1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * mapping->i_mmap_rwsem 29 * anon_vma->rwsem 30 * mm->page_table_lock or pte_lock 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in block_dirty_folio) 34 * folio_lock_memcg move_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * page->flags PG_locked (lock_page) 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 78 #include <asm/tlbflush.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/tlb.h> 82 #include <trace/events/migrate.h> 83 84 #include "internal.h" 85 86 static struct kmem_cache *anon_vma_cachep; 87 static struct kmem_cache *anon_vma_chain_cachep; 88 89 static inline struct anon_vma *anon_vma_alloc(void) 90 { 91 struct anon_vma *anon_vma; 92 93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 94 if (anon_vma) { 95 atomic_set(&anon_vma->refcount, 1); 96 anon_vma->num_children = 0; 97 anon_vma->num_active_vmas = 0; 98 anon_vma->parent = anon_vma; 99 /* 100 * Initialise the anon_vma root to point to itself. If called 101 * from fork, the root will be reset to the parents anon_vma. 102 */ 103 anon_vma->root = anon_vma; 104 } 105 106 return anon_vma; 107 } 108 109 static inline void anon_vma_free(struct anon_vma *anon_vma) 110 { 111 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 112 113 /* 114 * Synchronize against folio_lock_anon_vma_read() such that 115 * we can safely hold the lock without the anon_vma getting 116 * freed. 117 * 118 * Relies on the full mb implied by the atomic_dec_and_test() from 119 * put_anon_vma() against the acquire barrier implied by 120 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 121 * 122 * folio_lock_anon_vma_read() VS put_anon_vma() 123 * down_read_trylock() atomic_dec_and_test() 124 * LOCK MB 125 * atomic_read() rwsem_is_locked() 126 * 127 * LOCK should suffice since the actual taking of the lock must 128 * happen _before_ what follows. 129 */ 130 might_sleep(); 131 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 132 anon_vma_lock_write(anon_vma); 133 anon_vma_unlock_write(anon_vma); 134 } 135 136 kmem_cache_free(anon_vma_cachep, anon_vma); 137 } 138 139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 140 { 141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 142 } 143 144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 145 { 146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 147 } 148 149 static void anon_vma_chain_link(struct vm_area_struct *vma, 150 struct anon_vma_chain *avc, 151 struct anon_vma *anon_vma) 152 { 153 avc->vma = vma; 154 avc->anon_vma = anon_vma; 155 list_add(&avc->same_vma, &vma->anon_vma_chain); 156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 157 } 158 159 /** 160 * __anon_vma_prepare - attach an anon_vma to a memory region 161 * @vma: the memory region in question 162 * 163 * This makes sure the memory mapping described by 'vma' has 164 * an 'anon_vma' attached to it, so that we can associate the 165 * anonymous pages mapped into it with that anon_vma. 166 * 167 * The common case will be that we already have one, which 168 * is handled inline by anon_vma_prepare(). But if 169 * not we either need to find an adjacent mapping that we 170 * can re-use the anon_vma from (very common when the only 171 * reason for splitting a vma has been mprotect()), or we 172 * allocate a new one. 173 * 174 * Anon-vma allocations are very subtle, because we may have 175 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 176 * and that may actually touch the rwsem even in the newly 177 * allocated vma (it depends on RCU to make sure that the 178 * anon_vma isn't actually destroyed). 179 * 180 * As a result, we need to do proper anon_vma locking even 181 * for the new allocation. At the same time, we do not want 182 * to do any locking for the common case of already having 183 * an anon_vma. 184 * 185 * This must be called with the mmap_lock held for reading. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and 266 * anon_vma_fork(). The first three want an exact copy of src, while the last 267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 270 * 271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 272 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 273 * This prevents degradation of anon_vma hierarchy to endless linear chain in 274 * case of constantly forking task. On the other hand, an anon_vma with more 275 * than one child isn't reused even if there was no alive vma, thus rmap 276 * walker has a good chance of avoiding scanning the whole hierarchy when it 277 * searches where page is mapped. 278 */ 279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 280 { 281 struct anon_vma_chain *avc, *pavc; 282 struct anon_vma *root = NULL; 283 284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 285 struct anon_vma *anon_vma; 286 287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 288 if (unlikely(!avc)) { 289 unlock_anon_vma_root(root); 290 root = NULL; 291 avc = anon_vma_chain_alloc(GFP_KERNEL); 292 if (!avc) 293 goto enomem_failure; 294 } 295 anon_vma = pavc->anon_vma; 296 root = lock_anon_vma_root(root, anon_vma); 297 anon_vma_chain_link(dst, avc, anon_vma); 298 299 /* 300 * Reuse existing anon_vma if it has no vma and only one 301 * anon_vma child. 302 * 303 * Root anon_vma is never reused: 304 * it has self-parent reference and at least one child. 305 */ 306 if (!dst->anon_vma && src->anon_vma && 307 anon_vma->num_children < 2 && 308 anon_vma->num_active_vmas == 0) 309 dst->anon_vma = anon_vma; 310 } 311 if (dst->anon_vma) 312 dst->anon_vma->num_active_vmas++; 313 unlock_anon_vma_root(root); 314 return 0; 315 316 enomem_failure: 317 /* 318 * dst->anon_vma is dropped here otherwise its num_active_vmas can 319 * be incorrectly decremented in unlink_anon_vmas(). 320 * We can safely do this because callers of anon_vma_clone() don't care 321 * about dst->anon_vma if anon_vma_clone() failed. 322 */ 323 dst->anon_vma = NULL; 324 unlink_anon_vmas(dst); 325 return -ENOMEM; 326 } 327 328 /* 329 * Attach vma to its own anon_vma, as well as to the anon_vmas that 330 * the corresponding VMA in the parent process is attached to. 331 * Returns 0 on success, non-zero on failure. 332 */ 333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 334 { 335 struct anon_vma_chain *avc; 336 struct anon_vma *anon_vma; 337 int error; 338 339 /* Don't bother if the parent process has no anon_vma here. */ 340 if (!pvma->anon_vma) 341 return 0; 342 343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 344 vma->anon_vma = NULL; 345 346 /* 347 * First, attach the new VMA to the parent VMA's anon_vmas, 348 * so rmap can find non-COWed pages in child processes. 349 */ 350 error = anon_vma_clone(vma, pvma); 351 if (error) 352 return error; 353 354 /* An existing anon_vma has been reused, all done then. */ 355 if (vma->anon_vma) 356 return 0; 357 358 /* Then add our own anon_vma. */ 359 anon_vma = anon_vma_alloc(); 360 if (!anon_vma) 361 goto out_error; 362 anon_vma->num_active_vmas++; 363 avc = anon_vma_chain_alloc(GFP_KERNEL); 364 if (!avc) 365 goto out_error_free_anon_vma; 366 367 /* 368 * The root anon_vma's rwsem is the lock actually used when we 369 * lock any of the anon_vmas in this anon_vma tree. 370 */ 371 anon_vma->root = pvma->anon_vma->root; 372 anon_vma->parent = pvma->anon_vma; 373 /* 374 * With refcounts, an anon_vma can stay around longer than the 375 * process it belongs to. The root anon_vma needs to be pinned until 376 * this anon_vma is freed, because the lock lives in the root. 377 */ 378 get_anon_vma(anon_vma->root); 379 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 380 vma->anon_vma = anon_vma; 381 anon_vma_lock_write(anon_vma); 382 anon_vma_chain_link(vma, avc, anon_vma); 383 anon_vma->parent->num_children++; 384 anon_vma_unlock_write(anon_vma); 385 386 return 0; 387 388 out_error_free_anon_vma: 389 put_anon_vma(anon_vma); 390 out_error: 391 unlink_anon_vmas(vma); 392 return -ENOMEM; 393 } 394 395 void unlink_anon_vmas(struct vm_area_struct *vma) 396 { 397 struct anon_vma_chain *avc, *next; 398 struct anon_vma *root = NULL; 399 400 /* 401 * Unlink each anon_vma chained to the VMA. This list is ordered 402 * from newest to oldest, ensuring the root anon_vma gets freed last. 403 */ 404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 405 struct anon_vma *anon_vma = avc->anon_vma; 406 407 root = lock_anon_vma_root(root, anon_vma); 408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 409 410 /* 411 * Leave empty anon_vmas on the list - we'll need 412 * to free them outside the lock. 413 */ 414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 415 anon_vma->parent->num_children--; 416 continue; 417 } 418 419 list_del(&avc->same_vma); 420 anon_vma_chain_free(avc); 421 } 422 if (vma->anon_vma) { 423 vma->anon_vma->num_active_vmas--; 424 425 /* 426 * vma would still be needed after unlink, and anon_vma will be prepared 427 * when handle fault. 428 */ 429 vma->anon_vma = NULL; 430 } 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->num_children); 442 VM_WARN_ON(anon_vma->num_active_vmas); 443 put_anon_vma(anon_vma); 444 445 list_del(&avc->same_vma); 446 anon_vma_chain_free(avc); 447 } 448 } 449 450 static void anon_vma_ctor(void *data) 451 { 452 struct anon_vma *anon_vma = data; 453 454 init_rwsem(&anon_vma->rwsem); 455 atomic_set(&anon_vma->refcount, 0); 456 anon_vma->rb_root = RB_ROOT_CACHED; 457 } 458 459 void __init anon_vma_init(void) 460 { 461 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 462 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 463 anon_vma_ctor); 464 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 465 SLAB_PANIC|SLAB_ACCOUNT); 466 } 467 468 /* 469 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 470 * 471 * Since there is no serialization what so ever against page_remove_rmap() 472 * the best this function can do is return a refcount increased anon_vma 473 * that might have been relevant to this page. 474 * 475 * The page might have been remapped to a different anon_vma or the anon_vma 476 * returned may already be freed (and even reused). 477 * 478 * In case it was remapped to a different anon_vma, the new anon_vma will be a 479 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 480 * ensure that any anon_vma obtained from the page will still be valid for as 481 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 482 * 483 * All users of this function must be very careful when walking the anon_vma 484 * chain and verify that the page in question is indeed mapped in it 485 * [ something equivalent to page_mapped_in_vma() ]. 486 * 487 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 488 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 489 * if there is a mapcount, we can dereference the anon_vma after observing 490 * those. 491 */ 492 struct anon_vma *folio_get_anon_vma(struct folio *folio) 493 { 494 struct anon_vma *anon_vma = NULL; 495 unsigned long anon_mapping; 496 497 rcu_read_lock(); 498 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 499 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 500 goto out; 501 if (!folio_mapped(folio)) 502 goto out; 503 504 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 505 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 506 anon_vma = NULL; 507 goto out; 508 } 509 510 /* 511 * If this folio is still mapped, then its anon_vma cannot have been 512 * freed. But if it has been unmapped, we have no security against the 513 * anon_vma structure being freed and reused (for another anon_vma: 514 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 515 * above cannot corrupt). 516 */ 517 if (!folio_mapped(folio)) { 518 rcu_read_unlock(); 519 put_anon_vma(anon_vma); 520 return NULL; 521 } 522 out: 523 rcu_read_unlock(); 524 525 return anon_vma; 526 } 527 528 /* 529 * Similar to folio_get_anon_vma() except it locks the anon_vma. 530 * 531 * Its a little more complex as it tries to keep the fast path to a single 532 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 533 * reference like with folio_get_anon_vma() and then block on the mutex 534 * on !rwc->try_lock case. 535 */ 536 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 537 struct rmap_walk_control *rwc) 538 { 539 struct anon_vma *anon_vma = NULL; 540 struct anon_vma *root_anon_vma; 541 unsigned long anon_mapping; 542 543 rcu_read_lock(); 544 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 545 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 546 goto out; 547 if (!folio_mapped(folio)) 548 goto out; 549 550 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 551 root_anon_vma = READ_ONCE(anon_vma->root); 552 if (down_read_trylock(&root_anon_vma->rwsem)) { 553 /* 554 * If the folio is still mapped, then this anon_vma is still 555 * its anon_vma, and holding the mutex ensures that it will 556 * not go away, see anon_vma_free(). 557 */ 558 if (!folio_mapped(folio)) { 559 up_read(&root_anon_vma->rwsem); 560 anon_vma = NULL; 561 } 562 goto out; 563 } 564 565 if (rwc && rwc->try_lock) { 566 anon_vma = NULL; 567 rwc->contended = true; 568 goto out; 569 } 570 571 /* trylock failed, we got to sleep */ 572 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 573 anon_vma = NULL; 574 goto out; 575 } 576 577 if (!folio_mapped(folio)) { 578 rcu_read_unlock(); 579 put_anon_vma(anon_vma); 580 return NULL; 581 } 582 583 /* we pinned the anon_vma, its safe to sleep */ 584 rcu_read_unlock(); 585 anon_vma_lock_read(anon_vma); 586 587 if (atomic_dec_and_test(&anon_vma->refcount)) { 588 /* 589 * Oops, we held the last refcount, release the lock 590 * and bail -- can't simply use put_anon_vma() because 591 * we'll deadlock on the anon_vma_lock_write() recursion. 592 */ 593 anon_vma_unlock_read(anon_vma); 594 __put_anon_vma(anon_vma); 595 anon_vma = NULL; 596 } 597 598 return anon_vma; 599 600 out: 601 rcu_read_unlock(); 602 return anon_vma; 603 } 604 605 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 606 /* 607 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 608 * important if a PTE was dirty when it was unmapped that it's flushed 609 * before any IO is initiated on the page to prevent lost writes. Similarly, 610 * it must be flushed before freeing to prevent data leakage. 611 */ 612 void try_to_unmap_flush(void) 613 { 614 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 615 616 if (!tlb_ubc->flush_required) 617 return; 618 619 arch_tlbbatch_flush(&tlb_ubc->arch); 620 tlb_ubc->flush_required = false; 621 tlb_ubc->writable = false; 622 } 623 624 /* Flush iff there are potentially writable TLB entries that can race with IO */ 625 void try_to_unmap_flush_dirty(void) 626 { 627 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 628 629 if (tlb_ubc->writable) 630 try_to_unmap_flush(); 631 } 632 633 /* 634 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 635 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 636 */ 637 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 638 #define TLB_FLUSH_BATCH_PENDING_MASK \ 639 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 640 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 641 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 642 643 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 int batch, nbatch; 647 648 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 649 tlb_ubc->flush_required = true; 650 651 /* 652 * Ensure compiler does not re-order the setting of tlb_flush_batched 653 * before the PTE is cleared. 654 */ 655 barrier(); 656 batch = atomic_read(&mm->tlb_flush_batched); 657 retry: 658 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 659 /* 660 * Prevent `pending' from catching up with `flushed' because of 661 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 662 * `pending' becomes large. 663 */ 664 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); 665 if (nbatch != batch) { 666 batch = nbatch; 667 goto retry; 668 } 669 } else { 670 atomic_inc(&mm->tlb_flush_batched); 671 } 672 673 /* 674 * If the PTE was dirty then it's best to assume it's writable. The 675 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 676 * before the page is queued for IO. 677 */ 678 if (writable) 679 tlb_ubc->writable = true; 680 } 681 682 /* 683 * Returns true if the TLB flush should be deferred to the end of a batch of 684 * unmap operations to reduce IPIs. 685 */ 686 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 687 { 688 bool should_defer = false; 689 690 if (!(flags & TTU_BATCH_FLUSH)) 691 return false; 692 693 /* If remote CPUs need to be flushed then defer batch the flush */ 694 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 695 should_defer = true; 696 put_cpu(); 697 698 return should_defer; 699 } 700 701 /* 702 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 703 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 704 * operation such as mprotect or munmap to race between reclaim unmapping 705 * the page and flushing the page. If this race occurs, it potentially allows 706 * access to data via a stale TLB entry. Tracking all mm's that have TLB 707 * batching in flight would be expensive during reclaim so instead track 708 * whether TLB batching occurred in the past and if so then do a flush here 709 * if required. This will cost one additional flush per reclaim cycle paid 710 * by the first operation at risk such as mprotect and mumap. 711 * 712 * This must be called under the PTL so that an access to tlb_flush_batched 713 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 714 * via the PTL. 715 */ 716 void flush_tlb_batched_pending(struct mm_struct *mm) 717 { 718 int batch = atomic_read(&mm->tlb_flush_batched); 719 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 720 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 721 722 if (pending != flushed) { 723 flush_tlb_mm(mm); 724 /* 725 * If the new TLB flushing is pending during flushing, leave 726 * mm->tlb_flush_batched as is, to avoid losing flushing. 727 */ 728 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 729 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 730 } 731 } 732 #else 733 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 734 { 735 } 736 737 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 738 { 739 return false; 740 } 741 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 742 743 /* 744 * At what user virtual address is page expected in vma? 745 * Caller should check the page is actually part of the vma. 746 */ 747 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 748 { 749 struct folio *folio = page_folio(page); 750 if (folio_test_anon(folio)) { 751 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 752 /* 753 * Note: swapoff's unuse_vma() is more efficient with this 754 * check, and needs it to match anon_vma when KSM is active. 755 */ 756 if (!vma->anon_vma || !page__anon_vma || 757 vma->anon_vma->root != page__anon_vma->root) 758 return -EFAULT; 759 } else if (!vma->vm_file) { 760 return -EFAULT; 761 } else if (vma->vm_file->f_mapping != folio->mapping) { 762 return -EFAULT; 763 } 764 765 return vma_address(page, vma); 766 } 767 768 /* 769 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 770 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 771 * represents. 772 */ 773 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 774 { 775 pgd_t *pgd; 776 p4d_t *p4d; 777 pud_t *pud; 778 pmd_t *pmd = NULL; 779 780 pgd = pgd_offset(mm, address); 781 if (!pgd_present(*pgd)) 782 goto out; 783 784 p4d = p4d_offset(pgd, address); 785 if (!p4d_present(*p4d)) 786 goto out; 787 788 pud = pud_offset(p4d, address); 789 if (!pud_present(*pud)) 790 goto out; 791 792 pmd = pmd_offset(pud, address); 793 out: 794 return pmd; 795 } 796 797 struct folio_referenced_arg { 798 int mapcount; 799 int referenced; 800 unsigned long vm_flags; 801 struct mem_cgroup *memcg; 802 }; 803 /* 804 * arg: folio_referenced_arg will be passed 805 */ 806 static bool folio_referenced_one(struct folio *folio, 807 struct vm_area_struct *vma, unsigned long address, void *arg) 808 { 809 struct folio_referenced_arg *pra = arg; 810 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 811 int referenced = 0; 812 813 while (page_vma_mapped_walk(&pvmw)) { 814 address = pvmw.address; 815 816 if ((vma->vm_flags & VM_LOCKED) && 817 (!folio_test_large(folio) || !pvmw.pte)) { 818 /* Restore the mlock which got missed */ 819 mlock_vma_folio(folio, vma, !pvmw.pte); 820 page_vma_mapped_walk_done(&pvmw); 821 pra->vm_flags |= VM_LOCKED; 822 return false; /* To break the loop */ 823 } 824 825 if (pvmw.pte) { 826 if (lru_gen_enabled() && pte_young(*pvmw.pte) && 827 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) { 828 lru_gen_look_around(&pvmw); 829 referenced++; 830 } 831 832 if (ptep_clear_flush_young_notify(vma, address, 833 pvmw.pte)) { 834 /* 835 * Don't treat a reference through 836 * a sequentially read mapping as such. 837 * If the folio has been used in another mapping, 838 * we will catch it; if this other mapping is 839 * already gone, the unmap path will have set 840 * the referenced flag or activated the folio. 841 */ 842 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 843 referenced++; 844 } 845 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 846 if (pmdp_clear_flush_young_notify(vma, address, 847 pvmw.pmd)) 848 referenced++; 849 } else { 850 /* unexpected pmd-mapped folio? */ 851 WARN_ON_ONCE(1); 852 } 853 854 pra->mapcount--; 855 } 856 857 if (referenced) 858 folio_clear_idle(folio); 859 if (folio_test_clear_young(folio)) 860 referenced++; 861 862 if (referenced) { 863 pra->referenced++; 864 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 865 } 866 867 if (!pra->mapcount) 868 return false; /* To break the loop */ 869 870 return true; 871 } 872 873 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 874 { 875 struct folio_referenced_arg *pra = arg; 876 struct mem_cgroup *memcg = pra->memcg; 877 878 if (!mm_match_cgroup(vma->vm_mm, memcg)) 879 return true; 880 881 return false; 882 } 883 884 /** 885 * folio_referenced() - Test if the folio was referenced. 886 * @folio: The folio to test. 887 * @is_locked: Caller holds lock on the folio. 888 * @memcg: target memory cgroup 889 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 890 * 891 * Quick test_and_clear_referenced for all mappings of a folio, 892 * 893 * Return: The number of mappings which referenced the folio. Return -1 if 894 * the function bailed out due to rmap lock contention. 895 */ 896 int folio_referenced(struct folio *folio, int is_locked, 897 struct mem_cgroup *memcg, unsigned long *vm_flags) 898 { 899 int we_locked = 0; 900 struct folio_referenced_arg pra = { 901 .mapcount = folio_mapcount(folio), 902 .memcg = memcg, 903 }; 904 struct rmap_walk_control rwc = { 905 .rmap_one = folio_referenced_one, 906 .arg = (void *)&pra, 907 .anon_lock = folio_lock_anon_vma_read, 908 .try_lock = true, 909 }; 910 911 *vm_flags = 0; 912 if (!pra.mapcount) 913 return 0; 914 915 if (!folio_raw_mapping(folio)) 916 return 0; 917 918 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 919 we_locked = folio_trylock(folio); 920 if (!we_locked) 921 return 1; 922 } 923 924 /* 925 * If we are reclaiming on behalf of a cgroup, skip 926 * counting on behalf of references from different 927 * cgroups 928 */ 929 if (memcg) { 930 rwc.invalid_vma = invalid_folio_referenced_vma; 931 } 932 933 rmap_walk(folio, &rwc); 934 *vm_flags = pra.vm_flags; 935 936 if (we_locked) 937 folio_unlock(folio); 938 939 return rwc.contended ? -1 : pra.referenced; 940 } 941 942 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 943 { 944 int cleaned = 0; 945 struct vm_area_struct *vma = pvmw->vma; 946 struct mmu_notifier_range range; 947 unsigned long address = pvmw->address; 948 949 /* 950 * We have to assume the worse case ie pmd for invalidation. Note that 951 * the folio can not be freed from this function. 952 */ 953 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 954 0, vma, vma->vm_mm, address, 955 vma_address_end(pvmw)); 956 mmu_notifier_invalidate_range_start(&range); 957 958 while (page_vma_mapped_walk(pvmw)) { 959 int ret = 0; 960 961 address = pvmw->address; 962 if (pvmw->pte) { 963 pte_t entry; 964 pte_t *pte = pvmw->pte; 965 966 if (!pte_dirty(*pte) && !pte_write(*pte)) 967 continue; 968 969 flush_cache_page(vma, address, pte_pfn(*pte)); 970 entry = ptep_clear_flush(vma, address, pte); 971 entry = pte_wrprotect(entry); 972 entry = pte_mkclean(entry); 973 set_pte_at(vma->vm_mm, address, pte, entry); 974 ret = 1; 975 } else { 976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 977 pmd_t *pmd = pvmw->pmd; 978 pmd_t entry; 979 980 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 981 continue; 982 983 flush_cache_range(vma, address, 984 address + HPAGE_PMD_SIZE); 985 entry = pmdp_invalidate(vma, address, pmd); 986 entry = pmd_wrprotect(entry); 987 entry = pmd_mkclean(entry); 988 set_pmd_at(vma->vm_mm, address, pmd, entry); 989 ret = 1; 990 #else 991 /* unexpected pmd-mapped folio? */ 992 WARN_ON_ONCE(1); 993 #endif 994 } 995 996 /* 997 * No need to call mmu_notifier_invalidate_range() as we are 998 * downgrading page table protection not changing it to point 999 * to a new page. 1000 * 1001 * See Documentation/mm/mmu_notifier.rst 1002 */ 1003 if (ret) 1004 cleaned++; 1005 } 1006 1007 mmu_notifier_invalidate_range_end(&range); 1008 1009 return cleaned; 1010 } 1011 1012 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1013 unsigned long address, void *arg) 1014 { 1015 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1016 int *cleaned = arg; 1017 1018 *cleaned += page_vma_mkclean_one(&pvmw); 1019 1020 return true; 1021 } 1022 1023 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1024 { 1025 if (vma->vm_flags & VM_SHARED) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 int folio_mkclean(struct folio *folio) 1032 { 1033 int cleaned = 0; 1034 struct address_space *mapping; 1035 struct rmap_walk_control rwc = { 1036 .arg = (void *)&cleaned, 1037 .rmap_one = page_mkclean_one, 1038 .invalid_vma = invalid_mkclean_vma, 1039 }; 1040 1041 BUG_ON(!folio_test_locked(folio)); 1042 1043 if (!folio_mapped(folio)) 1044 return 0; 1045 1046 mapping = folio_mapping(folio); 1047 if (!mapping) 1048 return 0; 1049 1050 rmap_walk(folio, &rwc); 1051 1052 return cleaned; 1053 } 1054 EXPORT_SYMBOL_GPL(folio_mkclean); 1055 1056 /** 1057 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1058 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1059 * within the @vma of shared mappings. And since clean PTEs 1060 * should also be readonly, write protects them too. 1061 * @pfn: start pfn. 1062 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1063 * @pgoff: page offset that the @pfn mapped with. 1064 * @vma: vma that @pfn mapped within. 1065 * 1066 * Returns the number of cleaned PTEs (including PMDs). 1067 */ 1068 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1069 struct vm_area_struct *vma) 1070 { 1071 struct page_vma_mapped_walk pvmw = { 1072 .pfn = pfn, 1073 .nr_pages = nr_pages, 1074 .pgoff = pgoff, 1075 .vma = vma, 1076 .flags = PVMW_SYNC, 1077 }; 1078 1079 if (invalid_mkclean_vma(vma, NULL)) 1080 return 0; 1081 1082 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1083 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1084 1085 return page_vma_mkclean_one(&pvmw); 1086 } 1087 1088 int total_compound_mapcount(struct page *head) 1089 { 1090 int mapcount = head_compound_mapcount(head); 1091 int nr_subpages; 1092 int i; 1093 1094 /* In the common case, avoid the loop when no subpages mapped by PTE */ 1095 if (head_subpages_mapcount(head) == 0) 1096 return mapcount; 1097 /* 1098 * Add all the PTE mappings of those subpages mapped by PTE. 1099 * Limit the loop, knowing that only subpages_mapcount are mapped? 1100 * Perhaps: given all the raciness, that may be a good or a bad idea. 1101 */ 1102 nr_subpages = thp_nr_pages(head); 1103 for (i = 0; i < nr_subpages; i++) 1104 mapcount += atomic_read(&head[i]._mapcount); 1105 1106 /* But each of those _mapcounts was based on -1 */ 1107 mapcount += nr_subpages; 1108 return mapcount; 1109 } 1110 1111 /** 1112 * page_move_anon_rmap - move a page to our anon_vma 1113 * @page: the page to move to our anon_vma 1114 * @vma: the vma the page belongs to 1115 * 1116 * When a page belongs exclusively to one process after a COW event, 1117 * that page can be moved into the anon_vma that belongs to just that 1118 * process, so the rmap code will not search the parent or sibling 1119 * processes. 1120 */ 1121 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1122 { 1123 void *anon_vma = vma->anon_vma; 1124 struct folio *folio = page_folio(page); 1125 1126 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1127 VM_BUG_ON_VMA(!anon_vma, vma); 1128 1129 anon_vma += PAGE_MAPPING_ANON; 1130 /* 1131 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1132 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1133 * folio_test_anon()) will not see one without the other. 1134 */ 1135 WRITE_ONCE(folio->mapping, anon_vma); 1136 SetPageAnonExclusive(page); 1137 } 1138 1139 /** 1140 * __page_set_anon_rmap - set up new anonymous rmap 1141 * @page: Page or Hugepage to add to rmap 1142 * @vma: VM area to add page to. 1143 * @address: User virtual address of the mapping 1144 * @exclusive: the page is exclusively owned by the current process 1145 */ 1146 static void __page_set_anon_rmap(struct page *page, 1147 struct vm_area_struct *vma, unsigned long address, int exclusive) 1148 { 1149 struct anon_vma *anon_vma = vma->anon_vma; 1150 1151 BUG_ON(!anon_vma); 1152 1153 if (PageAnon(page)) 1154 goto out; 1155 1156 /* 1157 * If the page isn't exclusively mapped into this vma, 1158 * we must use the _oldest_ possible anon_vma for the 1159 * page mapping! 1160 */ 1161 if (!exclusive) 1162 anon_vma = anon_vma->root; 1163 1164 /* 1165 * page_idle does a lockless/optimistic rmap scan on page->mapping. 1166 * Make sure the compiler doesn't split the stores of anon_vma and 1167 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1168 * could mistake the mapping for a struct address_space and crash. 1169 */ 1170 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1171 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1172 page->index = linear_page_index(vma, address); 1173 out: 1174 if (exclusive) 1175 SetPageAnonExclusive(page); 1176 } 1177 1178 /** 1179 * __page_check_anon_rmap - sanity check anonymous rmap addition 1180 * @page: the page to add the mapping to 1181 * @vma: the vm area in which the mapping is added 1182 * @address: the user virtual address mapped 1183 */ 1184 static void __page_check_anon_rmap(struct page *page, 1185 struct vm_area_struct *vma, unsigned long address) 1186 { 1187 struct folio *folio = page_folio(page); 1188 /* 1189 * The page's anon-rmap details (mapping and index) are guaranteed to 1190 * be set up correctly at this point. 1191 * 1192 * We have exclusion against page_add_anon_rmap because the caller 1193 * always holds the page locked. 1194 * 1195 * We have exclusion against page_add_new_anon_rmap because those pages 1196 * are initially only visible via the pagetables, and the pte is locked 1197 * over the call to page_add_new_anon_rmap. 1198 */ 1199 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1200 folio); 1201 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1202 page); 1203 } 1204 1205 /** 1206 * page_add_anon_rmap - add pte mapping to an anonymous page 1207 * @page: the page to add the mapping to 1208 * @vma: the vm area in which the mapping is added 1209 * @address: the user virtual address mapped 1210 * @flags: the rmap flags 1211 * 1212 * The caller needs to hold the pte lock, and the page must be locked in 1213 * the anon_vma case: to serialize mapping,index checking after setting, 1214 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1215 * (but PageKsm is never downgraded to PageAnon). 1216 */ 1217 void page_add_anon_rmap(struct page *page, 1218 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1219 { 1220 atomic_t *mapped; 1221 int nr = 0, nr_pmdmapped = 0; 1222 bool compound = flags & RMAP_COMPOUND; 1223 bool first = true; 1224 1225 if (unlikely(PageKsm(page))) 1226 lock_page_memcg(page); 1227 1228 /* Is page being mapped by PTE? Is this its first map to be added? */ 1229 if (likely(!compound)) { 1230 first = atomic_inc_and_test(&page->_mapcount); 1231 nr = first; 1232 if (first && PageCompound(page)) { 1233 mapped = subpages_mapcount_ptr(compound_head(page)); 1234 nr = atomic_inc_return_relaxed(mapped); 1235 nr = (nr < COMPOUND_MAPPED); 1236 } 1237 } else if (PageTransHuge(page)) { 1238 /* That test is redundant: it's for safety or to optimize out */ 1239 1240 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1241 if (first) { 1242 mapped = subpages_mapcount_ptr(page); 1243 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1244 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1245 nr_pmdmapped = thp_nr_pages(page); 1246 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); 1247 /* Raced ahead of a remove and another add? */ 1248 if (unlikely(nr < 0)) 1249 nr = 0; 1250 } else { 1251 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1252 nr = 0; 1253 } 1254 } 1255 } 1256 1257 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1258 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1259 1260 if (nr_pmdmapped) 1261 __mod_lruvec_page_state(page, NR_ANON_THPS, nr_pmdmapped); 1262 if (nr) 1263 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1264 1265 if (unlikely(PageKsm(page))) 1266 unlock_page_memcg(page); 1267 1268 /* address might be in next vma when migration races vma_adjust */ 1269 else if (first) 1270 __page_set_anon_rmap(page, vma, address, 1271 !!(flags & RMAP_EXCLUSIVE)); 1272 else 1273 __page_check_anon_rmap(page, vma, address); 1274 1275 mlock_vma_page(page, vma, compound); 1276 } 1277 1278 /** 1279 * page_add_new_anon_rmap - add mapping to a new anonymous page 1280 * @page: the page to add the mapping to 1281 * @vma: the vm area in which the mapping is added 1282 * @address: the user virtual address mapped 1283 * 1284 * If it's a compound page, it is accounted as a compound page. As the page 1285 * is new, it's assume to get mapped exclusively by a single process. 1286 * 1287 * Same as page_add_anon_rmap but must only be called on *new* pages. 1288 * This means the inc-and-test can be bypassed. 1289 * Page does not have to be locked. 1290 */ 1291 void page_add_new_anon_rmap(struct page *page, 1292 struct vm_area_struct *vma, unsigned long address) 1293 { 1294 int nr; 1295 1296 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1297 __SetPageSwapBacked(page); 1298 1299 if (likely(!PageCompound(page))) { 1300 /* increment count (starts at -1) */ 1301 atomic_set(&page->_mapcount, 0); 1302 nr = 1; 1303 } else { 1304 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1305 /* increment count (starts at -1) */ 1306 atomic_set(compound_mapcount_ptr(page), 0); 1307 atomic_set(subpages_mapcount_ptr(page), COMPOUND_MAPPED); 1308 nr = thp_nr_pages(page); 1309 __mod_lruvec_page_state(page, NR_ANON_THPS, nr); 1310 } 1311 1312 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); 1313 __page_set_anon_rmap(page, vma, address, 1); 1314 } 1315 1316 /** 1317 * page_add_file_rmap - add pte mapping to a file page 1318 * @page: the page to add the mapping to 1319 * @vma: the vm area in which the mapping is added 1320 * @compound: charge the page as compound or small page 1321 * 1322 * The caller needs to hold the pte lock. 1323 */ 1324 void page_add_file_rmap(struct page *page, 1325 struct vm_area_struct *vma, bool compound) 1326 { 1327 atomic_t *mapped; 1328 int nr = 0, nr_pmdmapped = 0; 1329 bool first; 1330 1331 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1332 lock_page_memcg(page); 1333 1334 /* Is page being mapped by PTE? Is this its first map to be added? */ 1335 if (likely(!compound)) { 1336 first = atomic_inc_and_test(&page->_mapcount); 1337 nr = first; 1338 if (first && PageCompound(page)) { 1339 mapped = subpages_mapcount_ptr(compound_head(page)); 1340 nr = atomic_inc_return_relaxed(mapped); 1341 nr = (nr < COMPOUND_MAPPED); 1342 } 1343 } else if (PageTransHuge(page)) { 1344 /* That test is redundant: it's for safety or to optimize out */ 1345 1346 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1347 if (first) { 1348 mapped = subpages_mapcount_ptr(page); 1349 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1350 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1351 nr_pmdmapped = thp_nr_pages(page); 1352 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); 1353 /* Raced ahead of a remove and another add? */ 1354 if (unlikely(nr < 0)) 1355 nr = 0; 1356 } else { 1357 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1358 nr = 0; 1359 } 1360 } 1361 } 1362 1363 if (nr_pmdmapped) 1364 __mod_lruvec_page_state(page, PageSwapBacked(page) ? 1365 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1366 if (nr) 1367 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1368 unlock_page_memcg(page); 1369 1370 mlock_vma_page(page, vma, compound); 1371 } 1372 1373 /** 1374 * page_remove_rmap - take down pte mapping from a page 1375 * @page: page to remove mapping from 1376 * @vma: the vm area from which the mapping is removed 1377 * @compound: uncharge the page as compound or small page 1378 * 1379 * The caller needs to hold the pte lock. 1380 */ 1381 void page_remove_rmap(struct page *page, 1382 struct vm_area_struct *vma, bool compound) 1383 { 1384 atomic_t *mapped; 1385 int nr = 0, nr_pmdmapped = 0; 1386 bool last; 1387 1388 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1389 1390 /* Hugetlb pages are not counted in NR_*MAPPED */ 1391 if (unlikely(PageHuge(page))) { 1392 /* hugetlb pages are always mapped with pmds */ 1393 atomic_dec(compound_mapcount_ptr(page)); 1394 return; 1395 } 1396 1397 lock_page_memcg(page); 1398 1399 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1400 if (likely(!compound)) { 1401 last = atomic_add_negative(-1, &page->_mapcount); 1402 nr = last; 1403 if (last && PageCompound(page)) { 1404 mapped = subpages_mapcount_ptr(compound_head(page)); 1405 nr = atomic_dec_return_relaxed(mapped); 1406 nr = (nr < COMPOUND_MAPPED); 1407 } 1408 } else if (PageTransHuge(page)) { 1409 /* That test is redundant: it's for safety or to optimize out */ 1410 1411 last = atomic_add_negative(-1, compound_mapcount_ptr(page)); 1412 if (last) { 1413 mapped = subpages_mapcount_ptr(page); 1414 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1415 if (likely(nr < COMPOUND_MAPPED)) { 1416 nr_pmdmapped = thp_nr_pages(page); 1417 nr = nr_pmdmapped - (nr & SUBPAGES_MAPPED); 1418 /* Raced ahead of another remove and an add? */ 1419 if (unlikely(nr < 0)) 1420 nr = 0; 1421 } else { 1422 /* An add of COMPOUND_MAPPED raced ahead */ 1423 nr = 0; 1424 } 1425 } 1426 } 1427 1428 if (nr_pmdmapped) { 1429 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_THPS : 1430 (PageSwapBacked(page) ? NR_SHMEM_PMDMAPPED : 1431 NR_FILE_PMDMAPPED), -nr_pmdmapped); 1432 } 1433 if (nr) { 1434 __mod_lruvec_page_state(page, PageAnon(page) ? NR_ANON_MAPPED : 1435 NR_FILE_MAPPED, -nr); 1436 /* 1437 * Queue anon THP for deferred split if at least one small 1438 * page of the compound page is unmapped, but at least one 1439 * small page is still mapped. 1440 */ 1441 if (PageTransCompound(page) && PageAnon(page)) 1442 if (!compound || nr < nr_pmdmapped) 1443 deferred_split_huge_page(compound_head(page)); 1444 } 1445 1446 /* 1447 * It would be tidy to reset PageAnon mapping when fully unmapped, 1448 * but that might overwrite a racing page_add_anon_rmap 1449 * which increments mapcount after us but sets mapping 1450 * before us: so leave the reset to free_pages_prepare, 1451 * and remember that it's only reliable while mapped. 1452 */ 1453 1454 unlock_page_memcg(page); 1455 1456 munlock_vma_page(page, vma, compound); 1457 } 1458 1459 /* 1460 * @arg: enum ttu_flags will be passed to this argument 1461 */ 1462 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1463 unsigned long address, void *arg) 1464 { 1465 struct mm_struct *mm = vma->vm_mm; 1466 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1467 pte_t pteval; 1468 struct page *subpage; 1469 bool anon_exclusive, ret = true; 1470 struct mmu_notifier_range range; 1471 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1472 1473 /* 1474 * When racing against e.g. zap_pte_range() on another cpu, 1475 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1476 * try_to_unmap() may return before page_mapped() has become false, 1477 * if page table locking is skipped: use TTU_SYNC to wait for that. 1478 */ 1479 if (flags & TTU_SYNC) 1480 pvmw.flags = PVMW_SYNC; 1481 1482 if (flags & TTU_SPLIT_HUGE_PMD) 1483 split_huge_pmd_address(vma, address, false, folio); 1484 1485 /* 1486 * For THP, we have to assume the worse case ie pmd for invalidation. 1487 * For hugetlb, it could be much worse if we need to do pud 1488 * invalidation in the case of pmd sharing. 1489 * 1490 * Note that the folio can not be freed in this function as call of 1491 * try_to_unmap() must hold a reference on the folio. 1492 */ 1493 range.end = vma_address_end(&pvmw); 1494 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1495 address, range.end); 1496 if (folio_test_hugetlb(folio)) { 1497 /* 1498 * If sharing is possible, start and end will be adjusted 1499 * accordingly. 1500 */ 1501 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1502 &range.end); 1503 } 1504 mmu_notifier_invalidate_range_start(&range); 1505 1506 while (page_vma_mapped_walk(&pvmw)) { 1507 /* Unexpected PMD-mapped THP? */ 1508 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1509 1510 /* 1511 * If the folio is in an mlock()d vma, we must not swap it out. 1512 */ 1513 if (!(flags & TTU_IGNORE_MLOCK) && 1514 (vma->vm_flags & VM_LOCKED)) { 1515 /* Restore the mlock which got missed */ 1516 mlock_vma_folio(folio, vma, false); 1517 page_vma_mapped_walk_done(&pvmw); 1518 ret = false; 1519 break; 1520 } 1521 1522 subpage = folio_page(folio, 1523 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1524 address = pvmw.address; 1525 anon_exclusive = folio_test_anon(folio) && 1526 PageAnonExclusive(subpage); 1527 1528 if (folio_test_hugetlb(folio)) { 1529 bool anon = folio_test_anon(folio); 1530 1531 /* 1532 * The try_to_unmap() is only passed a hugetlb page 1533 * in the case where the hugetlb page is poisoned. 1534 */ 1535 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1536 /* 1537 * huge_pmd_unshare may unmap an entire PMD page. 1538 * There is no way of knowing exactly which PMDs may 1539 * be cached for this mm, so we must flush them all. 1540 * start/end were already adjusted above to cover this 1541 * range. 1542 */ 1543 flush_cache_range(vma, range.start, range.end); 1544 1545 /* 1546 * To call huge_pmd_unshare, i_mmap_rwsem must be 1547 * held in write mode. Caller needs to explicitly 1548 * do this outside rmap routines. 1549 * 1550 * We also must hold hugetlb vma_lock in write mode. 1551 * Lock order dictates acquiring vma_lock BEFORE 1552 * i_mmap_rwsem. We can only try lock here and fail 1553 * if unsuccessful. 1554 */ 1555 if (!anon) { 1556 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1557 if (!hugetlb_vma_trylock_write(vma)) { 1558 page_vma_mapped_walk_done(&pvmw); 1559 ret = false; 1560 break; 1561 } 1562 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1563 hugetlb_vma_unlock_write(vma); 1564 flush_tlb_range(vma, 1565 range.start, range.end); 1566 mmu_notifier_invalidate_range(mm, 1567 range.start, range.end); 1568 /* 1569 * The ref count of the PMD page was 1570 * dropped which is part of the way map 1571 * counting is done for shared PMDs. 1572 * Return 'true' here. When there is 1573 * no other sharing, huge_pmd_unshare 1574 * returns false and we will unmap the 1575 * actual page and drop map count 1576 * to zero. 1577 */ 1578 page_vma_mapped_walk_done(&pvmw); 1579 break; 1580 } 1581 hugetlb_vma_unlock_write(vma); 1582 } 1583 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1584 } else { 1585 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1586 /* Nuke the page table entry. */ 1587 if (should_defer_flush(mm, flags)) { 1588 /* 1589 * We clear the PTE but do not flush so potentially 1590 * a remote CPU could still be writing to the folio. 1591 * If the entry was previously clean then the 1592 * architecture must guarantee that a clear->dirty 1593 * transition on a cached TLB entry is written through 1594 * and traps if the PTE is unmapped. 1595 */ 1596 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1597 1598 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1599 } else { 1600 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1601 } 1602 } 1603 1604 /* 1605 * Now the pte is cleared. If this pte was uffd-wp armed, 1606 * we may want to replace a none pte with a marker pte if 1607 * it's file-backed, so we don't lose the tracking info. 1608 */ 1609 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1610 1611 /* Set the dirty flag on the folio now the pte is gone. */ 1612 if (pte_dirty(pteval)) 1613 folio_mark_dirty(folio); 1614 1615 /* Update high watermark before we lower rss */ 1616 update_hiwater_rss(mm); 1617 1618 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) { 1619 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1620 if (folio_test_hugetlb(folio)) { 1621 hugetlb_count_sub(folio_nr_pages(folio), mm); 1622 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1623 } else { 1624 dec_mm_counter(mm, mm_counter(&folio->page)); 1625 set_pte_at(mm, address, pvmw.pte, pteval); 1626 } 1627 1628 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1629 /* 1630 * The guest indicated that the page content is of no 1631 * interest anymore. Simply discard the pte, vmscan 1632 * will take care of the rest. 1633 * A future reference will then fault in a new zero 1634 * page. When userfaultfd is active, we must not drop 1635 * this page though, as its main user (postcopy 1636 * migration) will not expect userfaults on already 1637 * copied pages. 1638 */ 1639 dec_mm_counter(mm, mm_counter(&folio->page)); 1640 /* We have to invalidate as we cleared the pte */ 1641 mmu_notifier_invalidate_range(mm, address, 1642 address + PAGE_SIZE); 1643 } else if (folio_test_anon(folio)) { 1644 swp_entry_t entry = { .val = page_private(subpage) }; 1645 pte_t swp_pte; 1646 /* 1647 * Store the swap location in the pte. 1648 * See handle_pte_fault() ... 1649 */ 1650 if (unlikely(folio_test_swapbacked(folio) != 1651 folio_test_swapcache(folio))) { 1652 WARN_ON_ONCE(1); 1653 ret = false; 1654 /* We have to invalidate as we cleared the pte */ 1655 mmu_notifier_invalidate_range(mm, address, 1656 address + PAGE_SIZE); 1657 page_vma_mapped_walk_done(&pvmw); 1658 break; 1659 } 1660 1661 /* MADV_FREE page check */ 1662 if (!folio_test_swapbacked(folio)) { 1663 int ref_count, map_count; 1664 1665 /* 1666 * Synchronize with gup_pte_range(): 1667 * - clear PTE; barrier; read refcount 1668 * - inc refcount; barrier; read PTE 1669 */ 1670 smp_mb(); 1671 1672 ref_count = folio_ref_count(folio); 1673 map_count = folio_mapcount(folio); 1674 1675 /* 1676 * Order reads for page refcount and dirty flag 1677 * (see comments in __remove_mapping()). 1678 */ 1679 smp_rmb(); 1680 1681 /* 1682 * The only page refs must be one from isolation 1683 * plus the rmap(s) (dropped by discard:). 1684 */ 1685 if (ref_count == 1 + map_count && 1686 !folio_test_dirty(folio)) { 1687 /* Invalidate as we cleared the pte */ 1688 mmu_notifier_invalidate_range(mm, 1689 address, address + PAGE_SIZE); 1690 dec_mm_counter(mm, MM_ANONPAGES); 1691 goto discard; 1692 } 1693 1694 /* 1695 * If the folio was redirtied, it cannot be 1696 * discarded. Remap the page to page table. 1697 */ 1698 set_pte_at(mm, address, pvmw.pte, pteval); 1699 folio_set_swapbacked(folio); 1700 ret = false; 1701 page_vma_mapped_walk_done(&pvmw); 1702 break; 1703 } 1704 1705 if (swap_duplicate(entry) < 0) { 1706 set_pte_at(mm, address, pvmw.pte, pteval); 1707 ret = false; 1708 page_vma_mapped_walk_done(&pvmw); 1709 break; 1710 } 1711 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1712 swap_free(entry); 1713 set_pte_at(mm, address, pvmw.pte, pteval); 1714 ret = false; 1715 page_vma_mapped_walk_done(&pvmw); 1716 break; 1717 } 1718 1719 /* See page_try_share_anon_rmap(): clear PTE first. */ 1720 if (anon_exclusive && 1721 page_try_share_anon_rmap(subpage)) { 1722 swap_free(entry); 1723 set_pte_at(mm, address, pvmw.pte, pteval); 1724 ret = false; 1725 page_vma_mapped_walk_done(&pvmw); 1726 break; 1727 } 1728 /* 1729 * Note: We *don't* remember if the page was mapped 1730 * exclusively in the swap pte if the architecture 1731 * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In 1732 * that case, swapin code has to re-determine that 1733 * manually and might detect the page as possibly 1734 * shared, for example, if there are other references on 1735 * the page or if the page is under writeback. We made 1736 * sure that there are no GUP pins on the page that 1737 * would rely on it, so for GUP pins this is fine. 1738 */ 1739 if (list_empty(&mm->mmlist)) { 1740 spin_lock(&mmlist_lock); 1741 if (list_empty(&mm->mmlist)) 1742 list_add(&mm->mmlist, &init_mm.mmlist); 1743 spin_unlock(&mmlist_lock); 1744 } 1745 dec_mm_counter(mm, MM_ANONPAGES); 1746 inc_mm_counter(mm, MM_SWAPENTS); 1747 swp_pte = swp_entry_to_pte(entry); 1748 if (anon_exclusive) 1749 swp_pte = pte_swp_mkexclusive(swp_pte); 1750 if (pte_soft_dirty(pteval)) 1751 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1752 if (pte_uffd_wp(pteval)) 1753 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1754 set_pte_at(mm, address, pvmw.pte, swp_pte); 1755 /* Invalidate as we cleared the pte */ 1756 mmu_notifier_invalidate_range(mm, address, 1757 address + PAGE_SIZE); 1758 } else { 1759 /* 1760 * This is a locked file-backed folio, 1761 * so it cannot be removed from the page 1762 * cache and replaced by a new folio before 1763 * mmu_notifier_invalidate_range_end, so no 1764 * concurrent thread might update its page table 1765 * to point at a new folio while a device is 1766 * still using this folio. 1767 * 1768 * See Documentation/mm/mmu_notifier.rst 1769 */ 1770 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1771 } 1772 discard: 1773 /* 1774 * No need to call mmu_notifier_invalidate_range() it has be 1775 * done above for all cases requiring it to happen under page 1776 * table lock before mmu_notifier_invalidate_range_end() 1777 * 1778 * See Documentation/mm/mmu_notifier.rst 1779 */ 1780 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1781 if (vma->vm_flags & VM_LOCKED) 1782 mlock_page_drain_local(); 1783 folio_put(folio); 1784 } 1785 1786 mmu_notifier_invalidate_range_end(&range); 1787 1788 return ret; 1789 } 1790 1791 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1792 { 1793 return vma_is_temporary_stack(vma); 1794 } 1795 1796 static int folio_not_mapped(struct folio *folio) 1797 { 1798 return !folio_mapped(folio); 1799 } 1800 1801 /** 1802 * try_to_unmap - Try to remove all page table mappings to a folio. 1803 * @folio: The folio to unmap. 1804 * @flags: action and flags 1805 * 1806 * Tries to remove all the page table entries which are mapping this 1807 * folio. It is the caller's responsibility to check if the folio is 1808 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1809 * 1810 * Context: Caller must hold the folio lock. 1811 */ 1812 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1813 { 1814 struct rmap_walk_control rwc = { 1815 .rmap_one = try_to_unmap_one, 1816 .arg = (void *)flags, 1817 .done = folio_not_mapped, 1818 .anon_lock = folio_lock_anon_vma_read, 1819 }; 1820 1821 if (flags & TTU_RMAP_LOCKED) 1822 rmap_walk_locked(folio, &rwc); 1823 else 1824 rmap_walk(folio, &rwc); 1825 } 1826 1827 /* 1828 * @arg: enum ttu_flags will be passed to this argument. 1829 * 1830 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1831 * containing migration entries. 1832 */ 1833 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1834 unsigned long address, void *arg) 1835 { 1836 struct mm_struct *mm = vma->vm_mm; 1837 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1838 pte_t pteval; 1839 struct page *subpage; 1840 bool anon_exclusive, ret = true; 1841 struct mmu_notifier_range range; 1842 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1843 1844 /* 1845 * When racing against e.g. zap_pte_range() on another cpu, 1846 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1847 * try_to_migrate() may return before page_mapped() has become false, 1848 * if page table locking is skipped: use TTU_SYNC to wait for that. 1849 */ 1850 if (flags & TTU_SYNC) 1851 pvmw.flags = PVMW_SYNC; 1852 1853 /* 1854 * unmap_page() in mm/huge_memory.c is the only user of migration with 1855 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1856 */ 1857 if (flags & TTU_SPLIT_HUGE_PMD) 1858 split_huge_pmd_address(vma, address, true, folio); 1859 1860 /* 1861 * For THP, we have to assume the worse case ie pmd for invalidation. 1862 * For hugetlb, it could be much worse if we need to do pud 1863 * invalidation in the case of pmd sharing. 1864 * 1865 * Note that the page can not be free in this function as call of 1866 * try_to_unmap() must hold a reference on the page. 1867 */ 1868 range.end = vma_address_end(&pvmw); 1869 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1870 address, range.end); 1871 if (folio_test_hugetlb(folio)) { 1872 /* 1873 * If sharing is possible, start and end will be adjusted 1874 * accordingly. 1875 */ 1876 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1877 &range.end); 1878 } 1879 mmu_notifier_invalidate_range_start(&range); 1880 1881 while (page_vma_mapped_walk(&pvmw)) { 1882 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1883 /* PMD-mapped THP migration entry */ 1884 if (!pvmw.pte) { 1885 subpage = folio_page(folio, 1886 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1887 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1888 !folio_test_pmd_mappable(folio), folio); 1889 1890 if (set_pmd_migration_entry(&pvmw, subpage)) { 1891 ret = false; 1892 page_vma_mapped_walk_done(&pvmw); 1893 break; 1894 } 1895 continue; 1896 } 1897 #endif 1898 1899 /* Unexpected PMD-mapped THP? */ 1900 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1901 1902 if (folio_is_zone_device(folio)) { 1903 /* 1904 * Our PTE is a non-present device exclusive entry and 1905 * calculating the subpage as for the common case would 1906 * result in an invalid pointer. 1907 * 1908 * Since only PAGE_SIZE pages can currently be 1909 * migrated, just set it to page. This will need to be 1910 * changed when hugepage migrations to device private 1911 * memory are supported. 1912 */ 1913 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1914 subpage = &folio->page; 1915 } else { 1916 subpage = folio_page(folio, 1917 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 1918 } 1919 address = pvmw.address; 1920 anon_exclusive = folio_test_anon(folio) && 1921 PageAnonExclusive(subpage); 1922 1923 if (folio_test_hugetlb(folio)) { 1924 bool anon = folio_test_anon(folio); 1925 1926 /* 1927 * huge_pmd_unshare may unmap an entire PMD page. 1928 * There is no way of knowing exactly which PMDs may 1929 * be cached for this mm, so we must flush them all. 1930 * start/end were already adjusted above to cover this 1931 * range. 1932 */ 1933 flush_cache_range(vma, range.start, range.end); 1934 1935 /* 1936 * To call huge_pmd_unshare, i_mmap_rwsem must be 1937 * held in write mode. Caller needs to explicitly 1938 * do this outside rmap routines. 1939 * 1940 * We also must hold hugetlb vma_lock in write mode. 1941 * Lock order dictates acquiring vma_lock BEFORE 1942 * i_mmap_rwsem. We can only try lock here and 1943 * fail if unsuccessful. 1944 */ 1945 if (!anon) { 1946 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1947 if (!hugetlb_vma_trylock_write(vma)) { 1948 page_vma_mapped_walk_done(&pvmw); 1949 ret = false; 1950 break; 1951 } 1952 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1953 hugetlb_vma_unlock_write(vma); 1954 flush_tlb_range(vma, 1955 range.start, range.end); 1956 mmu_notifier_invalidate_range(mm, 1957 range.start, range.end); 1958 1959 /* 1960 * The ref count of the PMD page was 1961 * dropped which is part of the way map 1962 * counting is done for shared PMDs. 1963 * Return 'true' here. When there is 1964 * no other sharing, huge_pmd_unshare 1965 * returns false and we will unmap the 1966 * actual page and drop map count 1967 * to zero. 1968 */ 1969 page_vma_mapped_walk_done(&pvmw); 1970 break; 1971 } 1972 hugetlb_vma_unlock_write(vma); 1973 } 1974 /* Nuke the hugetlb page table entry */ 1975 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1976 } else { 1977 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1978 /* Nuke the page table entry. */ 1979 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1980 } 1981 1982 /* Set the dirty flag on the folio now the pte is gone. */ 1983 if (pte_dirty(pteval)) 1984 folio_mark_dirty(folio); 1985 1986 /* Update high watermark before we lower rss */ 1987 update_hiwater_rss(mm); 1988 1989 if (folio_is_device_private(folio)) { 1990 unsigned long pfn = folio_pfn(folio); 1991 swp_entry_t entry; 1992 pte_t swp_pte; 1993 1994 if (anon_exclusive) 1995 BUG_ON(page_try_share_anon_rmap(subpage)); 1996 1997 /* 1998 * Store the pfn of the page in a special migration 1999 * pte. do_swap_page() will wait until the migration 2000 * pte is removed and then restart fault handling. 2001 */ 2002 entry = pte_to_swp_entry(pteval); 2003 if (is_writable_device_private_entry(entry)) 2004 entry = make_writable_migration_entry(pfn); 2005 else if (anon_exclusive) 2006 entry = make_readable_exclusive_migration_entry(pfn); 2007 else 2008 entry = make_readable_migration_entry(pfn); 2009 swp_pte = swp_entry_to_pte(entry); 2010 2011 /* 2012 * pteval maps a zone device page and is therefore 2013 * a swap pte. 2014 */ 2015 if (pte_swp_soft_dirty(pteval)) 2016 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2017 if (pte_swp_uffd_wp(pteval)) 2018 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2019 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2020 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2021 compound_order(&folio->page)); 2022 /* 2023 * No need to invalidate here it will synchronize on 2024 * against the special swap migration pte. 2025 */ 2026 } else if (PageHWPoison(subpage)) { 2027 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2028 if (folio_test_hugetlb(folio)) { 2029 hugetlb_count_sub(folio_nr_pages(folio), mm); 2030 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2031 } else { 2032 dec_mm_counter(mm, mm_counter(&folio->page)); 2033 set_pte_at(mm, address, pvmw.pte, pteval); 2034 } 2035 2036 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2037 /* 2038 * The guest indicated that the page content is of no 2039 * interest anymore. Simply discard the pte, vmscan 2040 * will take care of the rest. 2041 * A future reference will then fault in a new zero 2042 * page. When userfaultfd is active, we must not drop 2043 * this page though, as its main user (postcopy 2044 * migration) will not expect userfaults on already 2045 * copied pages. 2046 */ 2047 dec_mm_counter(mm, mm_counter(&folio->page)); 2048 /* We have to invalidate as we cleared the pte */ 2049 mmu_notifier_invalidate_range(mm, address, 2050 address + PAGE_SIZE); 2051 } else { 2052 swp_entry_t entry; 2053 pte_t swp_pte; 2054 2055 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2056 if (folio_test_hugetlb(folio)) 2057 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2058 else 2059 set_pte_at(mm, address, pvmw.pte, pteval); 2060 ret = false; 2061 page_vma_mapped_walk_done(&pvmw); 2062 break; 2063 } 2064 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2065 !anon_exclusive, subpage); 2066 2067 /* See page_try_share_anon_rmap(): clear PTE first. */ 2068 if (anon_exclusive && 2069 page_try_share_anon_rmap(subpage)) { 2070 if (folio_test_hugetlb(folio)) 2071 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2072 else 2073 set_pte_at(mm, address, pvmw.pte, pteval); 2074 ret = false; 2075 page_vma_mapped_walk_done(&pvmw); 2076 break; 2077 } 2078 2079 /* 2080 * Store the pfn of the page in a special migration 2081 * pte. do_swap_page() will wait until the migration 2082 * pte is removed and then restart fault handling. 2083 */ 2084 if (pte_write(pteval)) 2085 entry = make_writable_migration_entry( 2086 page_to_pfn(subpage)); 2087 else if (anon_exclusive) 2088 entry = make_readable_exclusive_migration_entry( 2089 page_to_pfn(subpage)); 2090 else 2091 entry = make_readable_migration_entry( 2092 page_to_pfn(subpage)); 2093 if (pte_young(pteval)) 2094 entry = make_migration_entry_young(entry); 2095 if (pte_dirty(pteval)) 2096 entry = make_migration_entry_dirty(entry); 2097 swp_pte = swp_entry_to_pte(entry); 2098 if (pte_soft_dirty(pteval)) 2099 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2100 if (pte_uffd_wp(pteval)) 2101 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2102 if (folio_test_hugetlb(folio)) 2103 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2104 else 2105 set_pte_at(mm, address, pvmw.pte, swp_pte); 2106 trace_set_migration_pte(address, pte_val(swp_pte), 2107 compound_order(&folio->page)); 2108 /* 2109 * No need to invalidate here it will synchronize on 2110 * against the special swap migration pte. 2111 */ 2112 } 2113 2114 /* 2115 * No need to call mmu_notifier_invalidate_range() it has be 2116 * done above for all cases requiring it to happen under page 2117 * table lock before mmu_notifier_invalidate_range_end() 2118 * 2119 * See Documentation/mm/mmu_notifier.rst 2120 */ 2121 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2122 if (vma->vm_flags & VM_LOCKED) 2123 mlock_page_drain_local(); 2124 folio_put(folio); 2125 } 2126 2127 mmu_notifier_invalidate_range_end(&range); 2128 2129 return ret; 2130 } 2131 2132 /** 2133 * try_to_migrate - try to replace all page table mappings with swap entries 2134 * @folio: the folio to replace page table entries for 2135 * @flags: action and flags 2136 * 2137 * Tries to remove all the page table entries which are mapping this folio and 2138 * replace them with special swap entries. Caller must hold the folio lock. 2139 */ 2140 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2141 { 2142 struct rmap_walk_control rwc = { 2143 .rmap_one = try_to_migrate_one, 2144 .arg = (void *)flags, 2145 .done = folio_not_mapped, 2146 .anon_lock = folio_lock_anon_vma_read, 2147 }; 2148 2149 /* 2150 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2151 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. 2152 */ 2153 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2154 TTU_SYNC))) 2155 return; 2156 2157 if (folio_is_zone_device(folio) && 2158 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2159 return; 2160 2161 /* 2162 * During exec, a temporary VMA is setup and later moved. 2163 * The VMA is moved under the anon_vma lock but not the 2164 * page tables leading to a race where migration cannot 2165 * find the migration ptes. Rather than increasing the 2166 * locking requirements of exec(), migration skips 2167 * temporary VMAs until after exec() completes. 2168 */ 2169 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2170 rwc.invalid_vma = invalid_migration_vma; 2171 2172 if (flags & TTU_RMAP_LOCKED) 2173 rmap_walk_locked(folio, &rwc); 2174 else 2175 rmap_walk(folio, &rwc); 2176 } 2177 2178 #ifdef CONFIG_DEVICE_PRIVATE 2179 struct make_exclusive_args { 2180 struct mm_struct *mm; 2181 unsigned long address; 2182 void *owner; 2183 bool valid; 2184 }; 2185 2186 static bool page_make_device_exclusive_one(struct folio *folio, 2187 struct vm_area_struct *vma, unsigned long address, void *priv) 2188 { 2189 struct mm_struct *mm = vma->vm_mm; 2190 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2191 struct make_exclusive_args *args = priv; 2192 pte_t pteval; 2193 struct page *subpage; 2194 bool ret = true; 2195 struct mmu_notifier_range range; 2196 swp_entry_t entry; 2197 pte_t swp_pte; 2198 2199 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 2200 vma->vm_mm, address, min(vma->vm_end, 2201 address + folio_size(folio)), 2202 args->owner); 2203 mmu_notifier_invalidate_range_start(&range); 2204 2205 while (page_vma_mapped_walk(&pvmw)) { 2206 /* Unexpected PMD-mapped THP? */ 2207 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2208 2209 if (!pte_present(*pvmw.pte)) { 2210 ret = false; 2211 page_vma_mapped_walk_done(&pvmw); 2212 break; 2213 } 2214 2215 subpage = folio_page(folio, 2216 pte_pfn(*pvmw.pte) - folio_pfn(folio)); 2217 address = pvmw.address; 2218 2219 /* Nuke the page table entry. */ 2220 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 2221 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2222 2223 /* Set the dirty flag on the folio now the pte is gone. */ 2224 if (pte_dirty(pteval)) 2225 folio_mark_dirty(folio); 2226 2227 /* 2228 * Check that our target page is still mapped at the expected 2229 * address. 2230 */ 2231 if (args->mm == mm && args->address == address && 2232 pte_write(pteval)) 2233 args->valid = true; 2234 2235 /* 2236 * Store the pfn of the page in a special migration 2237 * pte. do_swap_page() will wait until the migration 2238 * pte is removed and then restart fault handling. 2239 */ 2240 if (pte_write(pteval)) 2241 entry = make_writable_device_exclusive_entry( 2242 page_to_pfn(subpage)); 2243 else 2244 entry = make_readable_device_exclusive_entry( 2245 page_to_pfn(subpage)); 2246 swp_pte = swp_entry_to_pte(entry); 2247 if (pte_soft_dirty(pteval)) 2248 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2249 if (pte_uffd_wp(pteval)) 2250 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2251 2252 set_pte_at(mm, address, pvmw.pte, swp_pte); 2253 2254 /* 2255 * There is a reference on the page for the swap entry which has 2256 * been removed, so shouldn't take another. 2257 */ 2258 page_remove_rmap(subpage, vma, false); 2259 } 2260 2261 mmu_notifier_invalidate_range_end(&range); 2262 2263 return ret; 2264 } 2265 2266 /** 2267 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2268 * @folio: The folio to replace page table entries for. 2269 * @mm: The mm_struct where the folio is expected to be mapped. 2270 * @address: Address where the folio is expected to be mapped. 2271 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2272 * 2273 * Tries to remove all the page table entries which are mapping this 2274 * folio and replace them with special device exclusive swap entries to 2275 * grant a device exclusive access to the folio. 2276 * 2277 * Context: Caller must hold the folio lock. 2278 * Return: false if the page is still mapped, or if it could not be unmapped 2279 * from the expected address. Otherwise returns true (success). 2280 */ 2281 static bool folio_make_device_exclusive(struct folio *folio, 2282 struct mm_struct *mm, unsigned long address, void *owner) 2283 { 2284 struct make_exclusive_args args = { 2285 .mm = mm, 2286 .address = address, 2287 .owner = owner, 2288 .valid = false, 2289 }; 2290 struct rmap_walk_control rwc = { 2291 .rmap_one = page_make_device_exclusive_one, 2292 .done = folio_not_mapped, 2293 .anon_lock = folio_lock_anon_vma_read, 2294 .arg = &args, 2295 }; 2296 2297 /* 2298 * Restrict to anonymous folios for now to avoid potential writeback 2299 * issues. 2300 */ 2301 if (!folio_test_anon(folio)) 2302 return false; 2303 2304 rmap_walk(folio, &rwc); 2305 2306 return args.valid && !folio_mapcount(folio); 2307 } 2308 2309 /** 2310 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2311 * @mm: mm_struct of associated target process 2312 * @start: start of the region to mark for exclusive device access 2313 * @end: end address of region 2314 * @pages: returns the pages which were successfully marked for exclusive access 2315 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2316 * 2317 * Returns: number of pages found in the range by GUP. A page is marked for 2318 * exclusive access only if the page pointer is non-NULL. 2319 * 2320 * This function finds ptes mapping page(s) to the given address range, locks 2321 * them and replaces mappings with special swap entries preventing userspace CPU 2322 * access. On fault these entries are replaced with the original mapping after 2323 * calling MMU notifiers. 2324 * 2325 * A driver using this to program access from a device must use a mmu notifier 2326 * critical section to hold a device specific lock during programming. Once 2327 * programming is complete it should drop the page lock and reference after 2328 * which point CPU access to the page will revoke the exclusive access. 2329 */ 2330 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2331 unsigned long end, struct page **pages, 2332 void *owner) 2333 { 2334 long npages = (end - start) >> PAGE_SHIFT; 2335 long i; 2336 2337 npages = get_user_pages_remote(mm, start, npages, 2338 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2339 pages, NULL, NULL); 2340 if (npages < 0) 2341 return npages; 2342 2343 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2344 struct folio *folio = page_folio(pages[i]); 2345 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2346 folio_put(folio); 2347 pages[i] = NULL; 2348 continue; 2349 } 2350 2351 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2352 folio_unlock(folio); 2353 folio_put(folio); 2354 pages[i] = NULL; 2355 } 2356 } 2357 2358 return npages; 2359 } 2360 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2361 #endif 2362 2363 void __put_anon_vma(struct anon_vma *anon_vma) 2364 { 2365 struct anon_vma *root = anon_vma->root; 2366 2367 anon_vma_free(anon_vma); 2368 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2369 anon_vma_free(root); 2370 } 2371 2372 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2373 struct rmap_walk_control *rwc) 2374 { 2375 struct anon_vma *anon_vma; 2376 2377 if (rwc->anon_lock) 2378 return rwc->anon_lock(folio, rwc); 2379 2380 /* 2381 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2382 * because that depends on page_mapped(); but not all its usages 2383 * are holding mmap_lock. Users without mmap_lock are required to 2384 * take a reference count to prevent the anon_vma disappearing 2385 */ 2386 anon_vma = folio_anon_vma(folio); 2387 if (!anon_vma) 2388 return NULL; 2389 2390 if (anon_vma_trylock_read(anon_vma)) 2391 goto out; 2392 2393 if (rwc->try_lock) { 2394 anon_vma = NULL; 2395 rwc->contended = true; 2396 goto out; 2397 } 2398 2399 anon_vma_lock_read(anon_vma); 2400 out: 2401 return anon_vma; 2402 } 2403 2404 /* 2405 * rmap_walk_anon - do something to anonymous page using the object-based 2406 * rmap method 2407 * @page: the page to be handled 2408 * @rwc: control variable according to each walk type 2409 * 2410 * Find all the mappings of a page using the mapping pointer and the vma chains 2411 * contained in the anon_vma struct it points to. 2412 */ 2413 static void rmap_walk_anon(struct folio *folio, 2414 struct rmap_walk_control *rwc, bool locked) 2415 { 2416 struct anon_vma *anon_vma; 2417 pgoff_t pgoff_start, pgoff_end; 2418 struct anon_vma_chain *avc; 2419 2420 if (locked) { 2421 anon_vma = folio_anon_vma(folio); 2422 /* anon_vma disappear under us? */ 2423 VM_BUG_ON_FOLIO(!anon_vma, folio); 2424 } else { 2425 anon_vma = rmap_walk_anon_lock(folio, rwc); 2426 } 2427 if (!anon_vma) 2428 return; 2429 2430 pgoff_start = folio_pgoff(folio); 2431 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2432 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2433 pgoff_start, pgoff_end) { 2434 struct vm_area_struct *vma = avc->vma; 2435 unsigned long address = vma_address(&folio->page, vma); 2436 2437 VM_BUG_ON_VMA(address == -EFAULT, vma); 2438 cond_resched(); 2439 2440 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2441 continue; 2442 2443 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2444 break; 2445 if (rwc->done && rwc->done(folio)) 2446 break; 2447 } 2448 2449 if (!locked) 2450 anon_vma_unlock_read(anon_vma); 2451 } 2452 2453 /* 2454 * rmap_walk_file - do something to file page using the object-based rmap method 2455 * @page: the page to be handled 2456 * @rwc: control variable according to each walk type 2457 * 2458 * Find all the mappings of a page using the mapping pointer and the vma chains 2459 * contained in the address_space struct it points to. 2460 */ 2461 static void rmap_walk_file(struct folio *folio, 2462 struct rmap_walk_control *rwc, bool locked) 2463 { 2464 struct address_space *mapping = folio_mapping(folio); 2465 pgoff_t pgoff_start, pgoff_end; 2466 struct vm_area_struct *vma; 2467 2468 /* 2469 * The page lock not only makes sure that page->mapping cannot 2470 * suddenly be NULLified by truncation, it makes sure that the 2471 * structure at mapping cannot be freed and reused yet, 2472 * so we can safely take mapping->i_mmap_rwsem. 2473 */ 2474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2475 2476 if (!mapping) 2477 return; 2478 2479 pgoff_start = folio_pgoff(folio); 2480 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2481 if (!locked) { 2482 if (i_mmap_trylock_read(mapping)) 2483 goto lookup; 2484 2485 if (rwc->try_lock) { 2486 rwc->contended = true; 2487 return; 2488 } 2489 2490 i_mmap_lock_read(mapping); 2491 } 2492 lookup: 2493 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2494 pgoff_start, pgoff_end) { 2495 unsigned long address = vma_address(&folio->page, vma); 2496 2497 VM_BUG_ON_VMA(address == -EFAULT, vma); 2498 cond_resched(); 2499 2500 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2501 continue; 2502 2503 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2504 goto done; 2505 if (rwc->done && rwc->done(folio)) 2506 goto done; 2507 } 2508 2509 done: 2510 if (!locked) 2511 i_mmap_unlock_read(mapping); 2512 } 2513 2514 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2515 { 2516 if (unlikely(folio_test_ksm(folio))) 2517 rmap_walk_ksm(folio, rwc); 2518 else if (folio_test_anon(folio)) 2519 rmap_walk_anon(folio, rwc, false); 2520 else 2521 rmap_walk_file(folio, rwc, false); 2522 } 2523 2524 /* Like rmap_walk, but caller holds relevant rmap lock */ 2525 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2526 { 2527 /* no ksm support for now */ 2528 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2529 if (folio_test_anon(folio)) 2530 rmap_walk_anon(folio, rwc, true); 2531 else 2532 rmap_walk_file(folio, rwc, true); 2533 } 2534 2535 #ifdef CONFIG_HUGETLB_PAGE 2536 /* 2537 * The following two functions are for anonymous (private mapped) hugepages. 2538 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2539 * and no lru code, because we handle hugepages differently from common pages. 2540 * 2541 * RMAP_COMPOUND is ignored. 2542 */ 2543 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2544 unsigned long address, rmap_t flags) 2545 { 2546 struct anon_vma *anon_vma = vma->anon_vma; 2547 int first; 2548 2549 BUG_ON(!PageLocked(page)); 2550 BUG_ON(!anon_vma); 2551 /* address might be in next vma when migration races vma_adjust */ 2552 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 2553 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2554 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2555 if (first) 2556 __page_set_anon_rmap(page, vma, address, 2557 !!(flags & RMAP_EXCLUSIVE)); 2558 } 2559 2560 void hugepage_add_new_anon_rmap(struct page *page, 2561 struct vm_area_struct *vma, unsigned long address) 2562 { 2563 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2564 /* increment count (starts at -1) */ 2565 atomic_set(compound_mapcount_ptr(page), 0); 2566 ClearHPageRestoreReserve(page); 2567 __page_set_anon_rmap(page, vma, address, 1); 2568 } 2569 #endif /* CONFIG_HUGETLB_PAGE */ 2570