_iter iter;
949 	int ret = 0;
950 
951 	BUG_ON(PageAnon(page));
952 
953 	mutex_lock(&mapping->i_mmap_mutex);
954 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
955 		if (vma->vm_flags & VM_SHARED) {
956 			unsigned long address = vma_address(page, vma);
957 			if (address == -EFAULT)
958 				continue;
959 			ret += page_mkclean_one(page, vma, address);
960 		}
961 	}
962 	mutex_unlock(&mapping->i_mmap_mutex);
963 	return ret;
964 }
965 
966 int page_mkclean(struct page *page)
967 {
968 	int ret = 0;
969 
970 	BUG_ON(!PageLocked(page));
971 
972 	if (page_mapped(page)) {
973 		struct address_space *mapping = page_mapping(page);
974 		if (mapping) {
975 			ret = page_mkclean_file(mapping, page);
976 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
977 				ret = 1;
978 		}
979 	}
980 
981 	return ret;
982 }
983 EXPORT_SYMBOL_GPL(page_mkclean);
984 
985 /**
986  * page_move_anon_rmap - move a page to our anon_vma
987  * @page:	the page to move to our anon_vma
988  * @vma:	the vma the page belongs to
989  * @address:	the user virtual address mapped
990  *
991  * When a page belongs exclusively to one process after a COW event,
992  * that page can be moved into the anon_vma that belongs to just that
993  * process, so the rmap code will not search the parent or sibling
994  * processes.
995  */
996 void page_move_anon_rmap(struct page *page,
997 	struct vm_area_struct *vma, unsigned long address)
998 {
999 	struct anon_vma *anon_vma = vma->anon_vma;
1000 
1001 	VM_BUG_ON(!PageLocked(page));
1002 	VM_BUG_ON(!anon_vma);
1003 	VM_BUG_ON(page->index != linear_page_index(vma, address));
1004 
1005 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1006 	page->mapping = (struct address_space *) anon_vma;
1007 }
1008 
1009 /**
1010  * __page_set_anon_rmap - set up new anonymous rmap
1011  * @page:	Page to add to rmap
1012  * @vma:	VM area to add page to.
1013  * @address:	User virtual address of the mapping
1014  * @exclusive:	the page is exclusively owned by the current process
1015  */
1016 static void __page_set_anon_rmap(struct page *page,
1017 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1018 {
1019 	struct anon_vma *anon_vma = vma->anon_vma;
1020 
1021 	BUG_ON(!anon_vma);
1022 
1023 	if (PageAnon(page))
1024 		return;
1025 
1026 	/*
1027 	 * If the page isn't exclusively mapped into this vma,
1028 	 * we must use the _oldest_ possible anon_vma for the
1029 	 * page mapping!
1030 	 */
1031 	if (!exclusive)
1032 		anon_vma = anon_vma->root;
1033 
1034 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1035 	page->mapping = (struct address_space *) anon_vma;
1036 	page->index = linear_page_index(vma, address);
1037 }
1038 
1039 /**
1040  * __page_check_anon_rmap - sanity check anonymous rmap addition
1041  * @page:	the page to add the mapping to
1042  * @vma:	the vm area in which the mapping is added
1043  * @address:	the user virtual address mapped
1044  */
1045 static void __page_check_anon_rmap(struct page *page,
1046 	struct vm_area_struct *vma, unsigned long address)
1047 {
1048 #ifdef CONFIG_DEBUG_VM
1049 	/*
1050 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1051 	 * be set up correctly at this point.
1052 	 *
1053 	 * We have exclusion against page_add_anon_rmap because the caller
1054 	 * always holds the page locked, except if called from page_dup_rmap,
1055 	 * in which case the page is already known to be setup.
1056 	 *
1057 	 * We have exclusion against page_add_new_anon_rmap because those pages
1058 	 * are initially only visible via the pagetables, and the pte is locked
1059 	 * over the call to page_add_new_anon_rmap.
1060 	 */
1061 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1062 	BUG_ON(page->index != linear_page_index(vma, address));
1063 #endif
1064 }
1065 
1066 /**
1067  * page_add_anon_rmap - add pte mapping to an anonymous page
1068  * @page:	the page to add the mapping to
1069  * @vma:	the vm area in which the mapping is added
1070  * @address:	the user virtual address mapped
1071  *
1072  * The caller needs to hold the pte lock, and the page must be locked in
1073  * the anon_vma case: to serialize mapping,index checking after setting,
1074  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1075  * (but PageKsm is never downgraded to PageAnon).
1076  */
1077 void page_add_anon_rmap(struct page *page,
1078 	struct vm_area_struct *vma, unsigned long address)
1079 {
1080 	do_page_add_anon_rmap(page, vma, address, 0);
1081 }
1082 
1083 /*
1084  * Special version of the above for do_swap_page, which often runs
1085  * into pages that are exclusively owned by the current process.
1086  * Everybody else should continue to use page_add_anon_rmap above.
1087  */
1088 void do_page_add_anon_rmap(struct page *page,
1089 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1090 {
1091 	int first = atomic_inc_and_test(&page->_mapcount);
1092 	if (first) {
1093 		if (!PageTransHuge(page))
1094 			__inc_zone_page_state(page, NR_ANON_PAGES);
1095 		else
1096 			__inc_zone_page_state(page,
1097 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1098 	}
1099 	if (unlikely(PageKsm(page)))
1100 		return;
1101 
1102 	VM_BUG_ON(!PageLocked(page));
1103 	/* address might be in next vma when migration races vma_adjust */
1104 	if (first)
1105 		__page_set_anon_rmap(page, vma, address, exclusive);
1106 	else
1107 		__page_check_anon_rmap(page, vma, address);
1108 }
1109 
1110 /**
1111  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1112  * @page:	the page to add the mapping to
1113  * @vma:	the vm area in which the mapping is added
1114  * @address:	the user virtual address mapped
1115  *
1116  * Same as page_add_anon_rmap but must only be called on *new* pages.
1117  * This means the inc-and-test can be bypassed.
1118  * Page does not have to be locked.
1119  */
1120 void page_add_new_anon_rmap(struct page *page,
1121 	struct vm_area_struct *vma, unsigned long address)
1122 {
1123 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1124 	SetPageSwapBacked(page);
1125 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1126 	if (!PageTransHuge(page))
1127 		__inc_zone_page_state(page, NR_ANON_PAGES);
1128 	else
1129 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1130 	__page_set_anon_rmap(page, vma, address, 1);
1131 	if (page_evictable(page, vma))
1132 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1133 	else
1134 		add_page_to_unevictable_list(page);
1135 }
1136 
1137 /**
1138  * page_add_file_rmap - add pte mapping to a file page
1139  * @page: the page to add the mapping to
1140  *
1141  * The caller needs to hold the pte lock.
1142  */
1143 void page_add_file_rmap(struct page *page)
1144 {
1145 	bool locked;
1146 	unsigned long flags;
1147 
1148 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1149 	if (atomic_inc_and_test(&page->_mapcount)) {
1150 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1151 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1152 	}
1153 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1154 }
1155 
1156 /**
1157  * page_remove_rmap - take down pte mapping from a page
1158  * @page: page to remove mapping from
1159  *
1160  * The caller needs to hold the pte lock.
1161  */
1162 void page_remove_rmap(struct page *page)
1163 {
1164 	bool anon = PageAnon(page);
1165 	bool locked;
1166 	unsigned long flags;
1167 
1168 	/*
1169 	 * The anon case has no mem_cgroup page_stat to update; but may
1170 	 * uncharge_page() below, where the lock ordering can deadlock if
1171 	 * we hold the lock against page_stat move: so avoid it on anon.
1172 	 */
1173 	if (!anon)
1174 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1175 
1176 	/* page still mapped by someone else? */
1177 	if (!atomic_add_negative(-1, &page->_mapcount))
1178 		goto out;
1179 
1180 	/*
1181 	 * Now that the last pte has gone, s390 must transfer dirty
1182 	 * flag from storage key to struct page.  We can usually skip
1183 	 * this if the page is anon, so about to be freed; but perhaps
1184 	 * not if it's in swapcache - there might be another pte slot
1185 	 * containing the swap entry, but page not yet written to swap.
1186 	 */
1187 	if ((!anon || PageSwapCache(page)) &&
1188 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1189 		set_page_dirty(page);
1190 	/*
1191 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1192 	 * and not charged by memcg for now.
1193 	 */
1194 	if (unlikely(PageHuge(page)))
1195 		goto out;
1196 	if (anon) {
1197 		mem_cgroup_uncharge_page(page);
1198 		if (!PageTransHuge(page))
1199 			__dec_zone_page_state(page, NR_ANON_PAGES);
1200 		else
1201 			__dec_zone_page_state(page,
1202 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1203 	} else {
1204 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1205 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1206 	}
1207 	/*
1208 	 * It would be tidy to reset the PageAnon mapping here,
1209 	 * but that might overwrite a racing page_add_anon_rmap
1210 	 * which increments mapcount after us but sets mapping
1211 	 * before us: so leave the reset to free_hot_cold_page,
1212 	 * and remember that it's only reliable while mapped.
1213 	 * Leaving it set also helps swapoff to reinstate ptes
1214 	 * faster for those pages still in swapcache.
1215 	 */
1216 out:
1217 	if (!anon)
1218 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1219 }
1220 
1221 /*
1222  * Subfunctions of try_to_unmap: try_to_unmap_one called
1223  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1224  */
1225 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1226 		     unsigned long address, enum ttu_flags flags)
1227 {
1228 	struct mm_struct *mm = vma->vm_mm;
1229 	pte_t *pte;
1230 	pte_t pteval;
1231 	spinlock_t *ptl;
1232 	int ret = SWAP_AGAIN;
1233 
1234 	pte = page_check_address(page, mm, address, &ptl, 0);
1235 	if (!pte)
1236 		goto out;
1237 
1238 	/*
1239 	 * If the page is mlock()d, we cannot swap it out.
1240 	 * If it's recently referenced (perhaps page_referenced
1241 	 * skipped over this mm) then we should reactivate it.
1242 	 */
1243 	if (!(flags & TTU_IGNORE_MLOCK)) {
1244 		if (vma->vm_flags & VM_LOCKED)
1245 			goto out_mlock;
1246 
1247 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1248 			goto out_unmap;
1249 	}
1250 	if (!(flags & TTU_IGNORE_ACCESS)) {
1251 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1252 			ret = SWAP_FAIL;
1253 			goto out_unmap;
1254 		}
1255   	}
1256 
1257 	/* Nuke the page table entry. */
1258 	flush_cache_page(vma, address, page_to_pfn(page));
1259 	pteval = ptep_clear_flush_notify(vma, address, pte);
1260 
1261 	/* Move the dirty bit to the physical page now the pte is gone. */
1262 	if (pte_dirty(pteval))
1263 		set_page_dirty(page);
1264 
1265 	/* Update high watermark before we lower rss */
1266 	update_hiwater_rss(mm);
1267 
1268 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1269 		if (PageAnon(page))
1270 			dec_mm_counter(mm, MM_ANONPAGES);
1271 		else
1272 			dec_mm_counter(mm, MM_FILEPAGES);
1273 		set_pte_at(mm, address, pte,
1274 				swp_entry_to_pte(make_hwpoison_entry(page)));
1275 	} else if (PageAnon(page)) {
1276 		swp_entry_t entry = { .val = page_private(page) };
1277 
1278 		if (PageSwapCache(page)) {
1279 			/*
1280 			 * Store the swap location in the pte.
1281 			 * See handle_pte_fault() ...
1282 			 */
1283 			if (swap_duplicate(entry) < 0) {
1284 				set_pte_at(mm, address, pte, pteval);
1285 				ret = SWAP_FAIL;
1286 				goto out_unmap;
1287 			}
1288 			if (list_empty(&mm->mmlist)) {
1289 				spin_lock(&mmlist_lock);
1290 				if (list_empty(&mm->mmlist))
1291 					list_add(&mm->mmlist, &init_mm.mmlist);
1292 				spin_unlock(&mmlist_lock);
1293 			}
1294 			dec_mm_counter(mm, MM_ANONPAGES);
1295 			inc_mm_counter(mm, MM_SWAPENTS);
1296 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1297 			/*
1298 			 * Store the pfn of the page in a special migration
1299 			 * pte. do_swap_page() will wait until the migration
1300 			 * pte is removed and then restart fault handling.
1301 			 */
1302 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1303 			entry = make_migration_entry(page, pte_write(pteval));
1304 		}
1305 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1306 		BUG_ON(pte_file(*pte));
1307 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1308 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1309 		/* Establish migration entry for a file page */
1310 		swp_entry_t entry;
1311 		entry = make_migration_entry(page, pte_write(pteval));
1312 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1313 	} else
1314 		dec_mm_counter(mm, MM_FILEPAGES);
1315 
1316 	page_remove_rmap(page);
1317 	page_cache_release(page);
1318 
1319 out_unmap:
1320 	pte_unmap_unlock(pte, ptl);
1321 out:
1322 	return ret;
1323 
1324 out_mlock:
1325 	pte_unmap_unlock(pte, ptl);
1326 
1327 
1328 	/*
1329 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1330 	 * unstable result and race. Plus, We can't wait here because
1331 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1332 	 * if trylock failed, the page remain in evictable lru and later
1333 	 * vmscan could retry to move the page to unevictable lru if the
1334 	 * page is actually mlocked.
1335 	 */
1336 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1337 		if (vma->vm_flags & VM_LOCKED) {
1338 			mlock_vma_page(page);
1339 			ret = SWAP_MLOCK;
1340 		}
1341 		up_read(&vma->vm_mm->mmap_sem);
1342 	}
1343 	return ret;
1344 }
1345 
1346 /*
1347  * objrmap doesn't work for nonlinear VMAs because the assumption that
1348  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1349  * Consequently, given a particular page and its ->index, we cannot locate the
1350  * ptes which are mapping that page without an exhaustive linear search.
1351  *
1352  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1353  * maps the file to which the target page belongs.  The ->vm_private_data field
1354  * holds the current cursor into that scan.  Successive searches will circulate
1355  * around the vma's virtual address space.
1356  *
1357  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1358  * more scanning pressure is placed against them as well.   Eventually pages
1359  * will become fully unmapped and are eligible for eviction.
1360  *
1361  * For very sparsely populated VMAs this is a little inefficient - chances are
1362  * there there won't be many ptes located within the scan cluster.  In this case
1363  * maybe we could scan further - to the end of the pte page, perhaps.
1364  *
1365  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1366  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1367  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1368  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1369  */
1370 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1371 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1372 
1373 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1374 		struct vm_area_struct *vma, struct page *check_page)
1375 {
1376 	struct mm_struct *mm = vma->vm_mm;
1377 	pgd_t *pgd;
1378 	pud_t *pud;
1379 	pmd_t *pmd;
1380 	pte_t *pte;
1381 	pte_t pteval;
1382 	spinlock_t *ptl;
1383 	struct page *page;
1384 	unsigned long address;
1385 	unsigned long end;
1386 	int ret = SWAP_AGAIN;
1387 	int locked_vma = 0;
1388 
1389 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1390 	end = address + CLUSTER_SIZE;
1391 	if (address < vma->vm_start)
1392 		address = vma->vm_start;
1393 	if (end > vma->vm_end)
1394 		end = vma->vm_end;
1395 
1396 	pgd = pgd_offset(mm, address);
1397 	if (!pgd_present(*pgd))
1398 		return ret;
1399 
1400 	pud = pud_offset(pgd, address);
1401 	if (!pud_present(*pud))
1402 		return ret;
1403 
1404 	pmd = pmd_offset(pud, address);
1405 	if (!pmd_present(*pmd))
1406 		return ret;
1407 
1408 	/*
1409 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1410 	 * keep the sem while scanning the cluster for mlocking pages.
1411 	 */
1412 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1413 		locked_vma = (vma->vm_flags & VM_LOCKED);
1414 		if (!locked_vma)
1415 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1416 	}
1417 
1418 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1419 
1420 	/* Update high watermark before we lower rss */
1421 	update_hiwater_rss(mm);
1422 
1423 	for (; address < end; pte++, address += PAGE_SIZE) {
1424 		if (!pte_present(*pte))
1425 			continue;
1426 		page = vm_normal_page(vma, address, *pte);
1427 		BUG_ON(!page || PageAnon(page));
1428 
1429 		if (locked_vma) {
1430 			mlock_vma_page(page);   /* no-op if already mlocked */
1431 			if (page == check_page)
1432 				ret = SWAP_MLOCK;
1433 			continue;	/* don't unmap */
1434 		}
1435 
1436 		if (ptep_clear_flush_young_notify(vma, address, pte))
1437 			continue;
1438 
1439 		/* Nuke the page table entry. */
1440 		flush_cache_page(vma, address, pte_pfn(*pte));
1441 		pteval = ptep_clear_flush_notify(vma, address, pte);
1442 
1443 		/* If nonlinear, store the file page offset in the pte. */
1444 		if (page->index != linear_page_index(vma, address))
1445 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1446 
1447 		/* Move the dirty bit to the physical page now the pte is gone. */
1448 		if (pte_dirty(pteval))
1449 			set_page_dirty(page);
1450 
1451 		page_remove_rmap(page);
1452 		page_cache_release(page);
1453 		dec_mm_counter(mm, MM_FILEPAGES);
1454 		(*mapcount)--;
1455 	}
1456 	pte_unmap_unlock(pte - 1, ptl);
1457 	if (locked_vma)
1458 		up_read(&vma->vm_mm->mmap_sem);
1459 	return ret;
1460 }
1461 
1462 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1463 {
1464 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1465 
1466 	if (!maybe_stack)
1467 		return false;
1468 
1469 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1470 						VM_STACK_INCOMPLETE_SETUP)
1471 		return true;
1472 
1473 	return false;
1474 }
1475 
1476 /**
1477  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1478  * rmap method
1479  * @page: the page to unmap/unlock
1480  * @flags: action and flags
1481  *
1482  * Find all the mappings of a page using the mapping pointer and the vma chains
1483  * contained in the anon_vma struct it points to.
1484  *
1485  * This function is only called from try_to_unmap/try_to_munlock for
1486  * anonymous pages.
1487  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1488  * where the page was found will be held for write.  So, we won't recheck
1489  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1490  * 'LOCKED.
1491  */
1492 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1493 {
1494 	struct anon_vma *anon_vma;
1495 	struct anon_vma_chain *avc;
1496 	int ret = SWAP_AGAIN;
1497 
1498 	anon_vma = page_lock_anon_vma(page);
1499 	if (!anon_vma)
1500 		return ret;
1501 
1502 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1503 		struct vm_area_struct *vma = avc->vma;
1504 		unsigned long address;
1505 
1506 		/*
1507 		 * During exec, a temporary VMA is setup and later moved.
1508 		 * The VMA is moved under the anon_vma lock but not the
1509 		 * page tables leading to a race where migration cannot
1510 		 * find the migration ptes. Rather than increasing the
1511 		 * locking requirements of exec(), migration skips
1512 		 * temporary VMAs until after exec() completes.
1513 		 */
1514 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1515 				is_vma_temporary_stack(vma))
1516 			continue;
1517 
1518 		address = vma_address(page, vma);
1519 		if (address == -EFAULT)
1520 			continue;
1521 		ret = try_to_unmap_one(page, vma, address, flags);
1522 		if (ret != SWAP_AGAIN || !page_mapped(page))
1523 			break;
1524 	}
1525 
1526 	page_unlock_anon_vma(anon_vma);
1527 	return ret;
1528 }
1529 
1530 /**
1531  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1532  * @page: the page to unmap/unlock
1533  * @flags: action and flags
1534  *
1535  * Find all the mappings of a page using the mapping pointer and the vma chains
1536  * contained in the address_space struct it points to.
1537  *
1538  * This function is only called from try_to_unmap/try_to_munlock for
1539  * object-based pages.
1540  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1541  * where the page was found will be held for write.  So, we won't recheck
1542  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1543  * 'LOCKED.
1544  */
1545 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1546 {
1547 	struct address_space *mapping = page->mapping;
1548 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1549 	struct vm_area_struct *vma;
1550 	struct prio_tree_iter iter;
1551 	int ret = SWAP_AGAIN;
1552 	unsigned long cursor;
1553 	unsigned long max_nl_cursor = 0;
1554 	unsigned long max_nl_size = 0;
1555 	unsigned int mapcount;
1556 
1557 	mutex_lock(&mapping->i_mmap_mutex);
1558 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1559 		unsigned long address = vma_address(page, vma);
1560 		if (address == -EFAULT)
1561 			continue;
1562 		ret = try_to_unmap_one(page, vma, address, flags);
1563 		if (ret != SWAP_AGAIN || !page_mapped(page))
1564 			goto out;
1565 	}
1566 
1567 	if (list_empty(&mapping->i_mmap_nonlinear))
1568 		goto out;
1569 
1570 	/*
1571 	 * We don't bother to try to find the munlocked page in nonlinears.
1572 	 * It's costly. Instead, later, page reclaim logic may call
1573 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1574 	 */
1575 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1576 		goto out;
1577 
1578 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1579 						shared.vm_set.list) {
1580 		cursor = (unsigned long) vma->vm_private_data;
1581 		if (cursor > max_nl_cursor)
1582 			max_nl_cursor = cursor;
1583 		cursor = vma->vm_end - vma->vm_start;
1584 		if (cursor > max_nl_size)
1585 			max_nl_size = cursor;
1586 	}
1587 
1588 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1589 		ret = SWAP_FAIL;
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * We don't try to search for this page in the nonlinear vmas,
1595 	 * and page_referenced wouldn't have found it anyway.  Instead
1596 	 * just walk the nonlinear vmas trying to age and unmap some.
1597 	 * The mapcount of the page we came in with is irrelevant,
1598 	 * but even so use it as a guide to how hard we should try?
1599 	 */
1600 	mapcount = page_mapcount(page);
1601 	if (!mapcount)
1602 		goto out;
1603 	cond_resched();
1604 
1605 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1606 	if (max_nl_cursor == 0)
1607 		max_nl_cursor = CLUSTER_SIZE;
1608 
1609 	do {
1610 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1611 						shared.vm_set.list) {
1612 			cursor = (unsigned long) vma->vm_private_data;
1613 			while ( cursor < max_nl_cursor &&
1614 				cursor < vma->vm_end - vma->vm_start) {
1615 				if (try_to_unmap_cluster(cursor, &mapcount,
1616 						vma, page) == SWAP_MLOCK)
1617 					ret = SWAP_MLOCK;
1618 				cursor += CLUSTER_SIZE;
1619 				vma->vm_private_data = (void *) cursor;
1620 				if ((int)mapcount <= 0)
1621 					goto out;
1622 			}
1623 			vma->vm_private_data = (void *) max_nl_cursor;
1624 		}
1625 		cond_resched();
1626 		max_nl_cursor += CLUSTER_SIZE;
1627 	} while (max_nl_cursor <= max_nl_size);
1628 
1629 	/*
1630 	 * Don't loop forever (perhaps all the remaining pages are
1631 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1632 	 * vmas, now forgetting on which ones it had fallen behind.
1633 	 */
1634 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1635 		vma->vm_private_data = NULL;
1636 out:
1637 	mutex_unlock(&mapping->i_mmap_mutex);
1638 	return ret;
1639 }
1640 
1641 /**
1642  * try_to_unmap - try to remove all page table mappings to a page
1643  * @page: the page to get unmapped
1644  * @flags: action and flags
1645  *
1646  * Tries to remove all the page table entries which are mapping this
1647  * page, used in the pageout path.  Caller must hold the page lock.
1648  * Return values are:
1649  *
1650  * SWAP_SUCCESS	- we succeeded in removing all mappings
1651  * SWAP_AGAIN	- we missed a mapping, try again later
1652  * SWAP_FAIL	- the page is unswappable
1653  * SWAP_MLOCK	- page is mlocked.
1654  */
1655 int try_to_unmap(struct page *page, enum ttu_flags flags)
1656 {
1657 	int ret;
1658 
1659 	BUG_ON(!PageLocked(page));
1660 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1661 
1662 	if (unlikely(PageKsm(page)))
1663 		ret = try_to_unmap_ksm(page, flags);
1664 	else if (PageAnon(page))
1665 		ret = try_to_unmap_anon(page, flags);
1666 	else
1667 		ret = try_to_unmap_file(page, flags);
1668 	if (ret != SWAP_MLOCK && !page_mapped(page))
1669 		ret = SWAP_SUCCESS;
1670 	return ret;
1671 }
1672 
1673 /**
1674  * try_to_munlock - try to munlock a page
1675  * @page: the page to be munlocked
1676  *
1677  * Called from munlock code.  Checks all of the VMAs mapping the page
1678  * to make sure nobody else has this page mlocked. The page will be
1679  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1680  *
1681  * Return values are:
1682  *
1683  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1684  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1685  * SWAP_FAIL	- page cannot be located at present
1686  * SWAP_MLOCK	- page is now mlocked.
1687  */
1688 int try_to_munlock(struct page *page)
1689 {
1690 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1691 
1692 	if (unlikely(PageKsm(page)))
1693 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1694 	else if (PageAnon(page))
1695 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1696 	else
1697 		return try_to_unmap_file(page, TTU_MUNLOCK);
1698 }
1699 
1700 void __put_anon_vma(struct anon_vma *anon_vma)
1701 {
1702 	struct anon_vma *root = anon_vma->root;
1703 
1704 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1705 		anon_vma_free(root);
1706 
1707 	anon_vma_free(anon_vma);
1708 }
1709 
1710 #ifdef CONFIG_MIGRATION
1711 /*
1712  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1713  * Called by migrate.c to remove migration ptes, but might be used more later.
1714  */
1715 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1716 		struct vm_area_struct *, unsigned long, void *), void *arg)
1717 {
1718 	struct anon_vma *anon_vma;
1719 	struct anon_vma_chain *avc;
1720 	int ret = SWAP_AGAIN;
1721 
1722 	/*
1723 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1724 	 * because that depends on page_mapped(); but not all its usages
1725 	 * are holding mmap_sem. Users without mmap_sem are required to
1726 	 * take a reference count to prevent the anon_vma disappearing
1727 	 */
1728 	anon_vma = page_anon_vma(page);
1729 	if (!anon_vma)
1730 		return ret;
1731 	anon_vma_lock(anon_vma);
1732 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1733 		struct vm_area_struct *vma = avc->vma;
1734 		unsigned long address = vma_address(page, vma);
1735 		if (address == -EFAULT)
1736 			continue;
1737 		ret = rmap_one(page, vma, address, arg);
1738 		if (ret != SWAP_AGAIN)
1739 			break;
1740 	}
1741 	anon_vma_unlock(anon_vma);
1742 	return ret;
1743 }
1744 
1745 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1746 		struct vm_area_struct *, unsigned long, void *), void *arg)
1747 {
1748 	struct address_space *mapping = page->mapping;
1749 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1750 	struct vm_area_struct *vma;
1751 	struct prio_tree_iter iter;
1752 	int ret = SWAP_AGAIN;
1753 
1754 	if (!mapping)
1755 		return ret;
1756 	mutex_lock(&mapping->i_mmap_mutex);
1757 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1758 		unsigned long address = vma_address(page, vma);
1759 		if (address == -EFAULT)
1760 			continue;
1761 		ret = rmap_one(page, vma, address, arg);
1762 		if (ret != SWAP_AGAIN)
1763 			break;
1764 	}
1765 	/*
1766 	 * No nonlinear handling: being always shared, nonlinear vmas
1767 	 * never contain migration ptes.  Decide what to do about this
1768 	 * limitation to linear when we need rmap_walk() on nonlinear.
1769 	 */
1770 	mutex_unlock(&mapping->i_mmap_mutex);
1771 	return ret;
1772 }
1773 
1774 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1775 		struct vm_area_struct *, unsigned long, void *), void *arg)
1776 {
1777 	VM_BUG_ON(!PageLocked(page));
1778 
1779 	if (unlikely(PageKsm(page)))
1780 		return rmap_walk_ksm(page, rmap_one, arg);
1781 	else if (PageAnon(page))
1782 		return rmap_walk_anon(page, rmap_one, arg);
1783 	else
1784 		return rmap_walk_file(page, rmap_one, arg);
1785 }
1786 #endif /* CONFIG_MIGRATION */
1787 
1788 #ifdef CONFIG_HUGETLB_PAGE
1789 /*
1790  * The following three functions are for anonymous (private mapped) hugepages.
1791  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1792  * and no lru code, because we handle hugepages differently from common pages.
1793  */
1794 static void __hugepage_set_anon_rmap(struct page *page,
1795 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1796 {
1797 	struct anon_vma *anon_vma = vma->anon_vma;
1798 
1799 	BUG_ON(!anon_vma);
1800 
1801 	if (PageAnon(page))
1802 		return;
1803 	if (!exclusive)
1804 		anon_vma = anon_vma->root;
1805 
1806 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1807 	page->mapping = (struct address_space *) anon_vma;
1808 	page->index = linear_page_index(vma, address);
1809 }
1810 
1811 void hugepage_add_anon_rmap(struct page *page,
1812 			    struct vm_area_struct *vma, unsigned long address)
1813 {
1814 	struct anon_vma *anon_vma = vma->anon_vma;
1815 	int first;
1816 
1817 	BUG_ON(!PageLocked(page));
1818 	BUG_ON(!anon_vma);
1819 	/* address might be in next vma when migration races vma_adjust */
1820 	first = atomic_inc_and_test(&page->_mapcount);
1821 	if (first)
1822 		__hugepage_set_anon_rmap(page, vma, address, 0);
1823 }
1824 
1825 void hugepage_add_new_anon_rmap(struct page *page,
1826 			struct vm_area_struct *vma, unsigned long address)
1827 {
1828 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1829 	atomic_set(&page->_mapcount, 0);
1830 	__hugepage_set_anon_rmap(page, vma, address, 1);
1831 }
1832 #endif /* CONFIG_HUGETLB_PAGE */
1833