xref: /linux/mm/rmap.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28  * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29  * taken together; in truncation, i_mutex is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock or pte_lock
36  *           zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37  *           swap_lock (in swap_duplicate, swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             mapping->private_lock (in __set_page_dirty_buffers)
40  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
41  *               sb_lock (within inode_lock in fs/fs-writeback.c)
42  *               mapping->tree_lock (widely used, in set_page_dirty,
43  *                         in arch-dependent flush_dcache_mmap_lock,
44  *                         within inode_lock in __sync_single_inode)
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 
57 #include <asm/tlbflush.h>
58 
59 struct kmem_cache *anon_vma_cachep;
60 
61 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
62 {
63 #ifdef CONFIG_DEBUG_VM
64 	struct anon_vma *anon_vma = find_vma->anon_vma;
65 	struct vm_area_struct *vma;
66 	unsigned int mapcount = 0;
67 	int found = 0;
68 
69 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
70 		mapcount++;
71 		BUG_ON(mapcount > 100000);
72 		if (vma == find_vma)
73 			found = 1;
74 	}
75 	BUG_ON(!found);
76 #endif
77 }
78 
79 /* This must be called under the mmap_sem. */
80 int anon_vma_prepare(struct vm_area_struct *vma)
81 {
82 	struct anon_vma *anon_vma = vma->anon_vma;
83 
84 	might_sleep();
85 	if (unlikely(!anon_vma)) {
86 		struct mm_struct *mm = vma->vm_mm;
87 		struct anon_vma *allocated, *locked;
88 
89 		anon_vma = find_mergeable_anon_vma(vma);
90 		if (anon_vma) {
91 			allocated = NULL;
92 			locked = anon_vma;
93 			spin_lock(&locked->lock);
94 		} else {
95 			anon_vma = anon_vma_alloc();
96 			if (unlikely(!anon_vma))
97 				return -ENOMEM;
98 			allocated = anon_vma;
99 			locked = NULL;
100 		}
101 
102 		/* page_table_lock to protect against threads */
103 		spin_lock(&mm->page_table_lock);
104 		if (likely(!vma->anon_vma)) {
105 			vma->anon_vma = anon_vma;
106 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
107 			allocated = NULL;
108 		}
109 		spin_unlock(&mm->page_table_lock);
110 
111 		if (locked)
112 			spin_unlock(&locked->lock);
113 		if (unlikely(allocated))
114 			anon_vma_free(allocated);
115 	}
116 	return 0;
117 }
118 
119 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
120 {
121 	BUG_ON(vma->anon_vma != next->anon_vma);
122 	list_del(&next->anon_vma_node);
123 }
124 
125 void __anon_vma_link(struct vm_area_struct *vma)
126 {
127 	struct anon_vma *anon_vma = vma->anon_vma;
128 
129 	if (anon_vma) {
130 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
131 		validate_anon_vma(vma);
132 	}
133 }
134 
135 void anon_vma_link(struct vm_area_struct *vma)
136 {
137 	struct anon_vma *anon_vma = vma->anon_vma;
138 
139 	if (anon_vma) {
140 		spin_lock(&anon_vma->lock);
141 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
142 		validate_anon_vma(vma);
143 		spin_unlock(&anon_vma->lock);
144 	}
145 }
146 
147 void anon_vma_unlink(struct vm_area_struct *vma)
148 {
149 	struct anon_vma *anon_vma = vma->anon_vma;
150 	int empty;
151 
152 	if (!anon_vma)
153 		return;
154 
155 	spin_lock(&anon_vma->lock);
156 	validate_anon_vma(vma);
157 	list_del(&vma->anon_vma_node);
158 
159 	/* We must garbage collect the anon_vma if it's empty */
160 	empty = list_empty(&anon_vma->head);
161 	spin_unlock(&anon_vma->lock);
162 
163 	if (empty)
164 		anon_vma_free(anon_vma);
165 }
166 
167 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
168 			  unsigned long flags)
169 {
170 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 						SLAB_CTOR_CONSTRUCTOR) {
172 		struct anon_vma *anon_vma = data;
173 
174 		spin_lock_init(&anon_vma->lock);
175 		INIT_LIST_HEAD(&anon_vma->head);
176 	}
177 }
178 
179 void __init anon_vma_init(void)
180 {
181 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183 }
184 
185 /*
186  * Getting a lock on a stable anon_vma from a page off the LRU is
187  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188  */
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
190 {
191 	struct anon_vma *anon_vma = NULL;
192 	unsigned long anon_mapping;
193 
194 	rcu_read_lock();
195 	anon_mapping = (unsigned long) page->mapping;
196 	if (!(anon_mapping & PAGE_MAPPING_ANON))
197 		goto out;
198 	if (!page_mapped(page))
199 		goto out;
200 
201 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 	spin_lock(&anon_vma->lock);
203 out:
204 	rcu_read_unlock();
205 	return anon_vma;
206 }
207 
208 /*
209  * At what user virtual address is page expected in vma?
210  */
211 static inline unsigned long
212 vma_address(struct page *page, struct vm_area_struct *vma)
213 {
214 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 	unsigned long address;
216 
217 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 		/* page should be within any vma from prio_tree_next */
220 		BUG_ON(!PageAnon(page));
221 		return -EFAULT;
222 	}
223 	return address;
224 }
225 
226 /*
227  * At what user virtual address is page expected in vma? checking that the
228  * page matches the vma: currently only used on anon pages, by unuse_vma;
229  */
230 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
231 {
232 	if (PageAnon(page)) {
233 		if ((void *)vma->anon_vma !=
234 		    (void *)page->mapping - PAGE_MAPPING_ANON)
235 			return -EFAULT;
236 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
237 		if (!vma->vm_file ||
238 		    vma->vm_file->f_mapping != page->mapping)
239 			return -EFAULT;
240 	} else
241 		return -EFAULT;
242 	return vma_address(page, vma);
243 }
244 
245 /*
246  * Check that @page is mapped at @address into @mm.
247  *
248  * On success returns with pte mapped and locked.
249  */
250 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
251 			  unsigned long address, spinlock_t **ptlp)
252 {
253 	pgd_t *pgd;
254 	pud_t *pud;
255 	pmd_t *pmd;
256 	pte_t *pte;
257 	spinlock_t *ptl;
258 
259 	pgd = pgd_offset(mm, address);
260 	if (!pgd_present(*pgd))
261 		return NULL;
262 
263 	pud = pud_offset(pgd, address);
264 	if (!pud_present(*pud))
265 		return NULL;
266 
267 	pmd = pmd_offset(pud, address);
268 	if (!pmd_present(*pmd))
269 		return NULL;
270 
271 	pte = pte_offset_map(pmd, address);
272 	/* Make a quick check before getting the lock */
273 	if (!pte_present(*pte)) {
274 		pte_unmap(pte);
275 		return NULL;
276 	}
277 
278 	ptl = pte_lockptr(mm, pmd);
279 	spin_lock(ptl);
280 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
281 		*ptlp = ptl;
282 		return pte;
283 	}
284 	pte_unmap_unlock(pte, ptl);
285 	return NULL;
286 }
287 
288 /*
289  * Subfunctions of page_referenced: page_referenced_one called
290  * repeatedly from either page_referenced_anon or page_referenced_file.
291  */
292 static int page_referenced_one(struct page *page,
293 	struct vm_area_struct *vma, unsigned int *mapcount)
294 {
295 	struct mm_struct *mm = vma->vm_mm;
296 	unsigned long address;
297 	pte_t *pte;
298 	spinlock_t *ptl;
299 	int referenced = 0;
300 
301 	address = vma_address(page, vma);
302 	if (address == -EFAULT)
303 		goto out;
304 
305 	pte = page_check_address(page, mm, address, &ptl);
306 	if (!pte)
307 		goto out;
308 
309 	if (ptep_clear_flush_young(vma, address, pte))
310 		referenced++;
311 
312 	/* Pretend the page is referenced if the task has the
313 	   swap token and is in the middle of a page fault. */
314 	if (mm != current->mm && has_swap_token(mm) &&
315 			rwsem_is_locked(&mm->mmap_sem))
316 		referenced++;
317 
318 	(*mapcount)--;
319 	pte_unmap_unlock(pte, ptl);
320 out:
321 	return referenced;
322 }
323 
324 static int page_referenced_anon(struct page *page)
325 {
326 	unsigned int mapcount;
327 	struct anon_vma *anon_vma;
328 	struct vm_area_struct *vma;
329 	int referenced = 0;
330 
331 	anon_vma = page_lock_anon_vma(page);
332 	if (!anon_vma)
333 		return referenced;
334 
335 	mapcount = page_mapcount(page);
336 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
337 		referenced += page_referenced_one(page, vma, &mapcount);
338 		if (!mapcount)
339 			break;
340 	}
341 	spin_unlock(&anon_vma->lock);
342 	return referenced;
343 }
344 
345 /**
346  * page_referenced_file - referenced check for object-based rmap
347  * @page: the page we're checking references on.
348  *
349  * For an object-based mapped page, find all the places it is mapped and
350  * check/clear the referenced flag.  This is done by following the page->mapping
351  * pointer, then walking the chain of vmas it holds.  It returns the number
352  * of references it found.
353  *
354  * This function is only called from page_referenced for object-based pages.
355  */
356 static int page_referenced_file(struct page *page)
357 {
358 	unsigned int mapcount;
359 	struct address_space *mapping = page->mapping;
360 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
361 	struct vm_area_struct *vma;
362 	struct prio_tree_iter iter;
363 	int referenced = 0;
364 
365 	/*
366 	 * The caller's checks on page->mapping and !PageAnon have made
367 	 * sure that this is a file page: the check for page->mapping
368 	 * excludes the case just before it gets set on an anon page.
369 	 */
370 	BUG_ON(PageAnon(page));
371 
372 	/*
373 	 * The page lock not only makes sure that page->mapping cannot
374 	 * suddenly be NULLified by truncation, it makes sure that the
375 	 * structure at mapping cannot be freed and reused yet,
376 	 * so we can safely take mapping->i_mmap_lock.
377 	 */
378 	BUG_ON(!PageLocked(page));
379 
380 	spin_lock(&mapping->i_mmap_lock);
381 
382 	/*
383 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
384 	 * is more likely to be accurate if we note it after spinning.
385 	 */
386 	mapcount = page_mapcount(page);
387 
388 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
389 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 				  == (VM_LOCKED|VM_MAYSHARE)) {
391 			referenced++;
392 			break;
393 		}
394 		referenced += page_referenced_one(page, vma, &mapcount);
395 		if (!mapcount)
396 			break;
397 	}
398 
399 	spin_unlock(&mapping->i_mmap_lock);
400 	return referenced;
401 }
402 
403 /**
404  * page_referenced - test if the page was referenced
405  * @page: the page to test
406  * @is_locked: caller holds lock on the page
407  *
408  * Quick test_and_clear_referenced for all mappings to a page,
409  * returns the number of ptes which referenced the page.
410  */
411 int page_referenced(struct page *page, int is_locked)
412 {
413 	int referenced = 0;
414 
415 	if (page_test_and_clear_young(page))
416 		referenced++;
417 
418 	if (TestClearPageReferenced(page))
419 		referenced++;
420 
421 	if (page_mapped(page) && page->mapping) {
422 		if (PageAnon(page))
423 			referenced += page_referenced_anon(page);
424 		else if (is_locked)
425 			referenced += page_referenced_file(page);
426 		else if (TestSetPageLocked(page))
427 			referenced++;
428 		else {
429 			if (page->mapping)
430 				referenced += page_referenced_file(page);
431 			unlock_page(page);
432 		}
433 	}
434 	return referenced;
435 }
436 
437 /**
438  * page_set_anon_rmap - setup new anonymous rmap
439  * @page:	the page to add the mapping to
440  * @vma:	the vm area in which the mapping is added
441  * @address:	the user virtual address mapped
442  */
443 static void __page_set_anon_rmap(struct page *page,
444 	struct vm_area_struct *vma, unsigned long address)
445 {
446 	struct anon_vma *anon_vma = vma->anon_vma;
447 
448 	BUG_ON(!anon_vma);
449 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
450 	page->mapping = (struct address_space *) anon_vma;
451 
452 	page->index = linear_page_index(vma, address);
453 
454 	/*
455 	 * nr_mapped state can be updated without turning off
456 	 * interrupts because it is not modified via interrupt.
457 	 */
458 	__inc_zone_page_state(page, NR_ANON_PAGES);
459 }
460 
461 /**
462  * page_add_anon_rmap - add pte mapping to an anonymous page
463  * @page:	the page to add the mapping to
464  * @vma:	the vm area in which the mapping is added
465  * @address:	the user virtual address mapped
466  *
467  * The caller needs to hold the pte lock.
468  */
469 void page_add_anon_rmap(struct page *page,
470 	struct vm_area_struct *vma, unsigned long address)
471 {
472 	if (atomic_inc_and_test(&page->_mapcount))
473 		__page_set_anon_rmap(page, vma, address);
474 	/* else checking page index and mapping is racy */
475 }
476 
477 /*
478  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
479  * @page:	the page to add the mapping to
480  * @vma:	the vm area in which the mapping is added
481  * @address:	the user virtual address mapped
482  *
483  * Same as page_add_anon_rmap but must only be called on *new* pages.
484  * This means the inc-and-test can be bypassed.
485  */
486 void page_add_new_anon_rmap(struct page *page,
487 	struct vm_area_struct *vma, unsigned long address)
488 {
489 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
490 	__page_set_anon_rmap(page, vma, address);
491 }
492 
493 /**
494  * page_add_file_rmap - add pte mapping to a file page
495  * @page: the page to add the mapping to
496  *
497  * The caller needs to hold the pte lock.
498  */
499 void page_add_file_rmap(struct page *page)
500 {
501 	if (atomic_inc_and_test(&page->_mapcount))
502 		__inc_zone_page_state(page, NR_FILE_MAPPED);
503 }
504 
505 /**
506  * page_remove_rmap - take down pte mapping from a page
507  * @page: page to remove mapping from
508  *
509  * The caller needs to hold the pte lock.
510  */
511 void page_remove_rmap(struct page *page)
512 {
513 	if (atomic_add_negative(-1, &page->_mapcount)) {
514 #ifdef CONFIG_DEBUG_VM
515 		if (unlikely(page_mapcount(page) < 0)) {
516 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
517 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
518 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
519 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
520 		}
521 #endif
522 		BUG_ON(page_mapcount(page) < 0);
523 		/*
524 		 * It would be tidy to reset the PageAnon mapping here,
525 		 * but that might overwrite a racing page_add_anon_rmap
526 		 * which increments mapcount after us but sets mapping
527 		 * before us: so leave the reset to free_hot_cold_page,
528 		 * and remember that it's only reliable while mapped.
529 		 * Leaving it set also helps swapoff to reinstate ptes
530 		 * faster for those pages still in swapcache.
531 		 */
532 		if (page_test_and_clear_dirty(page))
533 			set_page_dirty(page);
534 		__dec_zone_page_state(page,
535 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
536 	}
537 }
538 
539 /*
540  * Subfunctions of try_to_unmap: try_to_unmap_one called
541  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
542  */
543 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
544 				int migration)
545 {
546 	struct mm_struct *mm = vma->vm_mm;
547 	unsigned long address;
548 	pte_t *pte;
549 	pte_t pteval;
550 	spinlock_t *ptl;
551 	int ret = SWAP_AGAIN;
552 
553 	address = vma_address(page, vma);
554 	if (address == -EFAULT)
555 		goto out;
556 
557 	pte = page_check_address(page, mm, address, &ptl);
558 	if (!pte)
559 		goto out;
560 
561 	/*
562 	 * If the page is mlock()d, we cannot swap it out.
563 	 * If it's recently referenced (perhaps page_referenced
564 	 * skipped over this mm) then we should reactivate it.
565 	 */
566 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
567 			(ptep_clear_flush_young(vma, address, pte)))) {
568 		ret = SWAP_FAIL;
569 		goto out_unmap;
570 	}
571 
572 	/* Nuke the page table entry. */
573 	flush_cache_page(vma, address, page_to_pfn(page));
574 	pteval = ptep_clear_flush(vma, address, pte);
575 
576 	/* Move the dirty bit to the physical page now the pte is gone. */
577 	if (pte_dirty(pteval))
578 		set_page_dirty(page);
579 
580 	/* Update high watermark before we lower rss */
581 	update_hiwater_rss(mm);
582 
583 	if (PageAnon(page)) {
584 		swp_entry_t entry = { .val = page_private(page) };
585 
586 		if (PageSwapCache(page)) {
587 			/*
588 			 * Store the swap location in the pte.
589 			 * See handle_pte_fault() ...
590 			 */
591 			swap_duplicate(entry);
592 			if (list_empty(&mm->mmlist)) {
593 				spin_lock(&mmlist_lock);
594 				if (list_empty(&mm->mmlist))
595 					list_add(&mm->mmlist, &init_mm.mmlist);
596 				spin_unlock(&mmlist_lock);
597 			}
598 			dec_mm_counter(mm, anon_rss);
599 #ifdef CONFIG_MIGRATION
600 		} else {
601 			/*
602 			 * Store the pfn of the page in a special migration
603 			 * pte. do_swap_page() will wait until the migration
604 			 * pte is removed and then restart fault handling.
605 			 */
606 			BUG_ON(!migration);
607 			entry = make_migration_entry(page, pte_write(pteval));
608 #endif
609 		}
610 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
611 		BUG_ON(pte_file(*pte));
612 	} else
613 #ifdef CONFIG_MIGRATION
614 	if (migration) {
615 		/* Establish migration entry for a file page */
616 		swp_entry_t entry;
617 		entry = make_migration_entry(page, pte_write(pteval));
618 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
619 	} else
620 #endif
621 		dec_mm_counter(mm, file_rss);
622 
623 
624 	page_remove_rmap(page);
625 	page_cache_release(page);
626 
627 out_unmap:
628 	pte_unmap_unlock(pte, ptl);
629 out:
630 	return ret;
631 }
632 
633 /*
634  * objrmap doesn't work for nonlinear VMAs because the assumption that
635  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
636  * Consequently, given a particular page and its ->index, we cannot locate the
637  * ptes which are mapping that page without an exhaustive linear search.
638  *
639  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
640  * maps the file to which the target page belongs.  The ->vm_private_data field
641  * holds the current cursor into that scan.  Successive searches will circulate
642  * around the vma's virtual address space.
643  *
644  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
645  * more scanning pressure is placed against them as well.   Eventually pages
646  * will become fully unmapped and are eligible for eviction.
647  *
648  * For very sparsely populated VMAs this is a little inefficient - chances are
649  * there there won't be many ptes located within the scan cluster.  In this case
650  * maybe we could scan further - to the end of the pte page, perhaps.
651  */
652 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
653 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
654 
655 static void try_to_unmap_cluster(unsigned long cursor,
656 	unsigned int *mapcount, struct vm_area_struct *vma)
657 {
658 	struct mm_struct *mm = vma->vm_mm;
659 	pgd_t *pgd;
660 	pud_t *pud;
661 	pmd_t *pmd;
662 	pte_t *pte;
663 	pte_t pteval;
664 	spinlock_t *ptl;
665 	struct page *page;
666 	unsigned long address;
667 	unsigned long end;
668 
669 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
670 	end = address + CLUSTER_SIZE;
671 	if (address < vma->vm_start)
672 		address = vma->vm_start;
673 	if (end > vma->vm_end)
674 		end = vma->vm_end;
675 
676 	pgd = pgd_offset(mm, address);
677 	if (!pgd_present(*pgd))
678 		return;
679 
680 	pud = pud_offset(pgd, address);
681 	if (!pud_present(*pud))
682 		return;
683 
684 	pmd = pmd_offset(pud, address);
685 	if (!pmd_present(*pmd))
686 		return;
687 
688 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
689 
690 	/* Update high watermark before we lower rss */
691 	update_hiwater_rss(mm);
692 
693 	for (; address < end; pte++, address += PAGE_SIZE) {
694 		if (!pte_present(*pte))
695 			continue;
696 		page = vm_normal_page(vma, address, *pte);
697 		BUG_ON(!page || PageAnon(page));
698 
699 		if (ptep_clear_flush_young(vma, address, pte))
700 			continue;
701 
702 		/* Nuke the page table entry. */
703 		flush_cache_page(vma, address, pte_pfn(*pte));
704 		pteval = ptep_clear_flush(vma, address, pte);
705 
706 		/* If nonlinear, store the file page offset in the pte. */
707 		if (page->index != linear_page_index(vma, address))
708 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
709 
710 		/* Move the dirty bit to the physical page now the pte is gone. */
711 		if (pte_dirty(pteval))
712 			set_page_dirty(page);
713 
714 		page_remove_rmap(page);
715 		page_cache_release(page);
716 		dec_mm_counter(mm, file_rss);
717 		(*mapcount)--;
718 	}
719 	pte_unmap_unlock(pte - 1, ptl);
720 }
721 
722 static int try_to_unmap_anon(struct page *page, int migration)
723 {
724 	struct anon_vma *anon_vma;
725 	struct vm_area_struct *vma;
726 	int ret = SWAP_AGAIN;
727 
728 	anon_vma = page_lock_anon_vma(page);
729 	if (!anon_vma)
730 		return ret;
731 
732 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
733 		ret = try_to_unmap_one(page, vma, migration);
734 		if (ret == SWAP_FAIL || !page_mapped(page))
735 			break;
736 	}
737 	spin_unlock(&anon_vma->lock);
738 	return ret;
739 }
740 
741 /**
742  * try_to_unmap_file - unmap file page using the object-based rmap method
743  * @page: the page to unmap
744  *
745  * Find all the mappings of a page using the mapping pointer and the vma chains
746  * contained in the address_space struct it points to.
747  *
748  * This function is only called from try_to_unmap for object-based pages.
749  */
750 static int try_to_unmap_file(struct page *page, int migration)
751 {
752 	struct address_space *mapping = page->mapping;
753 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
754 	struct vm_area_struct *vma;
755 	struct prio_tree_iter iter;
756 	int ret = SWAP_AGAIN;
757 	unsigned long cursor;
758 	unsigned long max_nl_cursor = 0;
759 	unsigned long max_nl_size = 0;
760 	unsigned int mapcount;
761 
762 	spin_lock(&mapping->i_mmap_lock);
763 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
764 		ret = try_to_unmap_one(page, vma, migration);
765 		if (ret == SWAP_FAIL || !page_mapped(page))
766 			goto out;
767 	}
768 
769 	if (list_empty(&mapping->i_mmap_nonlinear))
770 		goto out;
771 
772 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
773 						shared.vm_set.list) {
774 		if ((vma->vm_flags & VM_LOCKED) && !migration)
775 			continue;
776 		cursor = (unsigned long) vma->vm_private_data;
777 		if (cursor > max_nl_cursor)
778 			max_nl_cursor = cursor;
779 		cursor = vma->vm_end - vma->vm_start;
780 		if (cursor > max_nl_size)
781 			max_nl_size = cursor;
782 	}
783 
784 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
785 		ret = SWAP_FAIL;
786 		goto out;
787 	}
788 
789 	/*
790 	 * We don't try to search for this page in the nonlinear vmas,
791 	 * and page_referenced wouldn't have found it anyway.  Instead
792 	 * just walk the nonlinear vmas trying to age and unmap some.
793 	 * The mapcount of the page we came in with is irrelevant,
794 	 * but even so use it as a guide to how hard we should try?
795 	 */
796 	mapcount = page_mapcount(page);
797 	if (!mapcount)
798 		goto out;
799 	cond_resched_lock(&mapping->i_mmap_lock);
800 
801 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
802 	if (max_nl_cursor == 0)
803 		max_nl_cursor = CLUSTER_SIZE;
804 
805 	do {
806 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
807 						shared.vm_set.list) {
808 			if ((vma->vm_flags & VM_LOCKED) && !migration)
809 				continue;
810 			cursor = (unsigned long) vma->vm_private_data;
811 			while ( cursor < max_nl_cursor &&
812 				cursor < vma->vm_end - vma->vm_start) {
813 				try_to_unmap_cluster(cursor, &mapcount, vma);
814 				cursor += CLUSTER_SIZE;
815 				vma->vm_private_data = (void *) cursor;
816 				if ((int)mapcount <= 0)
817 					goto out;
818 			}
819 			vma->vm_private_data = (void *) max_nl_cursor;
820 		}
821 		cond_resched_lock(&mapping->i_mmap_lock);
822 		max_nl_cursor += CLUSTER_SIZE;
823 	} while (max_nl_cursor <= max_nl_size);
824 
825 	/*
826 	 * Don't loop forever (perhaps all the remaining pages are
827 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
828 	 * vmas, now forgetting on which ones it had fallen behind.
829 	 */
830 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
831 		vma->vm_private_data = NULL;
832 out:
833 	spin_unlock(&mapping->i_mmap_lock);
834 	return ret;
835 }
836 
837 /**
838  * try_to_unmap - try to remove all page table mappings to a page
839  * @page: the page to get unmapped
840  *
841  * Tries to remove all the page table entries which are mapping this
842  * page, used in the pageout path.  Caller must hold the page lock.
843  * Return values are:
844  *
845  * SWAP_SUCCESS	- we succeeded in removing all mappings
846  * SWAP_AGAIN	- we missed a mapping, try again later
847  * SWAP_FAIL	- the page is unswappable
848  */
849 int try_to_unmap(struct page *page, int migration)
850 {
851 	int ret;
852 
853 	BUG_ON(!PageLocked(page));
854 
855 	if (PageAnon(page))
856 		ret = try_to_unmap_anon(page, migration);
857 	else
858 		ret = try_to_unmap_file(page, migration);
859 
860 	if (!page_mapped(page))
861 		ret = SWAP_SUCCESS;
862 	return ret;
863 }
864 
865